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We study the dynamical behavior of disordered quantum well-based semiconductor superlattices where the
disorder is intentional and short-range correlated. We show that, whereas the transmission time of a particle
grows exponentially with the number of wells in an usual disordered superlattice for any value of the incident
particle energy, for specific values of the incident energy this time increases linearly when correlated disorder
is included. As expected, those values of the energy coincide with a narrow subband of extended states
predicted by the static calculations of Domı´nguez-Adameet al. @Phys. Rev. B51, 14 359~1994!#; such states
are seen in our dynamical results to exhibit a ballistic regime, very close to the WKB approximation of a
perfect superlattice. Fourier transform of the output signal for an incident Gaussian wave packet reveals a
dramatic filtering of the original signal, which makes us confident that devices based on this property may be
designed and used for nanotechnological applications. This is more so in view of the possibility of controlling
the output band using a dc-electric field, which we also discuss. In the conclusion we summarize our results
and present an outlook for future developments arising from this work.@S0163-1829~96!02943-8#

I. INTRODUCTION

In recent years, there has been a growing interest in stud-
ies of disordered systems where the disorder presents some
kind of correlation~see Ref. 1 and references therein!. Aim-
ing to find a physically realizable system of this type,
Sánchez and Domı´nguez-Adame developed a simplified,
continuous model in Ref. 2 for studying disordered semicon-
ductor superlattices~SL’s! where the disorder exhibits short-
range spatial correlations. In this particular class of disor-
dered SL’s bands of extended states appear, opposite to the
conventional view that in one-dimensional~1D! random sys-
tems almost all eigenstates are exponentially localized~see,
e.g., Ref. 3!. Much more realistic calculations proved that
these extended states are relevant to transport properties of
actual superlattices, giving rise to large dc conductivities
when the Fermi energy lies in one of these bands.4 However,
all those studies were carried out from a purely static view-
point, and provided no information about the dynamics of
electrons in this type of nanostructure.

In view of the lack of this kind of analysis, we undertook
the study of the dynamical properties of electrons in these
systems to complete the static picture, already quite thor-
ough. Thus, we compute the behavior of a wave packet in-
cident on an intentionally disordered semiconductor SL by
numerically solving the 1D time-dependent Schro¨dinger
equation for the complete Hamiltonian~i.e., without analyti-
cal approximations! in the presence of an electric field. We
explore several dynamical characteristics of our system, such
as the tunneling times and the relation between the dwell
time and the density of states.5–7 In addition, we estimate the
characteristic time over which the resonant quasilevel can be

established, showing that it is sufficiently large to allow the
wave packet to tunnel close to the ballistic regime. We also
consider the competition between quantum coherence, pre-
served by correlated disorder, and the loss of quantum co-
herence due to an electric field acting on the SL. It is impor-
tant to clarify that loss of quantum coherence8 means in this
context any elastic processes causing a complete localization
of electronic states since we are not considering dissipative
processes. Finally, we study the filterlike properties of these
systems using the Fourier transform of thetransmittedpart
of the wave packet and its dependence of the electric field,
obtaining that it is possible to control the width and the cen-
ter of the filtered band. It goes without saying that a correct
understanding of these properties is crucial from the perspec-
tive of technological applications of intentionally disordered
SL’s.

The paper is organized as follows. In Sec. II we present
our model and summarize our previous work,4,9 which we
find convenient for a better understanding of the present pa-
per, specifically as regards the behavior of the transmission
coefficient, with and without electric field, for correlated and
uncorrelated disordered SL’s. The body of the paper is Sec.
III where we present our dynamical study of the system. We
begin by examining the transmission probability and the
transmission time for the two different kinds of SL’s. We
compute the dependence of the transmission time with the
size of the system in the WKB approximation for the ballis-
tic regime and compare it with the numerical results. Most of
the section is devoted to the relation between the mean dwell
time and the density of states and, in addition, to the physical
significance of the dwell time in this class of disordered sys-
tems. We complete this characterization with a study of the
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spreading of the wave packet as a function of time. Follow-
ing this equilibrium analysis, we devote Sec. IV to the study
of the effects produced by the electric field on the quantities
presented in the last section, placing particular emphasis on
the filtering properties of the correlated disordered SL’s. Fi-
nally, in Sec. V, we discuss our results and how these can be
related to actual measurements to infer the main characteris-
tics of the bands of the theoretically predicted extended
states from experiments on SL’s. We close the paper with a
few prospects on future developments that may be attained
starting from the present results.

