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Various polygonal defects which retain the three-bonded character of carbon are proposed as disclinations in
graphitic carbon. Then-gonal defects, wheren is an integer less than 5, are responsible for forming cones and
are less stable than pentagonal defects in a hexagonal network which are responsible for forming spherical
fullerenes such as C60. On the other hand, then-gonal defects, wheren is greater than 6, correspond to
negative wedge disclinations on the surface and leads to a negatively curved surface. Using molecular-
dynamics simulations, it is found that the surfaces containing 10~deca!-, 11~hendeca!-, or 12~dodeca!-gonal
defects are more stable than similarly shaped surfaces containing a multiple number of heptagons. It is also
found that the surfaces which contain ann-gonal defect~with a large-n value! with a periodic folding of the
surface are stable for some cases. The buckled surface with an 18~octadeca!-gonal defect in particular, which
is rolling with surface distortions bending upward and downward three times around the defect, gives a stable
structure. Our considerations indicate that complex structures not considered before could possibly exist.
The relation of screw dislocations to polygonal defects, and their stability, are also studied.
@S0163-1829~96!07444-9#

I. INTRODUCTION

Disclination,1,2 a rotational-type extended defect in crys-
tals, has been the target of much research because it plays an
important role in the deformation processes of metals, poly-
mers, liquid crystals, and biological systems. Positive and
negative wedge disclinations are created by removing some
degree of a section of a material or by inserting one, are
realized easily in surfaces such as membranes or protein
coats in viruses. The cage structures of graphitic carbon are
composed of hexagons~sixfold rings! of atoms, and are thus
suitable for realizing wedge disclinations.

It is known that a nonplanar surface of graphitic carbon
can be created by inserting pentagons or heptagons into a
planar surface of graphite consisting solely of hexagons. A
pentagon, a positive wedge disclination of rotation 60° ob-
tained by removing a 60° sector from the hexagonal sheet of
graphite, is responsible for creating a positively curved sur-
face. Regular arrangements of pentagons in hexagons play an
essential role in forming structures such as the well-known
spherical forms of carbon (C60, C70, etc.!, and caps of
straight tubular forms on a nanometer scale.3–9

A heptagon is obtained by inserting a 60° sector into a
honeycomb sheet of graphite as a negative wedge disclina-
tion of rotation 60°. It is stressed theoretically10–14 and
experimentally15–19 that heptagons play an important role in
forming a Gaussian negatively curved surface in fullerenes
~Theoretically, an octagon has also been suggested as a
means of generating Gaussian negatively curved surfaces!: A
theoretically proposed stable minimal surface of graphite
consists only of heptagons~or octagons! in a hexagonal
sheet.10,11 Proposed atomistic models for toroidal forms,12,13

and helically coiled forms,14 whose existences have been
confirmed experimentally,16–19 are created by combining

heptagons and pentagons into a hexagonal network. The ex-
istence of heptagons in carbon nanotubes is supported by
TEM ~transmission electron microscopy! experiments.15 The
angle of the junction between small and large radii of the
tube is close to 120°, equal to that required for heptagonal
disclinations.

We will use the description ‘‘polygonal defects’’ rather
than ‘‘disclinations’’ because the picture of a polygonal pat-
terning of the surface is more intuitive and atomistic than the
picture of disclinations whose concept is applicable to a con-
tinuum whereby atomic configurations are smeared. A single
polygonal defect other than pentagonal and heptagonal in
graphitic networks, however, has not been pursued as a de-
fect structure. As far as the authors are aware, the only ex-
ceptional and close work is by Harris, who over 20 years ago
systematically considered various types of disclinations in
membranous systems viewed as a continuum.2,20 He pro-
vided various types of positive and negative wedge disclina-
tions in membranous systems: the most intriguing in the
present context is a negative wedge disclination with a rota-
tion of 2p rad.20 Although his proposal was general and
intriguing, there seems to be no proper materials in which his
idea is realized, particularly at the atomic level. Nor are his
proposed structures for wedge disclinations directly relevant
to the honeycomb structure of graphitic carbon, which we
study here.

