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Effective one-dimensionality of universal ac hopping conduction in the extreme disorder limit
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A phenomenological picture of ac hopping in the symmetric hopping m@aeglular lattice, equal site
energies, random energy barrieis proposed according to which conduction in the extreme disorder limit is
dominated by essentially one-dimensional “percolation paths.” Modeling a percolation path as strictly one
dimensional with a sharp jump rate cutoff leads to an expression for the universal ac conductivity that fits
computer simulations in two and three dimensions better than the effective medium approximation.
[S0163-18296)06745-9

While ordered solids show no frequency dependence ofump ratesimodel A of Ref. 14. This model for ac conduc-
their conductivity at frequencies below phonon frequenciestion in disordered solids has been studied extensively during
disordered solids are characterized by ac conductivity thate last 15 year&~33|f the jump rates are taken to be ther-
varies as an approximate power law of frequehdyThe  mally activated with randomly varying activation energies,
exponent is usually less than, but often close to, 1. As thehe limit of extreme disorder may be studied by letting the
frequency goes to zero the conductivity becomes frequencymperature go to zero. It has recently been shbwrat in
independent. These features are observed universally fqfis |imit the ac conductivity in suitably scaled units becomes
electronically COZ”E;JC“”Q dlsogrgered solids like amorphoug,niversal in more than one dimension, i.e., independent of
semiconductors®™*" polymers?® doped-crystalline semi- temperature and of the activation energy probability distribu-
conductors at helium temperatutegwhere the random po- tion p(E). The existence of universality was predicted by the

sitions of the dopant atoms becomelllmporlamir high- effective medium approximatio(EMA) and confirmed by
temperature superconductors aboVg,™ as well as for : . . . X ~
computer simulations in two dimensions.dfis the scaled

ionicallyszcé%réducting disordered solids like glasses Ordimensionless Laplace frequency, the EMA universality
polymers. = equatiori* is

This paper deals with ac hopping conduction in disor-
dered solids, but before proceeding we note that the study of
stochastic motion in disordered systerfisugged energy _—
landscapes)' is relevant in a number of other contexts* olng=s. 2
Examples include models for protein dynamtest®flow of

viscous liquids close to the glass transitidri° diffusion in . . . . .
random flows! or rate processes controlled by the anoma-ThIS equatio® was originally derived by Bryksin for the

lous diffusion of reactant&~>* Diffusion in a disordered mos?sénzgggtectrons tunneling between randomly localized
system is characterized by a mean-square displacement tHYESIUonS. ) . ) i

at short times varies more rapidly than expected from ex- While the existence of universality was confirmed by
trapolating the long-time linear “Einsteinian” time depen- computer simulations in two dimensions, the onset of ac con-
dence. If the mean-square displacement in an axis directioﬁ”%tz'lOn turned out to be smoother than predicted by Eqg.
i as a function of time is denoted byAXiz(t)), the (2).. Thg EMA is thusquallt_atlvely c_orr_ect by pred{ctlng
frequency-dependent diffusion constant is deffietdy  universality in the extreme disorder limit, bgtiantitatively

[Where s denotes the “Lap'ace”(imaginary frequency, inaccurate. This is pel’haps not Surpl’iSing. After a”, the EMA
s=iw] replaces the disordered solid by an “effective” homoge-

