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Optimization of the confinement energy of quantum-wire states
in T-shaped GaAs/Al,Ga,_,As structures
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We report on an optimization of the wire confinement energies of the confined electronic states at the
T-shaped intersection of GaAs and,8a;_,As quantum wells. These structures can be produced by the
cleaved edge overgrowth technique. We present an analytical model for the confinement to give insight into the
basic mechanism. The optimization of the confinement energy is done by calculations in a sik-lpand
approximation for the valence band and in an isotropic effective-mass approximation for the conduction band.
The confined valence-band states are only weakly bound at the T-shaped intersection due to the large and
anisotropic hole effective masses. Employing optimized sample parameters, confinement energies for the
free-electron-hole pairs are nearly doubled compared to symmetric structures, and 34 meV are predicted for a
3-nm overgrown GaAs well. This is expected to be further enhanced by the Coulomb interaction, that is
neglected in the numerical model. The experimental structures grown using the optimized geometry show wire
confinement energies of up to 54 meV, which is significantly larger &@rat room temperature and larger
than previously reportedS0163-18206)04843-4

[. INTRODUCTION ported up to now is 38 me¥2 A theoretical calculation of
the WCE in the T-shaped structures for various sample de-
The fabrication of semiconductor nanostructures with arsigns has not yet been published. Hence an optimization of
effective dimensionality lower than 2 is an active field of the design has not been achieved.
research in semiconductor physics. The decreasing dimen- In this paper, we present a calculation of the electronic
sionality leads to a concentration of the density of states a¢tates confined at the T-shaped intersection of two QW's, the
the band edge and to a reduced scattering in the remainingV states. For given overgrown QW widths, we optimize
directions of free motion, which is of interest for optical and tN€ Sample design for the maximal WCE by the variation of

electronic devices such as laser diodes and fast transistoi&idth and Al content of th¢001) multiple QW (MQW). We
The reduction in the effective dimensionality can beSNOW thatthis can improve the WCE compared to symmetric
achieved in structures of sizes in the nanometer range, i%shaped structures by a factor of 2, giving a qalculated
which the energy difference of the confined states is large CE. of 3AT meV for an overgrown 3'”'.@110) QW, W'tho.m.
than both the thermal energy and the excitonic binding eng:on&deraﬂon of the Coulom_b interaction. These predictions
are confirmed by the properties of an experimental structure,

eray. : . . which shows a WCE of 54 meV.
Technologically, the step from the two-dimensional

quantum-well(QW) structures, which are fabricated by thin-

film growth, dpwn to one d|_men5|or_1 is comphcated. Th_e Il. THEORETICAL MODELS

lateral structuring of the thin films by lithographic methods is o _

limited to an accuracy of some ten nanometers, and thus 'TO optimize the sample parameters for maximum WCE

gives rise to a strong inhomogeneous broadening of the elegior to the growth, we employ a calculation of the TW

tronic properties. This may be circumvented by self-states. First we present an analytical model to give the basic

organized growth in prepatterned materials, such as etche&gPnfinement mechanism that increases the WCE in asymmet-
V grooves on GaAs substrates. ric structures compared to symmetric ones. Then we describe

Another possibility is the fabrication of a T-shaped inter- the quantitative numerical model used for the optimization of

section of two QW’s, as was proposed by Chang, Chang, antiie T-shaped structures and present the results.
Esaki? These structures can be realized by the cleaved edge
overgrowth techniqué:’ Using the latter technique, both di-
mensions are controlled by the high accuracy of the
molecular-beam epitaxfMBE). At the intersection, a bound In order to gain insight into the confinement mechanism
guantum-wire statgTW state forms. The photolumines- of the electronic states at the T-shaped intersection, we first
cence of these structures, attributed to the TW-state transtliscuss an analytical model for the WCE, which is schemati-
tion, was demonstrated to originate from the T intersectionsally depicted in Fig. 1. An infinite barrier height and par-
by optical near-field spectroscopy.Optically and electri- ticles with an isotropic effective masa are assumed. The
cally pumped lasing of the TW transition in these structuregjuantization energ;, of the lowest state in the overgrown
was observed and attributed to excitonic proce$%¥€¢€The QW of the widthL 1) at the barrier regions of the cleaved
largest wire confinement enerdyWCE) of a TW state re- QW [Fig. 1(a)] accordingly reads

A. Analytical model
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a) b E, for the states in the overgrown QW in the well and bar-

) rier regions of the(001) QW form a one-dimensional con-
oo oo oo finement potential of the magnitudeE, ,=Ej,—Eg
~0.45&;, in the overgrown QW along thg001] direction
[Fig. 1(0)].

