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N-layer superlattices are formed out of a periodic repetition ofN different slabs. Such materials forN53
and 4 are now easily grown by molecular-beam epitaxy. We present closed form expressions for localized and
resonant transverse elastic waves associated with the surface of a semi-infiniteN-layer superlattice, with or
without a cap layer, and in contact either with vacuum or with a homogeneous substrate. We also calculate the
corresponding Green’s- function and densities of states. These general results are illustrated by a few applica-
tions to four-layer superlattices made of Nb-Fe-Nb-Cu and Nb-Cu-Nb-Cu. We show that increasing the number
of the layers in each unit cell of the superlattice increases, in general, the number of the minigaps and surface
modes. We generalize some of the results obtained previously in the case of two-layer superlattices, namely,~i!
the creation from an infinite superlattice of a free surface gives rise tod peaks of weight~2 1

4! in the density of
states, at the edges of the superlattice bulk bands;~ii ! by considering together the two complementary semi-
infinite superlattices obtained by cleavage of an infinite superlattice along a plane parallel to the interfaces, one
always has as many localized surface modes as minigaps, for any value of the wave vectorki ~parallel to the
interfaces!. Finally, we investigate the localized and resonant modes associated with the presence of a cap layer
on top of the superlattice.@S0163-1829~96!00944-7#

I. INTRODUCTION

The growth ofN-layered superlattices forN>3 became
standard in the last decade. Investigations of the physical
properties of such polytype superlattices attract increasing
interest connected with the search of more performant new
materials for microelectronics, see, for example, Refs. 1–3
and references therein. The idea of polytype three-layer su-
perlattices was proposed first4 together with an application to
InAs-GaSb-AlSb multiheterojunctions. Many theoretical and
experimental investigations appeared since dealing with
nearly free electrons,5–14 elastic transverse waves,8,15–22and
polaritons.8,23–25

The theories for all these waves are isomorphic.8,9 A gen-
eral dispersion relation for all these excitations in bulk
N-layered superlattices was given before.8 Almost all the
above cited papers rederive this dispersion relation forN53
or 4 and even10 for N56. A few papers9,11,14,22address this
question for any value ofN with different recursive methods
but without reaching the explicit expression given in Ref. 8.
Let us also cite studies of spin waves inN-layered
superlattices.26 There are also several experimental Raman
studies of folded acoustic modes in periodic superlattices
with N.2 constituents,15–18 as well as in quasiperiodic
superlattices,27–29based on the Fibonacci sequence, approxi-
mated by periodic superlattices withN.2.

The object of this paper is to investigate the transverse
elastic waves in semi-infiniteN-layer superlattices. The su-
perlattice which may possibly be covered by a cap layer is in
contact either with vacuum or with a substrate. Following

Ref. 8 dealing with infiniteN-layer superlattices, a main re-
sult of this work will be to give explicit dispersion relations
for surface and interface waves in semi-infinite superlattices
which can be used by any reader interested by the subject
without going into a detailed calculation. Such expressions
can actually be derived by using either the transfer matrix or
the Green-function methods. In order to also investigate
other vibrational properties of semi-infinite superlattices
such as the local and total densities of states, and therefore
the spatial distribution of the states and, in particular, the
possibility of resonant~or leaky! waves, we present in this
paper explicit expressions of the Green function in these het-
erostructures. The simpler method of transfer matrix will be
very briefly referred to in the appendix. Although our atten-
tion will be focused in this work on transverse elastic waves
in superlattices, our calculation can simply be transposed by
standard mathematical isomorphism for studying electrons or
polaritons in these systems.

The organization of this paper is as follows. Section II
deals with the infiniteN-layer superlattice and Sec. III with a
capped semi-infinite superlattice in contact with an homog-
enous substrate. The particular limits of a free surface with
or without a cap layer and of an interface between an un-
capped superlattice and a substrate will also be outlined from
the above general case. In Sec. IV, we illustrate these general
results by analytical and numerical applications to surface
and interface waves in four-layer superlattices with emphasis
on the existence and localization properties of surface modes
and on the increase of their number with the number of lay-
ers in each unit cell of the superlattice. The main conclusions
are summarized in Sec. V.
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II. THE INFINITE N-LAYER SUPERLATTICE

TheN-layer superlattice is formed out of an infinite rep-
etition of a unit cell labeled by the indexn and containingN
different slabs. Each of these slabs labeledi (1< i<N) is
characterized by its elastic constantsC ab

( i ) , its mass density
ri , and a widthdi . All of the interfaces are taken to be
parallel to the (x1 ,x2) plane. A space position along thex3
axis in mediumi belonging to the unit celln is indicated by
(n,i ,x3), where2di /2<x3<di /2. The period of the super-
lattice is called

D5(
i51

N

di . ~1!

Due to the symmetry of translation parallel to the (x1 ,x2)
plane, one can define a wave vectorki parallel to the inter-
faces and reduce the whole problem to a one-dimensional
problem, function ofki . In the infinite superlattice, one can
also define a wave vectork3 along the axis of the superlattice
associated with the periodD.

In this paper, we limit ourselves to the case of shear hori-
zontal vibrations where the displacement fieldu is along the
x2 axis and the wave vectorki is directed parallel to thex1
axis. Then~see below!, one can consider with the same gen-
eral equations the case of a superlattice built of isotropic
materials, or built of hexagonal crystals with~0001! ~isotro-
pic! interfaces, or of cubic crystals with~001! interfaces and
ki along the@100# crystallographic direction.

Let us first recall that, in all the above cases, the displace-
ment fieldu2 in an infinite homogeneous materiali satisfies
the equation30

Fi

a i
F ]2

]x3
22a i

2Gu2~ki ;x3!50, ~2!

where

Fi5a iC44
~ i !, ~3a!

andai is defined as

a i
25ki

22r i
v2

C44
~ i !, ~3b!

wherev is the frequency of the vibrations, if the materiali is
isotropic or of cubic symmetry~ki being along the@100#
direction!, or as

a i
25ki

2SC11
~ i !2C12

~ i !