neous solid with characteristics determined by a self-
_ S o et consistency condition. Such an ordered medium carmnot
D(s)= ?JO (AXi(1))e™"dt. @ priori be expected to accurately represent conduction in the
o . extreme disorder limit!
For diffusion in an ordered structure, where s well known that dc and low-frequency ac hopping at
(AX?(t))=2Dt, one hasD(s)=D. According to the extreme disorder is dominated by percolation effects, i.e.,
fluctuation-dissipation theorem, if the diffusing particle car- mainly take place on the percolation clusté?’~*°The per-
ries a charge,D(s) is proportional to the frequency- colation cluster is a complicated object with fractal dimen-
dependent conductivity(s).2® Consequently, all results de- sjon equal to 1.9 and 2.5 in two and three dimensions,
rived below for the normalized frequency-dependentrespectively”' Removing “dead ends'{contributing little to
conductivity o= o (s)/o(0) are valid for the normalized the low-frequency conductivijyfrom the percolation cluster
frequency-dependent diffusion constéht D(s)/D(0). leaves us with the “backbone,” which has fractal dimension
We consider hopping of charge carriers on a regular latequal to 1.6 and 1.7 in two and three dimensions,
tice with equal site energies and random nearest-neighbaespectively’* The backbone contains loops, but at low tem-
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— — ———— peratures one branch of a loop usually has a much higher
8 conductivity than others. The dimension of the actual con-
. duction paths must thus be lower than the dimension of the
1 backbone. Given these arguments, we now make the sim-
] plest possible assumption by regarding the conducting paths
] as one dimensional. This approach, which works well for
] impedance networks in the extreme disorder Iitfits re-
1 ferred to as the “percolation path approximatiofPPA).
1 It should be stressed that the PPA is an approximation that
‘ WM L builds on a highly phenomenological picture of conduction
35 40 1 23 45 67 8 91011 in the extreme disorder limit. In a sense, the PPA may be
Log,(®) viewed as being complementary to the EMA: In the EMA
the disordered medium is replaced by a homogeneous me-
dium of the same dimensior(determined by a self-
consistency condition while in the PPA the disordered me-
dium is replaced by one dimensional conduction paths
(determined by percolation arguments

To summarize, in the PPA conduction takes place via
“percolation” paths that have two characteristics: They are
strictly one dimensional and they only involve activation en-
ergies up to the “percolation energyE.. This quantity,
which is known to be the activation energy of the dc
e conductivity?*“? is defined from the bond percolation
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- 1 The purpose of this paper is to show that the PPA approach
v 1 to ac conduction in the extreme disorder limit, reminiscent of
- %’Zﬁ 1 the “conducting path model*®*** gives a good representa-
I f ] tion of computer simulations. We thereby indirectly confirm
] the recent findings of Brown and Eséégccording to which
the actual paths of particles in disordered systems become
S T 2 5 4 s 5 7 5 s 1011 predominantly one dimensional when the disorder is strong.
Log,(®) Unfortunately, the one-dimensional hopping model be-
hind the PPA is not analytically solvable. Below we derive
an approximation to the PPA utilizing thene-dimensional
EMA, which is known to work very weff [this is confirmed
FIG. 1. log-log plot of computer simulationgsymbols of low- below !n Fig. Za)] We then show by computgr Slmylatlons
temperature ac conductivity in three dimensions at real Laplace frequencidiat this one-dimensional EMA, henceforth identified with
s (s=iw) for four different activation energy probability distributions, com- the PPA, gives a better representation of the universal low-
pared to the PPAE(. (11), solid curvd and to the zero-temperature limit of temperature ac hopping conductivity in two and three dimen-
the EMA universality equation(2), dashed curve. The dimensionless sions than Eq(2) does.

Laplace frequencys is defined by Eq.(10—however, a furthefminor) . . . . . .
empirical rescaling was applied to focus exclusively on shapeof the To arrive at the PPA, hopplng in one dimension with a

conductivity curve:s is defined bya=q(3)/o(0). Thejump rates are Sharp activation energy cutoff is at;ldre;@ieel., p(E) =0 for
given byT =T yexp(~BE), where is the inverse temperature and the ac- E>E.; and p(E;)>0]. In the “rationalized” unit system
tivation energyE is chosen randomly according to the following probability where the conductivity for a homogeneous system is equal to
distributions (Ref. 40: asymmetric Gaussian[p(E)xexp(E%2),  the jump raté?’ the EMA equation for the ac conductivity
0<E<®] (X), Cauchy[p(E)«1/(1+E®), 0<E<w] (+), exponential O'(S) in one dimensioﬁ,29,33,34,46—5(?s (whereT is the jump

[P(E)=exp(—E), 0<E<wx] (¢ ), and box[p(E)=1, 0<E<1] (O). To -
speed up the calculations all jump rates with activation energy larger thaf@t€ and the brackets denote an average over the jump rate

