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A quasi-two-dimensional~Q2D! electron liquid~EL! is formed at the interface of a semiconductor hetero-
junction. For an accurate characterization of the Q2D EL, many-body effects need to be taken into account
beyond the random phase approximation. In this theoretical work, the self-consistent static local-field correc-
tion known as STLS is applied for the analysis of the Q2D EL. The penetration of the charge distribution to the
barrier-acting material is taken into consideration through a variational approach. The Coulomb form factor
that describes the effective 2D interaction is rigorously treated. The longitudinal dielectric function and the
plasmon dispersion of the Q2D EL are presented for a wide range of electron and ionized acceptor densities
choosing GaAs/AlxGa12xAs as the physical system. Analytical expressions fitted to our results are also
supplied to enable a widespread use of these results.@S0163-1829~96!01144-7#

I. INTRODUCTION

The nameelectron liquidor electron gasrefers to a model
system formed by interacting dynamical electrons within a
medium containing a uniformly distributed positive charge
having no motion. The overall system is electrically neutral.
As the positive background is rigid, it does not respond to
any kind of excitation, hence, it cannot polarize, however,
the electrons can. The three-dimensional~3D! electron liquid
~EL! has been studied as a model system for metals1 and the
3D positive ion liquid was proposed as a model astrophysical
system.2 In the case of two dimensions, the study of the
two-dimensional~2D! EL has been driven mainly by techno-
logical advances such as silicon-inversion layers,3 modula-
tion doped field effect transistors,4 intercalated graphite lay-
ers,5 and the fractional quantum Hall effect in 2D electron
systems.6 In addition to its technological importance the 2D
EL contains rich physics due to enhanced particle correla-
tions and geometrical parameters that characterize the actual
realization of the 2D system.

The EL remained as a problem of interest in the past few
decades and intense research efforts lead to several advances
in the field. For the 2D case the first major contribution was
due to Stern who calculated the density-density response
function of the noninteracting EL,7 which is known in the 3D
case as the Lindhard function. The Stern function~i.e., 2D
Lindhard function! immediately made the random phase ap-
proximation~RPA! available to 2D EL. The RPA was at that
time one of the most successful many-body approaches for
the EL. Jonson8 showed that for 2D EL, a many-body ap-
proach proposed by Singwi and co-workers9 ~referred to as
STLS! performed remarkably better than RPA. We have
very recently compared the 2D-STLS technique with the
quantum Monte Carlo data of Tanatar and Ceperley10 and
proposed analytical forms for the dielectric function of the
ideal 2D EL based on the STLS technique.11

The knowledge of the dielectric function and the local-
field correction paves the way for a variety of many-body

related terms such as self-energy, carrier lifetime, and
mobility.12 Connections to density-functional theory can also
be established.13 Furthermore, the dielectric screening plays
a substantial role in the characterization of other excitations,
such as, polarons.14–16

In this work, our aim is to present an accurate and sys-
tematic characterization of the dielectric properties of the
quasi-two-dimensional~Q2D! EL in real heterojunctions
where the electron distribution can penetrate to both sides of
the interface. The charge distribution is based on a varia-
tional approach proposed by Bastard.17 The effective 2D
electron interaction for this system is characterized by the
Coulomb form factor. This quantity is treated rigorously.
The dielectric function for the GaAs/AlxGa12xAs hetero-
junction is given for wide ranges of electron and ionized
acceptor densities. Throughout this work the termdielectric
function, refers to thelongitudinal dielectric function. We
also fitted analytical expressions to our data for the efficient
use of these results by other researchers. To simplify the
computational labor we stayed in the zero-temperature for-
mulation and the so-called electrical quantum limit, where
only the lowest subband along the confinement direction is
populated~we refer to a very recent work,18 discussing the
effects of higher subbands on the dielectric function!.

The paper is planned as follows: Sec. II discusses briefly
the variational computation of the Q2D electron distribution.
The effective 2D interaction of these Q2D electrons is
treated in Sec. III and the modifications to the STLS tech-
nique in the Q2D case is contained in Sec. IV. In Secs. V and
VI the dielectric function and the plasmon dispersion are
considered, respectively; all the results are given referring to
GaAs/AlxGa12xAs as the physical system, however, the ap-
proach is developed for a general heterojunction. In Sec. VII,
the fitted analytical expressions for the results are presented.
Following the conclusion section, appendixes include some
details on variational formulation and the Coulomb form fac-
tor for a Q2D system.

