PHYSICAL REVIEW B VOLUME 54, NUMBER 20 15 NOVEMBER 1996-II

Dielectric properties of the quasi-two-dimensional electron liquid in heterojunctions
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A quasi-two-dimensionalQ2D) electron liquid(EL) is formed at the interface of a semiconductor hetero-
junction. For an accurate characterization of the Q2D EL, many-body effects need to be taken into account
beyond the random phase approximation. In this theoretical work, the self-consistent static local-field correc-
tion known as STLS is applied for the analysis of the Q2D EL. The penetration of the charge distribution to the
barrier-acting material is taken into consideration through a variational approach. The Coulomb form factor
that describes the effective 2D interaction is rigorously treated. The longitudinal dielectric function and the
plasmon dispersion of the Q2D EL are presented for a wide range of electron and ionized acceptor densities
choosing GaAs/AlGa;_,As as the physical system. Analytical expressions fitted to our results are also
supplied to enable a widespread use of these re$@0163-18206)01144-7

[. INTRODUCTION related terms such as self-energy, carrier lifetime, and
mobility.1? Connections to density-functional theory can also
The nameelectron liquidor electron gasefers to a model be establishelf Furthermore, the dielectric screening plays
system formed by interacting dynamical electrons within aa substantial role in the characterization of other excitations,
medium containing a uniformly distributed positive chargesuch as, polaron$. 6
having no mation. The overall system is electrically neutral. In this work, our aim is to present an accurate and sys-
As the positive background is rigid, it does not respond totematic characterization of the dielectric properties of the
any kind of excitation, hence, it cannot polarize, howeverquasi-two-dimensionalQ2D) EL in real heterojunctions
the electrons can. The three-dimensio(@i) electron liquid  where the electron distribution can penetrate to both sides of
(EL) has been studied as a model system for metaid the  the interface. The charge distribution is based on a varia-
3D positive ion liquid was proposed as a model astrophysicaional approach proposed by BastafdThe effective 2D
systent. In the case of two dimensions, the study of theelectron interaction for this system is characterized by the
two-dimensional2D) EL has been driven mainly by techno- coylomb form factor. This quantity is treated rigorously.
nglcal adva_nces such as s_lllcor_l-lnversmn Ia)?enso_dula- The dielectric function for the GaAs/AGa,_,As hetero-
tion doped field effect transistofdntercalated graphite lay- junction is given for wide ranges of electron and ionized

ers,® aréd the frg.ctionall quantum He}ll effect in 2D electron acceptor densities. Throughout this work the tefi@lectric
systems. In addition to its technological importance the 2D function refers to thelongitudinal dielectric function. We

EL contains rich physms due to enhanced part'|cle correlaéllso fitted analytical expressions to our data for the efficient
tions and geometrical parameters that characterize the acm&se of these results by other researchers. To simplify the
realization of the 2D system. y ) P

The EL remained as a problem of interest in the past fev\;ompgtational labor we stayed in. the zero—tempergture for-
decades and intense research efforts lead to several advan&@lation and the so-called electrical quantum limit, where
in the field. For the 2D case the first major contribution wasOny the lowest subband along the confinement direction is
due to Stern who calculated the density-density responseopulated(we refer to a very recent work, discussing the
function of the noninteracting ELwhich is known in the 3D ~ €ffects of higher subbands on the dielectric function
case as the Lindhard function. The Stern functipa., 2D The paper is planned as follows: Sec. Il discusses briefly
Lindhard function immediately made the random phase ap-the variational computation of the Q2D electron distribution.
proximation(RPA) available to 2D EL. The RPA was at that The effective 2D interaction of these Q2D electrons is
time one of the most successful many-body approaches fdreated in Sec. Ill and the modifications to the STLS tech-
the EL. Jonsohshowed that for 2D EL, a many-body ap- nique in the Q2D case is contained in Sec. IV. In Secs. V and
proach proposed by Singwi and co-worketeeferred to as VI the dielectric function and the plasmon dispersion are
STLS performed remarkably better than RPA. We haveconsidered, respectively; all the results are given referring to
very recently compared the 2D-STLS technique with theGaAs/Al,Ga;_,As as the physical system, however, the ap-
quantum Monte Carlo data of Tanatar and Cepetfegnd  proach is developed for a general heterojunction. In Sec. VII,
proposed analytical forms for the dielectric function of thethe fitted analytical expressions for the results are presented.
ideal 2D EL based on the STLS techniqgtfe. Following the conclusion section, appendixes include some

