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E. H. El Boudouti
Laboratoire de Dynamique et Structure des Matex Moleculaires, Centre National de la Recherche Scientifique
(URA 801), Universiteles Sciences et Technologies de Lille, UFR de Physique, F-59655 Villeneuve d’Ascq Cedex, France
and Departement de Physique, Faculies Sciences, Oujda, Morocco

B. Djafari-Rouhani, A. Akjouj, and L. Dobrzynski
Laboratoire de Dynamique et Structure des Matex Moleculaires, Centre National de la Recherche Scientifique
(URA 801), Universiteles Sciences et Technologies de Lille, UFR de Physique, F-59655 Villeneuve d’Ascq Cedex, France
(Received 1 July 1996

N-layer superlattices are formed out of a periodic repetitioMN alifferent slabs. Such materials for=3
and 4 are now easily grown by molecular-beam epitaxy. We present closed form expressions for localized and
resonant transverse elastic waves associated with the surface of a semi-MHiajter superlattice, with or
without a cap layer, and in contact either with vacuum or with a homogeneous substrate. We also calculate the
corresponding Green’s- function and densities of states. These general results are illustrated by a few applica-
tions to four-layer superlattices made of Nb-Fe-Nb-Cu and Nb-Cu-Nb-Cu. We show that increasing the number
of the layers in each unit cell of the superlattice increases, in general, the number of the minigaps and surface
modes. We generalize some of the results obtained previously in the case of two-layer superlattices(inamely,
the creation from an infinite superlattice of a free surface gives rigeptaks of weight—3) in the density of
states, at the edges of the superlattice bulk batidshy considering together the two complementary semi-
infinite superlattices obtained by cleavage of an infinite superlattice along a plane parallel to the interfaces, one
always has as many localized surface modes as minigaps, for any value of the waveéyguaoallel to the
interfaces. Finally, we investigate the localized and resonant modes associated with the presence of a cap layer
on top of the superlattic¢ S0163-182606)00944-1

I. INTRODUCTION Ref. 8 dealing with infiniteN-layer superlattices, a main re-

sult of this work will be to give explicit dispersion relations
The growth ofN-layered superlattices fai=3 became for surface and interface waves in semi-infinite superlattices
standard in the last decade. Investigations of the physica¥hich can be used by any reader interested by the subject

properties of such polytype superlattices attract increasin/ithout going into a detailed calculation. Such expressions
interest connected with the search of more performant ne an actually be derived by using either the transfer matrix or

. . . e Green-function methods. In order to also investigate
materials for microelectronics, see, for example, Refs. 1—

d ref therein. The id P th | ther vibrational properties of semi-infinite superlattices
and reterences therein. Ihe idea or polytype three-layer Sy, o 45 the local and total densities of states, and therefore

perlattices was proposed fitsbgether with an application to spatial distribution of the states and, in particular, the
InAs-QaSb-AISb mu!tihgterojunctions. Many theoretical an_dpossibility of resonantor leaky waves, we present in this
experimental |nvest|%i1t|ons_ appeared since degilng withhaper explicit expressions of the Green function in these het-
nearly free electrons,** elastic transverse wav8s???and  erostructures. The simpler method of transfer matrix will be
polaritons®23-2° very briefly referred to in the appendix. Although our atten-
The theories for all these waves are isomorgitiié gen-  tion will be focused in this work on transverse elastic waves
eral dispersion relation for all these excitations in bulkin superlattices, our calculation can simply be transposed by
N-layered superlattices was given bef8r&lmost all the  standard mathematical isomorphism for studying electrons or
above cited papers rederive this dispersion relatioNfet3 ~ polaritons in these systems.
or 4 and evelf for N=6. A few paper$!!1422address this The organization of this paper is as follows. Section I
guestion for any value dfl with different recursive methods deals with the infiniteN-layer superlattice and Sec. Il with a
but without reaching the explicit expression given in Ref. 8.capped semi-infinite superlattice in contact with an homog-
Let us also cite studies of spin waves N-layered enous substrate. The particular limits of a free surface with
superlattice$® There are also several experimental Ramaror without a cap layer and of an interface between an un-
studies of folded acoustic modes in periodic superlatticesapped superlattice and a substrate will also be outlined from
with N>2 constituent$®>~'8 as well as in quasiperiodic the above general case. In Sec. IV, we illustrate these general
superlattice$’~?°based on the Fibonacci sequence, approxitesults by analytical and numerical applications to surface
mated by periodic superlattices wibh>2. and interface waves in four-layer superlattices with emphasis
The object of this paper is to investigate the transversen the existence and localization properties of surface modes
elastic waves in semi-infinitdl-layer superlattices. The su- and on the increase of their number with the number of lay-
perlattice which may possibly be covered by a cap layer is irers in each unit cell of the superlattice. The main conclusions
contact either with vacuum or with a substrate. Followingare summarized in Sec. V.
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II. THE INFINITE N-LAYER SUPERLATTICE

The N-layer superlattice is formed out of an infinite rep-

etition of a unit cell labeled by the indexand containing\
different slabs. Each of these slabs labeledl<i<N) is
characterized by its elastic constaﬁtﬁ}g, its mass density
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PR — e—ai\X3—Xé\.

Gi(Kj;X3,X3) = 2F.
|

(4b)

We would briefly recall the principle for building the
Green function of the infinite and semi-infinite superlattie.

p., and a widthd,. All of the interfaces are taken to be This will enable us to present the dispersion relations of the

parallel to the X4,x,) plane. A space position along tixg
axis in mediumi belonging to the unit ceh is indicated by

surface and interface waves in the superlattice as well as the
expressions for the local and the total densities of states

(n,i,xs), where —d;/2<x;<d,/2. The period of the super- Without going into the details of this calculation. Our calcu-

lattice is called

N
D=§1 d; . (1)

Due to the symmetry of translation parallel to thg (x,)
plane, one can define a wave veckgmparallel to the inter-

lation is based on the theory of interface response in com-
posite materiafsin which the Green functiog of a compos-
ite system is given as

g(DD)=G(DD)—G(DM)G }(MM)G(MD)
+G(DM)G {MM)g(MM)G }{(MM)G(MD),
6)

faces and reduce the whole problem to a one-dimensional
problem, function ok, . In the infinite superlattice, one can whereD andM are, respectively, the whole space and the
also define a wave vect@ along the axis of the superlattice space of the interfaces in the composite materi@isis a

associated with the period.

