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A phenomenological picture of ac hopping in the symmetric hopping model~regular lattice, equal site
energies, random energy barriers! is proposed according to which conduction in the extreme disorder limit is
dominated by essentially one-dimensional ‘‘percolation paths.’’ Modeling a percolation path as strictly one
dimensional with a sharp jump rate cutoff leads to an expression for the universal ac conductivity that fits
computer simulations in two and three dimensions better than the effective medium approximation.
@S0163-1829~96!06745-8#

While ordered solids show no frequency dependence of
their conductivity at frequencies below phonon frequencies,
disordered solids are characterized by ac conductivity that
varies as an approximate power law of frequency.1–6 The
exponent is usually less than, but often close to, 1. As the
frequency goes to zero the conductivity becomes frequency
independent. These features are observed universally for
electronically conducting disordered solids like amorphous
semiconductors,1,2,4,7 polymers,8,9 doped-crystalline semi-
conductors at helium temperatures10 ~where the random po-
sitions of the dopant atoms become important!, or high-
temperature superconductors aboveTc ,

11 as well as for
ionically conducting disordered solids like glasses or
polymers.2,3,5,6

This paper deals with ac hopping conduction in disor-
dered solids, but before proceeding we note that the study of
stochastic motion in disordered systems~‘‘rugged energy
landscapes’’! is relevant in a number of other contexts.12–14

Examples include models for protein dynamics,15–18flow of
viscous liquids close to the glass transition,19,20 diffusion in
random flows,21 or rate processes controlled by the anoma-
lous diffusion of reactants.22–24 Diffusion in a disordered
system is characterized by a mean-square displacement that
at short times varies more rapidly than expected from ex-
trapolating the long-time linear ‘‘Einsteinian’’ time depen-
dence. If the mean-square displacement in an axis direction
i as a function of time is denoted bŷDXi

2(t)&, the
frequency-dependent diffusion constant is defined25 by
@where s denotes the ‘‘Laplace’’~imaginary! frequency,
s5 iv#

D~s!5
s2

2 E0
`

^DXi
2~ t !&e2stdt. ~1!

For diffusion in an ordered structure, where
^DXi

2(t)&52Dt, one has D(s)5D. According to the
fluctuation-dissipation theorem, if the diffusing particle car-
ries a charge,D(s) is proportional to the frequency-
dependent conductivitys(s).26 Consequently, all results de-
rived below for the normalized frequency-dependent
conductivity s̃5s(s)/s(0) are valid for the normalized
frequency-dependent diffusion constantD̃5D(s)/D(0).

We consider hopping of charge carriers on a regular lat-
tice with equal site energies and random nearest-neighbor

jump rates~model A of Ref. 14!. This model for ac conduc-
tion in disordered solids has been studied extensively during
the last 15 years.26–33 If the jump rates are taken to be ther-
mally activated with randomly varying activation energies,
the limit of extreme disorder may be studied by letting the
temperature go to zero. It has recently been shown34 that in
this limit the ac conductivity in suitably scaled units becomes
universal in more than one dimension, i.e., independent of
temperature and of the activation energy probability distribu-
tion p(E). The existence of universality was predicted by the
effective medium approximation~EMA! and confirmed by
computer simulations in two dimensions. Ifs̃ is the scaled
dimensionless Laplace frequency, the EMA universality
equation34 is

s̃ lns̃5 s̃. ~2!

This equation35 was originally derived by Bryksin for the
model of electrons tunneling between randomly localized
positions.28,36

While the existence of universality was confirmed by
computer simulations in two dimensions, the onset of ac con-
duction turned out to be smoother than predicted by Eq.
~2!.34 The EMA is thusqualitatively correct by predicting
universality in the extreme disorder limit, butquantitatively
inaccurate. This is perhaps not surprising. After all, the EMA
replaces the disordered solid by an ‘‘effective’’ homoge-
neous solid with characteristics determined by a self-
consistency condition. Such an ordered medium cannota
priori be expected to accurately represent conduction in the
extreme disorder limit.37