II. MODEL AND BACKGROUND

We resume in this section previous results by us4,9 for
correlated disordered SL’s in the stationary case, which will
be useful for the discussion of the dynamical properties
which we address in the next section. For our present pur-
poses, it is enough to focus on electron states close to the
band gap withkuu50 and use the one-band effective-mass
framework to calculate the envelope functions,

F2
\2

2m*
d2

dx2
1VSL~x!2eFxGc~x!5E&c~x!, ~1!

where an explicit dependence of bothE andc(x) on quan-
tum numbers is understood and they will be omitted in the
rest of the paper. We have taken a constant effective-mass
m* at theG valley although this is not a serious limitation as
our description can be easily generalized to include two dif-
ferent effective masses. In the simplest picture, the SL po-
tentialVSL derives directly from the different energies of the
conduction- and valence-band edges at the interfaces. A
single quantum well~QW! consists of a layer of thickness
dA of a semiconductorA embedded in a semiconductorB. In
our model of disordered SL, we consider thatdA takes at
random one of two values,a anda8. We call this a random
SL ~RSL!. The thickness of layersB separating neighboring
QW’s is assumed to be the same in the whole SL,dB5b. A
random dimer SL~DSL! is built4 by imposing the additional
constraint that QW’s of thicknessa8 appear only in pairs,
called hereafter a dimer QW~DQW!, as shown in Fig. 1. As
a typical SL, we have chosen a GaAs-Ga0.65Al 0.35As struc-
ture. In this case, the conduction-band offset isDEc50.25
eV, and the effective mass ism*50.067m,m being the elec-
tron mass. The origin of energies is taken at the GaAs
conduction-band edge. In our computations we have taken
a5b532 Å anda8526 Å. The fraction of QW’s of thick-
nessa8 is 40% of the total number of QW’s of the SL. This
is not an essential parameter of the model as similar results
are obtained taking other fractions.

We now consider a single DQW as shown in Fig. 1 in an
otherwise perfect and periodic SL. We showed analytically
in Ref. 4 that there is an specific energy value (Er) for which
the so built SL is perfectly transparent, i.e.,t(Er)51, where
t is the transmission coefficient. The value ofEr depends
only on geometrical parameters~layer thicknesses! and it can
be fixed at the fabrication stage. This result concerning reso-
nant tunneling through a single DQW in an otherwise peri-
odic SL does not imply that such a resonant phenomenon
will survive in a disordered SL, that is, when more than one

DQW is randomly placed in the SL. The transfer-matrix for-
malism allows us to compute exactly, although not in a
closed analytical fashion, the transmission coefficient in an
arbitrary SL. An example of the behavior of the transmission
coefficient t around the resonant energyEr50.155 . . . is
shown in Fig. 2~a! for a GaAs-Ga0.65Al 0.35As with N5200
barriers.

We next elucidated whether the physical mechanisms giv-
ing rise to delocalization in unperturbed systems are of rel-
evance in the presence of an electric field, or the presence of
the field destroyed the quantum coherence that exists at
F50. To obtain the transmission coefficient in the presence
of an electric field, we develop a similar approach to that
given in Ref. 10. As usual in scattering problems, we assume
an electron incident from the left and define the reflection,
r , and transmission,t, amplitudes by the relationships

c~x!5H eik0x1re2 ik0x, x,0

teikLx, x.L,
~2!

where k0
252m*E/\2, kL

25@2m* (E1eFL)/\2#, and L is
the length of the SL. The transmission coefficient is com-
puted as t5(kL /k0)utu2. Now we define c(x)
5(utuAkL)q(x)exp@iz(x)#, where q(x) and z(x) are real
functions. Inserting this factorization in Eq.~1!, we have
zx(x)5q22(x) and

F2
\2

2m* S d2dx2
2

1

q4~x! D1VSL~x!2eFx2EGq~x!50. ~3!

This nonlinear differential equation must be supplemented
by appropriate boundary conditions. However, using Eq.~2!
this problem can be converted into an initial conditions equa-
tion. In fact, it is straightforward to prove that

q~L !5kL
21/2, qx~L !50, ~4!

and that the transmission coefficient is given by

FIG. 1. Schematic diagram of the conduction-band profile of a
SL containing a DQW.
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t5
4k0q

2~0!