block-diagonal matrix in which each blo€k corresponds to

In this paper, we limit ourselves to the case of shear horithe bulk Green function of the subsysterfEq. (4)]. In our

zontal vibrations where the displacement fialis along the
X, axis and the wave vectdy; is directed parallel to the,

case, the superlattice is composed of slabs of materials
i=1,...N. In Eq.(5), the calculation ofy(DD) requires, be-

axis. Then(see below, one can consider with the same gen-sidesG;, the knowledge ofg(MM). The latter can be ob-
eral equations the case of a superlattice built of isotropidained, in practice, by inverting the matrix (M M) which

materials, or built of hexagonal crystals with001) (isotro-
pic) interfaces, or of cubic crystals wit{®01) interfaces and
k, along the[100] crystallographic direction.

can be simply buift from a juxtaposition of the matrices
g5t (MM), whereg,(MM) is the interface Green’s function
of the slabi alone with stress-free boundary conditions.

Let us first recall that, in all the above cases, the displace- Therefore the first step before addressing the problem of

ment fieldu, in an infinite homogeneous materiakatisfies
the equatior?

Filo®
. (9_x§_ai uo(k; ;X3)=0, 2
where
Fi=aCli, (33
and g, is defined as
2
af =K o (3b)

wherew is the frequency of the vibrations, if the mateiias
isotropic or of cubic symmetryk, being along the[100]
direction, or as

(30

e GG o?
Wecl ) P el

if the mediumi is of hexagonal symmetry.

layered materials will be to know the surface elements of the
Green’s functiongs; of a slab of mediumi, such that
—d;/2=x53=d;/2, with stress-free boundary conditions.
These surface elements can be writtém the form of a
(2x2) matrix gs(M;M;), within the interface space
M;={—d;/2,d;/2}. The inverse of this matrix has the follow-
ing form:

4 [A B

[Osi(M;i,Mj)] :(Bi Al (6)

where
Ai=—(FiC)/S, (74
Bi:Fi/S7 (7b)
Ci=COSf(aidi), (7C)

and

S =sinh a;d;). (7d)

Within the total interface space of tiNlayered superlat-

Now, the Green’s function of the infinite homogeneoustice, the inverse of the matrix giving all the interface ele-

mediumi associated with the displacement fielg satisfies
the following equation;

2
A
X a;

3

F

a;j

Gi(kH;XSIXé):(S(XS_Xé)7 (43)

and can be expressed as

ments of the Green’s functiog of this superlattice is an
infinite tridiagonal matriX formed by linear superposition of
the elements of thfgg(M; ,M;)] %

Taking advantage of the periodicify in the directionxy
of the N-layered superlattice, the Fourier transformed
[g(ks;M,M)]! of the above infinite tridiagonal matrix
within one unit cell (:i=<N) has the following form:
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- —ik3D -
AytA; B Bne
B, A+A, B,
ks:MM)] 1= B A+A . 8
[9(ks;MM)] 2 2t As An_3+ Ay 2 By, ®)
: By An_ot+ Ay By
B, eiksD N-2 N-2TAN-1 N-1
L N Bn-1 An_1T AN

Thanks to the simple form of this matrix, it is possible to calculate its inverse in closed form, as a function of the following
sums which are the elements of a transfer matrix as shown in the Appendix.

F F
N IN-2 p+2
(T1)1,.N= > CiC,.CS S _ S .- , (9a)
lgveipllipaidnd 5 2 pUeRTeeTINE R R
(T2, = CLC G S, S, 5, o s T (9b)
22)1,..N— i A Y41 1 AR ° y
RO oo 10 S I L T O
(T2 S LGS S .S, e e e (90
VLN figsdpHiprg,ind 2 o P12 N FiN—l FiN—3 Fip+2 P+
T . FiN—l FiN—s Fip+2 1
(T1d1,. .N= i }Cilciz---Cip5ip+1$p+2---SiN FFF _F (9d)
veipfip+ 1N N N-2 p+3 p+1

The numbers in these suites are in decreasing order and the suite ofitgrms. (i) has to be even in Eqg9a and(9b)
and odd in Egs(9c) and (9d). The first term in the summation in Eq@a and (9b) (corresponding tg=N) should be
understood a€,,C,...Cy. Each summation provides'2! different terms adding one to each other.

The bulk bands of th&l-layer superlattice are easily obtained from the determinant of the matrix given b)Eg.the

following form:
cogksD)=¢,
where

1
&= > [(T1)1,. Nt (T2, N

(10

11

It is also straightforward to Fourier analyze back into real space all the elemey(s,0M M) and obtain all the interface

elements of, in the following form:

( t\n—n’\+1 o
(T12i,... N1, -1 =]
o d o d tin-n'l+1 gh-n'-1+1
g|ni—Z5n -5 ={ (Tw)j.. NLi-t oy T (Tij-1 —p=g— <IN (12
t\n—n’\+1 t\n—n’+1|+1 o
\(le)i ..... N1 2oy V(T -y~ J<i=N.
|
Here the differen{T,,) are obtained from Eq9d) with _ . 1
due account for the indices giving the order of the layers g(n,l,Xs;n',l',Xé)Z5nnf5nfUi(X3,Xé)+S—S,
beginning from the first and ending by the last and
d:
E+(£2-1)12 £<-1 X sinr{ai<§'—x3 ;
t=1 EXi(1-H"% —1<é<+1 (13)
= (&-1"7 §>1. d;
X sinh «; E+X3 gMn, M)
Inside the bulk bands of the superlatticel<¢<1), the
sign in the expression fot has to be chosen such that d,
[t(w?+i€)|. o will be slightly smaller than one. sinr{ai, 7'— xg)
The expression of the Green’s function between any two X . (19
points of the infinite superlattice can easily be derived from : bl
Eq (5), Sin (241 2 X3
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(i) The semi-infinite superlattice, with a stress-free surface