PHYSICAL REVIEW B 15 NOVEMBER 1996-IIVOLUME 54, NUMBER 20

540163-1829/96/54~20!/14643~9!/$10.00 14 643 © 1996 The American Physical Society



II. VARIATIONAL CHARGE DISTRIBUTION
FOR A HETEROJUNCTION

The electrons from ionized donors in the barrier side of a
modulation doped heterojunction are trapped in a wedgelike
well formed by a step barrier due to conduction band edge
discontinuity on one side, and the potential due to the pres-
ence of the transferred electrons and ionized acceptors on the
other.3 The one-dimensional quantum confinement gives the
Q2D nature to the system and behaves remarkably different
than ideal 2D and 3D systems. In handling the many-body
effects in heterojunctions, we avoid some critical simplifica-
tions that have been used in the past such as infinite barrier
height,14–16 ~which is a reasonable approximation only for
Si-inversion layers! and no ionized acceptors within the
channel19 ~which is, in fact, not the case in practice!. For an
accurate account of the electronic distribution in heterojunc-
tions, we use Bastard’s variational approach that was tested
previously in determining the subband energies.17

The electronic wave function§ i(z), within the effective
mass approximation satisfies the one-dimensional Schro¨-
dinger equation along the confinement direction~chosen to
be thez direction!,

F2\2

2

d

dz

1

m~z!

d

dz
1Ue2e~z!1UA~z!1Ubarrier~z!G§ i~z!

5Ei § i~z!. ~1!

Ue2e(z) is the potential~energy! formed by the presence of
the electrons,UA(z) is the potential due to ionized acceptors,
and Ubarrier(z) is a step-barrier potential:Ubarrier(z)
5Ub Q(2z), resulting from the conduction band edge mis-
match of the neighboring materials.m(z) is the effective
mass of the conduction band electrons being equal tomB in
the barrier-acting material andmA in the well-acting mate-
rial. Bastard proposed the following variational form for the
lowest subband§1(z) allowing penetration to the barrier re-
gion (z,0),17

§1~z!5HMekbz/2 for z<0

N~z1z0!e
2bz/2 for z>0.

~2!

Invoking the continuity of§1(z) andm
21(z)(d/dz)§1(z) at

z50 and the normalization of§1(z), *2`
1`dzu§1(z)u2 51

yields the following three equations:

M5Nz0 , ~3!
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2

b1kb
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b

kb
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Bastard also setkb52A2mBUb /\
2 and usedb as the

only variational parameter. We have observed that such a
choice ofkb is highly satisfactory in the electrical quantum
limit. Note thatM , N, andz0 also depend onb through Eqs.
~3!–~5!. b is determined by minimizing thetotal system en-

ergy ~see Appendix A for the expressions!. A closed form
representation ofb is not possible, unlike the Si-inversion
layer,3 however, the minimization can easily be achieved nu-
merically. We work in the regime where only the lowest
subband is populated, this puts an upper limit to the 2D
electron density above which the Fermi level crosses the
first-excited subband energy. For GaAs/AlxGa12xAs hetero-
junction our analysis is valid for the 2D electronic densities,
N2D<731011 cm22. Bastard’s work17 can be consulted for
further details.

III. COULOMB FORM FACTOR
FOR A PENETRABLE HETEROJUNCTION

In the 2D EL the interaction potential in reciprocal space
is taken to be 2pe/q, whereq is the wave number. This
potential is obtained by taking the 2D Fourier transform of
the 3D Coulomb interaction which is 1/R, R denoting dis-
tance in real space.20 In fact, a strictly 2D solution of Pois-
son’s equation is proportional to2 ln(R) ~Ref. 21! rather than
1/R and its 2D Fourier transform is proportional to 1/q2 as in
3D EL. However, the2 ln(R) interaction is seldom used22

due to indication by real physical 2D systems that 1/R type
of interaction is relevant.23,24 For the case of a Q2D system
the charge distribution along the third dimension modifies
the effective 2D interaction from 2pe/q to F(q)2pe/q.
F(q) is the Coulomb form factor describing the effect of the
finite spread of the charge distribution along the confinement
direction over a region where the background dielectric con-
stant is discontinous due to different materials on both sides.