2C44
~ i ! D 2r i

v2

C44
~ i !, ~3c!

if the mediumi is of hexagonal symmetry.
Now, the Green’s function of the infinite homogeneous

mediumi associated with the displacement fieldu2 satisfies
the following equation;

Fi

a i
F ]2

]x3
22a i

2GGi~ki ;x3 ,x38!5d~x32x38!, ~4a!

and can be expressed as

Gi~ki ;x3 ,x38!52
1

2Fi
e2a i ux32x38u. ~4b!

We would briefly recall the principle for building the
Green function of the infinite and semi-infinite superlattice.30

This will enable us to present the dispersion relations of the
surface and interface waves in the superlattice as well as the
expressions for the local and the total densities of states
without going into the details of this calculation. Our calcu-
lation is based on the theory of interface response in com-
posite materials9 in which the Green functiong of a compos-
ite system is given as

g~DD!5G~DD!2G~DM !G21~MM !G~MD!

1G~DM !G21~MM !g~MM !G21~MM !G~MD!,

~5!

whereD andM are, respectively, the whole space and the
space of the interfaces in the composite materials;G is a
block-diagonal matrix in which each blockGi corresponds to
the bulk Green function of the subsystemi @Eq. ~4!#. In our
case, the superlattice is composed of slabs of materials
i51,...,N. In Eq. ~5!, the calculation ofg~DD! requires, be-
sidesGi , the knowledge ofg(MM ). The latter can be ob-
tained, in practice, by inverting the matrixg21(MM ) which
can be simply built9 from a juxtaposition of the matrices
gsi

21(MM ), wheregsi(MM ) is the interface Green’s function
of the slabi alone with stress-free boundary conditions.

Therefore the first step before addressing the problem of
layered materials will be to know the surface elements of the
Green’s functiongsi of a slab of mediumi , such that
2di /2<x3<di /2, with stress-free boundary conditions.
These surface elements can be written9 in the form of a
~232! matrix gsi(MiMi), within the interface space
Mi[$2di /2,di /2%. The inverse of this matrix has the follow-
ing form:

@gsi~Mi ,Mi !#
215SAi

Bi

Bi

Ai
D , ~6!

where

Ai52~FiCi !/Si , ~7a!

Bi5Fi /Si , ~7b!

Ci5cosh~a idi !, ~7c!

and

Si5sinh~a idi !. ~7d!

Within the total interface space of theN-layered superlat-
tice, the inverse of the matrix giving all the interface ele-
ments of the Green’s functiong of this superlattice is an
infinite tridiagonal matrix9 formed by linear superposition of
the elements of the@gsi(Mi ,Mi)#

21.
Taking advantage of the periodicityD in the directionx3

of the N-layered superlattice, the Fourier transformed
@g(k3 ;M ,M )#21 of the above infinite tridiagonal matrix
within one unit cell (1< i<N) has the following form:

54 14 729THEORY OF SURFACE AND INTERFACE TRANSVERSE . . .



@g~k3 ;MM !#215F AN1A1

B1

BNe
ik3D

B1

A11A2

B2

B2

A21A3 � AN231AN22

BN22

BN22

AN221AN21

BN21

BNe
2 ik3D

BN21

AN211AN

G . ~8!

Thanks to the simple form of this matrix, it is possible to calculate its inverse in closed form, as a function of the following
sums which are the elements of a transfer matrix as shown in the Appendix.

~T11!1,...,N5 (
$ i1 ,...,i p%$ i p11 ,...,i N%

Ci1
Ci2

...Cip
Si p11

Sip12
...SiN

FiN

FiN21

FiN22

FiN23

•••
Fip12

Fip11

, ~9a!

~T22!1,...,N5 (
$ i1 ,...,i p%$ i p11 ,...,i N%

Ci1
Ci2

...Cip
Si p11

Sip12
...SiN

FiN21

FiN

FiN23

FiN22

•••
Fip11

Fip12

, ~9b!

~T21!1,...,N5 (
$ i1 ,...,i p%$ i p11 ,...,i N%

Ci1
Ci2

...Cip
Si p11

Sip12
...SiN

FiN

FiN21

FiN22

FiN23

•••
Fip13

Fip12

Fip11
, ~9c!

~T12!1,...,N5 (
$ i1 ,...,i p%$ i p11 ,...,i N%

Ci1
Ci2

...Cip
Si p11

Sip12
...SiN

FiN21

FiN

FiN23

FiN22

•••
Fip12

Fip13

1

Fip11

, ~9d!

The numbers in these suites are in decreasing order and the suite of terms (i p11,...,i N) has to be even in Eqs.~9a! and~9b!
and odd in Eqs.~9c! and ~9d!. The first term in the summation in Eqs.~9a! and ~9b! ~corresponding top5N! should be
understood asC1 ,C2 ...CN . Each summation provides 2N21 different terms adding one to each other.

The bulk bands of theN-layer superlattice are easily obtained from the determinant of the matrix given by Eq.~8! in the
following form:

cos~k3D !5j, ~10!

where

j5
1

2
@~T11!1,...,N1~T22!1,...,N#. ~11!

It is also straightforward to Fourier analyze back into real space all the elements ofg(k3 ;MM ) and obtain all the interface
elements ofg, in the following form:

gS n,i ,2 di
2
;n8, j ,2

dj
2 D55

~T12! i ,....,N,1,....,i21

t un2n8u11

t221
, i5 j

~T12! j ,...,N,1,...,i21

t un2n8u11

t221
1~T12! i ,...,j21

t un2n821u11

t221
, i, j<N

~T12! i ,...,N,1,...,j21

t un2n8u11

t221
1~T12! j ,...,i21

t un2n811u11

t221
, j, i<N.

~12!

Here the different~T12! are obtained from Eq.~9d! with
due account for the indices giving the order of the layers
beginning from the first and ending by the last and

t5H j1~j221!1/2,
j6 i ~12j2!1/2,
j2~j221!1/2,

j,21
21,j,11

j.1.
~13!

Inside the bulk bands of the superlattice~21,j,1!, the
sign in the expression fort has to be chosen such that
ut(v21 i e)ue→0 will be slightly smaller than one.

The expression of the Green’s function between any two
points of the infinite superlattice can easily be derived from
Eq. ~5!,

g~n,i ,x3 ;n8,i 8,x38!5dnn8d i i 8Ui~x3 ,x38!1
1

SiSi8

3H sinhFa i S di22x3D G ;
3sinhFa i S di2 1x3D G J g~Mm ,Mm8!