112k0q
2~0!1k0

2q4~0!1q2~0!qx
2~0!

. ~5!

Hence, we can integrate numerically~3! with the initial con-
ditions ~4! backwards, fromx5L up to x50, to obtain
q(0) andqx(0), thus computing the transmission coefficient
for given incoming energyE and applied voltageV5FL.
Figure 2~b! shows the transmission coefficient as a function
of the incoming energy for a moderate value of the applied
voltageF510 kV/cm. We can see how the field shifts the
miniband to lower energies and destroy some of the quasi-
bound states, but an important number of them survive. Then
we have achieved the first goal of this paper: to show that the
extended states that appear in DSL’s survive in the presence
of an electric field. Remembering that we proved previously4

that these states also survive when interface roughness is
taken into account, we can conclude that the delocalization
due to structural correlations in the disorder is a very robust
phenomena. In the next section we tackle the principal ob-
jective of this paper, namely, to present a complete dynami-
cal study of the exciting properties of electrons in disordered
DSL.

III. DYNAMICAL RESULTS

A. Numerical method

As we mentioned in the Introduction, we are interested in
the quantum diffusion of wave packets under an applied

electric field in semiconductor SL’s. The equation which
rules the evolution of the wave packet is the time-dependent
Schrödinger equation,

i\
]C~x,t !

]t
5H~x!C~x,t !, ~6!

whereH(x) is the single-electron Hamiltonian given in~1!.
This equation has an elegant formal solution, given by

C~x,t !5e2~ i /\!H~x!tC~x,0!. ~7!

Using Cayley’s form for the finite difference representation
of the exponential11

e2~ i /\!H~x!dt.
12

i

2\
H~x!dt

11
i

2\
H~x!dt

,

we obtain the finite-difference equation

S 11
i

2\
Hdt DC j

k115S 12
i

2\
Hdt DC j

k , ~8!

where we have replaced the wave function by its finite-
difference approximation, in time~index k50,1, . . . , with
tk5kdt) and in space~index j50,1, . . . ,N) with xj5 jdx
andN the number of grid points. We will use a centered
finite-difference approximation inx for H(x) and hence we
have just a complex tridiagonal system. This method is com-
monly used in the solution of the time-dependent Schro¨-
dinger equation12 because it ensures strict norm conservation
of the wave function at all times, and the error is only of the
order (dt3). Norm conservation has been used at every time
step as a first test of the accuracy of results. We use a uni-
formly spaced set of spatial mesh points much larger than the
SL’s under consideration, and we transform the continuous
boundary conditions, which readC(`,t)5C(2`,t)50, to
the corresponding discrete onesC21

k 5CN11
k 50. Of course

this approximation is valid only if we chooseN sufficiently
large to make sure that the wave function never comes close
to the boundaries. We finally note that our initial wave func-
tion will be a superposition of plane waves of the form

C~x,0!5@2p~Dx!2#21/4expF ik0x2~x2x0!
2

4~Dx!2 G , ~9!

where the average kinetic energy isE5\2k0
2/2m* .

B. Tunneling times and other dynamical tools

The subject of tunneling times is rich in contradictory
definitions and results.5,7,13When we measure thetransmis-
sion time tT , we are trying to measure the time that atrans-
mitted particle spent in the SL. The transmission time is
straightforwardly obtained in the WKB limit for a ballistic
electron,

tT
WKB~E!5E

0

LA m*

2~DEc2E!
xw~x!dx1E

0

LAm*

2E
xb~x!dx,

~10!

FIG. 2. Transmission coefficientt versus energyE for a DSL at
~a! F 5 0 and~b! 10 kV/cm. The GaAs-Ga0.65Al 0.35As SL consists
of N5200 barriers ofb532 Å, whereas the thicknesses of QW are
a532 Å anda8526 Å.
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wherexb(z) andxw(z) are the characteristic functions of the
barriers and the wells, respectively. The mean dwell time
tdw is

tdw~E!5E
0

`

dtE
0

L

uc~x,t !u2dx, ~11!

and measures the average time spent by a wave packet in a
given region of space. This time does not distinguish be-
tween particles transmitted or reflected, and hence the mean
dwell time becomes the transmission time of a transmitted
particle when most of the wave packet is transmitted, as was
pointed out by Bu¨ttiker and Landauer.5

Numerically, it is simple to measuretdw , and physically it
is a powerful tool to measure the density of states, as can be
shown that7

r~E!5
1

p\
tdw~E!. ~12!