The knowledge of the dielectric function and the local- details on variational formulation and the Coulomb form fac-
field correction paves the way for a variety of many-bodytor for a Q2D system.
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Il. VARIATIONAL CHARGE DISTRIBUTION ergy (see Appendix A for the expression#\ closed form
FOR A HETEROJUNCTION representation ob is not possible, unlike the Si-inversion

. . . . layer? however, the minimization can easily be achieved nu-
The electrons from ionized donors in the barrier side of a Y y

. ) . . . merically. We work in the regime where only the lowest
modulation doped heterOju_nctlon are trapped in aWEdge“k%ubband is populated, this puts an upper limit to the 2D
vv_eII for_me_d by a step barrier due to con_ductlon band eOIgeeIectron density above which the Fermi level crosses the
discontinuity on one side, and the potential due to the PreS: t-excited subband energy. For GaAs/Bh, _As hetero-
ence of the transferred electrons and ionized acceptors on thL(i“nction our analysis is valid.for the 2D eletlzgr)é)nic densities
other® The one-dimensional quantum confinement gives th < 7% 101 my,z Bastard’s work’ can b nsulted for '
Q2D nature to the system and behaves remarkably differerhfr'ch\er detailsc - bastard's work can be consulted fo
than ideal 2D and 3D systems. In handling the many-body '
effects in heterojunctions, we avoid some critical simplifica-
tions that have been used in the past such as infinite barrier Iil. COULOMB FORM FACTOR

height!4~6 (which is a reasonable approximation only for FOR A PENETRABLE HETEROJUNCTION
Si-inversion layers and no ionized acceptors within the | the 2D EL the interaction potential in reciprocal space
channel® (which is, in fact, not the case in practjc&or an is taken to be Ze/q, whereq is the wave number. This
accurate account of the electronic distribution in hEterojunCpotential is obtained by taking the 2D Fourier transform of
tions, we use Bastard’s variational approach that was testegle 3p coulomb interaction which is R/ R denoting dis-
. . . . .7

previously in determining the subband enerdfes. , tance in real spacé’ In fact, a strictly 2D solution of Pois-

The electrqnlc wave fL_m(_:tloni(z), W'th'r_' the _effect[ye son’s equation is proportional teIn(R) (Ref. 21 rather than
mass approximation satisfies the one-dimensional Schro g 4nq its 2D Fourier transform is proportional tad/as in
dinger equation along the confinement directichosen to 3D EL. However, the—In(R) interaction is seldom usé

be thez direction), due to indication by real physical 2D systems th& type

_ 32 of interaction is relevarft?* For the case of a Q2D system

rcd 1 d o ; ; ; -

—— = —— =T Ue_(2) TUA(Z) + Uparie(2) |5i(2) the charge distribution along the third dimension modifies
2 dzm(z) dz the effective 2D interaction from 2e/q to F(q)2me/q.
=E; si(2). (1) F(q) is the Coulomb form factor describing the effect of the

finite spread of the charge distribution along the confinement
Ue-e(2) is the potentialenergy formed by the presence of direction over a region where the background dielectric con-
the electronsU »(2) is the potential due to ionized acceptors, stant is discontinous due to different materials on both sides.
and Uparie{2) is a step-barrier potential:Upaie(2) Following the approach in the previous section, we use
=Up O(—2), resulting from the conduction band edge mis-the variational charge distribution that can leak into the bar-
match of the neighboring materials(z) is the effective  rier region and calculate the functidt(q) accordingly. The
mass of the conduction band electrons being equalgan  details onF(q) are given in the Appendix B, here we state
the barrier-acting material ana, in the well-acting mate- the final result,
rial. Bastard proposed the following variational form for the

lowest subband,(z) allowing penetration to the barrier re- 1 €p 1 €p 1 €n
gion (Z<0),17 F(Q)—E 1+6_A |l+§ 1—€—A |2+§ 1+€—B |3
Mev?2  for z=<0 ) 1 L) o ]
= +=(1——]l4+
51(2) N(z+zp)e ®?? for z=0. @ 2 eg) 4TS ®)
Invoking the continuity ofs;(z) andm™1(z)(d/d2)s,(z) at  where
z=0 and the normalization of,(z), f*2dZs,(2)|? =1 . , ,
yields the following three equations: | —2N4{ 1] 2 N 2z, N 2z,
177 | 2b[(b+q) (b+q)? " (b+q)°
M =Nz, 3 (b+q) (b+q)® (b+q)
1 [ 4z 625 4z,
2 + 2 + 2t 3
Z=—— () (2b)?[(b+q) " (b+q)? " (b+q)
A
b+ kp— 1 [ 1228 127 4
Me + 3 + 2T 3
S (2b)°[(b+q) (b+q@)= (b+aq)
b
N= _ (5) 1 [ 24z 12 1 24
b2z b + + + , (7
\/2 Lobzgt 0|14 @0)*|(brq) v @b
b
z 22, 2 |
Bastard also sek,=2.2mgU, /%% and usedb as the l,=N* + 5+ 3l (8)
only variational parameter. We have observed that such a (b+q) (b+aq)® (b+q)