Following the approach in the previous section, we use
the variational charge distribution that can leak into the bar-
rier region and calculate the functionF(q) accordingly. The
details onF(q) are given in the Appendix B, here we state
the final result,

F~q!5
1

2 S 11
eB
eA

D I 11 1

2 S 12
eB
eA

D I 21 1
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In Eq. ~6! eA andeB are the background dielectric constants
of the well-acting and the barrier-acting materials, respec-
tively. The bare electron-electron interaction potential energy
for this Q2D system becomes

UQ2D~q!5
2pe2

ē q
F~q!, ~12!

whereē5(eA1eB)/2 andq is the 2D wave number associ-
ated with the spatial variation along the 2D sheet.

The terms containingI 2 and I 4 in Eq. ~6! represent the
image interaction resulting from the different permittivities
on both sides. Their effects decrease when the permittivity
contrast diminishes; an example is the GaAs/AlxGa12xAs
system considered in Fig. 1 for two different electron densi-
ties ~see the following section for the material parameters
used!. The Coulomb form factor becomes more important in
high electron densities~see Fig. 1! where the in-plane par-
ticle separation is comparable to the extension of the charge
distribution along the confinement direction. The expression
for F(q) in Eq. ~6! will especially be useful for heterojunc-
tions with a high permittivity difference and a low barrier
height.

IV. Q2D STLS

The STLS technique in 2D has been discussed in the lit-
erature, and we refer, for instance, to Jonson’s pioneering
paper.8 In going from 2D to Q2D the only modification
~within the electrical quantum limit! is the replacement of the
2D Coulomb interaction energy by the effective 2D interac-

tion due to finite extension of the charge distribution along
the confinement direction. The exchange and correlation hole
associated with each electron in the system is described by
the local-field correction,G(q). This function in the case of
Q2D STLS reads

GQ2D~q!5E E d2pn
2p

F~p!

F~q!

qnW •pnW

qn pn
@12S~ upW 2qW u!#,

~13!

where the subscriptn is used in this equation and in the rest
of the text to denote wave numbers normalized to the Fermi
wave numberkF ~i.e., qn[q/kF , etc.!. In Eq. ~13!, F is the
Coulomb form factor andS is the static structure factor. The
latter contains contributions from plasmons and electron-
hole pairs and is related to the dielectric function through the
fluctuation-dissipation theorem. The dielectric function, in
turn, depends on the local-field correction~see Sec. V!. The
computational task involves the self-consistent solution of
these three coupled nonlinear integral equations. A change of
variables leads to a substantial improvement in the execution
speed of the STLS algorithm. UsingtnW5pnW2qnW in Eq. ~13!
leads to

GQ2D~q!5
1

p F~q!
E
0

`

dtn tn @12S~ t !#E
0

p

df

3F~qA11a212a cosf!
a cosf11

A11a212a cosf
,

~14!

wherea5tn /qn .
In Fig. 2, we present the self-consistent STLSGQ2D(q)

results for a wide range of electronic densities given in
terms of r s . r s is the effective interparticle spacing de-
fined as r s51/aB*ApN2D, where N2D is the 2D elec-
tronic density andaB* is the effective Bohr radius given by
aB*5( ē/m* )(\2/m0e

2!, ē is the background average static

FIG. 1. The Coulomb form factorF and the effect of the
image terms as a function of wave numberq ~in units of kF) for
the electronic densitiesr s50.8 and 20. The full lines apply to
GaAs/AlxGa12xAs heterostructure havingeA513 and eB512.1.
The dashed lines refer to the same system, but with
eA5eB512.55, so that no image term appears. See Sec. IV for the
definition of r s and other parameters used for the system.

FIG. 2. The local-field correction,GQ2D(q) of Q2D EL versus
wave numberq ~in units of kF) for r s values 0.8, 1, 2, 3, 4, 5, 10,
15, and 20. Solid lines: STLS and dashed lines: calculation using
the fitted form forGQ2D(q); see Eq.~22! with the values from
Table I.
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dielectric constant andm*m0 is the effective mass of the
electrons considered, withm0 being the free electron mass.
We consider GaAs/AlxGa12xAs heterojunction as the physi-
cal system with the parametersmA50.07m0,
mB50.088m0, eA513, eB512.1, andUb50.3 eV ~corre-
sponding to an Al mole fraction of 0.3! which were used by
Stern and Das Sarma.25 For aB* we used ē512.55 and
m*50.07, givingaB*59.49 nm. The conduction band offset,
Ub was measured by some groups to be around 0.225 eV~in
contrast to 0.3 eV!.26 We have observed that our results are
not sensitive to the deviation ofUb in this range. In Fig. 2
the intervalr s50.8220 is shown with an ionized acceptor
density ofNdepl50.4631011 cm22. For r s,0.8 the higher
subbands start to be populated which was not taken into our
analysis.