3H sinhFa i 8S di 82 2x38D G
sinhFa i 8S di 82 1x38D GJ , ~14!
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where

Ui~x3 ,x38!52
1

2Fi
exp@2a i ux32x38u#1

1

2FiSi

3H sinhFa i S di22x38D GexpF2a i S di2 1x3D G
1sinhFa i S di2 1x38D GexpF2a i S di22x3D G J .

~15!

In Eq. ~14! the last three terms are the product of a~132!
matrix by the ~232! g(Mm ,Mm8) matrix and by a~231!
matrix. g(Mm ,Mm8) is the ~232! matrix formed out of the
elements given by Eq.~12!, for m[(n,i ,6di /2) and
m8[(n8,i 8,6d i8/2).

The knowledge of the above results, enable us to address
now the problem of a capped surface of such a superlattice in
contact with an homogenous semi-infinite substrate.

III. THE CAPPED SURFACE AND THE INTERFACE

In this section, we will first outline the derivation of the
Green’s function and then give the results for the surface
states and the density of states.

A. The Green’s function

In order to obtain the physical properties of a semi-infinite
N-layer superlattice terminated by a capped surface in con-
tact with a semi-infinite homogeneous medium~Fig. 1!, it is
convenient to consider the following three steps:

~i! The semi-infinite superlattice, with a stress-free surface
terminated by the layer~n50, i51!, is obtained by removing
the ~n521, i5N!layer out of the infiniteN-layer superlat-
tice. The corresponding@gs(Ms ,Ms)#

21 in the Ms semi-
infinite interface space~n>0, i51,...,N!, is represented by a
semi-infinite tridiagonal matrix whose surface diagonal ele-
ment situated at~n50, i51, 2d1/2! is equal toA1.

~ii ! We consider a semi-infinite homogeneous medium
characterized by the parametersav , Fv @Eq. ~3!# and capped
by a layer characterized by the parametersa0, F0 @Eq. ~3!#
and byC0 andS0 @Eq. ~7!#.

Within the interface spaceM05(21,0,6d0/2!, of this
system, one obtains9

@gs0~M0 ,M0!#
215SA02Fv

B0

B0

A0
D . ~16!

By inversion of this matrix, one gets

gs0
21S 21,0,

d0
2
;21,0,

d0
2 D52RFv . ~17!

where

R5

11
F0S0
FvC0

11
FvS0
F0C0

. ~18!

~iii ! The above semi-infinite superlattice is coupled to the cap
layer 0 deposited on the substratev. The Green’s function of
this final system in the interface space has as its inverse
d21(Ms ,Ms) a semi-infinite triadiagonal matrix. The surface
diagonal element of this matrix situated at~n50, i51,
2d1/2! is equal to (A12RFv). By standard diagonalization

9

of such a semi-infinite tridiagonal matrix, one obtains for
n,n8>0 andi , j51,...,N:

dS n,i ,2 di
2
;n8, j ,2

dj
2 D5gS n,i ,2 di

2
;n8, j ,2

dj
2 D

2
tn1n811

t221

YiYj

W
, ~19!

where

W5~RFv!
2~T12!1,...,N1RFv@~T11!1,...,N2~T22!1,...,N#

2~T21!1,...,N , ~20!

and theYi take the form

Y152RFv~T12!1,.....,N2t1~T22!1,.....,N , ~21a!

and for i52,...,N,

Yi52RFv@ t~T12!1,...,i211~T12! i ,...,N#2t~T11!1,...,i21

1~T22! i ,...,N . ~21b!

The cap layer interface elements ofd can also be worked
out in the following closed forms:

dS 0,1,2 d1
2
;0,1,2

d1
2 D5

Y1

W
, ~22!

FIG. 1. Schematic representation of a capped semi-infinite
N-layer superlattice in contact with an homogeneous substrate.
d0 ,d1 ,d2 ,...,dN , respectively, are the thicknesses of the cap layer
and of theN different slabs out of which the unit cell of the super-
lattice is built.D is the period of the superlattice.
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dS 21,0,2
d0
2
;21,0,2

d0
2 D

5
Y1F0C01S0$~T21!1,...,N2RFv@2t1~T11!1,...,N#%

W~F0C01FvS0!
,

~23!

dS 21,0,2
d0
2
;0,1,2

d1
2 D5dS 0,1,2 d1

2
;21,0,2

d0
2 D

5
Y1F0

W~F0C01FvS0!
, ~24a!

and for (n,i )Þ~0,1!,

dS 21,0,2
d0
2
;n,i ,2

di
2 D5

YiF0t
n

W~F0C01FvS0!
. ~24b!

From the knowledge of these interface matrix elements
one can obtain the elements of the Green’s function between
any two points of the whole system@see Eq.~5!#. Here, we
only give their expressions for two points belonging both
either to the superlattice, or to the cap layer, or to the sub-
strate:

~i! When the two points are inside the superlattice,d~n, i ,
x3, n8; i 8, x38! is given by Eq.~14! in which one has to
replaceg~Mm , Mm8! by d~Mm , Mm8! given by Eq.~19!.

~ii ! When the two points are inside the cap layer,d~21, 0,
x3; 21, 0,x38! is given by Eq.~14! for i50 and in which one
has to replace g~Mm , Mm8! by d~M0 , M0!, with
M0[~21,0,6d0/2!.

The elements of this~232! matrix are given by Eqs.~22–
24!.

~iii ! When the two points are inside the substrate

d~x3 ,x38!52
1

2Fv
e2avux32x38u1FdS 21,0,2

d0
2
;

21,0,2
d0
2 D1

1

2Fv
Ge2av~x31x38!, ~25!

whered~21, 0,2d0/2; 21, 0,2d0/2! is given by Eq.~23!.

B. Eigenfrequencies and eigenfunctions of the localized states

When the denominator of the Green’s functiond vanishes
for a frequency lying inside the gaps of the infinite superlat-
tice, one obtains localized states within the cap layer which
decay exponentially inside the bulk of the superlattice. The
explicit expression giving the frequencyv of these localized
states is

W~v!50, ~26a!

whereW~v! is given by Eq.~20!, together with the condition

u~T22!1,...,N2RFv~T12!1,...,Nu.1. ~26b!

