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Structure of polygonal defects in graphitic carbon sheets
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Various polygonal defects which retain the three-bonded character of carbon are proposed as disclinations in
graphitic carbon. Tha-gonal defects, whene is an integer less than 5, are responsible for forming cones and
are less stable than pentagonal defects in a hexagonal network which are responsible for forming spherical
fullerenes such as . On the other hand, thae-gonal defects, whera is greater than 6, correspond to
negative wedge disclinations on the surface and leads to a negatively curved surface. Using molecular-
dynamics simulations, it is found that the surfaces containingleld-, 11(hendeca, or 12dodeca-gonal
defects are more stable than similarly shaped surfaces containing a multiple number of heptagons. It is also
found that the surfaces which contain msgonal defeci{with a largen value with a periodic folding of the
surface are stable for some cases. The buckled surface with(actd@cggonal defect in particular, which
is rolling with surface distortions bending upward and downward three times around the defect, gives a stable
structure. Our considerations indicate that complex structures not considered before could possibly exist.
The relation of screw dislocations to polygonal defects, and their stability, are also studied.
[S0163-18206)07444-9

I. INTRODUCTION heptagons and pentagons into a hexagonal network. The ex-
istence of heptagons in carbon nanotubes is supported by
Disclination! a rotational-type extended defect in crys- TEM (transmission electron microscopgxperiments?® The
tals, has been the target of much research because it plays angle of the junction between small and large radii of the
important role in the deformation processes of metals, polytube is close to 120°, equal to that required for heptagonal
mers, liquid crystals, and biological systems. Positive andlisclinations.
negative wedge disclinations are created by removing some We will use the description “polygonal defects” rather
degree of a section of a material or by inserting one, ar¢han “disclinations” because the picture of a polygonal pat-
realized easily in surfaces such as membranes or proteberning of the surface is more intuitive and atomistic than the
coats in viruses. The cage structures of graphitic carbon angicture of disclinations whose concept is applicable to a con-
composed of hexagorgsixfold ring9 of atoms, and are thus tinuum whereby atomic configurations are smeared. A single
suitable for realizing wedge disclinations. polygonal defect other than pentagonal and heptagonal in
It is known that a nonplanar surface of graphitic carbongraphitic networks, however, has not been pursued as a de-
can be created by inserting pentagons or heptagons intofact structure. As far as the authors are aware, the only ex-
planar surface of graphite consisting solely of hexagons. Aceptional and close work is by Harris, who over 20 years ago
pentagon, a positive wedge disclination of rotation 60° ob-systematically considered various types of disclinations in
tained by removing a 60° sector from the hexagonal sheet ahembranous systems viewed as a continddfnHe pro-
graphite, is responsible for creating a positively curved survided various types of positive and negative wedge disclina-
face. Regular arrangements of pentagons in hexagons play &éons in membranous systems: the most intriguing in the
essential role in forming structures such as the well-knowrpresent context is a negative wedge disclination with a rota-
spherical forms of carbon (§, C;o, etc), and caps of tion of 27 rad?® Although his proposal was general and
straight tubular forms on a nanometer scafe. intriguing, there seems to be no proper materials in which his
A heptagon is obtained by inserting a 60° sector into adea is realized, particularly at the atomic level. Nor are his
honeycomb sheet of graphite as a negative wedge disclingroposed structures for wedge disclinations directly relevant
tion of rotation 60°. It is stressed theoreticafly* and  to the honeycomb structure of graphitic carbon, which we
experimentally’~'°that heptagons play an important role in study here.
forming a Gaussian negatively curved surface in fullerenes The principal aim of the present paper is to study the
(Theoretically, an octagon has also been suggested asexistence of various types of polygonal defects in graphitic
means of generating Gaussian negatively curved supfakes carbon other than pentagonal, heptagonal, and octagonal de-
theoretically proposed stable minimal surface of graphitdfects, while retaining the three-bonded nature ofgl#é hy-
consists only of heptagon&r octagonp in a hexagonal bridization of carbon. Note that the polygonal defect is lo-
sheet'®!! Proposed atomistic models for toroidal forids2  cated at the core of the wedge disclination in a honeycomb
and helically coiled form$? whose existences have been sheet. The motivation for this study is to show general po-
confirmed experimentalf~1° are created by combining lygonal defects, other than pentagons and heptagons, may
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play some role for more flexible connection between tubes,
as compared with the case where the pentagonal and hep-
tagonal defects are supposed to be the only allowable defects
existing in carbon. Introducing polygonal defects relieves the
restriction on the sizes which is imposed by the relation be-
tween the angle of a structure and the number of pentagons
and heptagons. The second aim of our paper is to study the
stable structures of a polygonal defect. The thermodynamical
and elastic properties of the polygonal defect are studied by
molecular-dynamics simulations. The combination of posi-
tively and negatively curved wedge disclinations would be
more stable than the single one, and could be observed ex-
perimentally in a multiple form as pentagon-heptagon pairs
on the spherical fullerenes. A random distribution of various
polygons is a possible form of defect structure on the surface
of the amorphousp? carbon sheet: The third aim of this FIG. 1. Construction of the polygonal defect. Argonal defect
paper is to study the screw dislocation which is considered t@& constructed by connecting pieces of 60° sector.