The principal aim of the present paper is to study the
existence of various types of polygonal defects in graphitic
carbon other than pentagonal, heptagonal, and octagonal de-
fects, while retaining the three-bonded nature of thesp2 hy-
bridization of carbon. Note that the polygonal defect is lo-
cated at the core of the wedge disclination in a honeycomb
sheet. The motivation for this study is to show general po-
lygonal defects, other than pentagons and heptagons, may
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play some role for more flexible connection between tubes,
as compared with the case where the pentagonal and hep-
tagonal defects are supposed to be the only allowable defects
existing in carbon. Introducing polygonal defects relieves the
restriction on the sizes which is imposed by the relation be-
tween the angle of a structure and the number of pentagons
and heptagons. The second aim of our paper is to study the
stable structures of a polygonal defect. The thermodynamical
and elastic properties of the polygonal defect are studied by
molecular-dynamics simulations. The combination of posi-
tively and negatively curved wedge disclinations would be
more stable than the single one, and could be observed ex-
perimentally in a multiple form as pentagon-heptagon pairs
on the spherical fullerenes. A random distribution of various
polygons is a possible form of defect structure on the surface
of the amorphoussp2 carbon sheet.11 The third aim of this
paper is to study the screw dislocation which is considered to
be a polygon with an infinite number of vertices. Possible
combinations of structures created by these not yet consid-
ered polygons and the electronic states for these polygonal
structures~disclinations! are studied in a forthcoming paper,
because we are interested in various atomic configurations of
a single defect form.

II. SIMULATION METHOD

A. Euler’s theorem and construction of polygonal defects

The general expression of Euler’s theorem in a three-
dimensional network isV2E1F52(12g) , whereF, V,
andE are the number of faces, vertices, and edges, respec-
tively, andg is the genus. For graphite, each carbon atom has
three bonds, each edge is shared by two polygonal faces, and
each vertex is shared by three polygons. Puttingf n equal to
the number of polygons withn sides andn vertices, Euler’s
theorem can then be expressed as((n26) f n
5212(12g). As can be seen from the way the polygons
are constructed, the above relation holds for general polygo-
nal defects.

A pentagon in a hexagonal network can be easily obtained
by combining the remaining five 60° sectors obtained by
removing a 60° sector from a graphitic sheet. A heptagon in
a hexagonal network can be obtained by inserting a 60° sec-
tor into a graphitic sheet. Therefore, by combiningn number
of 60° sectors, ann-gonal defect is obtained in the center of
the sheet~see Fig. 1!. Heren56 designates a graphitic sheet
without a defect. Whenn,6, the surface containing a defect
becomes a positively curved one as for the case of a cone,
while with n.6, the surface becomes negatively curved. In
this paper, the 60° sector which consists of 16 carbon atoms
as shown in Fig. 1 is used.

B. Simulation details

It is well known that molecular dynamics is a powerful
method for studying both structural and dynamical properties
by a direct solution of the many-body equations of motion.
Molecular-dynamics methods are employed to confirm the
stability of the structures proposed here. Molecular dynamics
consists of the following procedure: set the initial guess co-
ordinates, then calculate the forces acting on each atom, then
determine coordinates and velocities for all atoms, and then

repeat the procedure at each time step for the interval of
interest. To calculate forces, we assume an empirical poten-
tial form for carbon atoms. Many types of empirical inter-
atomic potentials for carbon atoms have been proposed so
far. However, for the sake of simplicity, we use the
Stillinger-Weber-type three-body potentials:21 these potential
functions are shown to be descriptive of the interactions be-
tween graphitic carbon atoms.22 The following parameters
optimized by Abraham and Batra for graphite22 were used:
A55.373 203 7, B50.508 245 71, a51.894 361 9,
l518.707 929, andg51.2. In the three-body term, the con-
stant 13, originally indicating the diamond structure, was re-
placed by12 to represent the honeycomb-like structure as in
Ref. 23. For a calculation of the ground-state cohesive en-
ergy, the system was eventually cooled down to 0 K byusing
first-order equations of motion~dynamical steepest decent
method!. Less than 10212 J/m of force acting on an atom was
used as the convergence criterion. The cohesive energy per
atom of the system,E, is then evaluated.