According to Ref. 7, this relationship is only valid for
symmetrical one-dimensional structures. For nonsymmetrical
structures it should be replaced by r(E)
5(1/2p\)@ tdw

r (E)1tdw
l (E)#, where the superscript refers to

electrons coming from the right (r ) or from the left (l ).
However we have found no differences betweentdw

r (E) and
tdw
l (E) with the parameters that we are using.
Nevertheless, as Eq.~10! is only valid in a perfect ballistic

regime and the mean dwell time is only the transmission
time in an idealized limit, we need to develop a method to
measuretT . This method is based on the probabilityPT that
at time t the particle is found to have crossed the SL,

PT~ t !5E
L

`

uc~x,t !u2dx, ~13!

or the probabilityPR that the particle is found to have been
reflected back by the SL,

PR~ t !5E
2`

0

uc~x,t !u2dx, ~14!

as will be explained in the next section.
To get an estimation of the spreading of the wave packet

as a function of time, we will use the time-dependent inverse
participation ratio~IPR! and the mean-square displacement
(s), defined, respectively, as

IPR~ t !5E
2`

`

uc~x,t !u4dx, ~15a!

s~ t !5E
2`

`

~x2 x̄!2uc~x,t !u2dx. ~15b!

with

x̄5E
2`

`

xuc~x,t !u2dx. ~16!

Usually the IPR is a good estimation of the spatial extent of
electronic states. Delocalized states are expected to present
small IPR~for long times IPR;1/L), while localized states

have larger IPR. The mean-square displacement is frequently
also used to describe wave packet dynamics. In the asymp-
totic regime (t→`) one expects a behavior of the form
s(t);tg. Here 0,g,1 for localization,g51 for ordinary
diffusion, 1,g,2 for superdiffusion, andg52 for ballistic
regime. The latter is found in homogeneous systems.14

C. Quasiballistic scattering

In this section we study the interaction of a Gaussian
wave packet with average kinetic energyE, with the two
different classes of disordered SL’s, RSL, and DSL, which
we introduced in Sec. II. For a RSL, we of course expect that
the wave packet will be essentially reflected for any selected
energy. However, in the case of a DSL we have two possible
scenarios. On the one hand, if the dwell time is sufficiently
large to allow a quasibound state of characteristic widthG to
be established, namelytdw.\/G ~see, for example, Ref. 6!,
we expect that particles with the energy close to the resonant
one will be transmitted. If, on the contrary, the dwell time is
not sufficiently large, we never have a quasibound state and
the behavior of the DSL will be the same that a RSL.A
priori , we have no means to decide between these two pos-
sibilities, hence the necessity of the dynamical study that we
are summarizing here to clarify whether extended states do
play a role in transport properties of DSL or not.

Figure 3 collects the results of a typical simulation of a
wave packet for a DSL. In Fig. 3~a! we have a wave packet
with a central energy ofE50.155 eV, very close to the reso-
nant one obtained in Sec. II, traveling to impinge on a DSL.
Some time afterwards, we can see in Fig. 3~b! that a small
packet has emerged in the right part of the SL. We realize
that the structure hasfiltered the initial wave packet, allow-
ing only to pass the energies laying in the subband of ex-
tended states. We can confirm this interpretation by perform-
ing the Fourier transform of the emergent wave packet and
comparing it with the initial one as shown in Fig. 3~c!. We
can see that the emergent wave packet has an energy spec-
trum much narrower than the initial one, peaked around the
resonance; this effect turns out to be much more dramatic the
larger the SL is, but we preferred to keep within the limits of
available superlattices~note thatN550 in Fig. 3! instead of
increasing the number of wells to get more spectacular re-
sults.