be a polygon with an infinite number of vertices. Possible

combinations of structures created by these not yet considapeat the procedure at each time step for the interval of
ered polygons and the electronic states for these polygonghterest. To calculate forces, we assume an empirical poten-
structureg(disclination$ are studied in a forthcoming paper, i3] form for carbon atoms. Many types of empirical inter-

because we are interested in various atomic configurations @fomic potentials for carbon atoms have been proposed so

a single defect form. far. However, for the sake of simplicity, we use the
Stillinger-Weber-type three-body potentidlshese potential
Il. SIMULATION METHOD functions are shown to be descriptive of the interactions be-

, . tween graphitic carbon atom3$.The following parameters

A. Euler’s theorem and construction of polygonal defects optimized by Abraham and Batra for grapﬁ?tavere used:

The general expression of Euler's theorem in a threeA=5.3732037, B=0.50824571, a=1.89436109,
dimensional network i/ —E+F=2(1-g) , whereF, V, A=18.707 929, and/=1.2. In the three-body term, the con-
and E are the number of faces, vertices, and edges, respestant%, originally indicating the diamond structure, was re-
tively, andg is the genus. For graphite, each carbon atom haplaced bys to represent the honeycomb-like structure as in
three bonds, each edge is shared by two polygonal faces, aftef. 23. For a calculation of the ground-state cohesive en-
each vertex is shared by three polygons. Putfingqual to  ergy, the system was eventually cooled dow@ K by using
the number of polygons with sides anch vertices, Euler's first-order equations of motiotdynamical steepest decent
theorem can then be expressed a&(n—6)f, method. Less than 10 J/m of force acting on an atom was
=—12(1—g). As can be seen from the way the polygonsused as the convergence criterion. The cohesive energy per
are constructed, the above relation holds for general polygaatom of the systent, is then evaluated.
nal defects.

A pentagon in a hexagonal network can be easily obtained
by combining the remaining five 60° sectors obtained by
removing a 60° sector from a graphitic sheet. A heptagon in  Strictly speaking, the defect enerdy should be deter-

a hexagonal network can be obtained by inserting a 60° sednined for a system with a single polygonal defect in the
tor into a graphitic sheet. Therefore, by combiningumber  infinite graphitic sheet. In the simulations, however, we must
of 60° sectors, an-gonal defect is obtained in the center of cope with a finite number of atoms in a finite region. There-
the sheetsee Fig. 1L Heren=6 designates a graphitic sheet fore, the defect energy is estimated from the calculated en-
without a defect. When< 6, the surface containing a defect €rgy E of the finite region system which contaifscarbon
becomes a positively curved one as for the case of a con@{oms as

while with n>6, the surface becomes negatively curved. In

this paper, the 60° sector which consists of 16 carbon atoms Eq=(EN+N,E4/3)—EgN. (1)

as shown in Fig. 1 is used.