X3 terminated by the laydn=0, i =1), is obtained by removing
the (n=—1, i=N)layer out of the infiniteN-layer superlat-
tice. The correspondindgs(Ms,M)] ! in the Mg semi-
infinite interface spacén=0,i=1,... N), is represented by a

Layer N s . o . .
- semi-infinite tridiagonal matrix whose surface diagonal ele-
ment situated atn=0, i=1, —d;/2) is equal toA;.
Cell 1 - . oL .
: (i) We consider a semi-infinite homogeneous medium
Layer 2 characterized by the parameters, F, [Eq. (3)] and capped
I Layer 1 by a layer characterized by the parametegs F, [Eq. (3)]
Layer N IdN and byC, and S, [Eq. (7)].
: Within the interface spac#,=(—1,0,=dy?2), of this
: D system, one obtaifs
Cell 0 .
Layer 2 d, . AO_FU Bo
Layer 1 d, [9s0(Mo.Mg)] "= ( Bo Ao (16)
) Cap layer (0) dg By inversion of this matrix, one gets
cinfinit di —1 dO_ dO _
semi-infinite medium (v) O | — 1,0, 7 ;—1,0, ? == RFv . (17)
where
F
FIG. 1. Schematic representation of a capped semi-infinite 1+ 050
N-layer superlattice in contact with an homogeneous substrate. R= F.Co (18)
dg,dq,d,,...,dy, respectively, are the thicknesses of the cap layer F,So
and of theN different slabs out of which the unit cell of the super- 1+ m

lattice is built.D is the period of the superlattice.
(iii) The above semi-infinite superlattice is coupled to the cap
where layer O deposited on the substrateThe Green'’s function of
this final system in the interface space has as its inverse
Ui(x x’)=—iexr[—a-|x —x4|]+ 1 d"(M¢,M) a semi-infinite triadiagonal matrix. The surface
n7eTs 2F; R T diagonal element of this matrix situated &1=0, i=1,
—d,/2) is equal to £, —RF,). By standard diagonalizatidn
X[sin?‘{ (ﬂ_ ,) F{— _ d of such a semi-infinite tridiagonal matrix, one obtains for
ail 5 =Xz | [exp o

i
2% n,n’=0 andi,j=1,... N:
al 2 3 al 2 3 " d ny|1_§1n1J1_§ _g naly_Ean yja_E
15 ,
( ) B tn+n +1 Y|YJ (19)
In Eq. (14) the last three terms are the product dflx 2) t?—1 W’
matrix by the(2x2) g(M,,M,) matrix and by a(2x1) h
matrix. g(M,,,M ) is the (2x2) matrix formed out of the WN€r€
S ey F2 for m=(n.=df2) and e (RE ATy, vt REL(Taods, (T .l
’ ’— I .
The knowledge of the above results, enable us to address —(T20)1.. N> (20

now the problem of a capped surface of such a superlattice in dth ke the f
contact with an homogenous semi-infinite substrate. and theY; take the form

Y1=—RF,(T121

and fori=2,... N,
In this section, we will first outline the derivation of the
Green’s function and then give the results for the surface Yi=—RF [t(T1p)1 -1+t (T)i  nl—t(T1)1. j-1
states and the density of states.
i N (21b)

—t(T . @
ll. THE CAPPED SURFACE AND THE INTERFACE = v 12 N (T2 (213

A. The Green’s function The cap layer interface elementsatan also be worked

In order to obtain the physical properties of a semi-infiniteout in the following closed forms:
N-layer superlattice terminated by a capped surface in con-
tact with a semi-infinite homogeneous medidfig. 1), it is dlo1— E'O 1_ da _ Ya 22)
convenient to consider the following three steps: 2T 2 w'’
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do do
d{ —1,0,— 7;—1,0,— > u(xz)=Wd —1,0,

_ Y1FoCo+Sol(To)1,. . n—RFE[—t+(T1)1, NI}
W(FoCo+F,So) ' d do do
(23) u(xg)och( -1,0,— o> 1,0,— > ao( _Xg)

)smk{ >
do dl dl do dO_ dl . do
d(—l,o,—?,o,l,— ?)=d<0,1,—?,—1,0,—? +wd 5 ;0,1, 5> |Sin ao| 5 +X3] |,
Y]_FO dO dO
_ — —<Xg< —, 27h
W(FCor o5’ 2% p =Xa=%. (27H
and for (n,i) #(0,1),
0.0 . do_ o di) di
1o - _di B Y Fot" b u(n,i,xz)cWd —1,0,—7,n,|,—5 sinh «; 5—x3
P T g T W(FoCot F,So)
, , +Wd( — 1,0,— )sm +x3
From the knowledge of these interface matrix elements
one can obtain the elements of the Green’s function between d d
any two points of the whole systefsee Eq.(5)]. Here, we —2<xz< —, i=1,..N, (279
only give their expressions for two points belonging both 2 2
either to the superlattice, or to the cap layer, or to the sub-
strate: where the Green’s-function matrix elements defined by Egs.
(i) When the two points are inside the superlattitey, i,  (23)—(24) appear.
X3, N'; i’, x3) is given by Eq.(14) in which one has to
replaceg(Mp, M) by d(Mp,, Mp,y) given by Eq.(19). C. The local densities of states

(ii) When the two points are inside the cap layHr-1, 0, . )
xs; —1, 0,x}) is given by Eq(14) for i =0 and in which one The local densities of states on the plafmei,x;) are
has to replacegM,,, M,/) by d(My, My, with 9ivenby
Mo=(—1,0,xdy2).

The elements of thi&2Xx2) matrix are given by Eqg22— i
24). N ’ v Eas n(w?k :n7i,X3)=—% Im d* (@?,k;;n,i,Xg;n,i,X3),
(iii) When the two points are inside the substrate (28)
d
"= — —a |xg—xg| _10- 2. where
d(X3,X3) oF, e 37 %l+1d| —1,0, >
do ) : d*(w?)=limd(w?+ic) (29
—LO- |t gEjer e, (29 #0

whered(—1, 0, —dy/2; —1, 0, —dy/2) is given by Eq.(23). andd(w?) is the above-defined Green'’s function.