choice ofk,, is highly satisfactory in the electrical quantum 4
limit. Note thatM, N, andz, also depend ob through Egs. - M 9)
(3)=(5). b is determined by minimizing th&otal system en- 3 kp(kptQ)’
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FIG. 1. The Coulomb form factoF and the effect of the FIG. 2. The local-field correctior??P(q) of Q2D EL versus

image terms as a function of wave numlggfin units of kg) for wave numben (in units ofkg) for rg values 0.8, 1, 2, 3, 4, 5, 10,
the electronic densities;=0.8 and 20. The full lines apply to 15, and 20. Solid lines: STLS and dashed lines: calculation using
GaAs/Al,Ga; _,As heterostructure having,a=13 andeg=12.1.  the fitted form forG??9(q); see Eq.(22) with the values from
The dashed lines refer to the same system, but withTable I.

ep=eg=12.55, so that no image term appears. See Sec. IV for the

definition of rs and other parameters used for the system. tion due to finite extension of the charge distribution along
the confinement direction. The exchange and correlation hole
_ M4 associated with each electron in the system is described by
|4—(Kb+ q)%’ (10 the local-field correction(s(q). This function in the case of
Q2D STLS reads
- M2N2 [ Z3 . 22, .\ 2 @ , o
* (kpta)[(b+a)  (b+q)?  (b+)®] quD(q):f f d“py F(P) n- Py (1-S(I5—d,
. . 2w F(d) gn pn
In Eq. (6) e5 and eg are the background dielectric constants (13

of the well-acting and the barrier-acting materials, respec- o o ] )
tively. The bare electron-electron interaction potential energyvhere the subscript is used in this equation and in the rest

for this Q2D system becomes of the text to denote wave numbers normalized to the Fermi
wave numbekg (i.e.,q,=q/kg, etc). In Eq.(13), F is the
2 me Coulomb form factor ané is the static structure factor. The
UQzD(q)= = F(q), (12 latter contains contributions from plasmons and electron-
€

hole pairs and is related to the dielectric function through the

wheree=(ex+ €g)/2 andq is the 2D wave number associ- fluctuation-dissipation theorem. The dielectric function, in
ated with the spatial variation along the 2D sheet. turn, depends on the local-field correctitsee Sec. Y. The

The terms containing, and |, in Eq. (6) represent the computational task involves the self-consistent solution of
image interaction resulting from the different permittivities these three coupled nonlinear integral equations. A change of
on both sides. Their effects decrease when the permittivit&’a”ables leads to a substantial improvement in the execution
contrast diminishes; an example is the GaAs@4,_,As  speed of the STLS algorithm. Usirg=p,—q, in Eqg. (13
system considered in Fig. 1 for two different electron densileads to
ties (see the following section for the material parameters 1
used. The Coulomb form factor becomes more important in - ~q2p, \ _ f‘” _ j”
high electron densitietsee Fig. 1 where the in-plane par- G a) 7 F(q) Jo Aty tn [1=S(D)] 0 dé
ticle separation is comparable to the extension of the charge

distribution along the confinement direction. The expression > acosp+1

for F(q) in Eq. (6) will especially be useful for heterojunc- XF(qyl+a®+2acosp) itals2ac05’
tions with a high permittivity difference and a low barrier

height. (14

wherea=t,/q,.
IV. Q2D STLS In Fig. 2, we present the self-consistent STG82P(q)
The STLS technique in 2D has been discussed in the itl€Sults for a wide range of electronic densities given in
erature, and we refer, for instance, to Jonson’s pioneerin%erms ofrs. rs is the effective interparticle spacing de-
paper In going from 2D to Q2D the only modification fned asr¢=1/agymN,p, where Npp is the 2D elec-
(within the electrical quantum limjiis the replacement of the tronic density andag is the effective Bohr radius given by
2D Coulomb interaction energy by the effective 2D interac-a} = (e/m*)(42/mye?), € is the background average static
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FIG. 3. The comparison of the full STLS Q2D local-field cor-

rection (solid lineg with that of Gold and Calmels'dashed lines tric':‘:]?].ct‘il(.)ncolrg(pqag)soa?s(;f flgﬁitlicfr?oe;nv(\fas:2ulrr]r:l§;§nstje;1t;fsd()flec-
iven by Eg.(15) as a function of wave numbeg (in units of ! .