C. Evaluation of the energy of the polygonal defect

Strictly speaking, the defect energyEd should be deter-
mined for a system with a single polygonal defect in the
infinite graphitic sheet. In the simulations, however, we must
cope with a finite number of atoms in a finite region. There-
fore, the defect energy is estimated from the calculated en-
ergyE of the finite region system which containsN carbon
atoms as

Ed5~EN1N2Eg /3!2EgN. ~1!

As shown in Fig. 1, the finite region we used is obtained
by cutting one of the three bonds for the carbon atoms at the
boundary, i.e., the boundary atom has only two bonds. The
bond energy per one bond is estimated to beEg/3, because
each atom in the hexagonal plane has three bonds. HereEg is
the total energy per atom for the perfect hexagonal sheet
obtained by molecular dynamics for a pseudoinfinite region
by applying periodic boundary conditions. In the above ex-
pression,N2 is the number of carbon atoms on the boundary.
Thus the total energy of a system with a single polygonal

FIG. 1. Construction of the polygonal defect. Ann-gonal defect
is constructed by connectingn pieces of 60° sector.
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defect in the pseudoinfinite region is obtained as
EN1N2Eg/3, and the defect energyEd is obtained as Eq.
~1!.

III. RESULTS AND DISCUSSIONS

The surface containing ann-gonal defect (n-gon! is posi-
tively curved forn is less than 6, and is negatively curved
surface forn.6. These shapes are completely different from
one another. Thus we will discuss their results separately
according to whethern is greater or less than 6.

A. Positive wedge-disclination-type defects

1. Conelike surface with an„n<6…-gonal defect

The conelike surface, containing a singlen-gonal defect
located at the center of the surface, hasn-fold rotational
symmetry along the axis determined by the rotational vector
around then-gonal defect whenn is less than 6. Here the
rotational vector is determined as a normal vector to the sur-
face of then-gon. Hereafter we denote a regular polygon
with n vertices andn sides as ann-gon. Althoughn-gons for
n51 and 2 are not typical geometrical figures, we treat them
as polygons(n-gons! for generality. The optimized structures
obtained by molecular-dynamics simulations are given in
Fig. 2. From now on,n varies from left to right and top to
bottom. In order to compare the structures proposed here
with the TEM~transmission electron microscopy! picture ob-
tained so far, we calculated the angle obtained by projecting
the structure onto the plane surface parallel to the rotational
vector of then-gon. We refer to the angle determined here as
a projection angle. Due to this definition, the projection angle
changes as we change the direction of the projection while
holding it perpendicular to the rotational vector. Using the
symmetry of then-gon, we adopted the average value of
minimum and maximum values for the projection angles.

The projection angles and their deviations are shown in
Table I. Forn53, the deviation of the projection angle is
several times larger than those of the other values ofn. This
is because one of the bonds forming the threefold coordina-
tion of sp2 is broken to form more stable asymmetrical po-
sitions in contrast to the other cases where atoms ofn ~not
equal to 3!-gons retain their symmetrical positions.