Using Eq.(2), we determine the quantization energies of
—| E — the TW states in th€001] direction using the confinement
-------- E potentialE,,,. For a symmetric T-shaped wire structure, e.g.,
where the width. o, of the (001) QW is equal to the width
L L L 110y Of the overgrown(110) QW, this results in a TW state

(110] 4 [110] with a quantization energy of 0.4B},, and thus to an abso-

3 lute energy ofE,~Eg+0.48%,,~0.76E;,. The WCE
E. to the wire barriefE, is then given by 0.23B,,. If we
increasel ooy until the second TW state is bound in the
[001] direction, which occurs fok gg1~1.48.[11}, the re-
duction of the wire quantization energy along {le®1] di-
rection leads to an enhancement of the WCE to
E,.~0.29€, at this optimum(001) QW width.

This simple model thus predicts a binding energy of 24 %
of the QW quantization energy for the symmetric structure,
and of 30 % for the optimized structure. The results of the
following numerical calculation show a confinement energy
of 12—-16 % for the symmetric structure and about 22—-30 %
for the optimized structure. The better agreement for the op-
timized structure is due to the larger ratio betwéggp;; and
[001] L1107, for which the simplified analytical model is better

- suited. Also, the relative WCE drops in the realistic struc-
tures with decreasing well width due to the finite barrier
E Lo E height.

potential
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O
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—
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B. Numerical model

FIG. 1. Schematic drawing of an asymmetric T-shaped structure Tq gbtain a quantitative prediction of the dependence of
with the relevant potentials and quantization energies used in thg,o \WCE in T-shaped structures on the various sample pa-
analytical model. rameters, we have implemented a numerical model for the
electronic states in such structures. It treats the
2.2 conduction-band states in an isotropic effective-mass ap-

) (1) ~ Proximation and the valence-band states in a six-basul
ML110] model, thus including the mixing of heavy hole, light hole,
. __and split-off hole. Such a treatment has been used success-

The largest energy separation between the TW transitioq|ly to describe the properties of quantum w&li¥ and to
and the lowest transitions in th@01) and (110 QW's is _calculate the states in model rectangular quantum ifres.
obtained when the transition energies of both types of QW'scoylomb interactions are neglected in the present calcula-
are equal. Any difference petween the two QW transitionsjgns. However, the excitonic binding energy in the TW
energies reduces the relative WCE to the lowest of themg;1ed7.18g reported to be larger than in the QW staté2°

because the TW state is always a mixture of both QW stategys |eading to an additional confinement of the TW exciton
In such a structure with equal QW transition energies, onggates.
barrier of the overgrow110) QW is lowered down td;, in The TW states are calculated for an array of T-shaped
the well region of the cleaved00) QW [Fig. 1(b)]. TO  intersections, allowing for periodic boundary conditions. The
calculate the quantization energ'yfb_ in th_ls asymmetric array period along thE001] direction is given by the period
quantum well, we use the one-dimensional Sdimger  of the cleaved MQW structure. In the overgrowth direction
equation [110], one end of the unit cell is given by the surface of the
overgrown barrier, while the other end has to be introduced
W¥(2)=0 2 artificially in a specific depth of thé€001) MQW. The depth
) is chosen to be large enough so that it does not have a sig-
nificant influence on the TW states. The unit cells used in the
This gives a reduced quantization enerdy;, of  calculations are displayed together with the wave functions
0.54E;, due to the penetration of the state into the barrier ofof the TW states in Figs. 3, 4, 7, and 6, that will be discussed
finite height. The two different quantization energigg and  below.

hv2 Vv E
omYeT (2)—
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To calculate the electronic subbands, we start with a de-
termination of the subband wave functiof#s' at the zone
center () in an effective mass approach. We discretize one
period of the structure in real spaceNgx N, points in the
directionsx= [001] andy= [110], where the numberl, ,
are powers of 2. For the presented results, we used
Nyy=32.
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In the following, we describe the calculation for one-
dimensional superlattices in the z direction, for simplicity.

