Superconductivity in K₃Ba₃C₆₀

Y. Iwasa, H. Hayashi, T. Furudate, and T. Mitani

Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-12, Japan

(Received 26 July 1996)

We report superconductivity of ternary fulleride synthesized by intercalation of potassium into Ba_3C_{60} . Bulk superconductivity with the onset temperature at 5.6 K was observed in $K_3Ba_3C_{60}$, which forms a body-centered-cubic (bcc) lattice with the cell parameter of a = 11.24 Å. Naive electron counting predicts that the Fermi level of $K_3Ba_3C_{60}$ is at the center of the t_{1g} -derived band, in sharp contrast with also superconducting Ba_6C_{60} . This result indicates that the superconductivity of fullerides occurs at the half-filled states both of the t_{1g} -derived bands. [S0163-1829(96)00846-6]

The lowest two unoccupied molecular orbitals of C $_{60}$ are both triply degenerate, having t_{1u} and t_{1g} symmetry. Superconductivity in fullerides appears when electrons are introduced by intercalation of alkali or alkali-earth metals into the next lowest t_{1g} level, as well as into the lowest t_{1u} level.^{1,2} The former superconductors are realized in the alkali-earthmetal intercalated compounds, such as Ca_5C_{60} (Ref. 3), Ba_6C_{60} (Ref. 4), and Sr_6C_{60} (Ref. 5). Occurrence of superconductivity in such a high reduction state is one of the most unique properties of fullerides. Nontheless, understanding of the " t_{1g} superconductors" is extremely poor in comparison with the well-known t_{1u} superconductors, that is the alkali intercalated C_{60} having a $(C_{60})^{3-}$ reduction state, in other words the half-filled state of the t_{1u} -derived band. This is partly because of the difficulty in synthesis of samples. From this point of view, synthesis of new materials having partially filled t_{1o} state and easy to synthesize can be a breakthrough to global understanding of fullerene superconductivity.

Recently, synthesis of multinary complex fullerides involving not only alkali metals but also neutral molecules or alkali-earth metals enables us to control the crystal structure and band filling (electron numbers on the t_{1u} level) independently. The former example is intercalation of NH₃ molecules into A_3C_{60} -type materials.^{6–8} The latter is the A_2BaC_{60} and ABa_2C_{60} -type compounds, where A denotes alkali metals. In these compounds, one can change the valence of C₆₀ without significant structural modification,⁹ because a simple electron counting with monovalent alkali and divalent alkali earth holds for all compounds synthesized. These multinary complex fullerides might provide an opportunity to study the relation between the C₆₀ valence state and the electronic properties or superconductivity.

The idea of complex fullerides is applicable to the highly reduced fullerides. Particularly, complex fullerides containing alkali and alkali-earth metals are promising materials for the study of the band-filling effect of the t_{1g} band. As a first step of this strategy, we tried intercalation of alkali metals into Ba₃C₆₀ (Ref. 10). We chose this host material having an *A*15 structure because of two reasons. First, the simple ionic crystal model predicts that the t_{1u} level is fully occupied and the t_{1g} level is empty. Second, the *A*15 structure involves three unoccupied interstitial sites per C₆₀. Potassium is the

best intercalant since the ionic radius of K⁺ (1.33 Å) is close to that of Ba²⁺ (1.38 Å). Here we report synthesis and structure of K₃Ba₃C₆₀, which displays superconductivity with the onset temperature at 5.6 K. A naive electron count indicates that K₃Ba₃C₆₀ is in the half-filled state of the t_{1g} -derived band in sharp contrast with the almost filled t_{1g} -derived band in Ba₆C₆₀.

Starting Ba₃C₆₀ powders were synthesized by reacting stoichiometric amount of powders of Ba and C₆₀. A quartz tube with mixed powders inside was sealed under high vacuum at about 2×10^{-6} torr, and heated at 600 °C for three or four days. This reaction reproducibly yielded a single phase of A 15 Ba₃C₆₀. The reaction of potassium and Ba₃C₆₀ was made in a similar manner to that of potassium doping into pure C₆₀. A piece of potassium metal and Ba₃C₆₀ powders were loaded in a Pyrex tube, which was sealed under 2×10^{-6} torr and heated at 260 °C for three days. Reaction at 400 °C or longer annealing time at 260 °C tends to result in a phase separation into Ba₆C₆₀ and K₆C₆₀.