EI\; for ry_? ;no)l 10 uncti wave numbey (in uni kg) for rg=3. Solid lines: STLS, dashed lines: RPA. For Q2D EL,
F s™ .

a GaAs/ALGa; ,As heterostructure is used WithNgep

: : : _ =0.46x10" cm™2.
dielectric constant andn* m; is the effective mass of the

electrons considered, witlm, being the free electron mass.
We consider GaAs/AlGa; _,As heterojunction as the physi-
cal system with the parameters my=0.07m,,
mg=0.088n;, =13, eg=12.1, andU,=0.3 eV (corre-
sponding to an Al mole fraction of 0.3vhich were used by
Stern and Das Sarnfa.For af we usede=12.55 and V. DIELECTRIC FUNCTION

m*=0.07, givingag = 9.49 nm. The conduction band offset,  The function of practical importance is the wave number-
U,, was measured by some groups to be around 0.228reV ang frequency-dependefiongitudina) dielectric function,
contrast to 0.3 e)™> We have observed that our results are ¢(q, ») that not only determines the response to a weak ex-
not sensitive to the deviation d, in this range. In Fig. 2 ternal perturbation but also possesses information on the

the intervalrs=0.8—20 is lShOV\TZ with an ionized acceptor many-body dynamics of the system. With the knowledge of
density 0fNgep=0.46x 10" cm™~2. Forrg<0.8 the higher the |ocal-field correctione(q, o) is given as

subbands start to be populated which was not taken into our

leading to a poor dielectric function and screening properties.
The ionized acceptors in the well region play a primary role
and need to be included in the treatment.

analysis. 1—y2D 0 1—GQ2D

For the 2D EL, STLS3(q) becomes proportional tg as €2°(q,0)= 1+UQ(2qD) - (qo,w) [ 5o, (Q)],
g— 0,* whereas in the 3D case it is proportionalga’ In (@) 7(q,w) (a) 16)
the Q2D case, we observe thaee Fig. 2 for low r¢ values

small-q behavior is close to quadratic andrasncreases this where (g, w) is the 2D zeroth-order polarization insertion,
behavior goes towards a linear one indicating an approach s stern functiod:** Apart from #°, 2D and Q2D quantities
a 2D character. _ o behave differently. This is illustrated in Fig. 4 showing in-
Gold and Calmels also reported their re_SUItSG)?’Z (@) verse static dielectric functiors~%(g,0) within RPA and
for GaAs/AIXGal_XAs.heterostrgcturég. Their treatment iS 51| 5 for both 2D and Q2D cases. To assess the effect of
based on STLS but with essential discrepancies compared [unetration of the charge distribution into the barrier region,
ours. They imposed the local-field correction for 2D and,,o compare thdJ,=0.1 eV case withJ,—= in Fig. 5 at
Q2D to be of the form r<=0.8. It is observed that for GaAs/iBa, _,As-like het-
erojunctions, this penetration has a minor effect on the static
(15) dielectric function. In Fig. 6 the inverse static dielectric func-
tion of GaAs/Al,Ga; _,As heterojunction is plotted in the
density range =0.8—20 and forNge,= 0.46x 10" cm ™2,
where x=(q/k,:)(1/\/§r§’3) and the coefficientsC,;, and Notably, the GaAs/AlGa;_,As heterostructure shows an
C,, were tabulated® They assumed no penetration to barrieroverscreening effecti.e., e<0) for r¢=3. The onset of
region in the Coulomb form factor and also neglected theoverscreening shifts to higher electron densities for the
presence of ionized acceptors in the well-acting region. Esstrictly 2D casé! due to enhanced particle correlations in
pecially, the form used in Eq15) enabled them to reduce lower dimensions. As an interesting consequence, the nega-
the computational effort appreciably, however, their resultdive dielectric function suggests a negative compressibility of
are in strong disagreement with ours fae=1 andq=2kg the Q2D EL (Ref. 12 and, in fact, recently this has been
both in 2D(Ref. 11 and Q2D as can be seen in Fig. 3. Theexperimentally observed on a GaAs quantum well
form in Eq. (15 cannot accommodate the full STIG(q)  structure?’