Condition~26b! ensures that the wave is decaying when pen-
etrating into the superlattice far from the surface.

The eigenfunctions associated with these localized states
are found to be

u~x3!}WdS 21,0,2
d0
2
;21,0,2

d0
2 Deavx3, x3<0,

~27a!

u~x3!}WdS 21,0,2
d0
2
;21,0,2

d0
2 D sinhFa0S d02 2x3D G

1WdS 21,0,2
d0
2
;0,1,2

d1
2 D sinhFa0S d02 1x3D G ,
2
d0
2

<x3<
d0
2
, ~27b!

u~n,i ,x3!}WdS 21,0,2
d0
2
;n,i ,2

di
2 D sinhFa i S di22x3D G

1WdS 21,0,2
d0
2
;n,i ,

di
2 D sinhFa i S di2 1x3D G ,

2
di
2

<x3<
di
2
, i51,...,N, ~27c!

where the Green’s-function matrix elements defined by Eqs.
~23!–~24! appear.

C. The local densities of states

The local densities of states on the plane~n,i ,x3! are
given by

n~v2,ki ;n,i ,x3!52
r i
p
Im d1~v2,ki ;n,i ,x3 ;n,i ,x3!,

~28!

where

d1~v2!5 lim
«→0

d~v21 i«! ~29!

andd~v2! is the above-defined Green’s function.

D. The total density of states

The total density of states for a given value ofki is ob-
tained by integrating overx3 and summing onn and i the
local densityn~v2, ki ; n, i , x3!. A particularly interesting
quantity is the density of states of the above-defined compos-
ite system from which the contributions of bulk substrate and
bulk superlattice are substrated. This variationDn~v2! can be
written as

Dn~v2!5(
i51

N

D in~v2!1n0~v2!1Dvn~v2!, ~30!

whereD in~v2! is the variation of the density of states in any
slab i , n0~v

2! the density of states in the cap layer, and
Dvn~v2! the variation of the density of states in the substrate.
The explicit expressions for these quantities were found to be

14 732 54E. H. EL BOUDOUTIet al.



D in~v2!52
r i
2p

Im
t

~ t221!2 S 1

a iSi
2WD @~Yi

21Yi11
2 !~CiSi2a idi !12YiYi11~a idiCi2Si !#, i51,...,N21, ~31a!

DNn~v2!52
rN
2p

Im
t

~ t221!2 S 1

aNSN
2WD @~YN

21~ tY1!
2!~CNSN2aNdN!12YNY1t~aNdNCN2SN!#, ~31b!

n0~v2!52
r0
2p

Im
Y1

W~T12!1,.....,N
H d0F ~T12!1,...,N1@~T11!1,...,N2t#R

Fv

F0
2G1

S0F0F ~T12!1,...,N2@~T11!1,...,N2t#
Fv

F0
2G

a0~F0C01FvS0!
J ,

~32!

and

Dvn~v2!52
rv
p

Im
1

2av
H 1

2Fv
1
Y1F0C01S0$~T21!1,...,N2RFv@~T11!1,...,N2t#%

W~F0C01FvS0!
J . ~33!

E. The limit of a semi-infinite superlattice

~i! The case of a semi-infinite superlattice with a cap layer
can be described from the above results, by makingFv50
andRFv→F0S0/C0 . In particular, if the cap layer is of the
same nature as theNth layer and of widthd0,dN , we obtain
from the above results@Eqs. ~19!–~21! and ~26!–~32!# the
properties of a semi-infinite superlattice ending with an in-
completei5N surface layer.

~ii ! A semi-infinite superlattice ending with a complete
i51 surface layer is obtained from the above case~i! by
taking the limit where the thicknessd0 of the cap layer goes
to zero. This implies thatC0 is equal to 1 andS0 vanishes.
Equations~19!–~21! and~26!–~31! remain valid in this limit
and provide all the physical results for such a semi-infinite
superlattice. Let us be precise that in this limitn0~v

2! and
Dvn~v2! vanish.

F. The limit of an interface between
a semi-infinite superlattice

and a homogeneous substrate

An interface between a semi-infinite superlattice and a
homogeneous substrate is interesting by itself, in particular
because specific localized and resonant modes may exist in
its vicinity. Such a limit can be obtained from the above
results given by Eqs.~19!–~33! by setting the widthd0 of the
cap layer going to zero; this impliesS0→0, C0→1, R→1,
andn0~v

2!→0.

IV. APPLICATION TO A FOUR-LAYER SUPERLATTICE

A. Analytical results

In order to illustrate the general results given before, we
present here a simple and novel application to the special
case of a four-layer superlattice. First, we show in this ex-
ample how one calculates the unconventional sums appear-
ing in the expressions defined by Eqs.~9!:

~T11!1,...,45C4C3C2C11C2C1S4S3
F3

F4
1C3C1S4S2

F2

F4

1C4C1S3S2
F2

F3
1C3C2S4S1

F1

F4

1C4C2S3S1
F1

F3
1C4C3S2S1

F1

F2

1S4S3S2S1
F1

F2

F3

F4
, ~34!

~T22!1,...,45C4C3C2C11C2C1S4S3
F4

F3
1C3C1S4S2

F4

F2

1C4C2S3S1
F3

F1
1C4C1S3S2

F3

F2

1C3C2S4S1
F4

F1
1C4C3S2S1

F2

F1

1S4S3S2S1
F2

F1

F4

F3
, ~35!

~T21!1,...,45C4C3C2S1F11C3C2C1S4F41C4C2C1S3F3

1C4C3C1S2F21C4S3S2S1
F1F3

F2

1C2S4S3S1
F1F4

F3
1C1S4S3S2

F2F4

F3

1C3S4S2S1
F1F4

F2
, ~36!

and
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~T12!1,...,45C4C3C2S1
1

F1
1C3C2C1S4

1

F4

1C4C2C1S3
1

F3
1C4C3C1S2

1

F2

1C4S3S2S1
F2

F1F3
1C3S4S2S1

F2

F1F4

1C1S4S3S2
F3

F2F4
1C2S4S3S1

F3

F1F4
.

~37!