C. Evaluation of the energy of the polygonal defect

As shown in Fig. 1, the finite region we used is obtained
by cutting one of the three bonds for the carbon atoms at the

It is well known that molecular dynamics is a powerful boundary, i.e., the boundary atom has only two bonds. The
method for studying both structural and dynamical propertiebond energy per one bond is estimated toHy€3, because
by a direct solution of the many-body equations of motion.each atom in the hexagonal plane has three bonds. Ejgse
Molecular-dynamics methods are employed to confirm théhe total energy per atom for the perfect hexagonal sheet
stability of the structures proposed here. Molecular dynamicsbtained by molecular dynamics for a pseudoinfinite region
consists of the following procedure: set the initial guess coby applying periodic boundary conditions. In the above ex-
ordinates, then calculate the forces acting on each atom, thgmessionN, is the number of carbon atoms on the boundary.
determine coordinates and velocities for all atoms, and theiihus the total energy of a system with a single polygonal

B. Simulation details
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FIG. 2. Optimized conelike surfaces containingragonal de- FIG. 3. Optimized conelike surfaces containing multiple pen-
fect, wherenis 1, 2, 3, 4, and 5. tagonal defects. The shape of the surface with-(§ pentagonal
defects corresponds to the surface withragonal defec{n=0, 1,
defect in the pseudoinfinite region is obtained as2, 3, and 4

EN+N,E4/3, and the defect enerdy, is obtained as Eqg.
(2). The projection angles and their deviations are shown in

Table I. Forn=3, the deviation of the projection angle is
several times larger than those of the other valuas. dhis
is because one of the bonds forming the threefold coordina-
The surface containing amgonal defect i-gon) is posi-  tion of sp? is broken to form more stable asymmetrical po-
tively curved forn is less than 6, and is negatively curved sitions in contrast to the other cases where atoms @fot
surface fom>6. These shapes are completely different fromequal to 3-gons retain their symmetrical positions.
one another. Thus we will discuss their results separately In order to show the plausibility of the values for the
according to whethen is greater or less than 6. projection angles obtained by molecular-dynamics simula-
tions, we compare them with angles obtained by simple geo-
metrical considerations. Since anagon is in the core of a
wedge disclination, the length of the arc obtained by expand-
1. Conelike surface with an(n<6)-gonal defect ing the cone containing tha-gon to the two-dimensional

The conelike surface, containing a singlegonal defect plane isnr; herer is the radius of the arc or the side length
located at the center of the surface, hafold rotational  Of the cone. If we put the apex of the cone into the center of
symmetry along the axis determined by the rotational vectof'€ Sphere having radius the arc determined by the apex
around then-gonal defect whem is less than 6. Here the corresponds to the circle on the sphere with2 as the
rotational vector is determined as a normal vector to the suf@dius. The projection anglé is thus evaluated from the
face of then-gon. Hereafter we denote a regular polygon&duation sing2)=n/2a. As shown in Table I, good agree-
with n vertices anch sides as an-gon. Althoughn-gons for ~Ment between the projection angles obtained from
n=1 and 2 are not typical geometrical figures, we treat thepfn0lecular-dynamics simulations and a simple geometrical
as polygonst-gons for generality. The optimized structures consideration is obtained. .
obtained by molecular-dynamics simulations are given in 1€ defect energieg, for the surface containing an
Fig. 2. From now onp varies from left to right and top to n-gon is al-so given in Tgbl_e I.. With decreasingthe defef:t
bottom. In order to compare the structures proposed herg@nergyEq increases. This |.nd|cates that the pentagon is the
with the TEM (transmission electron microscopyicture ob- ~ MOst stable single defect in the hexagonal network among
tained so far, we calculated the angle obtained by projectiny@riousn-gonal defects whera is less than 6.
the structure onto the plane surface parallel to the rotational
vector of then-gon. We refer to the angle determined here as
a projection angle. Due to this definition, the projection angle The shape of the structure containing a polygon with
changes as we change the direction of the projection whilgertices at the core of the wedge disclination can be similar
holding it perpendicular to the rotational vector. Using theto the surface containing multiple polygons with vertices
symmetry of then-gon, we adopted the average value ofaround the core of a wedge disclination if we choose a
minimum and maximum values for the projection angles.properm which is larger tham. Note that the numbers of