1.402x
GQZD(X) _ I,2/3 ,
GC S [2.644C2,(rg)+x°Coy(rg)]*?
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FIG. 5. The effect of the barrier height,, on the inverse static FIG. 7. The electron distribution along the confinement direc-
dielectric function, 1¢(q,0), as a function of wave number (in  tion in arbitrary units. The total electron density ix 102 cm™2.
units of kg) for rg=0.8. Solid line:U,=0.1 eV, dashed line: Other parameters are given in Sec. IV. The solid line refers to the
Up—e. Other parameters for the heterostructure are given in Secdwo subband populated calculation and the dashed line is based on
V. the electrical quantum limit.

We would like to include some necessary remarks abouhon frequency. This limitation is relaxed if the background
this dielectric function. The expression in Ef6) only gives lattice does not have a polar character. Hence, for the par-
the Q2D EL dielectric function. The total screened electron4icular system that we are considering, the dielectric function
electron interaction is is expected to be valid up to about 1 THz. In principle,

however, the static nature of the local-field correction of the
2me 1 STLS technique can further limit this upper frequency.
U(q,0)=F(a)—— —op : 17) Finally, the dielectric function given by Eq16) takes
€q esngd.o) into account the polarization of the electrons in the lowest
ubband. Even though the presently available experiments on
aAs/Al,Ga; _,As systems mainly fall into this reginfé&;?°
the technological trend aims to populate the higher subbands
to increase the amount of current carried in modulation
doped field effect transistors by using different materials
such as InGa;_,As/In,Al ;_,As* When the higher sub-
bands are occupied the dielectric function should necessarily
be a tensor of the forne;;(q,»), wherei=] terms account
for the intrasubband polarizations and | terms represent
intersubband couplings. To assess the performance of the
presented approach regarding the electrical quantum limit,
we extended the variational wave function technique to in-
clude lowest two subbands and determined the subband
populations by invoking self-consistency between Poisson
and Schrdinger equations. In Fig. 7 we show the charge
distributions along the confinement direction for a density of
1x 102 cm™2. The solid curve represents the correct charge
distribution containing contributions from the lowest and
first-excited subbands. The dashed curve, on the other hand,
sticks to the electrical quantum limit which actually breaks
down beyondN,p=7X10" cm~2. It is important to ob-
serve that the difference between the two curves is quite
marginal. This is simply because the percentage of the first-
I T B Y S S V- Sy excited subband electrons is 4.7% at this density.

2

The dielectric responses of the polar lattice and the valenc
electrons are contained in the average background dielectr
constante. Here we have used thatatic dielectric constant
(see, for instance, our definition af in Sec. I\), hence, it

is assumed that the polar lattice can follow the external ex
citations. Obviously this limits the validity range of this
work to w<<wtg, With wg being the transverse optical pho-

INVERSE STATIC DIELECTRIC FUNCTION

VI. PLASMON DISPERSION
FIG. 6. The inverse static dielectric function of Q2D EL,

1/e(g,0) as a function of wave number (in units of kg) for rq The elementary excitations in electron liquids are
values 0.8, 1, 2, 3, 4, 5, 10, 15, and 20. Solid lines: STLS ancelectron-hole pair creations and collective excitations known
dashed lines: calculation using the fitted forms &#2°(q) given  as plasmons® The latter can be characterized with the
by Eq.(22) andF(q) given by Eq.(24) with the values in Table I. knowledge of the wave number and frequency-dependent di-
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TABLE I. Fitting parameterd\, B, C, andD used in Eqs(22)

and(24) as a function of  for the characterization of the Q2D EL
5 in a GaAs/AlGa; _,As heterostructure. The ionized acceptor den-
.5 sity is Ngep=0.46x 10" cm™~2. See Sec. IV for the other param-
§ A eters used for the GaAs/fBa, ,As system.
w
23-5 re A B c D
§ il 0.8 0.6243 0.4923 1.5462 1.2750
&25" 1.0 0.6549 0.5005 1.5079 1.1542
g 2r 1.5 0.7250 0.5274 1.4342 0.9285
%150 2.0 0.7857 0.5519 1.3950 0.7690
= n 25 0.8380 0.5763 1.3644 0.6497
05 3.0 0.8794 0.5999 1.3512 0.5571
4.0 0.9405 0.6461 1.3274 0.4321
c 5.0 0.9779 0.6855 1.3264 0.3494
6.0 1.0012 0.7209 1.3356 0.2922
8.0 1.0225 0.7792 1.3683 0.2197
FIG. 8. The normalized plasmon enerng(/E,:EZVp) as a 10 1.0294 0.8223 1.4097 0.1752
function of wave numbeq (in units ofkg) for rg values 1, 5, 10,
and 20. Solid lines: STLS and dashed lines: calculation using the 2 1.0305 0.8597 1.4545 0.1454
fitted forms forG?25(q) given by Eq.(22) andF(q) given by Eq. 15 1.0295 0.9007 1.5014 0.1158
20 1.0257 0.9555 1.5185 0.0863