The expansion to the two-dimensional case is straightfor- ) ‘ )
ward. The eigenvectorg™® then describe the valence subband

As an ansatz for thé", we use the Fourier components envelope function on th@(hz) basis. The kinetic ope_rators
(cos,sin(2mn,/L,)z] with n,=0,1, ... N,/2, excluding the ~Tu(2) and the potentiaV/, (z) are given by the Luttinger
sine components of the lowest and highest momenta, whiciamiltoniarf®  and  the  valence-band offsets _n
vanish on the grid in real space. Using the currentAl,Ga_,As. InT, ./, we replace the quasimomentuiik
conserving boundary conditions, this leads to the eigenvaluby the corresponding operateriZV. To obtain a Hermitian
equation Hamiltonian even with spatially varying Luttinger param-
etersy; , {z), we symmetrize the operatofs, ,.(z).%.

Solving Eq.(5) on the product basis of the envelope func-
tions and the spin-orbit coupled zone-center states of the
valence band|u), gives the subband wave functions

EM\II;‘LSIZ,Z)W) for every subband state and quasimomen-

V" (k2)
"

v il V.+V E
ECCAM

N2 2mn, ) (2,
X 2 C:: Ccos Z +Sn *{O,NZ/Z}SIH z||=0, tum 7K.
n=0 * L, z L, We now consider the optical transition matrix element
h ~ / P between thdth I' conduction subban®'(k,z)|0,0)|s,)

@ 3 and themth valence subbanEM\PlT(IZ,z)m) for the light

polarizationg. It can be written down using the representa-
with the superlattice period.,, the superlattice potential tion of the spin-orbit-coupled basisu) in the uncoupled

V,, the effective massn,(z), and the eigenenergids, for ~ basis (X), |Y), |Z))[sy), with the electron and hole spins
the eigenvectorsc{’,s"). Se and s,, and the zone-center valence-band-orbital states

To determine the conduction subband dispersion arount$). 1Y), 12).
the I' point, we use theM, (10-100 lowest eigenstates

®"(z) of Eq. (3) as an ansatz for the eigenstat#(k,z)
with the quasimomenturfik:

6
P (k)= 21 &- (s (0,01W!(,2) |V | W™ (k,2)| )
p=

-1
L, 3 . H, I
— v &, P £,
Nz n12=0 ( Nsz) #( Nsz

envelope overlap

6
vi ﬁ2 Vi e e 7 = 2
VWV‘FV (Z)—En(k)) w=1

X

-— Mz -
eikx( z a:tn,kq)m(z))}z().
m=1 ! (4)

12
Yr(k,2) X X 8(sesn) 2 CE pe(SIVIP)].
12 Pe{X,yz} B

Sh=—

- v

Here m, is the isotropic conduction-band mass, and
the potential V&(z) is given by the band offsets in

Al,Gay_As. The eigenvectors™ define the eigenstates  pyoq. Ct . are the coefficients relating the spin-orbit
h!

\Pn(ka) with the energyEg(k), which are the envelqpe coupled basigu) to the uncoupled basi®)|s,). The mo-
functions 9f thenth conduction subband with the quasimo- entum  matrix elements (S|V,|X), (S|V,|Y), and
mentumsk. (9|V,|Z) are equal and given in Ref. 24; all other combina-
To determine the valence subband states, we start witlions vanish.
Eq. (3) using the mean effective mass(z) = v,(z) of the In order to calculate the interband absorption, we deter-
valence bands and the potenti¢lz) of the heavy-hole band. mine the subband states and energies on an equidistant grid
We use the resulting eigensta®$(z) as an ansatz for the of the quasimomentunkk within the first mini-Brillouin
periodic part of the envelope functions of the six spin-orbit-zone of the superlattice. To determine the density of states
coupled components:) of the valence bantf?2 (DOY) as a function of energp (E), we discretize the en-

dipole matrix element (6)
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TABLE I. material parameters of AGa; _,As used in the cal-