We can understand better what is happening by looking at
the dynamical evolution of the probability of transmission
~reflection! PT(E,t) @PR(E,t)#, i.e., the probability of find-
ing the particle in the right~left! side of the SL with energy
E at time t. We notice that the stationary transmission prob-
ability t(E) which we commented upon in Sec. II is just the
limit of PT(E,t),

t~E!5C lim
t→`

PT~E,t !, ~17!

whereC is a suitable normalization constant which depends
on Dx and tends to unity asDx→`. In Fig. 4, we plot
PT(E,t) andPR(E,t) as a function of time for the resonant
energyE50.155 eV~solid line! and forE50.180 eV~dotted
line! for a DSL, and forE50.155 eV ~dashed line! for a
RSL. For a RSL the results are similar for any energy; we
have just selectedEr as a typical behavior. For the DSL there
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is a great dependence of the energy. When we select an
energy far from the resonant one, we have a behavior similar
to that of the RSL. However, when we choose the resonant
one, in a short interval of timePT reaches practically its
maximum value. In Fig. 3~b! we can see that this fast en-
hancement is due to the arrival of a compact packet corre-
sponding to the components of the initial wave with energies
closer toEr . Again, we have selected a small number of
wells to allow an experimental verification of these results,
and we have checked that the larger the number of wells, the
larger the differences between RSL and DSL.

We are now going to usePT andPR to find approximately
the transmission time (tT). We will choose the following
convention: We obtain the time when the wave packet en-
tries in the SL by finding the maximum value of
]PR(t,E)/]t, which indicates the time when the probability
of finding the particle inside the SL is maximum, and we will
fix our time origint in at that instant~see Fig. 5!. This will be
our time origin t in . As for the time when the wave packet
exits the SL, we can think of it as the time when most of the
particles transmitted are on the right part of the SL, i.e., the
time tout whenPT is arriving to the final plateau~cf. Fig. 5!.
We obtain tout by finding the maximum value of
]PT(t,E)/]t.

If the particle transmitted through the DSL is tunneling
through a ballistic channel induced by spatial correlations in
the disorder, the packet will pass the same amount of time in
each well. Therefore, the time spent by the packet in passing
through the whole SL would scale linearly with the number
of wells, i.e., the length of the SL. One of the goals of this
paper is to show not only that there is a significant enhance-
ment of the transmission probability for particular values of
the energy in DSL, but also that we are in the presence of a
ballistic transmission phenomenon in a disordered system,
very close to the ideal WKB case for periodic SL’s. This
conclusion can be drawn from Fig. 6. There we have plotted
the transmission time as a function of the number of wells,
for both types of SL’s, namely RSL and DSL, selecting an
energy laying in the DSL miniband. For comparison, we also
show the results predicted by the WKB expression Eq.~10!.
Remarkably enough, the DSL the behavior is purely linear
and very close to that predicted by the WKB expression. On
the contrary, for the RSL we have an exponential behavior
characteristic of Anderson localized states. It thus becomes
well established, from the dynamical view point, the nature
of the DSL as a disordered system with good transport prop-
erties.

We now turn our attention to the mean dwell time. When
we have a particle situated in an eigenstate, the mean dwell
time in the DSL is exactly the transmission time and has a
clear relationship with the density of states.7 On the other
hand, if we have a Gaussian wave packet the relation with

FIG. 3. The initial probability densityuc(z,0)u2, corresponding
to a Gaussian function with Dx5200 Å and energy
E5Er50.155 eV, is shown in~a!. The potential energyVSL(x) is
plotted as a function ofx, for a DSL ofN550 barriers ofb532 Å,
whereas the thicknesses of QW area532 Å anda8526 Å. The
inset in~a! is an enlarged view of a portion of the SL potential. The
probability densityuc(z,t)u2 at time t52 ps is shown in~b!. The
Fourier transform for the initial wave packet@see~a!#, uc(E,0)u2

~dashed line! and for the transmitted packet through the DSL@see
~b!# at time t52 ps, uc(E,t)u2 ~solid line! are shown in~c! as a
function of the energy.