atoms in the different, surfaces are different, although they

TABLE I. Projection angles®) and defect energies, of cone-  are comparable to each other. Generally, the structure whose
like structures fomn-gonal defects, simple geometrical models, andnumber ofm-gons isf,,, has a similar shape to the structure
multiple pentagonal defects. The deviations of the projection anglepaving a polygon with (6 —m)f,, number of vertices. For
are given brackets. instance, the conelike structure having raigonal defect is
similar to the cone structure tiled by hexagons with 16

Ill. RESULTS AND DISCUSSIONS

A. Positive wedge-disclination-type defects

2. Conelike surface with multiple pentagonal defects

n 0 (%) Eq (eV) pentagons. In Fig. 3, optimized structures for a cone having
n-gon model 6-npents. n-gon  6-npents.  myfiple pentagons are given for the corresponding single

0 4.654 n-gon forn = 0, 1, 2, 3, and 4. The pentagons are arranged

2000) 18.3 2715) 13.669 3.914 so that they are not directly connected but are near eagh

382) 371 3329 7168 3.093 other. The projection angles of the cones are also given in

Table I. If there are six pentagons, the projection angle is

o0 WNEFELO

57(19 57.0 6@d2) 6.092 2.332 o .

0°. This pentagon case corresponds to the cap structure of
833) 79.1 8124) 3.955 1.555 . .

carbon nanotube. The projection angles of conelike struc-
1130) 105.5 1130) 0.759 0.759 . .
1800)  180.0 0.0 tures having multiple pentagons are almost the same as those

for the corresponding single-gonal defect. This indicates
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TABLE II. Projection anglesd and defect energieg, of
saddlelike structures fon-gonal defects and multiple heptagonal
defects. The deviations of the projection angles are given in paren-

theses.
n 6 (°) Eq (eV)

n-gon n—6 hepts. n-gon n—6 hepts.
6 90(0) 0.0 0.0
7 61(1) 61(1) 0.069 0.069
8 47(0) 47(17) 0.094 0.108
9 36(1) 34(7) 0.202 0.212
10 246) 16(7) 0.148 0.323
11 133) 13(7) 0.147 0.356
12 41) 10(10 0.103 0.437

FIG. 5. Optimized saddlelike surfaces containing multiple hep-
tagonal defects. The shape of the surface with-6) heptagonal
that conelike structures having a certain projection angle cafefects corresponds to the surface withragonal defectn=7, 8,
be considered as surfaces containmgonal defects, mul- 9, and 10.
tiple pentagonal defects, and multiple types of other poly-
gons. B. Negative wedge-disclination-type defects

The defect energieg, for the surface containing an
n-gon and corresponding to the surface with multiple penta-
gons are also given in Table I. With decreasimghe defect The saddlelike surface containing argonal defect lo-
energyE4 increases for both types of surfaces having onecated_at the core of a wedge dlspllnatlon becomes a Gaqssmn
singlen-gon, and (6-n) pentagons. However, for each pro- negatively curved surface whenis larger than 6. The opti-

jection angle, the defect energy of the surface having a singlized structures having angonal defect fon=7, 8, 9, 10,
n-gonal defect is higher than that the surface havin 1, and 12, as predicted by molecular-dynamics simulations,