B. Eigenfrequencies and eigenfunctions of the localized states D. The total density of states

When the denominator of the Green'’s functbranishes The total density of states for a given valuelgfis ob-
for a frequency lying inside the gaps of the infinite superlat-tained by integrating ovex; and summing om andi the
tice, one obtains localized states within the cap layer whichocal densityn(wz, k;; n, i, Xg). A particularly interesting
decay exponentially inside the bulk of the superlattice. Theyuantity is the density of states of the above-defined compos-
explicit expression giving the frequenayof these localized ite system from which the contributions of bulk substrate and
states is bulk superlattice are substrated. This variatiam(w?) can be

written as
W(w)=0, (269

N

whereW(w) is given by Eq(20), together with the condition
I y=a J An(w?) =2, Ain(w?)+ny(wd)+A,n(w?), (30)
i=1

[(T22)1,. N~ RF,(T12)1, nN[>1. (26b)

Condition(26b) ensures that the wave is decaying when penwhereA;n(w?) is the variation of the density of states in any

etrating into the superlattice far from the surface. slab i, ny(w? the density of states in the cap layer, and
The eigenfunctions associated with these localized states,n(w?) the variation of the density of states in the substrate.

are found to be The explicit expressions for these quantities were found to be
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Pi .
Ain(w?)==5—Im @ aiﬁzw)[w?wﬁo(cisﬂ—aidi>+2YiYi+1(aidici—s>], i=1,...N-1, (313
A n(w2)=—p—NIm ! ! [(YZ+(tY1)?)(CpnSy— andn) +2YNY 1t (andnCrn—Sy) ] (31b
N 20 (2_1)2 aNSlz\lW N 1 NN NYN NT1 NYN™~N N/ 1s
F,
F SoFo| (T11,. . Nn—[(T1D)1, . n—t] =
No(w?) = — 22 Im L do| (TaD)r n+[(TiD1 n—tIR —5|+ 0
0 20 W(T 2)1 ...... 0 12/1,...N 1V1,...N Fé aO(FOCO+ FUSO) ’
(32)
and
. 1 YiFoCotSo{(T —RF,[(T —t
A,n(w?)=— Py 4 oo So{(T20)1,...n [(T1D1,. . n—t]} _ 33)
T 2F, W(FoCo+F,Sp)
|
E. The limit of a semi-infinite superlattice Fs
(i) The case of a semi-infinite superlattice with a cap layer (Ta)1,. 4= Calalala T CoCiSSs + C3C1$4SZ
can be described from the above results, by malkipeg0
andRF,—FySy/Cy. In particular, if the cap layer is of the +C4C15352 +C C25451
same nature as thiéth layer and of widthd,<<dy, we obtain 3 F
from the above resultfEgs. (19)—(21) and (26)—(32)] the E F
properties of a semi-infinite superlattice ending with an in- +C4CyS:S, —1+C4C38281 1
completei =N surface layer. Fs F
(i) A semi-infinite superlattice ending with a complete Fa
i=1 surface layer is obtained from the above cégeby +5,5:S,S; Fl F. (34

taking the limit where the thicknesk, of the cap layer goes
to zero. This implies tha€, is equal to 1 ands, vanishes.
Equationg19)—(21) and(26)—(31) remain valid in this limit
and provide all the physical results for such a semi-infinite (T1) — C,C3C,Cy+CyC1S:Ss E+C C,S,S, E
superlattice. Let us be precise that in this limjfw? and G e s G =
A,n(? vanish.

Fs Fs
+C4CoS85S, F, +C4C155S, F,

F. The limit of an interface between = =
a semi-infinite superlattice +C3CyS,S; — +C,4CsS,S, —
and a homogeneous substrate Fi Fi
An interface between a semi-infinite superlattice and a F, F4

homogeneous substrate is interesting by itself, in particular +545:5,S, £ Fy |: (39)
because specific localized and resonant modes may exist in
its vicinity. Such a limit can be obtained from the above
results given by Eqg19)—(33) by setting the widthd, of the T _ = = =
cap layer going to zero; this implieS,—0, Cy—1, R—1, (o), = CaCalaSiFa+ CsCoC1SFa+ CaColaSiFs

andng(w?—0. F1F3
+C4C3C1SF+CyS35,S;

IV. APPLICATION TO A FOUR-LAYER SUPERLATTICE 2F4
+ C2543351 F 4 C13%48:S, ——
A. Analytical results

F4

In order to illustrate the general results given before, we
g g +C35,5,5, — i
2

present here a simple and novel application to the special
case of a four-layer superlattice. First, we show in this ex-
ample how one calculates the unconventional sums appear-
ing in the expressions defined by E@S): and

(36)
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1 1 TABLE I. Elastic constants, mass densities and transverse speed
(T12)1,... ~C4C3C,S5; F_1 +C3C,C1 S, F_4 of sound of Nb, Cu, and Fe.
1 1 Cy4 (10 dyn/cnt) p (g/cnt) C, (10° cm/9
+ —+ —
Cal2CiSa g T CaCCiS Nb 287 8.57 1.83
= = Cu 75.3 8.92 2.905
2 2
+C4S;S,S, E'FCSSASZSl ﬁ Fe 118 7.8 3.89
+C195:S, i+(:2545351 i We will show that increasing the number of the layers in
FaFa FiFa each unit cell of the superlattice increases, in general the

(37) number of the minigaps and then the number of the surface
modes. We also show that the creation from the infinite su-
With the help of these expressions, the dispersion relatioperlattice of a free surface gives rise #gpeaks of weight
of the surface modelEq. 20 becomes fully explicit. As a (—3%) in the density of states, at the edges of any superlattice
further illustration of the calculations of the local and total bulk band®® Then by considering together the two comple-
density of state$Egs.(30)—(33)], we write down the quan- mentary semi-infinite superlattices obtained by cleavage of
tities Yy, Y;, Y3, Y, defined by Egs(219 and (21b) an infinite superlattice along a plane parallel to the inter-
faces, one always has as many localized surface modes as
V1= ~RE(T12y, a4 (T22)1, s (38) minigaps, for any value of;.