For the 2D EL, STLSG(q) becomes proportional toq as
q→0,11 whereas in the 3D case it is proportional toq2.1 In
the Q2D case, we observe that~see Fig. 2! for low r s values
small-q behavior is close to quadratic and asr s increases this
behavior goes towards a linear one indicating an approach to
a 2D character.

Gold and Calmels also reported their results onGQ2D(q)
for GaAs/AlxGa12xAs heterostructure.19 Their treatment is
based on STLS but with essential discrepancies compared to
ours. They imposed the local-field correction for 2D and
Q2D to be of the form

GGC
Q2D~x!5r s

2/3 1.402x

@2.644C12
2 ~r s!1x2C22

2 ~r s!#
1/2, ~15!

where x5(q/kF)(1/A2r s
1/3) and the coefficientsC12 and

C22 were tabulated.
19 They assumed no penetration to barrier

region in the Coulomb form factor and also neglected the
presence of ionized acceptors in the well-acting region. Es-
pecially, the form used in Eq.~15! enabled them to reduce
the computational effort appreciably, however, their results
are in strong disagreement with ours forr s>1 andq.2kF
both in 2D~Ref. 11! and Q2D as can be seen in Fig. 3. The
form in Eq. ~15! cannot accommodate the full STLSG(q)

leading to a poor dielectric function and screening properties.
The ionized acceptors in the well region play a primary role
and need to be included in the treatment.

V. DIELECTRIC FUNCTION

The function of practical importance is the wave number-
and frequency-dependent~longitudinal! dielectric function,
e(q,v) that not only determines the response to a weak ex-
ternal perturbation but also possesses information on the
many-body dynamics of the system. With the knowledge of
the local-field correction,e(q,v) is given as

eSTLS
Q2D ~q,v!5

12UQ2D~q! p0~q,v! @12GQ2D~q!#

11UQ2D~q! p0~q,v! GQ2D~q!
,

~16!

wherep0(q,v) is the 2D zeroth-order polarization insertion,
the Stern function.7,11Apart fromp0, 2D and Q2D quantities
behave differently. This is illustrated in Fig. 4 showing in-
verse static dielectric function,e21(q,0) within RPA and
STLS for both 2D and Q2D cases. To assess the effect of
penetration of the charge distribution into the barrier region,
we compare theUb50.1 eV case withUb→` in Fig. 5 at
r s50.8. It is observed that for GaAs/AlxGa12xAs-like het-
erojunctions, this penetration has a minor effect on the static
dielectric function. In Fig. 6 the inverse static dielectric func-
tion of GaAs/AlxGa12xAs heterojunction is plotted in the
density ranger s50.8220 and forNdepl50.4631011 cm22.
Notably, the GaAs/AlxGa12xAs heterostructure shows an
overscreening effect~i.e., e,0) for r s>3. The onset of
overscreening shifts to higher electron densities for the
strictly 2D case,11 due to enhanced particle correlations in
lower dimensions. As an interesting consequence, the nega-
tive dielectric function suggests a negative compressibility of
the Q2D EL ~Ref. 12! and, in fact, recently this has been
experimentally observed on a GaAs quantum well
structure.27

FIG. 3. The comparison of the full STLS Q2D local-field cor-
rection ~solid lines! with that of Gold and Calmels’~dashed lines!
given by Eq.~15! as a function of wave numberq ~in units of
kF) for r s51 and 10.

FIG. 4. Comparison of ideal 2D and Q2D inverse static dielec-
tric function, 1/e(q,0) as a function of wave numberq ~in units of
kF) for r s53. Solid lines: STLS, dashed lines: RPA. For Q2D EL,
a GaAs/AlxGa12xAs heterostructure is used withNdepl

50.4631011 cm22.
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We would like to include some necessary remarks about
this dielectric function. The expression in Eq.~16! only gives
the Q2D EL dielectric function. The total screened electron-
electron interaction is

Uscr
Q2D~q,v!5F~q!

2pe2

ē q

1

eSTLS
Q2D ~q,v!

. ~17!