E.+ K/ were set to zero, wher, is defined from the bond percolation Probability distribution

threshold in Eq(3). By varying the factoK the maximum errors introduced

by this approximation were estimated to be below 1% for hefB) and = _

o(3) for theK=6.4 used forihe data presented here. In terms of the dimen- <(F - 0)/[0+ (1=sG)(I'- U)D =0. (4)
sionless inverse temperatu@= B/p(E.) the figure shows data for 100 ~ . .
averages of simulations of cubic lattices with linear dimensiowhere(a) Here,G is the diagonal element of the Green’s function for a
B=80 (N=29), (b) B=160 (N=54), and(c) B=320 (N=100) [by vary- ~random walk on a one-dimensional lattice with uniform
ing N, the maximum errors introduced by using finite lattices are estimateqump rateo (the “effective medium’); sGis giver?*46:5%py

to be below 30% and 5% fos(0) and o (S), respectively. This figure

shows that the ac conductivity becomes universal at low temperatures and —_

that the PPA gives a better fit to data than the EMA universality equation. sG=(1+4o/s) 2 (5)

Log, (@
< b n w £ (&) (=2} ~ @ ©o
T




14 886 BRIEF REPORTS 54

We are only concerned with relatively low frequencies where .
sG<1. To lowest order irsG, Eq. (4) implies* : e o T T

1/o =(1/(T +sGo)). (6)

The right-hand side may be expanded as a power series in
sGo, leading to

d Log,(®
d Log,,(8)

1 (—sGo) (I~ ("+ 1)y, 7
o n=0

n

Sincel’ =T"gexp(—BE), whereg is the inverse temperature,
the average(I' (""1) is easily evaluated in the low-
temperature limit: If3= 8/p(E.), one finds to leading order [T —
in 1/8

I(E) "

EC
-(n+1) zf =+ D+ DEEN E)VdE=——% glz
( ) o O p(E) (n+1)3 s _%“]— |
(8) - |
When this is substituted into Ed7) the following is ob- o2
tained: W 2 dimensions
01§
1 ~ T(Ey)~™b 1 sGo ®% 1 2 s 4 5 & 7 8 s 10
—=> (-sGo)" ——==—=—In| 1+ . Logs o
0 70 (n+1)B  PBsGo I'(Ec)
9) N '
Letting s go to zero we find7(0)=EF(Ec). Introducing the
dimensionless Laplace frequency
© =
3= 32 I
s=[B40(0)]s, (10 S g
one finds that, wheneversG<1l, Eq. (5 implies Al
BsG= \s/o [where as in Eq(2) o= o/0(0)]. Substituting 02 s dimensions
this andl'(E;) = ¢(0)/8 into Eq.(9) finally leads to the PPA 0.1 .
expression o
0 1 2 3 4 5 6 7 8 9 10

\/F;m[l-f— \E]: \E (1D Log,,(&

- —_ _ FIG. 2. The slope of the log-log plot @f(S) at real Laplace frequencies,
Due to the factor8 in BsG=\s/o, as the temperature is dlog,o(o)/dlogy(S), as function of logy(a) for simulations at the dimen-
lowered towards zero the conditi®G<1 is obeyed in a sionless inverse temperatyge=320 in (a) one dimensior{100 averages of

wider and wider range of dimensionless frequencies. N0t§192 point lattice (b) two dimensiong30 averages of 880880 lattices,
9 q and (c) three dimension$100 averages of 100100 100 lattice$ for the

that Eqs.(lO) and(ll)_ 'mply that the_ frequency markmg the four activation energy probability distributions of Fig. 1. The simulations in
ons_et Pf ac conduction in real Umt_s has roughly the sam@ne dimension were carried out with a sharp activation energy cutoff at
activation energy as the dc conductivifyWe also note that E=1 in order to show the validity of the one-dimensional EMA used in

Eq. (11) implies that the equilibrium mean-square di5p|ace-deriving Eq.(11). In two and three dimensions, as in Fig. 1, the smallest