culations are fronProperties of Aluminum Gallium Arsenided- Vo !
ited by S.AdachiINSPEC, London, 1988 = [ a) —®—T-wire
> —A—[110] well ]
Symbol Parameter Unit Ga,Al,As g 1.65 |- .
Eq energy gap (eV) 1.5191.13%+0.4%° g2
AE./AE, band offsets 67/33 (_% q:) 5
Me electron mass (B 1/(14.9 - 8.%) 2 1.60 i ]
1 Luttinger 7.1-3.34 §
V2 parameter 202 -1 = [ ]
v 2.91 - 1.4% 1.55 .
Ag spin-orbit splitting  (eV) 0.34 - 0.065% = et
UEJ % 20 T T T ¥ T T T T T
2 E 15 —b) ° ] : CE 7]
ergy into equidistanAE segments. The same is done with € > 1ok ® VP
the quasimomentum space, in which the DOS is constant. By 8 g : ® e, 1
adding the DOS of every cube in quasimomentum spaceto ¢ § 5T ® 1
the corresponding energy segment, we ob{f). E ol il S S S S S
To obtain a sufficient statistics, we have to divide the . . ; : —
mini-Brillouin zone into millions of cubes. The correspond- > 08}C) A A A -
ing eigenenergies are obtained by a three-dimensional spline E 3 A A -
interpolation in between the calculated eigenenergies at the & z o6k A . = ® = = N ]
grid points in quasimomentum space, including the correct © .2 ™ =
boundary conditions at the zone center and the zone edge. To © B T-wire A [110]well
obtain the joint DOS for the interband absorption, we use the 0.4 ; ) ; ' é * ;3 ' 1'0
same procedure, but we also interpolate the optical transition i ]
matrix elements for the three polarization directions of light T-wire well width (nm)
[Eq. (6)].

FIG. 2. Results of the numerical model for symmetric T-shaped
wire structures with GaAs wells and AGa, -As barriers as a func-
tion of the well width.(a) Transition energy of the lowest wire state
(cb1l-vb) and of the lowest transition in €100 QW with equal

Il. NUMERICAL RESULTS AND DISCUSSION barriers. (b) Wire confinement energies for the conduction- and
valence-band state&) The optical anisotropy= Pgo1;/P[110) Of

We now present results of the numerical calculationsthe TW transition and the lowe$t10) QW transition.
which give a quantitative description of the WCE'’s and po-
larization of the TW transition. The AlGa;_,As material
parameters used in the calculations are listed in Table I. QW'’s consist of different mixtures of the heavy- and light-
hole states, which leads to an inefficient localization at the
intersection.

The optical anisotropy of the TW transitionFig. 2(c)]

In Fig. 2 we display the calculated transition energms  is given by the ratio between the transition strengths for the
the WCE(b), and the optical anisotropi) of the TW tran-  light polarizations orthogonal and parallel to the wires, e.g.,
sition in symmetric GaAs T-shaped structures withy=Pg01j/P[110;, With the dipole transition strengti
Al {Gay -As barriers, as a function of well width. The corre- for the polarization directionghkl]. It is lower than that of
sponding values for 1100 QW are plotted for comparison. the lowest transition in thé1l10) QW. The TW transition is

The TW transition energy increases with decreasing welklightly allowed for the polarization along the overgrowth
width due to the increasing quantization energies. In both thdirection [110] (not shown, in contrast to the forbidden
conduction and valence bands, the WCE amounts to 12—16%haracter of the lowest transition in thig10 QW for this
of the (1100 QW quantization energy. The lower relative polarization. This redistribution of transition strength from
confinement in the thinner structures is due to the finite barPg1) t0 P(110; Shows the participation of th€d001) QW
rier height. This leads for 3-nm well width to a WCE of 17 states in the TW state. The close similarity of the anisotropy
meV in the conduction band and 4 meV in the valence bandof the TW transition and of th€l10) QW transition is due to
The TW transition energy is accordingly redshifted by 21the dominance of the lowe$110 QW valence subband in
meV compared to th¢110 QW transition. The calculated the TW valence-band state.

WCE'’s in the conduction band are in agreement with the The envelope functions of the conduction- and valence-
results of Wegscheideat al.” It should be noted here that, band TW states in a symmetric T-shaped structure of 3-nm
due to the anisotropic hole mass, the hole quantization ef@W width are shown in Fig. 3. The conduction-band TW
ergy and thus the transition energy is lower(il0) QW’'s  state is confined symmetrically at the intersection, while the
compared ta(001) QW's of equal thicknes&?® Addition-  valence-band TW state is more extended along the over-
ally, the highest valence-band states in ¢661) and (110 grown (110 QW. This is a direct consequence of the isotro-

A. Symmetric structures
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FIG. 3. Confined zone-center electronic states in a T-shaped
structure consisting of a 3-nm GaAs/20-nmyABa ,As (001
MQW overgrown by a 3-nn§{110 GaAs QW and an Al:Ga, /As
barrier. The shape of the structure is depicted in the left upper
picture. The contours of the constant probability are plotted for the
conduction-band TW statécbl) and the valence-band TW state

(vbl1) with its constituents of heavy holéah), light hole (Ih), and
split-off hole (so). The scaling factors between the plots are given. l[1101 (nm)
pic conduction-band mass and the anisotropic valence-band
mass. The split-off band contributes only weakly to the TW
state even for this narrow structure due to the large spin-orbi
splitting.