In order to show the plausibility of the values for the
projection angles obtained by molecular-dynamics simula-
tions, we compare them with angles obtained by simple geo-
metrical considerations. Since ann-gon is in the core of a
wedge disclination, the length of the arc obtained by expand-
ing the cone containing then-gon to the two-dimensional
plane isnr; herer is the radius of the arc or the side length
of the cone. If we put the apex of the cone into the center of
the sphere having radiusr , the arc determined by the apex
corresponds to the circle on the sphere withnr/2p as the
radius. The projection angleu is thus evaluated from the
equation sin(u/2)5n/2p. As shown in Table I, good agree-
ment between the projection angles obtained from
molecular-dynamics simulations and a simple geometrical
consideration is obtained.

The defect energiesEd for the surface containing an
n-gon is also given in Table I. With decreasingn, the defect
energyEd increases. This indicates that the pentagon is the
most stable single defect in the hexagonal network among
variousn-gonal defects wheren is less than 6.

2. Conelike surface with multiple pentagonal defects

The shape of the structure containing a polygon withn
vertices at the core of the wedge disclination can be similar
to the surface containing multiple polygons withm vertices
around the core of a wedge disclination if we choose a
properm which is larger thann. Note that the numbers of
atoms in the different, surfaces are different, although they
are comparable to each other. Generally, the structure whose
number ofm-gons isf m has a similar shape to the structure
having a polygon with((62m) f m number of vertices. For
instance, the conelike structure having ann-gonal defect is
similar to the cone structure tiled by hexagons with 62n
pentagons. In Fig. 3, optimized structures for a cone having
multiple pentagons are given for the corresponding single
n-gon forn 5 0, 1, 2, 3, and 4. The pentagons are arranged
so that they are not directly connected but are near each
other. The projection angles of the cones are also given in
Table I. If there are six pentagons, the projection angle is
0°. This pentagon case corresponds to the cap structure of
carbon nanotube. The projection angles of conelike struc-
tures having multiple pentagons are almost the same as those
for the corresponding singlen-gonal defect. This indicates

FIG. 2. Optimized conelike surfaces containing ann-gonal de-
fect, wheren is 1, 2, 3, 4, and 5.

FIG. 3. Optimized conelike surfaces containing multiple pen-
tagonal defects. The shape of the surface with (62n) pentagonal
defects corresponds to the surface with ann-gonal defect~n50, 1,
2, 3, and 4!.

TABLE I. Projection anglesu and defect energiesEd of cone-
like structures forn-gonal defects, simple geometrical models, and
multiple pentagonal defects. The deviations of the projection angles
are given brackets.

n u (°) Ed ~eV!

n-gon model 62n pents. n-gon 62n pents.

0 0 4.654
1 20~0! 18.3 22~15! 13.669 3.914
2 38~2! 37.1 33~23! 7.168 3.093
3 57~19! 57.0 60~2! 6.092 2.332
4 83~3! 79.1 81~24! 3.955 1.555
5 113~0! 105.5 113~0! 0.759 0.759
6 180~0! 180.0 0.0

54 14 715STRUCTURE OF POLYGONAL DEFECTS IN GRAPHITIC . . .



that conelike structures having a certain projection angle can
be considered as surfaces containingn-gonal defects, mul-
tiple pentagonal defects, and multiple types of other poly-
gons.

The defect energiesEd for the surface containing an
n-gon and corresponding to the surface with multiple penta-
gons are also given in Table I. With decreasingn, the defect
energyEd increases for both types of surfaces having one
singlen-gon, and (62n) pentagons. However, for each pro-
jection angle, the defect energy of the surface having a single
n-gonal defect is higher than that the surface having
(62n) pentagonal defects. Thus the surface containing
(62n) pentagons is more stable than that containing a single
n(,6)-gonal defect. For each cone structure containing
multiple pentagon, the defect energy per pentagon is almost
constant and equal to 0.7620.78 eV/atom. This indicates
that distortions of the surface considered occur almost exclu-
sively at the pentagons.

From TEM experiments, Iijima reported that the projec-
tion angle of the tip of the capped carbon nanotube observed
is 19° or 40°.6 Later experiments16,23also concluded that the
sharpest capped nanotubes have about an angle of 20°. It is
highly likely that 19° (20°) and 40° correspond ton51
and 2 in Table II, and thus five and four pentagons, respec-
tively, based upon our stability considerations.