Y,=— va[% t+C,C, F% +C,Cs F% +C3C, % 1. Semi-infinite superlattice in contact with vacuum
! 3 2 4 As a first example, we consider a {h)
F,4 -Fe(d,)-Nb(d;)-Cu(d,) semi-infinite superlattice, wherd (i
CaCsCot C3S,S; |:_2 =1, 2, 3, and #represent the widths of the slabs forming the
unit cell of the superlatticeD =d; +d,+d;+d, is the pe-
Fy4 Fs riod of the superlattice. Figure 2 gives the dispersion of bulk
+C25,5 |:_3+C4S382 |:_2) (39 pands and surface modes as a functiork@f, wherek; is
the propagation vector parallel to the interfaces, for

Fs
+5,$3S, m} —Cyt+

S S d,=0.2D, d,=d,=0.3D, and d;=0.1D. We have pre-
Y3:—RFUHCZ—1+01§ t+ 04§+03—4” ! 2 : P
F lF, Fs ' °F,
F. F. '
- C2C1+stl_ t+C4C3+S4SS_: (40)
F, Fi
and "
S S, .
YF‘RF’JHQCZF—JCSQF—Z 5 Sl :
S; F S, gﬂ
2 A Q
—_— P, — 4 i
HCC E +SSS p [t g 3
Fi F»
—| C3C,C1+C3S,S; —+C1S3S, — 21 1
F, Fs
Fi
+C2$3Sl —— t+C4 (41) 0 T T T T
F3 0 2 4 6 8 10
kD

B. Numerical results

We how |Ilus.trate these theoret'?.al results by a few nu- FIG. 2. Dispersion of bulk and surface transverse elastic waves
merical calculatlpns fo_r some §peC|flc examples. We repor@ a semi-infinite Nid)-Fe(d,)-Nb(ds)-Cu(d,) superlattice, with
the results_ of dispersion relatlon_s, densmes_ of states an | —0.2D, d;=0.1D, and d,=d,=0.3D, where D=d,+d,
eigenfunctions of surface acoustic phonons in a four-layet, g 1 q, is the period of the superlattice. The curves give
superlattice formed out of two different Nb slabs separa}tequD/Ct(CU) as a function ok D, wherew is the frequencyk, the
by two Cu slabs or by one Cu and one Fe slab. Table | givegropagation vector parallel to the interfaces, @&dCu) the trans-
the numerical values of the elastic constants, the mass deferse speed of sound in Cu. The hatched areas represent the bulk
sities, and the transverse speed of sound for these materialsands. The filled circles represent the surface phonons for the semi-
The behavior of Rayleigh and Love waves on a Nb-Cu Suinfinite superlattice terminated by a Nb layer of thickndgs The
perlattice has been studied both experimentaififf and  empty circles represent the surface phonons for the complementary
theoretically®>%6 superlattice terminated by a Cu layer of thickndss
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FIG. 3. (@ Variation in the density of statefin units of
D/C,(Cu)] between a semi-infinite NH;)-Fe(d,)-Nb(d;)-Cu(d,)
superlattice terminated by a Nb layer of thicknéssand the same
amount of a bulk superlattice, as a function ®D/C,(Cu), for
k,D=5. B; and T;, respectively, refer t&5 peaks of Weigh(—%
situated at the bottom and the top of the bulk bandslariddicates
the localized surface mode&) Same aga) but for the comple-
mentary superlattice terminated by a Cu layer of thickrigss(c)
Same aga) but for both complementary superlattic&s, and T; ,
respectively, refer t@& peaks of Weigh’(—% .

FIG. 4. Modulus of the displacement field versus depth for the
surface waves occurring in Fig.(8e., for k,D=5) at reduced fre-
quencies [wD/Cy{(Cu]=4.745 (a), [wD/Ci{(Cu)]=7.69 (b),
[wD/C;(Cu]=5.375(c), and[wD/C(Cu)]=10.03(d). The surface
waves represented in Figs) and(b) [respectively(c) and(d)] are
obtained when a Nifrespectively, a Culayer is at the surface of
the semi-infinite superlatticesee Figs. @) and 3b)].

ted in Figs. 8a) and 3b) for kD=5, as a function of the
sented the surface modes of both complementary semjeduced frequencwD/C,(Cu)]. The & functions appearing
infinite superlattices obtained by cleaving the infinite super-at the bulk band edges and at the frequencies of the surface
lattice at the interface between a Nb layer of widthand a  modes are enlarged by the addition of a small imaginary part
Cu layer of widthd,. The hatched areas are the bulk bandsyg the frequencyw. The & functions associated with the sur-
separated by minigaps where the surface acoustic modes a@ce |ocalized states are notéq and the § functions of
pear. We obtained a generalization of a result demonstratelaight (1) situated, respectively, at the bottom and top of
analytically and numerically for two-layer superlattices by El 3y "Ik band are calleB; andT; . The form of these latter
Boudoutiet al>” and observed experimentally for Al-Ag su- enlargeds functionsB; andT, are not exactly the same be-

i 37 .
perlattices by Ch.eT“’t al,™ namely, there are as many sur ayse of the contributions coming from the divergence in
face states as minigaps, each surface mode being assomafe —12 12