; ; ; =1\ 52 jump rates were set to zero to speed up the simulations. The simulations are
ment at short times varies proportlonally to f(m ) compared to the predictions of the PPgolid curve, Eq(11)] and to the

We have carried . OUI_ computer simulations _Of IO\_N' EMA universality equatioridashed curve, Eq2)]. Both the EMA and the
ter_nperature ac hopping In one, two, and three d|m_en3|0n|5PA predict that the slope of the log-log plot goes to Bas», as seen in
using the Fogelholm algorithth to reduce the ac Miller- experimentRef. 1). However, the PPA works better than the EMA in two

Abrahams electrical equivalent circuit of hoppifig® ac-  dimensions and much better than the EMA in three dimensions.

cording to a rece_ntly proposed scheffiewhile §tanda}rd the dashed curve is the EMA universality equati@h Em-
Monte Carlo techniques can harils)/slge used for simulations liico| rescalings of the frequency were allowed in order to
inverse temperatures aboyge=20,">" the new scheme can focys only on theshapeof the conductivity curves. Figure 1
be used at much lower temperatugsour simulations Upto  ghows that universality is approached as the temperature
inverse temperatures ¢f=320). Figure 1 shows the results goes to zero and that the PPA gives a quite good fit to the
of our simulations of low-temperature ac hopping in threeunjversal ac conductivity in three dimensions.

dimensions at real Laplace frequencies. Results are shown The universality may be studied without use of empirical
for averages of 100 simulations of the ac conductivity forrescalings by plotting the slope of the log-log plot,
four different activation energy probability distributions at dlog,(o)/dlog;(S), as a function of logy(o). This is done
the following inverse temperature&@) =80, (b) =160, in Fig. 2 for the same activation energy probability distribu-
and(c) B=320. The solid curve is the PPfEqQ. (11)] and  tions as in Fig. 1 fo3=320 data from computer simulations
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in one, two, and three dimensions. The solid curve is thevorks well because it models the ac response of a single link.
PPA prediction and the dashed curve is the EMA universalNote that “blobs” on the percolation cluster, as in the more
ity equation. The simulations in one dimension were for sys+ealistic “nodes-links-blobs” modei®*® are expected to be
tems with a sharp activation energy cutoff; these simulationginimportant in the extreme disorder limit, since usually one

were carried out to ensure that 1) does indeed give an pranch of the blob has a much higher conductivity than oth-
accurate representation of this situation. The real subject Qfg.

interest is ac conduction in two and three dimensions without The problem of ac hopping in the extreme disorder limit
any activation energy cutoffFigs. ab) and Zc)]. In both s gil| far from fully understood. This is indicated by the
dimensions the PPA works better than the EMA universalityye jation between the PPA and computer simulations in two

eql(J:atior_la . he simplicity of the oh logical i dimensions, where the PPA according to the arguments in-
onsidering the simplicity of the p enomenological pic- volving the fractal dimension of the backbone should work
ture behind the PPA, the agreement with computer S'mUIaélightIy better than in three dimensions and not much

tions in three dimensions is striking. We take our results aS orse Clearly. more work is needed before a genuine un
an indication that, at least in three dimensions, low- ' Y, 9

frequency conduction at extreme disorder in fectdomi- derstanding of universal ac hopping in the extreme disorder

nated by essentially one-dimensional conduction paths. Thilémit i,s arrived at. Thu;, ac hopping in more than three di-
makes sense in light of the “nodes-links” modfiofor the  Mensions should be simulated. Also, the actual paths of the

infinite network just above the percolation threshadd and ~ Particles should be traced out to see whether they are indeed
low-frequency ac conduction are known to take place on thi@most one dimensional. Finally, a closer investigation of the
network®): According to this model, the backbone of the analyticity properties of the universal ac conductivity is
percolation cluster comprises linkguasi-one-dimensional needed to throw light on whether the prediction of the PPA

string9 and nodegintersection of links Possibly, the PPA

(thato— 1SY? for S—0) is really obeyed.
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