The dielectric responses of the polar lattice and the valence
electrons are contained in the average background dielectric
constantē. Here we have used thestatic dielectric constant
~see, for instance, our definition ofaB* in Sec. IV!, hence, it
is assumed that the polar lattice can follow the external ex-
citations. Obviously this limits the validity range of this
work tov!vTO, with vTO being the transverse optical pho-

non frequency. This limitation is relaxed if the background
lattice does not have a polar character. Hence, for the par-
ticular system that we are considering, the dielectric function
is expected to be valid up to about 1 THz. In principle,
however, the static nature of the local-field correction of the
STLS technique can further limit this upper frequency.

Finally, the dielectric function given by Eq.~16! takes
into account the polarization of the electrons in the lowest
subband. Even though the presently available experiments on
GaAs/AlxGa12xAs systems mainly fall into this regime,

28,29

the technological trend aims to populate the higher subbands
to increase the amount of current carried in modulation
doped field effect transistors by using different materials
such as InxGa12xAs/InxAl 12xAs.

4 When the higher sub-
bands are occupied the dielectric function should necessarily
be a tensor of the forme i j (q,v), wherei5 j terms account
for the intrasubband polarizations andiÞ j terms represent
intersubband couplings. To assess the performance of the
presented approach regarding the electrical quantum limit,
we extended the variational wave function technique to in-
clude lowest two subbands and determined the subband
populations by invoking self-consistency between Poisson
and Schro¨dinger equations. In Fig. 7 we show the charge
distributions along the confinement direction for a density of
131012 cm22. The solid curve represents the correct charge
distribution containing contributions from the lowest and
first-excited subbands. The dashed curve, on the other hand,
sticks to the electrical quantum limit which actually breaks
down beyondN2D5731011 cm22. It is important to ob-
serve that the difference between the two curves is quite
marginal. This is simply because the percentage of the first-
excited subband electrons is 4.7% at this density.

VI. PLASMON DISPERSION

The elementary excitations in electron liquids are
electron-hole pair creations and collective excitations known
as plasmons.30 The latter can be characterized with the
knowledge of the wave number and frequency-dependent di-

FIG. 5. The effect of the barrier height,Ub on the inverse static
dielectric function, 1/e(q,0), as a function of wave numberq ~in
units of kF) for r s50.8. Solid line: Ub50.1 eV, dashed line:
Ub→`. Other parameters for the heterostructure are given in Sec.
IV.

FIG. 6. The inverse static dielectric function of Q2D EL,
1/e(q,0) as a function of wave numberq ~in units of kF) for r s
values 0.8, 1, 2, 3, 4, 5, 10, 15, and 20. Solid lines: STLS and
dashed lines: calculation using the fitted forms forGQ2D(q) given
by Eq. ~22! andF(q) given by Eq.~24! with the values in Table I.

FIG. 7. The electron distribution along the confinement direc-
tion in arbitrary units. The total electron density is 131012 cm22.
Other parameters are given in Sec. IV. The solid line refers to the
two subband populated calculation and the dashed line is based on
the electrical quantum limit.
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electric function,e(q,v). Particularly, the plasmon disper-
sion relation,vp(q) is available through the zeros of the
dielectric function;

e„q,vp~q!…50. ~18!

Inserting the expression fore(q,v) from Eq. ~16! leads to
the following closed form expression for the plasmon disper-
sion:

np~q!5
qn~z11!

2
Aqn

21
4

z212z
, ~19!

where

z5
qn

A2r s F~q! @12GQ2D~q!#
, ~20!

and

np~q!5
\vp~q!

2EF
5
mvp~q!

\kF
2 , ~21!

which is valid in the range@0,qn,max#, whereqn,max satisfies
np(qn,max)5qn,max1qn,max

2 /2 and outside this region plas-
mons dissociate to electron-hole pairs so that collective ex-
citations are no longer long lived. The Eq.~19! reduces to the
ideal 2D result31 whenF(q)→1. Figure 8 shows the plas-
mon dispersion for GaAs/AlxGa12xAs heterostructure with
Ndepl50.4631011 cm22 and for severalr s values. Even
though the plasmon dispersion can be experimentally
probed, such as, through far infrared spectroscopy,28 the
available experimental results pertain to high electronic den-
sities and small wave numbers (q,kF). Therefore, the ef-
fects of the local-field correction have not yet been verified.