Although Ba_3C_{60} does not show any superconducting signal, potassium-intercalated materials superconduct with the onset temperature at 5.6 K. Figure 1 shows the temperature dependence of dc magnetization measured at 10 Oe for samples of the nominal composition at $K_{3.5}Ba_3C_{60}$. The shielding fraction reached 30% at 2 K, indicating the bulk nature of the superconductivity. In a separate experiment, we

FIG. 1. Temperature dependence of magnetization of nominal $K_{3,5}Ba_3C_{60}$ at a field of 10 Oe.

14 960

© 1996 The American Physical Society

FIG. 2. Shielding fraction measured at 2 K by a zero-field cooling as a function of nominal potassium concentration x.

have synthesized Ba_6C_{60} in the same way as Ba_3C_{60} and checked the superconducting properties. The Ba_6C_{60} sample, which showed a bcc pattern in the x-ray diffraction (XRD) measurement, displayed 24% shielding at 2 K and the onset temperature at 7 K. This onset temperature is consistent with the literature⁴ and definitely differs from what we observed in potassium-doped samples (Fig. 1). We also note that, in the phase-separated samples annealed at 400 °C, bulk superconductivity was not observed, even from Ba_6C_{60} . This is possibly due to the narrow range of Ba concentration that is favorable for the superconductivity.⁴

Figure 2 shows the shielding fraction at 2 K against the nominal composition x of potassium. Above x=3, the shielding signal jumps to over 30%, keeping high fraction to x=6. This trend is in sharp contrast with that for Ba_xC₆₀ which forms an extremely narrow peak at x=6. The high volume fraction observed in a wide range of nominal potassium content indicates that the superconducting phase is considerably stable as the case of alkali intercalated C₆₀. Since the T_c was constant at 5.6 K for all K-doped samples in Fig. 2, there is only one superconducting phase at around x=3-4.

XRD measurements were performed on all samples in Fig. 2. Samples with x = 1 and 2 show similar patterns to that of A15 phase. At $x \ge 3$, we find a drastic change to a single phase bcc pattern with the cell parameter $a = 11.24 \pm 0.01$ Å. Although the bcc structure was kept unchanged to x=6, peaks are broadened and a tiny additional peak from potassium metal is sometimes observed at $x \ge 4.5$, indicating that the bcc is a saturated phase. Figure 3 shows the XRD pattern of the nominal x = 3.5 sample collected by Mo $K\alpha$ radiation on a 12 kW rotating anode generator. The pattern is similar to that for the well-known bcc structure found in A_6C_{60} [A is K, Rb, Cs (Ref. 11), and Ba (Ref. 4)]. All the observed peaks are indexed as a single phase bcc of a = 11.246 Å, which is close to the averaged value of the cell parameters for Ba_6C_{60} (11.17 Å) and K_6C_{60} (11.39 Å). This result strongly indicates that the superconducting phase is $K_3Ba_3C_{60}$, which is a solid solution of Ba_6C_{60} and K_6C_{60} .

We have carried out a Rietveld refinement of the structure using the RIETAN package (F. Izumi). The solid line in Fig. 3

FIG. 3. X-ray-diffraction pattern of nominal $K_{3.5}Ba_3C_{60}$ collected with Mo $K\alpha$ radiation. The crosses are experimental points and the solid line is a Rietveld fit to the model $K_3Ba_3C_{60}$ in the space group $Im\overline{3}$. Ticks mark the positions of the allowed Bragg reflections taking the $K\alpha_1$ and $K\alpha_2$ radiations into account.