FIG. 4. Experimental and calculated results for asymmetric

-shaped structures consisting of a 5.4-nm GaAs/20-nm

l0:Ga As(00) MQW and GaAs/Al Ga;As(110 QW'’s of
widths between 4.5 and 6 nm. The experimental results are taken
from Refs. 18 and 27(a) Transition energies of thé001) QW

B. Asymmetric structures with GaAs wells (triangles, the (1100 QW's (circles and the TW statdsquareks

To optimize the WCE in T-shaped structures with GaASExpe.rimentaI datdfull symbo!s) and .calculationiempty symbols
wells, the(110) QW width has to be taken to be somewhatnd lines are shown.(b) Optical anisotropyy=Pyooyj/Pp1) Of
smaller than the(001) QW width to compensate for the the TW transition. The experimental d_a(_sﬂuare}sgre compared to
higher hole mass in theL10] direction. This was verified the calculated tha for the TW transitidéopen trianglesand the
experimentally by Someya and co-workers for structure 110 QW transition (open squargs (c) TW states for a 4.5-nm
with 5.4-nm GaAs001) QW’s and several overgrowi10 110 QW width (left) and 6-nm(110) QW width (right). The con-

. 7 . tours of the constant probability are plotted for the TW conduction-
GaAs QW widths between 4.5 and 8 ﬁﬁ? A max'”,‘“m of band statécb) and TW valence-band stateb). All contours are on
Egglg/vaiﬁ (‘1"?3 fQo\l/J\/mtjraits?[?-oan)enQ(;Nrgi\géd;?é f&;&ngg the an equal scale. The T-shaped structure is indicated by lines.

We have calculated the transitions in the structures groweulated WCE'’s are slightly smaller than the experimental
by Someya and co-worket&?” and compare our results for ones. This might be due to a higher exciton binding energy
the transition energies, optical anisotropy and wave functionsf the TW state® The calculated exciton binding energy of
of the TW state in Fig. 4 with their experimental results. the TW state, determined using the calculated dispersion

We find the calculated transition energies to be in goodalong the[110] direction and the wave functions of the TW
agreement with the experimental values. This seems to bstates, is between 12 and 10 meV. This is comparable to the
fortunate, because the exciton binding energy is not takeexciton binding energy in the QW's, and thus no significant
into account in the calculation. At the crossover of (B81) additional confinement is predicted. However, the valence-
and (110 QW transition energiefFig. 4], the (110 QW  band TW state is only weakly bound, and, thus, the calcu-
width of 5.0 nm is slightly smaller than tH@01) QW width  lated binding energy, using only the one confined valence-
of 5.4 nm due to the valence-band anisotropy. We find thdvand TW state, is not very accurate, because the Coulomb
highest WCE at this position, as in the experiment. The calinteraction mixes different valence-band states.
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FIG. 5. Transition energies and energies of the conduction- and valence-band TW states in T-shaped structures with ¢¥&@yrown
QW's of widths 3, 4, 5, 7, and 10 nm. The width of tf@01) QW is varied together with the aluminum content, as given in the lowest
graphs. The corresponding energies of th&0) QW'’s are given as lines.

This mixing has its fingerprint on the optical anisotropy, fixed at Al {Ga,-As. For a small QW width, a higher alu-
displayed in Fig. #). The experimental anisotropy iS minum content increases the WEE8However, care has to
smaller than the calculated anisotropy for the TW transitionpe taken to avoid a type-Il structure induced by iheX
This shows that, in the TW exciton, the valence-band staterossing at 42 % aluminum content. The largest energy sepa-
has a stronger admixture of th@01) QW states than the TW ration between the TW-transition and the transitions in the
valence-band state. The reason for this finding is the shape ¢f01) and (110 QW's is obtained, when the transition ener-
the conduction-band TW state, which is extended more intgjies in both QW'’s are equal. This condition determines the
the (001) QW than the valence-band TW stdfeig. 4(c)]. optimum aluminum content to be used in {#91) QW's of