(24) with the values in Table I. The dotted line marks the onset of
the electron-hole continuum.

_ , , _ VII. ANALYTICAL EXPRESSIONS
electric function,e(q,w). Particularly, the plasmon disper-

sion relation,w,(q) is available through the zeros of the _ In this section, we present our fitted expressions to

dielectric function: G®?D5(q) andF(q) applicable to GaAs/AlGa, _,As hetero-
junction in the density range,=0.8—20. As a fit to
2D, i i T ; ;
e(q, p(0))=0. (18) G?DN(q) (s_hqwn in Fig. 2 by solid lines we tried a simple
form containing three fitting parameters,
Inserting the expression far(g,w) from Eq. (16) leads to 2D —BIAC
the following closed form expression for the plasmon disper- GRa)=A(1—e (BAM), (22)
sion: whereA, B, andC are the fitting parameters. The optimized
values are tabulated in Table | f®fge,=0.46x< 10 cm™2.
qn(z+1) ) 4 The third parameterC is introduced based on our observa-
vp(@=——% "\t 25, (19 tions on the long-wavelength behavior 6R2°(q) in Sec.
IV. In ideal 2D, C was equal to one and in 3D caSewas
where equal to two. OptimizedC values in Table | show this inter-

polation betweerr,=0.8-5, but then this trend is lost to
enable a good fit for the wholg values. The fitted expres-

7= G , (20) sions are plotted in Fig. 2 by the dotted lines. To assess the
V2rs F(q) [1-G2P(q)] guality of the fitting we use the following error estimate
g between a target vectdr(i) and the fitted vectolq(i):
an
1o | T0)—Tadi)
hoy(@)  may(Q) error(%)—ﬁi:1 —T(i) 100 . (23
rp(O) = g = (21
F F Accordingly the deviation of the fitting in Fig. 2 is less than

I - - 2.5%.
which is valid in the rang0.0n,maxd, Whereqy, may satisfies The Coulomb form factorF(q) also requires laborious

— 2 . . .
Vp(0n,mad = dn,maxt Gn,ma/2 @nd outside this region plas- . for a GaAs/ALGa, ,As system. This function can be
mons dissociate to electron-hole pairs so that collective eXgitaq by a simple expression

citations are no longer long lived. The Eq9) reduces to the

ideal 2D resuftt when F(q)— 1. Figure 8 shows the plas-

mon dispersion for GaAs/AlGa; _,As heterostructure with Fa(q)= 17Dq. (24
Ngep=0.46x 10'* cm™2 and for severalrg values. Even N _ N o _
though the plasmon dispersion can be experimentallgontaining a single fitting parametBr which is tabulated in
probed, such as, through far infrared spectrosé8phe  Table | for the Same\ldegl value.

available experimental results pertain to high electronic den- The knowledge oiGR?(q) and Fy,(q) is sufficient for
sities and small wave numberg<kg). Therefore, the ef- representing the dielectric functigsee Eq.(16)]. The per-
fects of the local-field correction have not yet been verifiedformance of fitting fore 1(q,0) is available from Fig. 6
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TABLE Il. The constants used in Eq§25)—(28) for different ionized acceptor densitieNy.,. The
parameters characterizing the heterostructure are chosen suitable to the G@&As/ARs system(see Sec.
V).

