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Many physical systems of interest can be mapped into the planar rotator andXYmagnetic models. We show
here that the very simple approach known as the Onsager reaction field when applied to different arrangements
~sc, bcc, and fcc! for the three-dimensional planar rotator model predicts values for the transition temperature
which compare quantitatively well to values obtained by more sophisticated theories. For theXY model, we
propose a renormalization of the exchange parameter so that the fluctuations of the out-of-plane spin compo-
nent are taken into account: the results are compared to high-temperature series expansion data.
@S0163-1829~96!08546-3#

Many important systems can be mapped into the plane-
rotator andXY magnetic models. One example of this is the
Josephson-junction arrays. It is well known that Josephson
junctions offer excellent opportunity to study fundamental
concepts of condensed matter because of the large variety of
phenomena — ranging from nonlinear effects such as chaos
and soliton dynamics to superconductivity~Ref. 3! — em-
bodied by these systems. Josephson-junction arrays are su-
perconducting islands coupled to form one-, two-, or three-
dimensional lattices. In general, the superconducting grains
are weakly coupled and at low temperatures the order param-
eter has a fixed modulus which is independent of any super-
current flow. In this limit, it is the phase of the order param-
eter only which remains a degree of freedom for each grain
and the corresponding expression for the free energy indi-
cates that the system belongs to the class ofXY classical
models with a temperature-dependent coupling energy.1,2

It is relevant, then, to have methods for calculating some
properties ofXY models, as the transition temperatureTc ,
spin correlation lengths, etc. Usually, most of the methods
available as, for example, spin-wave theories,4–6 spin Green-
function approaches7 and Monte Carlo calculations are quite
sophisticated and require lengthy calculations. It has been
discussed recently,8,9 that the Onsager reaction field~ORF!
formalism, despite its great simplicity, captures many of the
essential features of the model studied and provides good
quantitative agreement to data obtained via more sophisti-
cated techniques.

In this report we apply the ORF procedure to the three-
dimensional~3D! plane rotator andXY models for sc, fcc,
and bcc lattices. We will show that the values estimated for
Tc are in close agreement to the ones obtained by high-
temperature series expansion~HTSE!. We remark that in the
XY model the spins are not restricted to theXY plane, as
they are in the plane rotator model. In fact, the dynamical
properties of theXY model depend on the out-of-plane fluc-
tuations. We propose a self-consistent way to take into ac-
count these fluctuations in the ORF calculation done for the
planar rotator model. The comparison to HTSE data is,
again, very good.

The ORF formalism represents an improvement over the
usual mean-field approximation because it includes short-

range effects. The basic idea is that the spins surrounding
any given spin will be correlated to the motion of that spin
and, therefore, will not contribute to the mean field seen by
that spin: this is incorporated into the theory by subtracting
the reaction field of the mean field. The ORF was first used
in magnetism by Brout and Thomas10 and has since been
applied successfully to spin glasses11,12 to itinerant-electron
systems13 and to the Heisenberg model.6,8,9

The Hamiltonian for the plane-rotator and for theXY
model is given by the same expression

H522J(
^ i , j &

~Si
xSj

x1Si
ySj

y! ~1!

with the remarkable difference between the two models be-
ing that in theXY model SzÞ0. In the above equation,i
specifies a site in the lattice,J is the exchange constant, and
the summation is performed over nearest neighbors only.
The Fourier transform of Hamiltonian~1! is given by
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whereJ(qW )5J(dWexp(iqW•dW) with dW being a vector connecting
each site to its nearest neighbors. The expressions forJ(qW )
for the three lattices we will consider here are given by

J~qW !52J~cosqx1cosqy1cosqz!, for sc,

J~qW !58J~cosqxcosqycosqz!, for bcc,

and ~3!

J~qW !54J~cosqxcosqy1cosqxcosqz1cosqycosqz!, for fcc.

In the mean-field~MF! approximation, the susceptibility
is simply given by

x5
x0

12x0J~qW !
, ~4!

wherex05S2/2T . The MF critical temperature,Tc
MF , cor-

responds to the temperature which satisfiesJ(0W )5x21. The
first column of Table I givesTc

MF for the plane-rotator: as can
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be expected in a MF context, the critical temperatures are
always overestimated. The relative difference between the
MF result and the values obtained via HTSE~second col-
umn! decreases with the increasing of the coordination num-
ber and varies from'24% for fcc lattices to'36% for sc.