VII. ANALYTICAL EXPRESSIONS

In this section, we present our fitted expressions to
GQ2D(q) andF(q) applicable to GaAs/AlxGa12xAs hetero-
junction in the density ranger s50.8220. As a fit to
GQ2D(q) ~shown in Fig. 2 by solid lines!, we tried a simple
form containing three fitting parameters,

Gfit
Q2D~q!5A~12e2~B/A!qn

C
!, ~22!

whereA, B, andC are the fitting parameters. The optimized
values are tabulated in Table I forNdepl50.4631011 cm22.
The third parameter,C is introduced based on our observa-
tions on the long-wavelength behavior ofGQ2D(q) in Sec.
IV. In ideal 2D,C was equal to one and in 3D caseC was
equal to two. OptimizedC values in Table I show this inter-
polation betweenr s50.8–5, but then this trend is lost to
enable a good fit for the wholeq values. The fitted expres-
sions are plotted in Fig. 2 by the dotted lines. To assess the
quality of the fitting we use the following error estimate
between a target vectorT( i ) and the fitted vectorTfit( i ):

error~%!5
1

N(
i51

N U T~ i !2Tfit~ i !

T~ i ! U 100 . ~23!

Accordingly the deviation of the fitting in Fig. 2 is less than
2.5%.

The Coulomb form factor,F(q) also requires laborious
work for a GaAs/AlxGa12xAs system. This function can be
fitted by a simple expression

Ffit~q!5
1

11Dqn
, ~24!

containing a single fitting parameterD which is tabulated in
Table I for the sameNdepl value.

The knowledge ofGfit
Q2D(q) and Ffit(q) is sufficient for

representing the dielectric function@see Eq.~16!#. The per-
formance of fitting fore21(q,0) is available from Fig. 6

FIG. 8. The normalized plasmon energy (Ep /EF[2np) as a
function of wave numberq ~in units of kF) for r s values 1, 5, 10,
and 20. Solid lines: STLS and dashed lines: calculation using the
fitted forms forGQ2D(q) given by Eq.~22! andF(q) given by Eq.
~24! with the values in Table I. The dotted line marks the onset of
the electron-hole continuum.

TABLE I. Fitting parametersA, B, C, andD used in Eqs.~22!
and~24! as a function ofr s for the characterization of the Q2D EL
in a GaAs/AlxGa12xAs heterostructure. The ionized acceptor den-
sity is Ndepl50.4631011 cm22. See Sec. IV for the other param-
eters used for the GaAs/AlxGa12xAs system.

r s A B C D

0.8 0.6243 0.4923 1.5462 1.2750
1.0 0.6549 0.5005 1.5079 1.1542
1.5 0.7250 0.5274 1.4342 0.9285
2.0 0.7857 0.5519 1.3950 0.7690
2.5 0.8380 0.5763 1.3644 0.6497
3.0 0.8794 0.5999 1.3512 0.5571
4.0 0.9405 0.6461 1.3274 0.4321
5.0 0.9779 0.6855 1.3264 0.3494
6.0 1.0012 0.7209 1.3356 0.2922
8.0 1.0225 0.7792 1.3683 0.2197
10 1.0294 0.8223 1.4097 0.1752
12 1.0305 0.8597 1.4545 0.1454
15 1.0295 0.9007 1.5014 0.1158
20 1.0257 0.9555 1.5185 0.0863
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~shown by dotted lines! where the error, using the estimate in
Eq. ~23! is less than 1%. Similarly in Fig. 8 the plasmon
dispersions with the use of the fitted forms are shown in
dashed lines, the fitting error being much less than 0.1%.

We have observed that taking the barrier height
Ub50.225 eV does not significantly affect the parameters
A, B, C, andD. However,Ndepl takes an important part in
bothG(q) andF(q), so we repeated the self-consistent Q2D
STLS technique forNdepl50.146, 1.47, 4.6931011 cm22

and performed again fittings. Rather than specifying these
results in tabular form, we present below fittedfunctionsof
r s for A, B, C, andD.

Afit51.02@12a1r s
a2e2a3r s#, ~25!

Bfit5b1ln~b2r s!1b3 , ~26!

Cfit50.42r s
2c111.03r s

0.12, ~27!

Dfit5
d1

d21r s
1.15, ~28!

the constant parameters contained in these expressions are
tabulated in Table II for the considered range ofNdepl values.
With the expressions in Eqs.~25!–~28!, inverse static dielec-
tric function can be generated to an accuracy of about 1%,
except for ther s52 case having an error about 9%. Simi-
larly with these equations plasmon dispersion can be recov-
ered to an error much less than 0.1%.