While increasing th¢110) QW width, the TW states shift g given width.
from the (001) QW into the(110 QW due to the change of
the balance between t{801) and (110 transition energies.
The lower of the QW states contributes more to the TW state
compared to the upper one. As a consequence, the optical
anisotropy of the TW state increases with increasibg0 o7
QW width, but stays between th@01) QW anisotropy of €
zero and th€110 QW anisotropy of about 0.74. £ 2

cb1 cbh2

8.6% Al

C. Asymmetric structures with Al ,Ga;_,As in the (001) wells
and optimization of the wire confinement

To further confine the electronic states, a stronger asym- 0 10 200 10 200 10 20
metric QW structure with Al in thg001) QW has to be oy (NM)
implemented, as discussed already in the presented analytical

model(Sec. Il A). Assuming a given width of the overgrown  F|G. 6. TW states in a T-shaped structure consisting of a 20-nm
(110 QW, we optimize the WCE by a variation of the width Al ¢Ga 01, As/20-nm Al Ga, As (001) MQW overgrown by a
and the aluminum content of th@01) QW's. The (001)  4-nm (110 GaAs QW. The shape of the structure is depicted in the
barrier width is chosen to be large enough to avoid superlateft upper picture. The contours of constant probability are plotted
tice effects for the TW states. The barrier composition wagor the two conduction-band TW statésb1) and (cb2).
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TABLE IlI. Calculated structural parameters, transition energies, and electron and hole confinement en-
ergies of the optimized T-shaped wire structures.

(110 QW (001 QW Al Transition Electron confinement Hole confinement
width (nm) width (nm) (%) energy(eV) (meV) (meV)
3 16 124 1.643 29 4.8
4 18 9.25 1.609 26 3.2
5 20 7.1 1.587 23 2.7
7 24 4.5 1.561 17 14
10 30 2.65 1.544 11 0.6

We now consider structures with differef®01) QW  vious discussion. The onset of confinement of the second
widths and the optimum aluminum content. The effect of anTW state in the conduction band marks the optin@021)
increasing well width can be regarded as an increase of th@W width for a given(110) QW width. The resulting param-
guantization length along thED01] direction for the TW eters of the T-shaped structures with the optimal design are
state, which is reducing the TW quantization energy alondisted in Table Il. The WCE in these optimized structures is
the [001] direction. At even largef001) QW widths, a sec- about twice the WCE of a symmetric structure of equ4l0
ond TW state can be bound to the intersection. This reduce@W width [compare with Fig. &)].
the effective WCE of the first TW state, which then has to be For the optimized 3-nm T-shaped structure, the geometri-
taken as its energy separation to the second TW state. Theal shape and the TW states are given in Fig. 7. The states
optimum WCE is thus established just at tf@01) QW
width at which the second TW state becomes confined. This  g)

behavior resembles the numerical results, which are given in 1.68 ———7— — T T T T
Fig. 5 for overgrown(110) GaAs QW widths of 3, 4, 5, 7, [ I
and 10 nm. The energies of the TW statequaresin the il T ]
conduction and valence bands and the TW transition energy 164 L 42 i
are displayed as a function of tk@01) QW width, using the .
optimum aluminum content for each width. The energies in 3 162 + -
the correspondingl10 QW's are given as lines, indicating g ' i o . . . .
the level of the TW barriers. The general trend is an increase 5 160
of the WCE with increasing001) QW width. S 003
At a certain width, a second TW stafieiangles appears g2
in the conduction band below tti&10 QW energy. The TW 8 004
states in a T-shaped structure with two TW states in the
conduction-band are shown in Fig. 6. The first conduction- -0.05
band TW state is well confined at the intersection and exhib-
its no nodes, whereas the second conduction-band TW state -0.06 . . . ‘ .
shows a node along tH®01] direction. It is thus a second 08 0005 10 18 20 28 30
state along th001] quantization, in agreement with the pre- Kiooni(10°/cm) Kii70/(107/cm)
b/)\ 1 E T l T T T T 1 '0([;01'] T ]
vb1 g 12 i . ;‘?_: u}; """ 1409 -
*9 10 | 8 % , ‘ué """" %109 E
ORI T I B
S © :, C\?l 2’ < < )
g °r g 0 8 f ghgn
® 2 | N N TR T
o lbea ™ L .
S 1.64 1.65 1.66 1.67 1.68 1.69 1.70 1.71
10 20 0 10 20 photon energy (eV)

!