FIG. 4. Dynamical transmissionPT ~lower curves! and reflec-
tion PR ~upper curves! probabilities are shown as a function of time
for a DSL with the same parameter as in Fig. 3, at energy
E5Er50.155 eV~solid line! and 0.180 eV~dotted line! and for a
RSL ~with the same parameters as that of a DSL! at energy
E50.155 eV~dashed line!. The inset is an enlargement of the trans-
mission probability for a RSL, the lowest curve in the plot.
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the density of states is not at all evident. However, if we
consider wave packets with small spread in energies we can
expect that Eq.~12! continues to hold. In Fig. 7 we have
plotted thetdw of an initial Gaussian wave packet of energy
E5Er as a function of the number of wells. We can see that
for the DSL the behavior is close to the linearity exhibited by
the transmission time in Fig. 6~solid line represents a linear
fit!. On the contrary, for the RSL thetdw exhibits a plateau
because for this kind of SL’s the dwell time is dominated by
tR . In Fig. 2 we saw that for a RSL most part of the wave
packet just penetrates in the SL a small number of wells;
thereforetdw does not depend on the SL’s size as soon as the
SL is larger than those few wells. This result agrees with the
typical consistency check for any definition of tunneling
time,13 wheretdw is related totT and tR by the expression

tdw5~12t!tR1ttT . ~18!

For a RSL when the number of wells grows,t goes to zero.
In this casetdw is equal totR , and hence the plateau ob-
served in Fig. 7.

From the preceding considerations and results, we can be
confident that in the DSL, when the transmission and dwell
times behave similarly and the propagation is quasiballistic,
the aforementioned relationship between peaks in the density
of states corresponding to peaks in the dwell time still holds,
the only discrepancy being just a normalization constant, re-
lated to the amount of reflected final states. Following this
idea, we have plotted in Fig. 8 the density of states, obtained
by using Eq.~12!. We can see how we have a peak intdw
~and correspondingly in the density of states! for the resonant
energy, as was expected for a packet that transmits through
the whole SL by using the ballistic channel originated by the
spatial correlation in an otherwise disordered SL. We note
that this coincides with the predictions from the stationary
analysis in Ref. 9, thereby confirming again the results in
that paper. In particular, the shape of the density of states
curve in Fig. 8 is very similar to that obtained in our previous
works.

To conclude this zero field study of the dynamics of
DSL’s, we close the section by studying the spreading of the
initial wave packet versus time for both kinds of SL’s. In
Fig. 9, we have plotted on a log-log scale the mean-square
displacements as a function of time for a wave packet of
energyE5Er incident in a DSL~solid line! and in a RSL
~dot-dashed line!, and for energyE50.180 eV impinging on

FIG. 5. We show the typical behavior of the~a! reflectionPR

and ~b! transmissionPT probabilities versus time for the resonant
energy in a DSL with the same parameters as in Fig. 3. The dashed
line represents the derivatives~a! ]PR(t,Er)/]t and ~b!
]PR(t,Er)/]t. The arrows mark the maximum values of the deriva-
tives ofPR andPT , which we take, respectively, as the initial time
t in ~i.e., when the wave packet goes inside the SL! and the outside
time tout ~i.e., when the wave packet goes out of the SL!. The
transmission time is defined simply astT5tout2t in .

FIG. 6. The transmission timetT at the resonant energy as a
function of the number of wellsN for a DSL ~squares! with a linear
fit ~dashed line! and a RSL~filled circles! with an exponential fit
~solid line!. Also depicted is the WKB approximation for the DSL
case~dot-dashed line!, showing a good qualitative agreement~same
linear behavior! with the numerical results for the DSL. Parameters
for both SL’s are the same as in Fig. 3.
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a DSL ~dashed line!. At short times we can see a practically
constant behavior ofs which can be associated to the period
while the wave packet is traveling towards the SL’s. When
the packet hits the SL, we see during a short time a decrease
of s, followed immediately by a rapid increasing of this
magnitude. The decreasing is a consequence of the tails of
the wave packet reaching the leading part, which is being
retained by its collision with the SL; once the whole packet
is interacting with the SL, the behavior is close to powerlike.
We have fitted the results shown in Fig. 9 for times larger
than 1 ps to a function of the forms(t);tg. We have ob-
tained for the DSL at the resonant energyg51.120, i.e., we
are in a superdiffusive regime, whereas for the DSL away
from the resonant energyg51.000, right at the limit be-
tween a localized regime and an ordinary diffusive one. Fi-
nally, for the RSLg50.837, indicating that we are clearly in
a localized regime. Thes for the RSL is always much lower
than for the DSL and increases with a larger approximate
exponent, i.e., after some time (;1 ps! the packet is much
more localized for the RSL than for the DSL~even out of the
resonance!. This is evidently a consequence of localization
effects coming from the uncorrelated disorder of the RSL,
and whose influence is much less in the DSL case given the
availability of extended states. Such a phenomenon further
confirms the conclusions that we have been drawing all
along this section. We will come back to these results in the
next section, when dealing with electric field effects.