w— “’Bi) or (w— “’Ti) (coBi and wT, are the frequen-

with either one or the other of the complementary semi-*
infinite superlattices. One can also observe that the surfacdes of the bottom and the top of every bulk band of the
modes are very dependent on the type of Crysta] which is ﬁuperlattic@, eXiSting near the band edgeS in the densities of
the surface. On the other hand, there is a continuity betweegtates in one dimension. Apart from the aba¥peaks and
the surface branches of the two complementary superlatticébe particular behavior near the band edges, the variation of
when these branches reach a bulk band edge. the vibrational density of states does not show any other
It can be shown analytically that the expression giving thesignificant effect inside the bulk bands of the superlattice.
frequencies of the surface modes for two complementary It is worth considering the variation in the density of
semi-infinite superlattices terminated by slabs of the samstatesAn(w) between the two complementary semi-infinite
thickness as in the bulk is identical to the expression givingsuperlattices, given in Figs.(& and 3b), and the initial
the standing waves of one unit cell with stress-free boundarinfinite superlattice. Figure(8) gives the sum of the varia-
conditions. This expression is given b¥,,); ~=0. tions in the density of states of these complementary systems
The variation in the vibrational density of stat&s,(w) An(w)=An,(w)+Any(w). This quantity is equal to zero
[respectively An,(w)] between the semi-infinite superlattice for w falling inside any superlattice bulk band. The loss of
terminated by a crystal of Nb of widtd;=0.2D (respec- states due to the peaks of weight3) at every edge of the
tively, Cu of widthd,=0.33D) and the same amount of the bulk bands is then compensated by the gain associated with
bulk superlattice was deduced from the calculation describethe localized stated (, L,, L3, L,) inside the minigaps in
in Secs. Ill F and IV A. Thes&n,(w) andAn,(w) are plot-  order to ensure the conservation of the total number of states.
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FIG. 5. Same as in Fig. 2 but for a semi-infinite 0.3 0.2 0.1 0.0

Nb(d,)-Cu(d,)-Nb(d;)-Cu(d,) superlattice. The width of the slabs L ; s
are the same as in Fig. 2. The filled circles represent the surface =~ [Som"T7 Tawmeoeoee™™™™

phonons for the semi-infinite superlattice terminated by a Nb layer
of thicknessd,. The empty circles represent the surface phonons
for the complementary superlattice terminated by a Cu layer of
thicknessd,.

10 ~

......

The behavior of surface modes displacement field as a
function of the distancej to the surface is sketched in Fig.
4, at the wave vectok,D=5. Figures 4a), 4(b), 4(c), and
4(d), respectively, refer to the surface modes labeled | Tl
L,,L,,L3,L, in Fig. 3 which occur at the following frequen- A e
cies [wD/C,(Cu)]=4.745, 7.69, 5.375, and 10.03. The pa-
rametert [Eq. (13)] which gives the attenuation of the sur- ' :
face wave from one period of the superlattice to the next ®) 00 01 d4,/D 02 03
when penetrating deep into the superlattice far from the sur-
face takes, respectively, the values 0.205, 0.745, 0.74, and _ _ _

0.828. Besides this exponential decrease of the envelope of FIG. 6._ _DI.Sp.eI’SIOI‘\ of bulk and surface transverse e_Iastlc waves
the displacement field, one can also observe an increasi % a semi-infinite Nitd,)-Cu(d,)-Nb(dy)-Cu(d,) superlattice as a
number of oscillations in each period of the superlattice nction of the th'CkneSSll./D or_d3/D. The hatched areas repre-
when going to higher frequenciétet us notice that the fre- sent the bulk bands. The filled circles represent the surface phonons

: S for the semi-infinite superlattice terminated by a Nb layer of thick-
g??k?é:lce;'nzftii:inqq?l?;sezr}aﬁs ,olf_‘t‘hf:”sijnpséflit;?ceebUIk bands nessd;. The empty circles represent the surface phonons for the

: . ; complementary superlattice terminated by a Cu layer of thickness
Now, in a second illustration, we assume that the Fe Iaya4_ (a) For k;D =0 and(b) for k,D=10.

ers of widthd, in the previous superlattice are replaced by
Cu layers of the same width. Figure 5 gives the bulk bands

and surface modes for the two complementary semi-infinit band b oth valentl
superlattices obtained in the same manner as in the previou r two bands to cross each other or, equivalently, a gap to
ose. The possibility of band crossing occurs if the slope of

example. The positions of surface modes are very differen% ; . - : i .
from those given in Fig. 2 even though the superlattices ar&'® straight line defined in Eq42a) IS SLfCh thqt It cuts the
g g g P ulk bands of the superlattice. Equatiéf2a is actually

terminated by the same layers at the surface. . : .
One peculiarity of the example shown in Fig. 5 is theval'd for anyN-layer superlattice composed of only two dif-

existence of successive bulk bands crossings; the crossifgent mﬁterlarlls. Or;ehcan notlclze that the surfalces_ modes %f
points are situated along a straight line defined as one or the other of the complementary superlattices reac
these crossing points and are in continuation of each other.

)1,2 The number of the bulk bands and surface modes in-

.

hereF is defined in Eq(3a). This is a sufficient condition

(423 creases in general, with the number of the layers contained in
each unit cell of the superlattice. Figuréap[respectively,
Fig. 6(b)] gives, fork,D=0 (respectively, fokk,D=10), the
This equation is obtained from the condition dispersion of the bulk bands and surface modes as a function
of the widthsd;/D or d4/D, the period of the superlattice
F(Nb)=F(Cu), (42b) being kept constan{d;/D increases from 0 to 0.3 when

2 :< C¢214_ Cﬁ
K pCas—p'Cyy
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" FIG. 8. Density of statefin units of D/C,(Cu)] corresponding

. . . . to the case described in Fig. 7, figfD =6. The contribution of the
FIG. 7. Dispersion of localized and resonant modes induced b)é :
. . t of the bulk -Cu(d,)-Nb(ds)-Cu(d latt
a Fe cap layer of thicknesk,, deposited on top of a semi-infinite ame amount of the bulk Nib)-Cu(d,)-Nb(dy)-Cu(d,) superlattice

. h was subtracted; , T;, andL; have the same meanings as in Fig. 3;
Nb(d,)-Cu(d,)-Nb(d;)-Cu(d,) superlattice terminated by a full Nb ot
R; andl; ref tively, to th t mod d to the lo-
layer of widthd,. The hatched areas represent the bulk bands. The ancl; reter, Tespecively, 1o the resonant modes and fo the 1o