110

e FIG. 8. Calculated subband dispersions and interband absorp-

FIG. 7. TW states in the optimized T-shaped structure consisttion in the optimized 3-nm structuréa) Subband dispersions of the

ing of a 16-nm A} 1,68 g7AS/20-nm Ap Ga -As (00) MQW lowest two conduction subbands and the highest six valence sub-
overgrown by a 3-nng110) GaAs QW and an Al{Ga, -As barrier.  bands from the zone center in the directj@d0] along the wire and
The shape of the structure is shown at left, and the contours of thie the direction/001] along the wire array(h) Absorptionay; for
constant probability are plotted in the middle and right graphs forthe three principal light polarizations, as indicated. The transitions
the conduction- and valence-band TW states, respectively. are labeled according to the involved subband states.
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are stronger confined at the intersection compared to the TW o T —
states in the corresponding symmetric struciiiig. 3). Es- | sample A T-wire

pecially for the valence-band TW state, the confinement is
improved.

The calculated subband dispersions and interband absorp-
tion of this structure are shown in Fig. 8. As these results
also are calculated using an array of T intersections in the
[110] direction by cutting th&001) MQW in a depth of 15
nm, the unbound states are not the same as in the real struc-
ture.

The subband dispersidirig. 8a)] along the wire direc-
tion (k;17g)) shows a nearly parabolic shape for the
conduction-band states. In contrast, the valence-band states
show a strong nonparabolicity of the dispersion along the
wire due to the mixing of the heavy- and light-hole valence
bands. The broken inversion symmetry of the T structure
leads to a lifting of Kramer’'s degeneracy outside the zone
center. The decoupling of TW states confined at adjacent T .4'.3 AT
QW’s of the MQW structure results in flat dispersions of the 152 156 1.60 164 168 172 176 1.80
lowest conduction subband and the highest valence subband photon energy (eV)
along the MQW directionKjqo4;). The higher valence-band
states show a strong dispersion along this direction, due t0 £ g pL of the T-wire sample& andB at 40-K lattice tem-
their extended character. perature, under edge excitation with 0.1 Wfcat 632 nm(sample

The calculated interband absorptipRig. 8(b)] for the  A) and 488 ni(sampleB). The shape of the structures is schemati-
three principal light polarizations alon@01], [110], and  cally depicted in the inserts. The PL of the referef£0) QW for
[110] shows the typical peaks of the joint density of states asampleA is also displayeddashed ling
a quantum-wire subband edge of the endtgyproportional
to (hw—E,) Y2 Above the fundamental transition between growth temperature was 700 °C.
the confined TW stategcbl-vbl, several transitions to To grow a QW with low aluminum content, we used the
higher valence subbands appear, that have a different polagtigital alloy (DA) technique. During the growth of each well,
ization as the fundamental transition. This reflects the differthe aluminum shutter was opened and closed(2&h times
ent mixtures of heavy and light holes in the higher valencé&or sampleA (B), which corresponds to a DA period of 0.12
subbands. In a realistic structure, which is extended along th@.09 nm. Since this is less than the interdiffusion length of
[110] MQW direction, this is expected to show up as a con-Ga and Al during the growth, this procedure results in a
tinuum instead of separated transitions, since the higher va&homogeneous alloy. As the opening time for the aluminum
lence subbands are not confined at the intersection. Consghutter is comparable to its switching speed, the absolute
quently, in the absorption of the structure, only the lowaluminum content of the layer cannot be directly determined
confinement of the valence-band TW state will determine thérom the nominal shutter times of the MBE system. To com-
spacing to the higher subband transitions. The Coulomb inpensate for the possible deviation, we measured the transi-
teraction is expected to influence these results by the mixingon energy in the DA MQW'’s by low-temperature photolu-
of the valence bands. minescencePL) before the overgrowth. The width of the
overgrown(110 GaAs QW was then adjusted to match its
transition energy with the DA MQW transition energy. As
we discussed in Sec. llIC, this is important for a high WCE,
whereas the width of thé001) QW is not critical(compare

After the optimal design of the T-shaped structures of aFig. 5. To perform this matching, we have previously inves-
given (110 GaAs QW width has been determined, as de-tigated the dependence of the transition energy(1ih0)
scribed in Sec. Ill, we grew two of these structures by theQW’s on the well width?®
cleaved edge overgrowth technifdeusing MBE. We se- For the overgrowth, the substrates of DA MQW'’s were
lected structures with 3- and 5-nm overgrown well thick-lapped down to 9¢«m and cut into 5% 6 mm? pieces along
nesses. Th&001) multiple-quantum-well structure for the the (110 direction. They were remounted vertically on a
3-nm overgrowth nominally consists of a 500-nm GaAsspecial holder, cleaved inside the MBE chamber, and imme-
buffer layer, 20 periods of12-nm Al 11653, 30AS/20-nm  diately overgrown on the cleaved edge along (thED) direc-