(6—n) pentagonal defects. Thus the surface containin are given in Fig. 4. As for the cone structures, the projection

B ) - . gangle is determined by projecting the structure onto a plane
(6—n) pentagons is more stable than that containing a sing| hich is parallel to the rotational vector of thegon. In

n(<_6)-gona| defect. For each cone sfructure Co_nta'n'nQ:ontrast to the cone structure, the projection angle for a nega-
multiple pentagon, the defect energy per pentagon is almogl ey curved surface is defined as the angle between the

constant and equal to 0.78).78 eV/atom. This indicates (jgqe |ine of the surface and the axis of the rotational vector.
that distortions of the surface considered occur almost EXC|LBy this definition, the angle of the cusp appearing in the side
sively at the pentagons. view of the structure, as in Fig. 4, is just twice the projection
From TEM experiments, lijima reported that the projec- angle. For saddlelike structures, we chose several ridge lines,
tion angle of the tip of the capped carbon nanotube observeghd we used their average value to determine a projection
is 19° or 40°¢ Later experiment§?*also concluded that the angle. The projection angle is 90° for=6 and 61° for
sharpest capped nanotubes have about an angle of 20°. Itns=7, and continues to decrease with increagindt takes
highly likely that 19° (20°) and 40° correspond to=1  on a minimum valug4°) atn=12. It should be noted that
and 2 in Table Il, and thus five and four pentagons, respecstructure fom=12 corresponds to the structure of the nega-
tively, based upon our stability considerations. tive wedge disclination of rotation 360° proposed by Harris
over 20 years ag® His proposal was originally made for

1. Saddlelike surface with arfn>6)-gonal defect

FIG. 4. Optimized saddlelike surfaces containing ragonal FIG. 6. Optimized buckled surfaces containing raigonal de-
defect, wheren is 7, 8, 9, 10, 11, and 12. fect with periodicity 3, wheren is 9, 12, 15, and 18.
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TABLE Illl. Projection anglesd of saddlelike structures for an
n-gonal defect with periodicityn. The deviations of the projection
angles are given in parentheses.

n/m
m 2 3 4 5 6
3 90(0) 57(11) 39(0) 20(12 5.50)
4 68(0) 53(15) 37(0) 21(13 6(0)
5 68(0) 51(17) 33(0) 20(7)
6 67(0)
7 67(0)

The projection angles of the optimized surfaces with mul-
FIG. 7. Optimized buckled surfaces containing rsgonal de- tiplg heptagonal d-efects are shown _in Table II. '_I'hey are
fect with periodicity 4, wheren is 8, 12, 16, 20, and 24. similar to tha'_t obtained for the saddlellke_ surfacg with a cor-
responding singla-gonal defect. With an increasing number
of heptagons, the central position of the surface becomes
biological cell surfaces. It is interesting that correspondingdMbiguous. However, for a given projection angle, we can
structures are candidates for a defect structure in the graphif@nstruct a structure havingi{-6) heptagons which is as-
layer containing a defect of 12-gons of carbon atoms. In theymptotically similar to the original surface containing an
graphitic surface with a 12-gonal defect as proposed here, tHérgonal defect. o . .
distance between two surfaces which face each other across Defect energies for optimized surfaces with multiple hep-
the rotational axis is slightly shorter than the cutoff radius offagons obtained by molecular dynamics are also given in
the Stillinger-Weber potentials. However, we neglected thel @ble Il. The defect energy increases roughly in proportional
interaction between the two surfaces across the rotation&p the number of heptagons. For the surface containing a
axis, because covalent bonds should not form betweefingle polygonal defect, the defect energy increases with in-
graphite layers. creasingn until n=9, but it decreases with increasingafter
Defect energies for an optimized saddlelike surface with?=9. It should be noted that the surface with mgon for
an (n>6)-gonal defect are shown in Table Il. The defectN>9 has a lower defect energy and becomes more stable
energies fon=7, 8, 9, 10, 11, and 12 are lower than that of than that of the corresponding surface with 6 heptagons.
the surface containing a pentagonal def€c?59 e\f. Thus ~ Thus it is possible that the surface with a(d€cagon
it is highly possible that the surface containing mgonal  11(hendecagop or 12-goridodecagonexists.
defect not only fom=7, but also fon=8, 9, 10, 11, and 12,