With the help of these expressions, the dispersion relation
of the surface modes@Eq. 20# becomes fully explicit. As a
further illustration of the calculations of the local and total
density of states@Eqs.~30!–~33!#, we write down the quan-
tities Y1 , Y2 , Y3 , Y4 defined by Eqs.~21a! and ~21b!

Y152RFv~T12!1,...,42t1~T22!1,...,4, ~38!

Y252RFvFS1F1
t1C4C2

S3
F3

1C4C3

S2
F2

1C3C2

S4
F4

1S4S3S2
F3

F4F2
G2C1t1SC4C3C21C3S4S2

F4

F2

1C2S4S3
F4

F3
1C4S3S2

F3

F2
D . ~39!

Y352RFvF SC2

S1
F1

1C1

S2
F2

D t1SC4

S3
F3

1C3

S4
F4

D G
2SC2C11S2S1

F1

F2
D t1C4C31S4S3

F4

F3
, ~40!

and

Y452RFvF SC3C2

S1
F1

1C3C1

S2
F2

1C2C1

S3
F3

1S3S2S1
F2

F1F3
D t1 S4

F4
G

2SC3C2C11C3S2S1
F1

F2
1C1S3S2

F2

F3

1C2S3S1
F1

F3
D t1C4 . ~41!

B. Numerical results

We now illustrate these theoretical results by a few nu-
merical calculations for some specific examples. We report
the results of dispersion relations, densities of states and
eigenfunctions of surface acoustic phonons in a four-layer
superlattice formed out of two different Nb slabs separated
by two Cu slabs or by one Cu and one Fe slab. Table I gives
the numerical values of the elastic constants, the mass den-
sities, and the transverse speed of sound for these materials.
The behavior of Rayleigh and Love waves on a Nb-Cu su-
perlattice has been studied both experimentally31–34 and
theoretically.35,36

We will show that increasing the number of the layers in
each unit cell of the superlattice increases, in general the
number of the minigaps and then the number of the surface
modes. We also show that the creation from the infinite su-
perlattice of a free surface gives rise tod peaks of weight
~21

4! in the density of states, at the edges of any superlattice
bulk band.30 Then by considering together the two comple-
mentary semi-infinite superlattices obtained by cleavage of
an infinite superlattice along a plane parallel to the inter-
faces, one always has as many localized surface modes as
minigaps, for any value ofki .

1. Semi-infinite superlattice in contact with vacuum

As a first example, we consider a Nb~d1!
-Fe~d2!-Nb~d3!-Cu~d4! semi-infinite superlattice, wheredi ~i
51, 2, 3, and 4! represent the widths of the slabs forming the
unit cell of the superlattice.D5d11d21d31d4 is the pe-
riod of the superlattice. Figure 2 gives the dispersion of bulk
bands and surface modes as a function ofkiD, whereki is
the propagation vector parallel to the interfaces, for
d150.2D, d25d450.35D, and d350.1D. We have pre-

FIG. 2. Dispersion of bulk and surface transverse elastic waves
in a semi-infinite Nb~d1!-Fe~d2!-Nb~d3!-Cu~d4! superlattice, with
d150.2D, d350.1D, and d25d450.35D, where D5d11d2
1d31d4 is the period of the superlattice. The curves give
vD/Ct~Cu! as a function ofkiD, wherev is the frequency,ki the
propagation vector parallel to the interfaces, andCt~Cu! the trans-
verse speed of sound in Cu. The hatched areas represent the bulk
bands. The filled circles represent the surface phonons for the semi-
infinite superlattice terminated by a Nb layer of thicknessd1. The
empty circles represent the surface phonons for the complementary
superlattice terminated by a Cu layer of thicknessd4.

TABLE I. Elastic constants, mass densities and transverse speed
of sound of Nb, Cu, and Fe.

C44 ~1011 dyn/cm2! r ~g/cm3! Ct ~105 cm/s!

Nb 28.7 8.57 1.83
Cu 75.3 8.92 2.905
Fe 118 7.8 3.89
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sented the surface modes of both complementary semi-
infinite superlattices obtained by cleaving the infinite super-
lattice at the interface between a Nb layer of widthd1 and a
Cu layer of widthd4. The hatched areas are the bulk bands
separated by minigaps where the surface acoustic modes ap-
pear. We obtained a generalization of a result demonstrated
analytically and numerically for two-layer superlattices by El
Boudoutiet al.30 and observed experimentally for Al-Ag su-
perlattices by Chenet al.,37 namely, there are as many sur-
face states as minigaps, each surface mode being associated
with either one or the other of the complementary semi-
infinite superlattices. One can also observe that the surface
modes are very dependent on the type of crystal which is at
the surface. On the other hand, there is a continuity between
the surface branches of the two complementary superlattices
when these branches reach a bulk band edge.

It can be shown analytically that the expression giving the
frequencies of the surface modes for two complementary
semi-infinite superlattices terminated by slabs of the same
thickness as in the bulk is identical to the expression giving
the standing waves of one unit cell with stress-free boundary
conditions. This expression is given by~T21!1,...,450.

The variation in the vibrational density of statesDna~v!
@respectively,Dnb~v!# between the semi-infinite superlattice
terminated by a crystal of Nb of widthd150.2D ~respec-
tively, Cu of widthd450.35D! and the same amount of the
bulk superlattice was deduced from the calculation described
in Secs. III F and IV A. TheseDna~v! andDnb~v! are plot-

ted in Figs. 3~a! and 3~b! for kiD55, as a function of the
reduced frequency@vD/Ct~Cu!#. Thed functions appearing
at the bulk band edges and at the frequencies of the surface
modes are enlarged by the addition of a small imaginary part
to the frequencyv. Thed functions associated with the sur-
face localized states are notedLi and thed functions of
weight ~21

4! situated, respectively, at the bottom and top of
any bulk band are calledBi andTi . The form of these latter
enlargedd functionsBi andTi are not exactly the same be-
cause of the contributions coming from the divergence in
(v2vBi

)21/2 or (v2vTi
)21/2 ~vBi

andvTi
are the frequen-

cies of the bottom and the top of every bulk band of the
superlattice!, existing near the band edges in the densities of
states in one dimension. Apart from the aboved peaks and
the particular behavior near the band edges, the variation of
the vibrational density of states does not show any other
significant effect inside the bulk bands of the superlattice.