shows fitted data to a model of the bcc structure (space group Im3). C_{60} molecules are assumed to have equal C-C bond lengths. Carbon positions are allowed to move only radially to preserve the shape of the C_{60} molecules. The refinement converged rapidly to the R factors of $R_{wp} = 8.55\%$ and $R_p = 6.61\%$, and S = 6.4 at the following coordinates; C1 at 0.06407, 0.0, 0.3112; C2 at 0.1281, 0.1037, 0.2716; C3 at 0.06407, 0.2074, 0.2319; and K and Ba at 0.0, 0.5, 0.2798, and at isotropic thermal factors of B = 1.4 and 2.3 (Å²) for C and Ba(K), respectively. Here the occupancies of K and Ba are both fixed at 0.5. We have tried a refinement of the composition x of K to the model $K_x Ba_3 C_{60}$ and $K_x Ba_{6-x} C_{60}$. Both refinements gave $R_{wp} = 8.55\%$ at x = 3.0 (4). These results led us to conclude that the ideal composition of the superconducting phase is $K_3Ba_3C_{60}$. Figure 2 indicates that a slight excess of potassium in the nominal content is necessary to obtain a high shielding fraction in K ₃Ba₃C₆₀ superconductor.

We have also succeeded to prepare Rb₃Ba₃C₆₀ by the same method as K₃Ba₃C₆₀. The sample showed an XRD pattern that is indexed as a single phase bcc with the lattice constant of 11.32 Å. This value is also close to the mean value of Ba₆C₆₀ and Rb₆C₆₀. This compound, however, did not superconduct down to 2 K. Occurrence of superconductivity in K₃Ba₃C₆₀ (a = 11.24 Å) and absence of superconductivity in Rb₃Ba₃C₆₀ with the larger cell is a notable feature that differs from that in t_{1u} superconductors.

The relation between T_c and the lattice parameter is in controversy. Kortan *et al.* showed that T_c increases with increasing the intermolecular distance,⁵ as in the case of t_{1u} superconductors. Meanwhile, Schirber *et al.* showed T_c increases with pressure in Ca₅C₆₀ (Ref. 12), suggesting an opposite trend. This issue should be discussed on the isoelectronic materials. In this sense, the isoelectronic and isostructural group of $A_3Ba_3C_{60}$ provides a new opportunity.

The position of the Fermi energy in $K_3Ba_3C_{60}$ is another important issue. Many experiments such as electrical resistivity¹³ and photoemission¹⁴ measurements clearly showed that the superconductivity in alkali-earth–metaldoped C_{60} occurs when carriers are introduced into the t_{1g} level (the next lowest unoccupied molecular orbital) of

 C_{60} . However, precise electronic structures of Ba_6C_{60} are unclear. For instance, Raman measurements on Ba_xC₆₀ were unsuccessful,⁹ and Baenitz suggested that the true superconducting phase is not ${\rm Ba}_6 {\rm C}_{60}$ (Ref. 15). A calculation by a local-density approximation 16 (LDA) shows that the alkali earth and C₆₀ orbitals are significantly hybridized and that the Fermi level of Ba_6C_{60} is located close to the top of the t_{1g} -derived band, resulting in a semimetallic character. The position of the Fermi energy derived from the LDA calculation is not far from the simple electron counting, except for the strong hybridization of the t_{1g} band with Ba orbitals. This result suggests that the simple counting is still useful. Thus speculated energy scheme indicates that $K_3Ba_3C_{60}$ is a metal in which the t_{1g} -derived band is half-filled, in contrast with Ba_6C_{60} . (Here, we must note that the conduction band is formed by a strong hybridization of the t_{1g} level of C₆₀ and Ba orbitals.) Superconductivity in $K_3Ba_3C_{60}$ as well as in Ba₆C₆₀ and Ca₅C₆₀ indicates that superconductivity at the t_{1g} -derived band is not restricted to the specific reduction state. In this sense, the comparison with the A_3C_{60} -type superconductors is of significant interest. A recent experiment⁹ shows that the superconductivity on the t_{1u} band occurs only near the half-filled state, in contrast with the t_{1g} superconductors. The role of electron-phonon and electron-electron interactions on the superconductivity might be significantly different between the t_{1u} - and t_{1g} -derived bands.

Recently, superconductivity of rare-earth metal intercalated C_{60} was reported on $R_{2.75}C_{60}$ (R = Yb and Sm).^{17,18} The authors suggest that rare-earth metals are divalent in these compounds, indicating that the Fermi level is still on the t_{1u} -derived band close to the upper edge of this band. Although the hybridization effect between C_{60} and metal ions cannot be neglected in this system, it is another interesting example of superconductors from the viewpoint of valence state of C_{60} .