Al 4Gay-As), and a 5-nm GaAs cap layer. Th@01  tion by a 2.5-(4.3) nm GaAs QW for samplé (B), a 20-
multiple-quantum-well structure for the 5-nm overgrowth (32-)nm Al, sGay -As barrier, and a 102 500 nm GaAs
nominally consists of a 500-nm GaAs buffer layer, 50 peri-cap. The growth temperature was 4800) °C and the II/V
ods of (18-nm Alg gsd5ag 93 AS/32-nm Aly Gag 7As), and a  flux ratio was 30 for sampl& (B).

10-nm GaAs cap layer. The barrier width was chosen to be In Fig. 9, we show the PL of samplédsandB at a 40-K
large enough to avoid coupling between the TW states. Thiattice temperature, excited on the overgrown edge with
relative Ga and Al flux was adjusted to give a barrier com-about 0.1 W/cm at 633 and 488 nm, respectively. The PL of
position of Al ;Ga, ;As. The llI/V flux ratio was 15, and the the (001) MQW transition and the TW transition are sepa-

(001) MQW

1% Al 12 |

2.5 nm

(110) Qw

x100

T-wire sampie B

I

(001) MQW 1
HAl] e -

photoluminescence intensity

IV. EXPERIMENTAL REALIZATION
OF THE OPTIMIZED STRUCTURES
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rated by 54 meV for sampld, and 37 meV for sampl8. and Esalé for sampleA (B) amount to about 2016) meV,
The difference in the PL efficiency of the TW transition in which is 10(7) meV more than the exciton binding energy in
the two samples is due to the different overgrowth paramthe corresponding001) QW's. This is less than the observed
eters mentioned above. Especially the thicker GaAs cap laydifference between the calculated and experimentally deter-
ers on sampl@ is leading to a higher PL yield. mined WCE’s. However, other mechanisms such as strain
A reference(110) QW of the same nominal width and shifts or unequal overgrowth on well and barrier regions of
barrier composition as in sampke was grown on a planar the (001) MQW could also account for the discrepancy. Ad-
(110 substrate after the cleaved edge overgrowth of samplditionally, thek - p model used in the calculation could not be
A. Since we could use the same growth calibration, the refprecise enough to determine the WCE to the accuracy of
erence QW is expected to be very similar to the overgrowrsome meV, especially for thin overgrown QW's. The ob-
QW. The PL of this reference QW is shown as a dotted lineserved WCE's are the highest reported up to now, which
in Fig. 9. Its transition energy coincides approximately with confirms the successful optimization of the T-shaped struc-
the transition energy of th®01) MQW, which confirms the tures for maximum WCE.
accuracy of the design and growth of 1.0 QW after the
characterization of th€001) MQW transition energy. The
larger inhomogeneous width of th&10 QW transition(24
meV) compared to thé001) MQW transition(5 meV) is due In conclusion, we calculated and optimized the confine-
to the narrow well width of thé110) QW compared to the ment energies for electrons and holes at the T intersection of
(001) MQW combined with a higher interface roughnesstwo QW'’s. We have shown that, for an optimized design,
during growth on thg110) surface compared to th@01) e-h pair WCE's of 40 meV are achievable. The valence-band
surface’® The inhomogeneous width of the TW transition is WCE is found to be between 2 and 5 meV in the considered
20 meV. A calculation of the dependence of the TW andwell-width range. The Coulomb interaction, which was ne-
(110 QW transition energies on th@10) QW width gives glected in the calculations, results in an enhanced confine-
about 40(60) meV/nm, respectively. The effective interface ment of the holes at the intersection. This is because the
roughness of th€110) QW can thus be estimated to 0.6 nm. exciton binding energy is larger than the hole subband sepa-
The ratio between the two calculated dependencies correation, and thus mixes different hole subbands. The success-

V. CONCLUSION

sponds to the ratio of the inhomogeneous widths of TW andul optimization of the T-shaped structures is confirmed by

(110 QW PL, if we neglect the small width of th€@01) QW

the growth of an optimized structure, performing a confine-

PL. The experimental ratio of 20/25 is in reasonable agreement energy of 54 meV, which is significantly higher than

ment with the calculated ratio 40/60.

previously reported.

To compare the experimental WCE with theory, we have

calculated the WCE for the two structures, giving @)
meV for sampleA (B). The experimental WCE thus super-
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