It is well known that dc and low-frequency ac hopping at
extreme disorder is dominated by percolation effects, i.e.,
mainly take place on the percolation cluster.28,37–39The per-
colation cluster is a complicated object with fractal dimen-
sion equal to 1.9 and 2.5 in two and three dimensions,
respectively.21 Removing ‘‘dead ends’’~contributing little to
the low-frequency conductivity! from the percolation cluster
leaves us with the ‘‘backbone,’’ which has fractal dimension
equal to 1.6 and 1.7 in two and three dimensions,
respectively.21 The backbone contains loops, but at low tem-
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peratures one branch of a loop usually has a much higher
conductivity than others. The dimension of the actual con-
duction paths must thus be lower than the dimension of the
backbone. Given these arguments, we now make the sim-
plest possible assumption by regarding the conducting paths
as one dimensional. This approach, which works well for
impedance networks in the extreme disorder limit,40 is re-
ferred to as the ‘‘percolation path approximation’’~PPA!.

It should be stressed that the PPA is an approximation that
builds on a highly phenomenological picture of conduction
in the extreme disorder limit. In a sense, the PPA may be
viewed as being complementary to the EMA: In the EMA
the disordered medium is replaced by a homogeneous me-
dium of the same dimension~determined by a self-
consistency condition!, while in the PPA the disordered me-
dium is replaced by one dimensional conduction paths
~determined by percolation arguments!.

To summarize, in the PPA conduction takes place via
‘‘percolation’’ paths that have two characteristics: They are
strictly one dimensional and they only involve activation en-
ergies up to the ‘‘percolation energy’’Ec . This quantity,
which is known to be the activation energy of the dc
conductivity,41,42 is defined from the bond percolation
thresholdpc by

pc5E
0

Ec
p~E!dE. ~3!

The purpose of this paper is to show that the PPA approach
to ac conduction in the extreme disorder limit, reminiscent of
the ‘‘conducting path model,’’43,44 gives a good representa-
tion of computer simulations. We thereby indirectly confirm
the recent findings of Brown and Esser,45 according to which
the actual paths of particles in disordered systems become
predominantly one dimensional when the disorder is strong.

Unfortunately, the one-dimensional hopping model be-
hind the PPA is not analytically solvable. Below we derive
an approximation to the PPA utilizing theone-dimensional
EMA, which is known to work very well46 @this is confirmed
below in Fig. 2~a!#. We then show by computer simulations
that this one-dimensional EMA, henceforth identified with
the PPA, gives a better representation of the universal low-
temperature ac hopping conductivity in two and three dimen-
sions than Eq.~2! does.

To arrive at the PPA, hopping in one dimension with a
sharp activation energy cutoff is addressed@i.e.,p(E)50 for
E.Ec and p(Ec).0#. In the ‘‘rationalized’’ unit system
where the conductivity for a homogeneous system is equal to
the jump rate,29 the EMA equation for the ac conductivity
s(s) in one dimension26,29,33,34,46–50is ~whereG is the jump
rate and the brackets denote an average over the jump rate
probability distribution!

^~G2s!/@s1~12sG̃!~G2s!#&50 . ~4!

Here,G̃ is the diagonal element of the Green’s function for a
random walk on a one-dimensional lattice with uniform
jump rates ~the ‘‘effective medium’’!; sG̃ is given34,46,50by

sG̃5~114s/s!21/2. ~5!