In summary, we have synthesized a superconductor $K_3Ba_3C_{60}$, with $T_c = 5.6$ K. This compound has a bcc structure which is regarded as a 1:1 solid solution of K_6C_{60} and Ba_6C_{60} . The new material indicates that the superconductivity occurs at the half-filled state of the t_{1g} -derived band in the bcc lattice. Existence of the solid solution $K_3Ba_3C_{60}$ suggests that a variation of synthesis routes might produce a solid solution of $K_xBa_{6-x}C_{60}$. This system will hopefully enable us to control electron counts on the t_{1g} -derived band without changing the bcc structure, providing an interesting opportunity to investigate the effects of the valence state of C_{60} on the electronic properties and superconductivity.

We thank Y. Miyamoto for his help in structural analysis. This work was supported by a Grant-in-Aid from the Ministry of Education, Sports, Science, and Culture, Japan.

- ¹A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Kortan, Nature (London) **350**, 600 (1991).
- ²K. Holczer, O. Klein, S. -M. Huang, R. B. Kaner, K. -J. Fu, R. L. Whetten, and F. Diederich, Science **252**, 1154 (1991).
- ³A. R. Kortan, N. Kopylov, S. Glarum, E. M. Gyorgy, A. P. Ramirez, R. M. Fleming, F. A. Thiel, and R. C. Haddon, Nature (London) **355**, 529 (1992).
- ⁴A. R. Kortan, N. Kopylov, S. Glarum, E. M. Gyorgy, A. P. Ramirez, R. M. Fleming, O. Zhou, F. A. Thiel, P. L. Trevor, and R. C. Haddon, Nature (London) **360**, 566 (1992).
- ⁵A. R. Kortan, N. Kopylov, E.Ozdas, A. P. Ramirez, R. M. Fleming, and R. C. Haddon, Chem. Phys. Lett. **223**, 501 (1994).
- ⁶O. Zhou, R. M. Fleming, D. W. Murphy, M. J. Rosseinsky, A. P. Ramirez, R. B. van Dover, and R. C. Haddon, Nature (London) **362**, 433 (1993).
- ⁷M. J. Rosseinsky, D. W. Murphy, R. M. Fleming, and O. Zhou, Nature (London) **364**, 425 (1993).
- ⁸H. Shimoda, Y. Iwasa, Y. Miyamoto, Y. Maniwa, and T. Mitani (unpublished).
- ⁹T. Yildirim, L. Barbedette, J. E. Fischer, C. L. Liu, J. Robert, P.

Petit, and T. T. M. Palstra, Phys. Rev. Lett. 77, 167 (1996).

- ¹⁰A. R. Kortan, N. Kopylov, R. M. Fleming, O. Zhou, F. A. Thiel, and R. C. Haddon, Phys. Rev. B 47, 13 070 (1993).
- ¹¹O. Zhou, J. E. Fischer, N. Coustel, S. Kycia, Q. Zhu, A. R. McGhie, W. J. Romanow, J. P. McCauley, Jr., A. B. Smith III, D. E. Cox, Nature (London) **351**, 462 (1991).
- ¹²J. E. Schirber, W. R. Bayless, A. R. Kortan, and N. Kopylov, Physica C 213, 190 (1993).
- ¹³R. C. Haddon, G. P. Kochanski, A. F. Hebard, A. T. Fiory, and R. C. Morris, Science **258**, 1636 (1992).
- ¹⁴G. K. Wertheim, D. N. E. Buchanan, and J. E. Rowe, Science 258, 1638 (1992).
- ¹⁵M. Baenitz, M. Heinze, K. Lüders, H. Werner, R. Schlögl, M. Weiden, G. Sparn, and F. Steglich, Solid State Commun. **96**, 539 (1995).
- ¹⁶S. Saito and A. Oshiyama, Phys. Rev. Lett. 71, 121 (1993).
- ¹⁷E. Özdas, A. R. Kortan, N. Kopylov, A. P. Ramirez, T. Siegrist, K. M. Rabe, H. E. Bair, S. Schuppler, and P. H. Citrin, Nature (London) **375**, 126 (1995).
- ¹⁸X. H. Chen and G. Roth, Phys. Rev. B 52, 15 534 (1995).