It is worth considering the variation in the density of
statesDn~v! between the two complementary semi-infinite
superlattices, given in Figs. 3~a! and 3~b!, and the initial
infinite superlattice. Figure 3~c! gives the sum of the varia-
tions in the density of states of these complementary systems
Dn(v)5Dna(v)1Dnb(v). This quantity is equal to zero
for v falling inside any superlattice bulk band. The loss of
states due to the peaks of weight~21

2! at every edge of the
bulk bands is then compensated by the gain associated with
the localized states (L1 , L2 , L3 , L4) inside the minigaps in
order to ensure the conservation of the total number of states.

FIG. 3. ~a! Variation in the density of states@in units of
D/Ct~Cu!# between a semi-infinite Nb~d1!-Fe~d2!-Nb~d3!-Cu~d4!
superlattice terminated by a Nb layer of thicknessd1 and the same
amount of a bulk superlattice, as a function ofvD/Ct~Cu!, for
kiD55. Bi andTi , respectively, refer tod peaks of weight~2 1

4!
situated at the bottom and the top of the bulk bands andLi indicates
the localized surface modes.~b! Same as~a! but for the comple-
mentary superlattice terminated by a Cu layer of thicknessd4. ~c!
Same as~a! but for both complementary superlattices,Bi andTi ,
respectively, refer tod peaks of weight~2 1

2!.

FIG. 4. Modulus of the displacement field versus depth for the
surface waves occurring in Fig. 3~i.e., for kiD55! at reduced fre-
quencies @vD/Ct~Cu!#54.745 ~a!, @vD/Ct~Cu!#57.69 ~b!,
@vD/Ct~Cu!#55.375~c!, and@vD/Ct~Cu!#510.03~d!. The surface
waves represented in Figs.~a! and~b! @respectively,~c! and~d!# are
obtained when a Nb~respectively, a Cu! layer is at the surface of
the semi-infinite superlattice@see Figs. 3~a! and 3~b!#.
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The behavior of surface modes displacement field as a
function of the distancex3 to the surface is sketched in Fig.
4, at the wave vectorkiD55. Figures 4~a!, 4~b!, 4~c!, and
4~d!, respectively, refer to the surface modes labeled
L1 ,L2 ,L3 ,L4 in Fig. 3 which occur at the following frequen-
cies @vD/Ct~Cu!#54.745, 7.69, 5.375, and 10.03. The pa-
rametert @Eq. ~13!# which gives the attenuation of the sur-
face wave from one period of the superlattice to the next
when penetrating deep into the superlattice far from the sur-
face takes, respectively, the values 0.205, 0.745, 0.74, and
0.828. Besides this exponential decrease of the envelope of
the displacement field, one can also observe an increasing
number of oscillations in each period of the superlattice
when going to higher frequencies~let us notice that the fre-
quencies of the modesL2 , L3 , L4 fall inside the bulk bands
of the constituent materials of the superlattice!.

Now, in a second illustration, we assume that the Fe lay-
ers of widthd2 in the previous superlattice are replaced by
Cu layers of the same width. Figure 5 gives the bulk bands
and surface modes for the two complementary semi-infinite
superlattices obtained in the same manner as in the previous
example. The positions of surface modes are very different
from those given in Fig. 2 even though the superlattices are
terminated by the same layers at the surface.

One peculiarity of the example shown in Fig. 5 is the
existence of successive bulk bands crossings; the crossing
points are situated along a straight line defined as

v

ki
5S C44

2 2C448
2

rC442r8C448
D 1/2. ~42a!

This equation is obtained from the condition

F~Nb!5F~Cu!, ~42b!

whereF is defined in Eq.~3a!. This is a sufficient condition
for two bands to cross each other or, equivalently, a gap to
close. The possibility of band crossing occurs if the slope of
the straight line defined in Eq.~42a! is such that it cuts the
bulk bands of the superlattice. Equation~42a! is actually
valid for anyN-layer superlattice composed of only two dif-
ferent materials. One can notice that the surfaces modes of
one or the other of the complementary superlattices reach
these crossing points and are in continuation of each other.

The number of the bulk bands and surface modes in-
creases in general, with the number of the layers contained in
each unit cell of the superlattice. Figure 6~a! @respectively,
Fig. 6~b!# gives, forkiD50 ~respectively, forkiD510!, the
dispersion of the bulk bands and surface modes as a function
of the widthsd1/D or d3/D, the period of the superlattice
being kept constant~d1/D increases from 0 to 0.3 when

FIG. 5. Same as in Fig. 2 but for a semi-infinite
Nb~d1!-Cu~d2!-Nb~d3!-Cu~d4! superlattice. The width of the slabs
are the same as in Fig. 2. The filled circles represent the surface
phonons for the semi-infinite superlattice terminated by a Nb layer
of thicknessd1. The empty circles represent the surface phonons
for the complementary superlattice terminated by a Cu layer of
thicknessd4.

FIG. 6. Dispersion of bulk and surface transverse elastic waves
in a semi-infinite Nb~d1!-Cu~d2!-Nb~d3!-Cu~d4! superlattice as a
function of the thicknessd1/D or d3/D. The hatched areas repre-
sent the bulk bands. The filled circles represent the surface phonons
for the semi-infinite superlattice terminated by a Nb layer of thick-
nessd1. The empty circles represent the surface phonons for the
complementary superlattice terminated by a Cu layer of thickness
d4. ~a! For kiD50 and~b! for kiD510.
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d3/D decreases from 0.3 to 0!. For d1/D5d3/D50.15, one
finds the situation of a two-layer superlattice studied before
by Camleyet al.36 For the other values ofd1/D, the number
of the bulk bands and surface modes is multiplied by two as
the number of the layers forming the unit cell is four instead
of two. There are exceptions at some particular values ofd1
where two bulk bands cross each other and a gap disappears.
The surface modes which are presented for both complemen-
tary semi-infinite superlattices reach the bulk band crossing
points. One can also notice the continuity between surface
modes corresponding to the complementary semi-infinite su-
perlattices, both at the bulk bands crossing points and at the
crossings of surface branches with the bulk band edges~see
also Figs. 2 and 5!.