FIG. 1. log-log plot of computer simulations~symbols! of low-
temperature ac conductivity in three dimensions at real Laplace frequencies
s (s5 iv) for four different activation energy probability distributions, com-
pared to the PPA@Eq. ~11!, solid curve# and to the zero-temperature limit of
the EMA universality equation~2!, dashed curve. The dimensionless
Laplace frequencys̃ is defined by Eq.~10!—however, a further~minor!
empirical rescaling was applied to focus exclusively on theshapeof the
conductivity curve;s̃ is defined bys̃5s( s̃)/s(0). The jump rates are
given byG5G0exp(2bE), whereb is the inverse temperature and the ac-
tivation energyE is chosen randomly according to the following probability
distributions ~Ref. 40!: asymmetric Gaussian@p(E)}exp(2E2/2),
0,E,`# (3), Cauchy@p(E)}1/(11E2), 0,E,`# (1), exponential
@p(E)5exp(2E), 0,E,`# (L), and box@p(E)51, 0,E,1# (h). To
speed up the calculations all jump rates with activation energy larger than
Ec1K/b were set to zero, whereEc is defined from the bond percolation
threshold in Eq.~3!. By varying the factorK the maximum errors introduced
by this approximation were estimated to be below 1% for boths(0) and
s̃( s̃) for theK56.4 used for the data presented here. In terms of the dimen-
sionless inverse temperatureb̃5b/p(Ec) the figure shows data for 100
averages of simulations of cubic lattices with linear dimensionN where~a!
b̃580 (N529), ~b! b̃5160 (N554), and~c! b̃5320 (N5100) @by vary-
ing N, the maximum errors introduced by using finite lattices are estimated
to be below 30% and 5% fors(0) and s̃( s̃), respectively#. This figure
shows that the ac conductivity becomes universal at low temperatures and
that the PPA gives a better fit to data than the EMA universality equation.
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We are only concerned with relatively low frequencies where
sG̃!1. To lowest order insG̃, Eq. ~4! implies51

1/s 5^1/~G1sG̃s !&. ~6!

The right-hand side may be expanded as a power series in
sG̃s, leading to

1

s
5 (

n50

`

~2sG̃s!n^G2~n11!&. ~7!

SinceG5G0exp(2bE), whereb is the inverse temperature,
the average^G2(n11)& is easily evaluated in the low-
temperature limit: Ifb̃5b/p(Ec), one finds to leading order
in 1/b̃

^G2~n11!&5E
0

Ec
G0

2~n11!e~n11!bEp~E!dE5
G~Ec!

2~n11!

~n11!b̃
.

~8!

When this is substituted into Eq.~7! the following is ob-
tained:

1

s
5 (

n50

`

~2sG̃s!n
G~Ec!

2~n11!

~n11!b̃
5

1

b̃sG̃s
lnF11

sG̃s

G~Ec!
G .
~9!

Letting s go to zero we finds(0)5b̃G(Ec). Introducing the
dimensionless Laplace frequency

s̃5 @b̃2/4s~0!# s, ~10!

one finds that, wheneversG̃!1, Eq. ~5! implies
b̃sG̃5As̃/s̃ @where as in Eq.~2! s̃5s/s(0)#. Substituting
this andG(Ec)5s(0)/b̃ into Eq.~9! finally leads to the PPA
expression

As̃ ln@11As̃s̃#5As̃. ~11!

Due to the factorb̃ in b̃sG̃5As̃/s̃, as the temperature is
lowered towards zero the conditionsG̃!1 is obeyed in a
wider and wider range of dimensionless frequencies. Note
that Eqs.~10! and~11! imply that the frequency marking the
onset of ac conduction in real units has roughly the same
activation energy as the dc conductivity.31 We also note that
Eq. ~11! implies that the equilibrium mean-square displace-
ment at short times varies proportionally to 1/ln2(t21).52

We have carried out computer simulations of low-
temperature ac hopping in one, two, and three dimensions
using the Fogelholm algorithm53 to reduce the ac Miller-
Abrahams electrical equivalent circuit of hopping54–56 ac-
cording to a recently proposed scheme.34 While standard
Monte Carlo techniques can hardly be used for simulations at
inverse temperatures aboveb̃520,45,57 the new scheme can
be used at much lower temperatures~in our simulations up to
inverse temperatures ofb̃5320). Figure 1 shows the results
of our simulations of low-temperature ac hopping in three
dimensions at real Laplace frequencies. Results are shown
for averages of 100 simulations of the ac conductivity for
four different activation energy probability distributions at
the following inverse temperatures:~a! b̃580, ~b! b̃5160,
and ~c! b̃5320. The solid curve is the PPA@Eq. ~11!# and

the dashed curve is the EMA universality equation~2!. Em-
pirical rescalings of the frequency were allowed in order to
focus only on theshapeof the conductivity curves. Figure 1
shows that universality is approached as the temperature
goes to zero and that the PPA gives a quite good fit to the
universal ac conductivity in three dimensions.