may exist. It should be noted that the defect energy takes the 3. Buckled surface with an(n>6)-gonal defect
minimum values ah=7, and the defect energy of=12 is So far, we studied saddlelike surfaces containing
close to that oh=7. Further discussion concerning this be- (n>6)-gons where the surface rolls up and down tw(isee
havior will be given later. Fig. 4 as we go along the edges of thegon. However, it is
possible to create surfaces which roll more than twice as we
2. Saddlelike surface with multiple heptagonal defects go around the center. Here those surfaces are called buckled

As is the case for the conelike structure, it is possible tosurflac.esa and tge roI#gm “!“3.3 .around the center in one
replace am-gon of carbon atoms with a multiplicity of poly- Cycle Is denoted as tha periodicity.
gons. Here we study the stability of saddlelike surfaces con-

taining multiple numbers of heptagons. The heptagons are 8
arranged so that they are not directly connected but close to
one another. Some of the optimized structures for the saddle- <
like surfaces containing multiple heptagons is given in Fig. o 67
5. My
§ 4t E4 (pentagon) = 0.759%V |
2
L0
1]
L 2r
[0}
[m) 3
A O
sz
or '
6 12 18 24
Number of vertices of the polygon
FIG. 8. Optimized buckled surfaces containing rasgonal de- FIG. 9. Defect energies of the buckled surface containing an

fect with periodicity 5, wheren is 10, 15, and 20. n-gonal defect, whera is larger than 6.



14718 IHARA, ITOH, AKAGI, TAMURA, AND TSUKADA 54

In Figs. 6, 7, and 8, the optimized surface with an
n-gonal defect withm=3, 4, and 5, respectively, are given.
We chose that the number of vertices of the polygonal defect
be divisible by the number of the periodicity as typical ex-
amples. For a given number of periodicity, we can create
a surface containing a polygon with upre-6m vertices. If
n>6m, the buckled surface folds back onto itself, and we
considered it not to have relevance as the atoms are affected
by strong repulsive forces. Fon=2, as we mentioned pre-
viously, the surface with a 12-gorfdbdecagonaldefect cor-
responds to that proposed by Harris. Fee 4, the distance
between the neighboring surfaces becomes closer than the
cutoff radius of the Stillinger-Weber potentials. We ne-  FIG. 10. Geometrical picture of the screw disclination of an
glected the interaction between layers as we didnfizgr2.  n-gonal defect in the infinity oh.

For m=3, however, the rolling surfaces are well separated,

although the interlayer interactions cannot be neglected. Faimulations, a likely reason is that the stress energy around
m=6, the number of rolls is so frequent that the neighboringthe cusp is too strong. In order to relax the stress energy to
rolling sections become so close that it is difficult to createobtain a stable structure, we introduced buckling into the
an independent surface far>2m. For m=8, even the sur- planar surface layers, as can be seen in Fig. 10. Stable struc-
face withn=2m is difficult to create for the above reason. tures for the screw dislocation we obtained are shown in Fig.