B. Negative wedge-disclination-type defects

1. Saddlelike surface with an„n>6…-gonal defect

The saddlelike surface containing ann-gonal defect lo-
cated at the core of a wedge disclination becomes a Gaussian
negatively curved surface whenn is larger than 6. The opti-
mized structures having ann-gonal defect forn57, 8, 9, 10,
11, and 12, as predicted by molecular-dynamics simulations,
are given in Fig. 4. As for the cone structures, the projection
angle is determined by projecting the structure onto a plane
which is parallel to the rotational vector of then-gon. In
contrast to the cone structure, the projection angle for a nega-
tively curved surface is defined as the angle between the
ridge line of the surface and the axis of the rotational vector.
By this definition, the angle of the cusp appearing in the side
view of the structure, as in Fig. 4, is just twice the projection
angle. For saddlelike structures, we chose several ridge lines,
and we used their average value to determine a projection
angle. The projection angle is 90° forn56 and 61° for
n57, and continues to decrease with increasingn. It takes
on a minimum value(4°) at n512. It should be noted that
structure forn512 corresponds to the structure of the nega-
tive wedge disclination of rotation 360° proposed by Harris
over 20 years ago.20 His proposal was originally made for

FIG. 4. Optimized saddlelike surfaces containing ann-gonal
defect, wheren is 7, 8, 9, 10, 11, and 12.

FIG. 5. Optimized saddlelike surfaces containing multiple hep-
tagonal defects. The shape of the surface with (n26) heptagonal
defects corresponds to the surface with ann-gonal defect~n57, 8,
9, and 10!.

FIG. 6. Optimized buckled surfaces containing ann-gonal de-
fect with periodicity 3, wheren is 9, 12, 15, and 18.

TABLE II. Projection anglesu and defect energiesEd of
saddlelike structures forn-gonal defects and multiple heptagonal
defects. The deviations of the projection angles are given in paren-
theses.

n u (°) Ed ~eV!
n-gon n26 hepts. n-gon n26 hepts.

6 90~0! 0.0 0.0
7 61~1! 61~1! 0.069 0.069
8 47~0! 47~17! 0.094 0.108
9 36~1! 34~7! 0.202 0.212
10 24~6! 16~7! 0.148 0.323
11 13~3! 13~7! 0.147 0.356
12 4~1! 10~10! 0.103 0.437
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biological cell surfaces. It is interesting that corresponding
structures are candidates for a defect structure in the graphite
layer containing a defect of 12-gons of carbon atoms. In the
graphitic surface with a 12-gonal defect as proposed here, the
distance between two surfaces which face each other across
the rotational axis is slightly shorter than the cutoff radius of
the Stillinger-Weber potentials. However, we neglected the
interaction between the two surfaces across the rotational
axis, because covalent bonds should not form between
graphite layers.

Defect energies for an optimized saddlelike surface with
an (n.6)-gonal defect are shown in Table II. The defect
energies forn57, 8, 9, 10, 11, and 12 are lower than that of
the surface containing a pentagonal defect~0.759 eV!. Thus
it is highly possible that the surface containing ann-gonal
defect not only forn57, but also forn58, 9, 10, 11, and 12,
may exist. It should be noted that the defect energy takes the
minimum values atn57, and the defect energy ofn512 is
close to that ofn57. Further discussion concerning this be-
havior will be given later.

2. Saddlelike surface with multiple heptagonal defects

As is the case for the conelike structure, it is possible to
replace ann-gon of carbon atoms with a multiplicity of poly-
gons. Here we study the stability of saddlelike surfaces con-
taining multiple numbers of heptagons. The heptagons are
arranged so that they are not directly connected but close to
one another. Some of the optimized structures for the saddle-
like surfaces containing multiple heptagons is given in Fig.
5.