Calized modes at th lattice-adlayer interface.
heavy line indicates the bottom of the bulk band of Fe. The alized modes at tne superiafiice-aclayer interlace

branches labeled I{) correspond to modes localized at the |n the latter case, the modéabeledl; in Figs. 7 and 8are
superlattice-cap layer interface. essentially localized states at the interface between the super-
lattice and the cap layer. The other modes are referred to as
d5/D decreases from 0.3 tg.0Ford,/D=d3/D=0.15, one localized ;) if their envelope exponentially decays when
finds the situation of a two-layer superlattice studied beforgenetrating deep into the superlattice, or as resonant modes
by Camleyet al3® For the other values af,/D, the number (R;) if they show an oscillatory behavior inside the superlat-
of the bulk bands and surface modes is multiplied by two agice. To illustrate these different types of behavior, we have
the number of the layers forming the unit cell is four insteadplotted in Fig. 9a), 9(b), and 9c) the local densities of states
of two. There are exceptions at some particular valued,of as function of the space positio, for a given wave vector
where two bulk bands cross each other and a gap disappears.
The surface modes which are presented for both complemen- 40
tary semi-infinite superlattices reach the bulk band crossing
points. One can also notice the continuity between surface
modes corresponding to the complementary semi-infinite su-
perlattices, both at the bulk bands crossing points and at the y
crossings of surface branches with the bulk band edses 0 — R
also Figs. 2 and b 4 3% 2 -t 0 1 2 3 4

@
30 4 Cap layer Superiattice

20 -

Local DOS

10 +

Cap layer (b)
2. Capped semi-infinite superlattice in contact with vacuum
Now we assume that a cap layer of Fe, of thickregss

deposited on top of the N#,)-Cu(d,)-Nb(ds)-Cu(d,) semi- 1 M/\’\/\A/\/\N\

infinite superlattice terminated by a full Nb layer of width 0

d,, whered,;=0.2D, d,=d,=0.3, andd;=0.1D. Figure 4 3 2 4 0 1 2 3 4

7 gives the dispersion of localized and resonant modes in- 12

duced by a cap layer of widtdy=4D. These modes are

obtained as well-defined peaks in the variatibn(w) (see

Fig. 8 in the density of states between the capped superlat-

tice and the same amount of the bulk superlattice without the

cap layer(the calculation is explained in Secs. Ill D and 0 A L .

IV A). It is worth noting that for another termination of the 432 4 0 1 2 3 4

semi-infinite superlattice these modes will be quite different. x3/D
The localized and resonant modes induced by the cap

layer can be divided in different groups according to the FiG. 9. (a) Spatial dependence of the local density of states
behavior of the corresponding eigenstates along the axis @bos) [in units of D/C,(Cu)] corresponding to the case described
the superlattice; they may propagate in both the superlatticg Fig. 7 atfwD/C,(Cu)]=5.96 andk,D =6. (b) The same a&) but
and the cap layer, or propagate in one and decay in the othefor [wD/C,(Cu)]=8.565.(c) The same aga) but for[wD/C,(Cu)]

or decay on both sides of the superlattice-cap layer interface=9.705.

Local DOS

Cap layer (©)

Local DOS




14 738 E. H. EL BOUDOUTI et al. 54

8 |
< 361 °
J =
a £
8 % 4
6 5 |
T T T
0 1 2 3 4
d D 0 T T i T
o 0 2 4 6 8 10
k,D

FIG. 10. Cap layer induced localized and resonant modes versus
the widthd, of the cap layer. The superlattice is the same as in Fig.

7 andk,D =6. The lowest two branches correspond to modes local- FIG. 11. Localized modes associated with the interface of the
ized athhe sinerIattice-cap layer interface semi-infinite superlattice described in Fig. 7 and a Fe substrate. The

heavy straight line indicates the bottom of the substrate bulk band.
k,D=6, and for different reduced frequencies

[@D/C(Cu)]=5.96, 8.465, and 9.705 corresponding, respec- \when the thickness, of the cap layer goes to infinite, we
tively, to an interface modé,, a resonant mod®;, and a  find the situation of a semi-infinite superlattice in contact

localized modd., in Fig. 8. This local density of states re- with an homogeneous substrate. We address this case in the
flects the spatial behavior of the square modulus of the disnext section.

placement field.

In the first case[Fig. 9a)], the reduced frequency
[wD/C(Cu)=5.96] falls outside the cap layer and the super-
lattice bulk bands. The local density of states decays inside
the cap layer and presents an oscillatory decay inside the To show the interface localized modes associated with the
superlattice. In the second cadeg. Ab)], the reduced fre- deposition of a semi-infinite superlattice on a semi-infinite
guency{wD/C,(Cu)=8.464 falls inside the bulk band of the substrate, we have chosen the same superlattice as in Sec.
superlattice. Consequently, the local density of states corrdV B 2 deposited on a substrate of Fe. Figure 11 gives the
sponding to this resonant mode presents an oscillatory bdecalized interface modes for the superlattice terminated by a
havior both inside the superlattice and inside the cap layerfull Nb layer of widthd;. One can remark that the frequen-
However, the local density of states on average is more imeies of the interface modes in Figs. 7 and 11 are almost the
portant inside the cap layer than in the superlattice. In thesame even though in the former case the substrate is replaced
third case [Fig. 9c)], the reduced frequency by a cap layer of finite thicknesd,=4D; moreover, the
[wD/C(Cu)=9.705 falls inside the gap of the superlattice. localization of the interface modes is similar in both cases.
Now, the local density of states presents an oscillatory bektet us also note that the frequencies of interface modes are
havior in the space occupied by the cap layer and an oscilvery sensitive to the nature of the substrate and to the type of
latory decay inside the superlattice. layer which is at the surface of the superlattice.