In Table 11, we show projection angles of the surfaces for10. The cohesive energy of the screw dislocation-i5.80
m>2. Note that the cases ofi=3 andn=6 correspond to eV/atom, and would exist at least as a metastable form. It is
the ideal graphitic form without defects, thus the projectioninteresting to consider the combination of the screw disloca-
angle is 90°. For fixed ratim/m, projection angles are al- tions with an antidirection of the fiber axes, because it will
most the same for a given periodicity because the number lead to lowering the cohesive energy by a cancellation of the
of carbon atoms in the 60° sector is constant. As the ratistress.

n/m increases, the projection angle decreases. Furthermore,

for a plane perpendicular to the rotational axis, the buckled

surfaces considered here will become symmetric or antisym-

metric according to the number of times ratitm is even or IV. SUMMARY

odd. We proposed various defect surfaces composed of hexa-

The defect energy of a bupkled surfa}ce containing a poQons and am-gon while retaining the p? bonding character
lygonal defect is plotted in Fig. 9. For fixed the number of ¢\t o stituent carbon atoms. Hemevaries from 1 to

verticesn (or the polygon, the defect energy increases with infinity. The infinite value ofn corresponds to screw dislo-

an Increase n _the peI’IOdICI_I}’I. For a fixed _perlod|C|ty, the cations in our context. It is highly possible that the defects
defect energy increases withup to a maximum, then de- .56 here are stable single defect forms corresponding to
creases withn. This is because curvature of the surface, CONYyedge disclinations in a graphite surface. Fier6, the sur-
sisting of hexagons, becomes large around the defect with, .o "hecomes a hexagonal graphitic layer without defects.
Increasingn. _ _ . Forn<®, the surface containing angon becomes a cone-
The structure having the _per|od|C|ty|=2 Seems 1o exist jive surface which is less stable than the surface containing
because the defect energy is small. The surface with h|gheg_n pentagons as defects for a corresponding projection
periodicity seems to be unstable because the defect energyéﬁgle_ Fom>6, the surface containing angon becomes a
!arge. It should be noted, however, that _the su_rfac_:e_ contaifs gelike surface having a negative Gaussian curvature. The
ing the 18-90na(octadecagon}aldefect with p.erlo.d|0|tym surface containing a 18eca-, 11(hendeck, or 12dodeca
= 3 has quite a low defect energy 0.505 @vhich is lower 44 s more stable than the surface containing four, five, or
than the pentagonal defect 0.759)ethus it should exist. six heptagons, respectively, for a corresponding projection
angle. Furthermore, the buckled surface containing an
n-gon with the surface rolling up and down with more than a
periodicity of 2 has the possibility of existing for a special
The screw dislocation, which has a helicoidal surface of-gon (for instance, periodicity 3 and=18).
hexagons is obtained as the infinite numben the form of Since the topological defect proposed here plays the im-
ann-gonal defect. The infinity of vertices is obtained as theportant role of a scattering center for the electron transport in
vertices of the polygons coil around the fiber axis, with somea hexagonal network, as pentagons and heptagons do in the
periodicity keeping the bond length of the vertices constanthexagonal sheet and results in interesting electronic proper-
We attempted to construct various types of structures. Thiées for the structures of graphitic surfaces such as tubes,
screw dislocations are created by a combination of the part®roidal forms, and helically coiled forms. The proposed de-
of the helically coiled cusp and nearly planar surface layergects and the structure obtained by combining them are can-
of graphite. The structure thus obtained, however, turned ouidates for further theoretical and experimental study. Com-
to be unstable. Although this may have arisen because thginations of proposed defects here lower the cohesive energy
interaction between layers were not taken into account in ouof the system, and can be observed experimentally in gra-

C. Screw disclination ofn-gonal defect in the infinity of n
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phitic form. Furthermore, the random distribution of theseface or the structure obtained by using the topological defect
defects were also observed on the surface of the amorphosoposed here will be discussed in a forthcoming paper.
sp? carbon, as indicated by Townsegtial!

The electronic properties of the surface withragon and ACKNOWLEDGMENTS
screw dislocations is out of our scope of this paper, and will We are grateful for the useful discussions with Dr. J. C.
be discussed in a separate paper. The types of minimal s@Breer.
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