The universality may be studied without use of empirical
rescalings by plotting the slope of the log-log plot,
dlog10(s̃)/dlog10( s̃), as a function of log10(s̃). This is done
in Fig. 2 for the same activation energy probability distribu-
tions as in Fig. 1 forb̃5320 data from computer simulations

FIG. 2. The slope of the log-log plot ofs̃( s̃) at real Laplace frequencies,
dlog10(s̃)/dlog10( s̃), as function of log10(s̃) for simulations at the dimen-
sionless inverse temperatureb̃5320 in ~a! one dimension~100 averages of
8192 point lattices!, ~b! two dimensions~30 averages of 8803880 lattices!,
and ~c! three dimensions~100 averages of 10031003100 lattices! for the
four activation energy probability distributions of Fig. 1. The simulations in
one dimension were carried out with a sharp activation energy cutoff at
E51 in order to show the validity of the one-dimensional EMA used in
deriving Eq.~11!. In two and three dimensions, as in Fig. 1, the smallest
jump rates were set to zero to speed up the simulations. The simulations are
compared to the predictions of the PPA@solid curve, Eq.~11!# and to the
EMA universality equation@dashed curve, Eq.~2!#. Both the EMA and the
PPA predict that the slope of the log-log plot goes to 1 ass̃→`, as seen in
experiment~Ref. 1!. However, the PPA works better than the EMA in two
dimensions and much better than the EMA in three dimensions.
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in one, two, and three dimensions. The solid curve is the
PPA prediction and the dashed curve is the EMA universal-
ity equation. The simulations in one dimension were for sys-
tems with a sharp activation energy cutoff; these simulations
were carried out to ensure that Eq.~11! does indeed give an
accurate representation of this situation. The real subject of
interest is ac conduction in two and three dimensions without
any activation energy cutoff@Figs. 2~b! and 2~c!#. In both
dimensions the PPA works better than the EMA universality
equation.

Considering the simplicity of the phenomenological pic-
ture behind the PPA, the agreement with computer simula-
tions in three dimensions is striking. We take our results as
an indication that, at least in three dimensions, low-
frequency conduction at extreme disorder in factis domi-
nated by essentially one-dimensional conduction paths. This
makes sense in light of the ‘‘nodes-links’’ model58,59 for the
infinite network just above the percolation threshold~dc and
low-frequency ac conduction are known to take place on this
network28!: According to this model, the backbone of the
percolation cluster comprises links~quasi-one-dimensional
strings! and nodes~intersection of links!. Possibly, the PPA

works well because it models the ac response of a single link.
Note that ‘‘blobs’’ on the percolation cluster, as in the more
realistic ‘‘nodes-links-blobs’’ model,58,59 are expected to be
unimportant in the extreme disorder limit, since usually one
branch of the blob has a much higher conductivity than oth-
ers.

The problem of ac hopping in the extreme disorder limit
is still far from fully understood. This is indicated by the
deviation between the PPA and computer simulations in two
dimensions, where the PPA according to the arguments in-
volving the fractal dimension of the backbone should work
slightly better than in three dimensions and not much
worse.60 Clearly, more work is needed before a genuine un-
derstanding of universal ac hopping in the extreme disorder
limit is arrived at. Thus, ac hopping in more than three di-
mensions should be simulated. Also, the actual paths of the
particles should be traced out to see whether they are indeed
almost one dimensional. Finally, a closer investigation of the
analyticity properties of the universal ac conductivity is
needed to throw light on whether the prediction of the PPA
~that s̃21} s̃1/2 for s̃→0) is really obeyed.
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