In order to incorporate short-range order effects into the
mean field approach we must subtract from the molecular
field J(qW ) acting on a given spin the part due to the polar-
ization by that spin, of its neighbors: this part corresponds to
the ORF and since it follows the motion of the spin in ques-
tion, it cannot be included in the effective orienting field.
Proceeding in this way, the expression for the static suscep-
tibility becomes

x~qW !5
x0

12x0@J~qW !2l~T!#
, ~5!

wherel(T) is defined as

l~T!5(
j

l i j Ji j , with l i j5^SW i •SW j& ~6!

and corresponds to the Onsager correction term. This term
must be determined self-consistently by requiring the suscep-
tibility ~5! to satisfy the sum rule

1

N(
qW

x~qW !5x0 . ~7!

Inserting Eq.~5! into Eq. ~7! we obtain
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which is the self-consistent equation we must solve in order
to determinel(T) for the plane-rotator.

The critical temperatureTc corresponds to the highest
temperature at whichx(qW ) diverges, that is, in the ORF for-
malism, atTc , we must haveJ(0W )5x211l(Tc). Using this
relation in Eq.~7!, we obtain the expression forTc
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12J~qW !/J~0W !
. ~9!

The integral on the right-hand side can be calculated numeri-
cally ~see, e.g., Ref. 14! and its value is 1.5164. Using ex-
pressions~3! for J(qW ) for the three lattices, we obtain the
third column of Table I: the comparison to the HTSE data is
now within 7.5% for fcc to 11% for sc lattices, much better
than the comparison done with MF results. We see then that
the simply ORF procedure is able to make good predictions
for the transition temperature for models like the plane rota-
tor. In the ORF treatment, we can also estimate the spin
correlation length, spin correlation functions and other prop-
erties in a very straightforward way:8,9 we will not do it here
because it is beyond the scope of this work.

The out-of-plane fluctuations of theXY model cannot be
taken into account in either of the approximations, MF and
ORF, we mentioned here. It means that, using these proce-
dures, we would get identical estimates for the plane-rotator
and for theXY model. However, it is known that the transi-
tion temperature for theXYmodel for a given lattice is lower
than the correspondingTc for the plane rotator. In the fol-
lowing we suggest a way to include the effects of this fluc-
tuation by a proper renormalization of the exchange cou-
pling. In order to do this, we use the following
parametrization for the spin vector
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zG . ~10!

Inserting this parametrization in Hamiltonian~2! we obtain
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For temperatures such that (Si
z)2/S2!1 we can substitute

(Si
z)2 for its average value,̂Si

z&2, obtaining the following
approximate expression for the previous Hamiltonian:

H'2(
i , j

JS 12
^~Si

z!2&
S2 D cos~f i2f j !. ~12!

This last expression suggests the definition of an exchange
constant renormalized by out-of-plane fluctuations as

J̃5JS 12
^~Si

z!2&
S2 D . ~13!

Equipartition giveŝ (Si
z)2/S2&5T/J(0W ), which leads to

J̃5J@12T/J~0W !#. ~14!

Notice, however, that Eq.~14! resulted from the approxima-
tions done in obtaining Hamiltonian~12! from ~11!, and not
from the ORF procedure. In order to assure that the low-
temperature approximation used above is valid, we must re-
strict the temperature range toT/J(0W )!1. Using the renor-
malized exchange constant given by Eq.~14! into Eq.~9! we
obtain, for the transition temperature, the fourth column
shown in Table I: the agreement to the HTSE results for the
XYmodel~which corresponds to the fifth column of Table I!
is remarkably good. The sixth column of the table gives
J(0W ): we can verify that, in all the three cases considered

TABLE I. Critical temperatures for the plane-rotator andXY 3D
models for sc, bcc, and fcc lattices. The first column gives the mean
field estimative; third and fourth columns correspond, respectively,
to the ORF and renormalized-ORF approaches. The data given in
the second and fifth columns correspond to HTSE results for the
plane-rotator andXY models, respectively. The sixth column cor-

responds toJ(0W ) as given by Eq.~3!.

MFRP Rotor* ORF ORFJ̃ XY* J(0W )

sc 3 2.203 1.98 1.49 1.552 6.0

bcc 4 3.121 2.87 2.11 2.175 8.0

fcc 6 4.820 4.46 3.25 3.342 12.0
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here, we haveTc!J(0W ), as required by the low-temperature
approximation used justifying, in this way, the calculations
for Tc performed here.

We conclude saying that the procedures we discussed
here, the ORF for planar rotator models and its renormalized
version forXYmodels, give good estimates for the transition

temperature. Other properties of these models, as the spin
correlation functions and specific heat, for example, can also
be calculated and compared to experimental or Monte Carlo
simulations when they become available.
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