The frequencies of the localized and resonant modes are The variationAn,;(w) [respectivelyAn;,(w)] in the den-
very dependent upon the thicknedg of the cap layer as sity of states between the semi-infinite superlattice termi-
shown in Fig. 10, fork,D=6. The lowest two branches nated by a crystal of Nb of widttl; =0.2D (respectively, Cu
which correspond to cap layer-superlattice interface modesf width d,=0.33), in contact with a substrate of Fe and
become almost independent d§ for dy=0.5D. The next the same amount of the bulk superlattice and of the bulk
branches corresponding to resonant modes become closerttomogeneous medium are plotted in Figs(alzand 12b)
one another whemnl, increases, and as a consequence théor kD=1, as a function otvD/C(Cu). The & functions of
intensities of the corresponding resonances increase. Let wgeight (—3) situated, respectively, at the bottom and top of
also note that the curves in this figure becomes almost flainy bulk band are calleB; andT; . B, refers to ad peak of
when a localized branch is going to become resonant byeight (—3) situated at the bottom of the substrate bulk
merging into a bulk band. The variation witly, is faster  band.
when the resonant branch penetrates deep into the band, butWhen one takes both complementary superlattices used in
then the intensity of the resonant mode decreases, or mdigs. 12a) and 12b), the variation in the density of states
even vanish, in particular, whety is small or the frequency [An;(w)=An;(w)+An(w)] is shown to be equal to zero
is high. Finally, let us mention that for any given frequencyfor frequenciesw belonging at the same time to the bulk
w in Fig. 10, there is a periodic repetition of the modes as @ands of the substrate and the superlafficé/e have pre-
function ofdj. sented in Fig. 1&) an example of this variation in the den-

3. A semi-infinite superlattice in contact
with a semi-infinite substrate
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We focused our attention on the derivation of closed-form
expressions for the local and total densities of states and the
dispersion relation of bulk and surface or interface localized
and resonant modes. One interest of the latter relations is that
they are usable without a need of going into a detailed cal-
culation.

Although these results are obtained for transverse elastic
waves, they remain also valid for pure longitudinal waves
propagating along the axis of the superlattikg=0).

These surface dispersion modes may serve as a tool for
the determination of elastic constatitef the materials from
which the superlattice is built. Let us also mention that an
extension of these studies to waves polarized in the sagittal
plane will probably reveal even more interesting resonances.

Our general results are illustrated by a few applications to
four-layer semi-infinite superlattices. We have shown that, in
general, the number of minigaps and of surface states in-
creases by increasing the number of layers in each unit cell.
When two bulk bands cross each other, the surface states

D/C(Cu) rleach' the'crossing points in thie,k,) plane. There is a con-
tinuation in this plane between the surface states of two
complementary superlattices at the bulk band crossing points

FIG. 12. (a) Variation in the density of statefin units of  and more generally at a point where the surface states merge
D/Cy{(Cu)] at kD=1, due to the creation of the superlattice- into a bulk band.
substrate interface. The superlattice is the same as in Fig. 7 and the Another result of this paper was to generalize a previous
substrate is FeB; andT; have the same meanings as in FigB3.  theorem obtained in two-layer superlattices, namely, in cre-
refers to as peak of weight(—3) situated at the bottom of the ating two complementary semi-infinite superlattices from an
substrate bulk bandb) Same as@) but for the complementary jnfinite superlattice, one obtains as many localized surface
superlattlce. terminated by a Cu layer of thicknégs (c) Sum of states as minigaps for any valuequ This result is based on
the curves in@ and (b). the general rule about the conservation of number of states

and expresses a compensation between the losgestate at
) every bulk band edgédue to the creation of two free sur-
sity of states forkD=1 for both complementary superlat- faceg and the gain due to the occurrence of surface states. In
tices. Bearing in mind the loss of ti{e-3) state at the limits eneralization of our previous studies in two-layer
of any bulk band and the conservation of the total number o uperlattice€® we presented in the last part of this paper a

states, we are led to the necessary existence of positive Cofy jllustrations of the different types of localized and reso-

tributions in the density of states lying inside the minigaps ofyant states due to the deposition of the cap layer on top of the

thelsuperlattice. The loss of states due to the peaks of weiglfiperiattice, or associated with the interface between a semi-
(—3) at every edge of the bulk bands is compensated for by,finite superlattice and a substrate.

the gain associated with the positive contributiondf;(w)  As a final remark, let us emphasize that the calculations
in the minigaps. This positive contribution is, however, dif- yresented here for the transverse elastic waves can be trans-
ferently partitioned between the two complementary superposeqd straighforwardly to the electronic structure of super-
lattices. lattices in the effective-mass approximatforn®4°—42or to
the propagation of phonon or plasmon polarifofi€~4in
V. CONCLUSIONS these heterostructures when each constituent is characterized
by a local dielectric constant(w). This is because both the
In this paper, we have presented an analytical calculatiogquations of motion and the boundary conditions in the
of the response functioriGreen’s functioh for acoustic above problems involve similar mathematical equations.
waves of shear horizontal polarization in a semi-infiniteTherefore, the general behavior and conclusions obtained in

N-layer superlattice, with or without a cap layer and in con-this paper will prove to be useful for the two other physical
tact with an homogeneous substrate. These results are appliroblems.

cable to anyN-layer superlattice system for which the elastic
constants and the mass densities of the component crystals
can be specified. These complete Green’s function can be
used for studying any vibrational property of the superlattice
systems&3° This includes the calculation of light-scattering
spectra by acoustic phonons, the calculation of the eigen- If one wants to obtain only the dispersion relations of bulk
functions associated with the reflected and transmitteénd surface localized states, it is convenient to use the clas-
waves, the determination of the dispersion relations for sursical transfer-matrix method, as done before for two-layer
face (or interfac@ modes and their attenuation factors, andsuperlattices®=3"4"One writes first the displacement in the
the calculation of the densities of states. following form:

Anp (o 1 k,D=1)

Anlz(m : k//D= 1)

D

Anfo 1 kD

APPENDIX: TRANSFER-MATRIX METHOD
FOR BULK AND SURFACE STATES
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u(n,i,xg)=(Ae” %3+ B;et *ixs)el ki~ wglksnD, The calculation of the four elements @ _\ provides
(A1) directly the Eqs(9). Let us also note the useful property of

. . _ the transfer matrix,
Using then the usual boundary conditions, one obtains

easily the(2X2) matrix relations betweer@j(*i) and Q) and
then by transfer betweer@[g:) and Qi) A particularly use- defT|=(T1D1, . n(T2D 1. N (T1d1 n(T2D1, . n=1,

Ad
ful form of the transfer matrix is found then to be (A4)

To N=ANAN-1-- A2, (A2) valid for any numbeN of layers from which the unit cell of
where the superlattice is built.
The derivation of the dispersion relation for bylkEgs.
c, i (10) and (11)], surface, and interface wavgggs. (20) and
A= Fi . (A3) (26)] can then be done in the same manner as for two-layer
FS C superlattice$83747
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