Ngepi (€M) a a, as b, b, bs Cy d; d,

0.146x 10 0.6384 0.2213 0.5555 0.3023 4.9907 -0.0435 0.6891 4.3194 2.4659
0.46x 10™ 0.6770 0.2794 0.6372 0.2575 2.6283 0.1623 0.7914 2.7325 1.3674
1.47x 10 0.6953 0.2302 0.6888 0.2253 1.4913 0.3043 1.1675 1.6566 0.6898
4.69x 101 0.6887 0.1802 0.7418 0.1978 0.6977 0.4195 15437 1.0004 0.3518

(shown by dotted linéswhere the error, using the estimate in to the ideal 2D cas¥:*? quantum Monte Carlo simulations
Eqg. (23 is less than 1%. Similarly in Fig. 8 the plasmon are not available, to compare our results, for the Q2D EL; the
dispersions with the use of the fitted forms are shown inpresent experimental data cannot cover the regime where the
dashed lines, the fitting error being much less than 0.1%. RPA breaks dowrii.e.,rs>1 andg=kg). Our analysis ex-

We have observed that taking the barrier heightte_r_lds to a wide range of electron and_ ionized acceptor den-
U,=0.225 eV does not significantly affect the parameterssities. To the best of our knowl_edge this V\{ork forms the most
A, B, C, andD. However,N,, takes an important part in elaborate study of the screening properties of the Q2D EL.
bothG(q) andF(q), so we repeated the self-consistent Q2DOUr results are supplemented with analytical expressions fit-
STLS technique foNge,=0.146, 1.47, 4.68 108 cm—2 ted to our data. We have presented the expressions for the

and performed again fittings. Rather than specifying thes%ocal-field correction, Coulomb form factor, the dielectric
results in tabular form, we present below fittiohctionsof E'ncgc;n, anq the rﬁ)lasrr;fon dispersion .Of thel le.fD EL. Wwith
(. for A, B, C, andD. this information, the self-energy, quasiparticle lifetime, mo-

bility, etc., can also be obtained; polarons in Q2D systems

Ag=1.071- alr:ze—ays], 25) ;:nzn be studied with the inclusion of electron-electron screen-
Brit=DbIn(bars) +bg, (26) ACKNOWLEDGMENTS
Cr=0.42 _“14+1.03%12, 27) We gratefully acknowledge discussions with N r@ip,
' s s A. Gokalp, and K. Leblebicioly.
D= dll . (28) APPENDIX A: TOTAL SYSTEM ENERGY IN THE
dy+ry VARIATIONAL APPROACH

the constant parameters contained in these expressions areln this section, for completeness we include the expres-
tabulated in Table Il for the considered rangeN\f, values.  sion for thetotal system energy of a heterojunction in Bas-
With the expressions in Eqé25)—(28), inverse static dielec- tard’s variational approacH. The ground-state expectation
tric function can be generated to an accuracy of about 1%of the total system energy per electron is

except for ther;=2 case having an error about 9%. Simi- L

larly with these equations plasmon dispersion can be recov- = _ -

ered to an error much less than 0.1%. (Eror(D))=(T(0))+ 5 (Ue-e(b)) +(Ua(b))

+ < U barriel( b)) ' (Al)

. . . _ where(T(b)) is the kinetic energy term given by
The dielectric properties of the Q2D EL in a heterostruc-

VIll. CONCLUSION

ture are studied and the behavior is seen to be remarkably . M2k, N? 2.2
different than the strictly 2D E£! The analysis is rigorous (T(b))=- 4 m¥ *t5 ms b (1+b2—-b%75/2) Ry,
with the only simplifications being the electrical quantum (A2)

limit and the zero-temperature formalism. These simplifica-
tions can also be relaxed at the expense of computation
complexity. The leakage of the charge distribution to the
barrier region is included in the analysis through a varia- 8
tional approach. The full form of the Coulomb form factor (U._(b))=—N,p
applicable to a general heterostructure is presented. For the €
GaAs/Al,Ga; _,As system, the image terms have been ob-

|Je_e(b)> is the average electron-electron interaction poten-
al,

N4
b’

33 2% 170222
33 2%z 1777
4 2 2

+3b%z3

served to have a marginal role. A sizable contribution will be b4zg‘ N2M?2 )
encountered in the case of heterostructures built up of mate- =T (zgb*+2bzy+2)| Ry,
b

rials having a high dielectric constant contrast and a low
conduction band offset. The dielectric function and the plas-
mon dispersion of the Q2D EL are characterized using the (A3)
STLS many-body approach that leads to substantial improvexhere(U (b)) is the average electron-ionized acceptor in-
ment over the conventional RPA. Unfortunately, in contrastteraction potential,
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2 bzzé M2 energy, the electron-electron interaction is weighted by 1/2
1+ §bzo+T) - —2} Ry, to avoid double counting. The variational parametes de-
“b termined by minimizing(Etor(b)), which is an easy task