The projection angles of the optimized surfaces with mul-
tiple heptagonal defects are shown in Table II. They are
similar to that obtained for the saddlelike surface with a cor-
responding singlen-gonal defect. With an increasing number
of heptagons, the central position of the surface becomes
ambiguous. However, for a given projection angle, we can
construct a structure having (n26) heptagons which is as-
ymptotically similar to the original surface containing an
n-gonal defect.

Defect energies for optimized surfaces with multiple hep-
tagons obtained by molecular dynamics are also given in
Table II. The defect energy increases roughly in proportional
to the number of heptagons. For the surface containing a
single polygonal defect, the defect energy increases with in-
creasingn until n59, but it decreases with increasingn after
n59. It should be noted that the surface with ann-gon for
n.9 has a lower defect energy and becomes more stable
than that of the corresponding surface withn26 heptagons.
Thus it is possible that the surface with a 10~decagon!,
11~hendecagon!, or 12-gon~dodecagon! exists.

3. Buckled surface with an„n>6…-gonal defect

So far, we studied saddlelike surfaces containing
(n.6)-gons where the surface rolls up and down twice~see
Fig. 4! as we go along the edges of then-gon. However, it is
possible to create surfaces which roll more than twice as we
go around the center. Here those surfaces are called buckled
surfaces, and the rollingm times around the center in one
cycle is denoted as them periodicity.

FIG. 7. Optimized buckled surfaces containing ann-gonal de-
fect with periodicity 4, wheren is 8, 12, 16, 20, and 24.

FIG. 8. Optimized buckled surfaces containing ann-gonal de-
fect with periodicity 5, wheren is 10, 15, and 20.

FIG. 9. Defect energies of the buckled surface containing an
n-gonal defect, wheren is larger than 6.

TABLE III. Projection anglesu of saddlelike structures for an
n-gonal defect with periodicitym. The deviations of the projection
angles are given in parentheses.

n/m
m 2 3 4 5 6

3 90~0! 57~11! 39~0! 20~12! 5.5~0!
4 68~0! 53~15! 37~0! 21~13! 6~0!
5 68~0! 51~17! 33~0! 20~7!
6 67~0!
7 67~0!
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In Figs. 6, 7, and 8, the optimized surface with an
n-gonal defect withm53, 4, and 5, respectively, are given.
We chose that the number of vertices of the polygonal defect
be divisible by the number of the periodicity as typical ex-
amples. For a given number ofm periodicity, we can create
a surface containing a polygon with up ton56m vertices. If
n.6m, the buckled surface folds back onto itself, and we
considered it not to have relevance as the atoms are affected
by strong repulsive forces. Form52, as we mentioned pre-
viously, the surface with a 12-gonal~dodecagonal! defect cor-
responds to that proposed by Harris. Form>4, the distance
between the neighboring surfaces becomes closer than the
cutoff radius of the Stillinger-Weber potentials. We ne-
glected the interaction between layers as we did form52.
For m53, however, the rolling surfaces are well separated,
although the interlayer interactions cannot be neglected. For
m>6, the number of rolls is so frequent that the neighboring
rolling sections become so close that it is difficult to create
an independent surface forn.2m. Form>8, even the sur-
face withn52m is difficult to create for the above reason.

In Table III, we show projection angles of the surfaces for
m.2. Note that the cases ofm53 andn56 correspond to
the ideal graphitic form without defects, thus the projection
angle is 90°. For fixed ration/m, projection angles are al-
most the same for a given periodicitym because the number
of carbon atoms in the 60° sector is constant. As the ratio
n/m increases, the projection angle decreases. Furthermore,
for a plane perpendicular to the rotational axis, the buckled
surfaces considered here will become symmetric or antisym-
metric according to the number of times ration/m is even or
odd.