VIII. CONCLUSION

The dielectric properties of the Q2D EL in a heterostruc-
ture are studied and the behavior is seen to be remarkably
different than the strictly 2D EL.11 The analysis is rigorous
with the only simplifications being the electrical quantum
limit and the zero-temperature formalism. These simplifica-
tions can also be relaxed at the expense of computational
complexity. The leakage of the charge distribution to the
barrier region is included in the analysis through a varia-
tional approach. The full form of the Coulomb form factor
applicable to a general heterostructure is presented. For the
GaAs/AlxGa12xAs system, the image terms have been ob-
served to have a marginal role. A sizable contribution will be
encountered in the case of heterostructures built up of mate-
rials having a high dielectric constant contrast and a low
conduction band offset. The dielectric function and the plas-
mon dispersion of the Q2D EL are characterized using the
STLS many-body approach that leads to substantial improve-
ment over the conventional RPA. Unfortunately, in contrast

to the ideal 2D case,10,32 quantum Monte Carlo simulations
are not available, to compare our results, for the Q2D EL; the
present experimental data cannot cover the regime where the
RPA breaks down~i.e., r s.1 andq.kF). Our analysis ex-
tends to a wide range of electron and ionized acceptor den-
sities. To the best of our knowledge this work forms the most
elaborate study of the screening properties of the Q2D EL.
Our results are supplemented with analytical expressions fit-
ted to our data. We have presented the expressions for the
local-field correction, Coulomb form factor, the dielectric
function, and the plasmon dispersion of the Q2D EL. With
this information, the self-energy, quasiparticle lifetime, mo-
bility, etc., can also be obtained; polarons in Q2D systems
can be studied with the inclusion of electron-electron screen-
ing.
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APPENDIX A: TOTAL SYSTEM ENERGY IN THE
VARIATIONAL APPROACH

In this section, for completeness we include the expres-
sion for thetotal system energy of a heterojunction in Bas-
tard’s variational approach.17 The ground-state expectation
of the total system energy per electron is

^ẼTOT~b!&5^T~b!&1
1

2
^Ue2e~b!&1^UA~b!&

1^Ubarrier~b!&, ~A1!

where^T(b)& is the kinetic energy term given by

^T~b!&52
M2kb

4mB*
1

N2

2mA* b
~11bz02b2z0

2/2! Ry,

~A2!

^Ue2e(b)& is the average electron-electron interaction poten-
tial,

^Ue2e~b!&5
8p

ē
N2D FN4

b7 S 334 1
25bz0
2

1
17b2z0

2

2
13b3z0

3

1
b4z0

4

2 D 2
N2M2

kb
2b3

~z0
2b212bz012!G Ry,

~A3!

where^UA(b)& is the average electron-ionized acceptor in-
teraction potential,

TABLE II. The constants used in Eqs.~25!–~28! for different ionized acceptor densities,Ndepl. The
parameters characterizing the heterostructure are chosen suitable to the GaAs/AlxGa12xAs system~see Sec.
IV !.

Ndepl ~cm
22) a1 a2 a3 b1 b2 b3 c1 d1 d2

0.14631011 0.6384 0.2213 0.5555 0.3023 4.9907 -0.0435 0.6891 4.3194 2.4659
0.4631011 0.6770 0.2794 0.6372 0.2575 2.6283 0.1623 0.7914 2.7325 1.3674
1.4731011 0.6953 0.2302 0.6888 0.2253 1.4913 0.3043 1.1675 1.6566 0.6898
4.6931011 0.6887 0.1802 0.7418 0.1978 0.6977 0.4195 1.5437 1.0004 0.3518
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^UA~b!&5
8p

ē
Ndepl F6N2

b4 S 11
2

3
bz01

b2z0
2

6 D 2
M2

kb
2 G Ry,

~A4!

where ^Ubarrier(b)& is the average potential energy due to
step barrier,

^Ubarrier~b!&5
Ub,RyN

2z0
2

kb
Ry, ~A5!

wherekb52AmB*Ub,Ry. In above equations atomic units are
used; all energies are in Rydbergs (1 Ry5m0e

4/2\2) and
lengths in Bohr radius (aB5\2/m0e

2). In the total system

energy, the electron-electron interaction is weighted by 1/2
to avoid double counting. The variational parameterb is de-
termined by minimizing^ẼTOT(b)&, which is an easy task
numerically as the cost function has a single minimum.