8w 6N?2
<UA(b)>::NdepI or
€

(Ad) numerically as the cost function has a single minimum.
where (Uparie(b)) is the average potential energy due to
step barrier, APPENDIX B: EFFECTIVE 2D COULOMB INTERACTION
Ub'Ryszg We first recall the electrostatic potential due to a point
(Uparie(b))=———— Ry, (A5)  chargeQ, at a distance (along thez axis) from the interface

b formed by two semi-infinite dielectric media with permittivi-

wherek,=2\mgUy, r,. In above equations atomic units are ties e, andeg. A solution of the Poisson’s equation subject
used; all energies are in Rydbergs (1 =Ry,e*/242) and  to continuity requirements at the interfaees 0 results in an
lengths in Bohr radiusag=%2%/mye?). In the total system  electrostatic potential of the forfi,

i Q +€A_€B Q =0
N en\ JRZ+(d—2)2 eates yRE+(d+2)2) =~
d(R,z)= ) o (B1)

eates JRZ+(d—2)?’

This result will now be used in constructing the effective 2D Coulomb interaction energy betweéchvge distributions
n(R,z) andn(R’,z'),

o N e2 oo o]
UQZD(R—R')=—“ dzJ dz'
0 0
n(R,z) n(R’,z') L €8 en n(R,z) n(R’,z')

€A
\/|I§-F§’|2+(z—z’)2 €t € \/|I§— R'|?+(z+2')?

n(R,z) n(R’,z') N €Epr— € n(R,z) n(R’,z')

\/||§—I§’|2+(z—z’)2 €nt€s \/|I§—I§’|2+(z+z’)2

e? 0 0
+— f dzf dz'
EB — o —

2e? o 0 n(R,z) n(R',z') 0 o n(R,z) n(R’,z')
+ n f dzf dz' —— +f dzf dz' —— . (B2
€T €s | Jo = J|R=-R'|2+(z—2')2 = Jo {|R-R'|?+(z—2')2

The first two terms in Eq(B2) represent direct and image o NN ., 2 b b o |z-2]

interaction of the charge distributions on the right side of thel 1= fo dz fo dz'N*(z+2z9)%(z' +z9)°¢ e % € 9,

interface ¢>0). Third and fourth terms represent the same (B5)

interactions forz<0 region. The last two terms which are, in

fact, equal, represent the direct interaction between charge

distributions on oppos_ﬂe S|d§s qf th_e mte_rfacg. |2:J dz f 42 N4 (2 20)2(2' + 25)%€ Do b7 &~ (2470,
The charged-particle distribution isn(R,z)=n(z) 0 0

=|s1(2)|2, wheres,(2) is given in Eq.(2). The 2D Fourier (B6)

transform ofU®2P(R—R’) is easily obtained using the result

—ig-r 0 0 , ,
dzre—zz_ﬂ-eﬂa\q (B3) |3:f dzf dz’ M4e(z+2)g=lz=2'la (B7)
e )

as

27762 GA_ EB 277'82 GB_GA | :fo dZ fo dZ’M4eKb(Z+Z,)e(Z+Z/)q (BS)
u?b(q)= I+ I, |+ |+ Iy AT Y '

gen epnt€g geg Epnt €p

8me?

- < 00 0 , ,
+ q(€A+ 63) |51 (B4) |5: fo dz f_de'MZNZeKbZ (Z+ZO)2e—bze—(z—z )q.

with (B9)
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These integrals are straightforward and the results are listedsing f5n(z)dz=1—f°_.n(z')dZ’ in Eq.(B10) leads to the

in Egs. (7)—(11). The effective 2D interactiond 22°(R
—R’) must reduce to an ideal 2D case|&-R'|— .

limjg_g|-U%?P(R—-R’)

2 2
e En—€ &
= ( A_B fdz n(z)
ea|R—R’| eates/| Jo
2 2
e €En— € 0
+ —— (1+ B_A J dz n(z)
eg|R—R’| €pteg)| )=

4¢? jw 0
+————| dznz f dz'n(z’).
(EA+€B)|R_RI| 0 r( ) —® ( )

(B10)

desired result,

l U@BR-R') ¢ 2 (B11)
IMRB_R—w - == .
RoR IR—R’| €ate€s
As a consequence, the Fourier transform gives
2me?
limU9?0(q) =——, (B12)
q—0 ge

so that lim_,oF(q)=1 as can be observed in Fig. 1. This
also indicates that all of the interactions are properly ac-
counted for in Eq(B4).
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