The defect energy of a buckled surface containing a po-
lygonal defect is plotted in Fig. 9. For fixed the number of
verticesn ~or the polygon!, the defect energy increases with
an increase in the periodicitym. For a fixed periodicity, the
defect energy increases withn up to a maximum, then de-
creases withn. This is because curvature of the surface, con-
sisting of hexagons, becomes large around the defect with
increasingn.

The structure having the periodicitym52 seems to exist
because the defect energy is small. The surface with higher
periodicity seems to be unstable because the defect energy is
large. It should be noted, however, that the surface contain-
ing the 18-gonal~octadecagonal! defect with periodicitym
5 3 has quite a low defect energy 0.505 eV~which is lower
than the pentagonal defect 0.759 eV!, thus it should exist.

C. Screw disclination ofn-gonal defect in the infinity of n

The screw dislocation, which has a helicoidal surface of
hexagons is obtained as the infinite numbern in the form of
ann-gonal defect. The infinity of vertices is obtained as the
vertices of the polygons coil around the fiber axis, with some
periodicity keeping the bond length of the vertices constant.

We attempted to construct various types of structures. The
screw dislocations are created by a combination of the parts
of the helically coiled cusp and nearly planar surface layers
of graphite. The structure thus obtained, however, turned out
to be unstable. Although this may have arisen because the
interaction between layers were not taken into account in our

simulations, a likely reason is that the stress energy around
the cusp is too strong. In order to relax the stress energy to
obtain a stable structure, we introduced buckling into the
planar surface layers, as can be seen in Fig. 10. Stable struc-
tures for the screw dislocation we obtained are shown in Fig.
10. The cohesive energy of the screw dislocation is26.80
eV/atom, and would exist at least as a metastable form. It is
interesting to consider the combination of the screw disloca-
tions with an antidirection of the fiber axes, because it will
lead to lowering the cohesive energy by a cancellation of the
stress.

IV. SUMMARY

We proposed various defect surfaces composed of hexa-
gons and ann-gon while retaining thesp2 bonding character
of the constituent carbon atoms. Heren varies from 1 to
infinity. The infinite value ofn corresponds to screw dislo-
cations in our context. It is highly possible that the defects
proposed here are stable single defect forms corresponding to
wedge disclinations in a graphite surface. Forn56, the sur-
face becomes a hexagonal graphitic layer without defects.
For n,6, the surface containing ann-gon becomes a cone-
like surface which is less stable than the surface containing
62n pentagons as defects for a corresponding projection
angle. Forn.6, the surface containing ann-gon becomes a
saddlelike surface having a negative Gaussian curvature. The
surface containing a 10~deca!-, 11~hendeca!-, or 12~dodeca!-
gon is more stable than the surface containing four, five, or
six heptagons, respectively, for a corresponding projection
angle. Furthermore, the buckled surface containing an
n-gon with the surface rolling up and down with more than a
periodicity of 2 has the possibility of existing for a special
n-gon ~for instance, periodicity 3 andn518!.

Since the topological defect proposed here plays the im-
portant role of a scattering center for the electron transport in
a hexagonal network, as pentagons and heptagons do in the
hexagonal sheet and results in interesting electronic proper-
ties for the structures of graphitic surfaces such as tubes,
toroidal forms, and helically coiled forms. The proposed de-
fects and the structure obtained by combining them are can-
didates for further theoretical and experimental study. Com-
binations of proposed defects here lower the cohesive energy
of the system, and can be observed experimentally in gra-

FIG. 10. Geometrical picture of the screw disclination of an
n-gonal defect in the infinity ofn.
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phitic form. Furthermore, the random distribution of these
defects were also observed on the surface of the amorphous
sp2 carbon, as indicated by Townsendet al.11

The electronic properties of the surface with ann-gon and
screw dislocations is out of our scope of this paper, and will
be discussed in a separate paper. The types of minimal sur

face or the structure obtained by using the topological defect
proposed here will be discussed in a forthcoming paper.
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