2. Capped semi-infinite superlattice in contact with vacuum

Now we assume that a cap layer of Fe, of thicknessd0, is
deposited on top of the Nb~d1!-Cu~d2!-Nb~d3!-Cu~d4! semi-
infinite superlattice terminated by a full Nb layer of width
d1, whered150.2D, d25d450.35D, andd350.1D. Figure
7 gives the dispersion of localized and resonant modes in-
duced by a cap layer of widthd054D. These modes are
obtained as well-defined peaks in the variationDn~v! ~see
Fig. 8! in the density of states between the capped superlat-
tice and the same amount of the bulk superlattice without the
cap layer ~the calculation is explained in Secs. III D and
IV A !. It is worth noting that for another termination of the
semi-infinite superlattice these modes will be quite different.

The localized and resonant modes induced by the cap
layer can be divided in different groups according to the
behavior of the corresponding eigenstates along the axis of
the superlattice; they may propagate in both the superlattice
and the cap layer, or propagate in one and decay in the other,
or decay on both sides of the superlattice-cap layer interface.

In the latter case, the modes~labeledI i in Figs. 7 and 8! are
essentially localized states at the interface between the super-
lattice and the cap layer. The other modes are referred to as
localized (Li) if their envelope exponentially decays when
penetrating deep into the superlattice, or as resonant modes
(Ri) if they show an oscillatory behavior inside the superlat-
tice. To illustrate these different types of behavior, we have
plotted in Fig. 9~a!, 9~b!, and 9~c! the local densities of states
as function of the space positionx3, for a given wave vector

FIG. 7. Dispersion of localized and resonant modes induced by
a Fe cap layer of thicknessd0, deposited on top of a semi-infinite
Nb~d1!-Cu~d2!-Nb~d3!-Cu~d4! superlattice terminated by a full Nb
layer of widthd1. The hatched areas represent the bulk bands. The
heavy line indicates the bottom of the bulk band of Fe. The
branches labeled (I i) correspond to modes localized at the
superlattice-cap layer interface.

FIG. 8. Density of states@in units ofD/Ct~Cu!# corresponding
to the case described in Fig. 7, forkiD56. The contribution of the
same amount of the bulk Nb~d1!-Cu~d2!-Nb~d3!-Cu~d4! superlattice
was subtracted.Bi , Ti , andLi have the same meanings as in Fig. 3;
Ri and I i refer, respectively, to the resonant modes and to the lo-
calized modes at the superlattice-adlayer interface.

FIG. 9. ~a! Spatial dependence of the local density of states
~DOS! @in units ofD/Ct~Cu!# corresponding to the case described
in Fig. 7 at@vD/Ct~Cu!#55.96 andkiD56. ~b! The same as~a! but
for [vD/Ct~Cu!#58.565.~c! The same as~a! but for @vD/Ct~Cu!#
59.705.
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kiD56, and for different reduced frequencies
@vD/Ct~Cu!#55.96, 8.465, and 9.705 corresponding, respec-
tively, to an interface modeI 1, a resonant modeR3, and a
localized modeL1 in Fig. 8. This local density of states re-
flects the spatial behavior of the square modulus of the dis-
placement field.

In the first case@Fig. 9~a!#, the reduced frequency
@vD/Ct~Cu!55.96# falls outside the cap layer and the super-
lattice bulk bands. The local density of states decays inside
the cap layer and presents an oscillatory decay inside the
superlattice. In the second case@Fig. 9~b!#, the reduced fre-
quency@vD/Ct~Cu!58.465# falls inside the bulk band of the
superlattice. Consequently, the local density of states corre-
sponding to this resonant mode presents an oscillatory be-
havior both inside the superlattice and inside the cap layer.
However, the local density of states on average is more im-
portant inside the cap layer than in the superlattice. In the
third case @Fig. 9~c!#, the reduced frequency
@vD/Ct~Cu!59.705# falls inside the gap of the superlattice.
Now, the local density of states presents an oscillatory be-
havior in the space occupied by the cap layer and an oscil-
latory decay inside the superlattice.

The frequencies of the localized and resonant modes are
very dependent upon the thicknessd0 of the cap layer as
shown in Fig. 10, forkiD56. The lowest two branches
which correspond to cap layer-superlattice interface modes
become almost independent ofd0 for d0>0.5D. The next
branches corresponding to resonant modes become closer to
one another whend0 increases, and as a consequence the
intensities of the corresponding resonances increase. Let us
also note that the curves in this figure becomes almost flat
when a localized branch is going to become resonant by
merging into a bulk band. The variation withd0 is faster
when the resonant branch penetrates deep into the band, but
then the intensity of the resonant mode decreases, or may
even vanish, in particular, whend0 is small or the frequency
is high. Finally, let us mention that for any given frequency
v in Fig. 10, there is a periodic repetition of the modes as a
function ofd0.

When the thicknessd0 of the cap layer goes to infinite, we
find the situation of a semi-infinite superlattice in contact
with an homogeneous substrate. We address this case in the
next section.

3. A semi-infinite superlattice in contact
with a semi-infinite substrate

To show the interface localized modes associated with the
deposition of a semi-infinite superlattice on a semi-infinite
substrate, we have chosen the same superlattice as in Sec.
IV B 2 deposited on a substrate of Fe. Figure 11 gives the
localized interface modes for the superlattice terminated by a
full Nb layer of widthd1. One can remark that the frequen-
cies of the interface modes in Figs. 7 and 11 are almost the
same even though in the former case the substrate is replaced
by a cap layer of finite thicknessd054D; moreover, the
localization of the interface modes is similar in both cases.
Let us also note that the frequencies of interface modes are
very sensitive to the nature of the substrate and to the type of
layer which is at the surface of the superlattice.

The variationDn11~v! @respectively,Dn12~v!# in the den-
sity of states between the semi-infinite superlattice termi-
nated by a crystal of Nb of widthd150.2D ~respectively, Cu
of width d450.35D!, in contact with a substrate of Fe and
the same amount of the bulk superlattice and of the bulk
homogeneous medium are plotted in Figs. 12~a! and 12~b!
for kiD51, as a function ofvD/Ct~Cu!. Thed functions of
weight ~21

4! situated, respectively, at the bottom and top of
any bulk band are calledBi andTi . Bs refers to ad peak of
weight ~21

4! situated at the bottom of the substrate bulk
band.