APPENDIX B: EFFECTIVE 2D COULOMB INTERACTION

We first recall the electrostatic potential due to a point
chargeQ, at a distanced ~along thez axis! from the interface
formed by two semi-infinite dielectric media with permittivi-
ties eA andeB . A solution of the Poisson’s equation subject
to continuity requirements at the interface,z50 results in an
electrostatic potential of the form,33

F~RW ,z!55
1

eA
S Q

AR21~d2z!2
1

eA2eB
eA1eB

Q

AR21~d1z!2
D , z>0

2

eA1eB

Q

AR21~d2z!2
, z<0.

~B1!

This result will now be used in constructing the effective 2D Coulomb interaction energy between two~charge! distributions
n(RW ,z) andn(RW 8,z8),

UQ2D~RW 2RW 8!5
e2

eA H E0`dz E0`dz8F n~RW ,z! n~RW 8,z8!

AuRW 2RW 8u21~z2z8!2
1

eA2eB
eA1eB

n~RW ,z! n~RW 8,z8!

AuRW 2RW 8u21~z1z8!2
G J

1
e2

eB H E2`

0

dz E
2`

0

dz8F n~RW ,z! n~RW 8,z8!

AuRW 2RW 8u21~z2z8!2
1

eB2eA
eA1eB

n~RW ,z! n~RW 8,z8!

AuRW 2RW 8u21~z1z8!2
G J

1
2e2

eA1eB H E0`dz E2`

0

dz8
n~RW ,z! n~RW 8,z8!

AuRW 2RW 8u21~z2z8!2
1E

2`

0

dz E
0

`

dz8
n~RW ,z! n~RW 8,z8!

AuRW 2RW 8u21~z2z8!2
J . ~B2!

The first two terms in Eq.~B2! represent direct and image
interaction of the charge distributions on the right side of the
interface (z.0). Third and fourth terms represent the same
interactions forz,0 region. The last two terms which are, in
fact, equal, represent the direct interaction between charge
distributions on opposite sides of the interface.

The charged-particle distribution isn(RW ,z)[n(z)
5u§1(z)u2, where§1(z) is given in Eq.~2!. The 2D Fourier
transform ofUQ2D(RW 2RW 8) is easily obtained using the result

E d2r
e2 iqW •rW

Ar 21a2
5
2p

q
e2uauq ~B3!

as

UQ2D~q!5
2pe2

qeA
S I 11eA2eB

eA1eB
I 2D1

2pe2

qeB
S I 31 eB2eA

eA1eB
I 4D

1
8pe2

q~eA1eB!
I 5 , ~B4!

with

I 15E
0

`

dz E
0

`

dz8N4~z1z0!
2~z81z0!

2e2bze2bz8e2uz2z8uq,

~B5!

I 25E
0

`

dz E
0

`

dz8N4~z1z0!
2~z81z0!

2e2bze2bz8e2~z1z8!q,

~B6!

I 35E
2`

0

dz E
2`

0

dz8M4ekb~z1z8!e2uz2z8uq, ~B7!

I 45E
2`

0

dz E
2`

0

dz8M4ekb~z1z8!e~z1z8!q, ~B8!

I 55E
0

`

dz E
2`

0

dz8M2N2ekbz8~z1z0!
2e2bze2~z2z8!q.

~B9!

14 650 54C. BULUTAY AND M. TOMAK



These integrals are straightforward and the results are listed
in Eqs. ~7!–~11!. The effective 2D interactionUQ2D(RW

2RW 8) must reduce to an ideal 2D case asuRW 2RW 8u→`.

limuRW 2RW 8u→`U
Q2D~RW 2RW 8!

5
e2

eAuRW 2RW 8u
S 11

eA2eB
eA1eB

D F E
0

`

dz n~z!G2

1
e2

eBuRW 2RW 8u
S 11

eB2eA
eA1eB

D F E
2`

0

dz n~z!G2

1
4e2

~eA1eB!uRW 2RW 8u
E
0

`

dz n~z!E
2`

0

dz8n~z8!.

~B10!

Using*0
`n(z)dz512*2`

0 n(z8)dz8 in Eq. ~B10! leads to the
desired result,

limuRW 2RW 8u→`U
Q2D~RW 2RW 8!5

e2

uRW 2RW 8u

2

eA1eB
. ~B11!

As a consequence, the Fourier transform gives

lim
q→0

UQ2D~q!5
2pe2

qē
, ~B12!

so that limq→0F(q)51 as can be observed in Fig. 1. This
also indicates that all of the interactions are properly ac-
counted for in Eq.~B4!.
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