When one takes both complementary superlattices used in
Figs. 12~a! and 12~b!, the variation in the density of states
[Dn1(v)5Dn11(v)1Dn12(v)] is shown to be equal to zero
for frequenciesv belonging at the same time to the bulk
bands of the substrate and the superlattice.30 We have pre-
sented in Fig. 12~c! an example of this variation in the den-

FIG. 10. Cap layer induced localized and resonant modes versus
the widthd0 of the cap layer. The superlattice is the same as in Fig.
7 andkiD56. The lowest two branches correspond to modes local-
ized at the superlattice-cap layer interface.

FIG. 11. Localized modes associated with the interface of the
semi-infinite superlattice described in Fig. 7 and a Fe substrate. The
heavy straight line indicates the bottom of the substrate bulk band.
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sity of states forkiD51 for both complementary superlat-
tices. Bearing in mind the loss of the~21

2! state at the limits
of any bulk band and the conservation of the total number of
states, we are led to the necessary existence of positive con-
tributions in the density of states lying inside the minigaps of
the superlattice. The loss of states due to the peaks of weight
~2 1

2! at every edge of the bulk bands is compensated for by
the gain associated with the positive contribution ofDn1~v!
in the minigaps. This positive contribution is, however, dif-
ferently partitioned between the two complementary super-
lattices.

V. CONCLUSIONS

In this paper, we have presented an analytical calculation
of the response function~Green’s function! for acoustic
waves of shear horizontal polarization in a semi-infinite
N-layer superlattice, with or without a cap layer and in con-
tact with an homogeneous substrate. These results are appli-
cable to anyN-layer superlattice system for which the elastic
constants and the mass densities of the component crystals
can be specified. These complete Green’s function can be
used for studying any vibrational property of the superlattice
systems.38,39 This includes the calculation of light-scattering
spectra by acoustic phonons, the calculation of the eigen-
functions associated with the reflected and transmitted
waves, the determination of the dispersion relations for sur-
face ~or interface! modes and their attenuation factors, and
the calculation of the densities of states.

We focused our attention on the derivation of closed-form
expressions for the local and total densities of states and the
dispersion relation of bulk and surface or interface localized
and resonant modes. One interest of the latter relations is that
they are usable without a need of going into a detailed cal-
culation.

Although these results are obtained for transverse elastic
waves, they remain also valid for pure longitudinal waves
propagating along the axis of the superlattice~ki50!.

These surface dispersion modes may serve as a tool for
the determination of elastic constants33 of the materials from
which the superlattice is built. Let us also mention that an
extension of these studies to waves polarized in the sagittal
plane will probably reveal even more interesting resonances.

Our general results are illustrated by a few applications to
four-layer semi-infinite superlattices. We have shown that, in
general, the number of minigaps and of surface states in-
creases by increasing the number of layers in each unit cell.
When two bulk bands cross each other, the surface states
reach the crossing points in the~v,ki! plane. There is a con-
tinuation in this plane between the surface states of two
complementary superlattices at the bulk band crossing points
and more generally at a point where the surface states merge
into a bulk band.

Another result of this paper was to generalize a previous
theorem obtained in two-layer superlattices, namely, in cre-
ating two complementary semi-infinite superlattices from an
infinite superlattice, one obtains as many localized surface
states as minigaps for any value ofki. This result is based on
the general rule about the conservation of number of states
and expresses a compensation between the losses of1

2 state at
every bulk band edge~due to the creation of two free sur-
faces! and the gain due to the occurrence of surface states. In
generalization of our previous studies in two-layer
superlattices,30 we presented in the last part of this paper a
few illustrations of the different types of localized and reso-
nant states due to the deposition of the cap layer on top of the
superlattice, or associated with the interface between a semi-
infinite superlattice and a substrate.

As a final remark, let us emphasize that the calculations
presented here for the transverse elastic waves can be trans-
posed straighforwardly to the electronic structure of super-
lattices in the effective-mass approximation,8–10,40–42or to
the propagation of phonon or plasmon polaritons8,35,43–46in
these heterostructures when each constituent is characterized
by a local dielectric constant«~v!. This is because both the
equations of motion and the boundary conditions in the
above problems involve similar mathematical equations.
Therefore, the general behavior and conclusions obtained in
this paper will prove to be useful for the two other physical
problems.

APPENDIX: TRANSFER-MATRIX METHOD
FOR BULK AND SURFACE STATES

If one wants to obtain only the dispersion relations of bulk
and surface localized states, it is convenient to use the clas-
sical transfer-matrix method, as done before for two-layer
superlattices.36–37,47One writes first the displacement in the
following form:

FIG. 12. ~a! Variation in the density of states@in units of
D/Ct~Cu!# at kiD51, due to the creation of the superlattice-
substrate interface. The superlattice is the same as in Fig. 7 and the
substrate is Fe.Bi andTi have the same meanings as in Fig. 3.Bs

refers to ad peak of weight~2 1
4! situated at the bottom of the

substrate bulk band.~b! Same as~a! but for the complementary
superlattice terminated by a Cu layer of thicknessd4. ~c! Sum of
the curves in~a! and ~b!.
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u~n,i ,x3!5~Aie
2a i x31Bie

1a i x3!ei ~ki•xi2vt !eik3nD.
~A1!

Using then the usual boundary conditions, one obtains
easily the~232! matrix relations between (Bi11

Ai11) and (Bi
Ai) and

then by transfer between (BN11

AN11) and (B1
A1). A particularly use-

ful form of the transfer matrix is found then to be

T1,...,N5DNDN21 .....D2D1 , ~A2!

where

D i5S C1
Si
Fi

FiSi Ci

D . ~A3!

The calculation of the four elements ofT1,...,N provides
directly the Eqs.~9!. Let us also note the useful property of
the transfer matrix,

detuTu5~T11!1,...,N~T22!1,...,N2~T12!1,...,N~T21!1,...,N51,
~A4!

valid for any numberN of layers from which the unit cell of
the superlattice is built.

The derivation of the dispersion relation for bulk@Eqs.
~10! and ~11!#, surface, and interface waves@Eqs. ~20! and
~26!# can then be done in the same manner as for two-layer
superlattices.36,37,47
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