IV. ELECTRIC FIELD EFFECTS

The zero field simulations that we have been presenting
provide an incomplete picture of electron dynamics in

DSL’s, as in this case it is obvious that technologically ap-
plicable phenomena would involve electric fields. Therefore,
in this section we study the dependence of the dynamical
characteristics discussed in the previous paragraphs on an
electric field. In Sec. II we explained that the subband of
extended states appearing in DSL’s is shifted to lower ener-
gies and reduces its width in the presence of moderate elec-
tric fields. We want to confirm that the correspondingly
shifted quasibound states will have time enough to be estab-
lished in the dynamical interaction of a Gaussian wave
packet with a DSL potential when there is an applied field.
To this end, in Fig. 10 we have plottedPT for a Gaussian
wave packet incident on a DSL withE50.155 eV, for dif-
ferent values of the electric fieldF.

We can see that, at least for moderate fields, the dwell
time is large enough (tdw.\/G) to allow the quasibound
states to be established thus permitting the transmission of
the resonant components of the packet. The maximum value
of PT decreases with the field due to the shift of the mini-
band and because the miniband becomes much narrower the
larger the electric field applied is. Interestingly, we can still
find a dynamical resonant energy looking at the Fourier
transform of the transmitted wave packet, as shown in Fig.
11. We want to stress that these results can be of interest for
applications, because a DSL turns out to be a structure that
works like an adaptive electronic filter, namely, by tuning
properly the SL parameters we can filter the energies con-
tained in a narrow band. Moreover, this band can be dis-
placed to the desired values by selecting a particular value of
the applied electric field.

There is another aspect of the influences of electric fields

FIG. 7. Mean dwell timetdw at the resonant energy as a function
of the number of wellsN, for a DSL ~circles! and a RSL~squares!.
A linear fit for the DSL~solid line! is also shown. Parameters for
both SL’s are the same as in Fig. 3.

FIG. 8. Density of statesr as a function of the incident energy
E obtained measuringtdw of a Gaussian wave packet of energyE in
a DSL with the same parameters as in Fig. 3. The line is only a
guide to the eye.
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on electron dynamics which is worth considering, namely,
the following: It is well known that, when an electric field is
applied to a periodic SL, the localization of the initially ex-
tended states produces an oscillatory behavior of the wave
packet, the so-called Bloch oscillations. Of course, Bloch
oscillations require a quasiperfect quantum coherence and a
perfectly defined phase to be self-sustained in time. This is
not the case in a DSL where electronic states increment their
phase by a factorp whenever they pass over a DQW.2 The
question then arises as to what will the corresponding phe-
nomenology in this case be. In order to answer this question,
in Fig. 12 we plot the IPR, defined in Eq.~15!, as a function
of time for ~a! a perfect SL,~b! a DSL and~c! a RSL, in the
presence of an electric field. The initial condition of these
simulations was that, att50, we placed a Gaussian wave
packet with an energy ofE50.155 eV andDx520 Å in the
center of each one of those SL’s with 50 wells. In our case
F510 kV/cm,d5a1b564 Å. In an ordered SL, the Bloch
period will then beTBloch5h/eFd;0.646 ps, in perfect
agreement with what was obtained from Fig. 12~a!. For the
disordered superlattices there is an oscillatory behavior at the
beginning but in a short time the IPR achieves a randomly
fluctuating, but stationary in mean, value. This indicates the
existence of decoherence effects in both disordered lattices,
the difference between the RSL and the DSL being that the
latter shows a smaller mean value of the IPR, in agreement
with the less localized character of its states. The remnants of
oscillatory behavior for the disordered SL’s are more clearly
characterized by looking at the mean-square displacement
s as a function of the time, which is shown in Fig. 13.

Again, we can see how in the DSL the wave packet is much
more delocalized than in the RSL as a consequence of the
presence of a narrow band of extended states.

V. DISCUSSION AND CONCLUSIONS

In this work we have successfully shown that the good
transport properties predicted by previous static studies of
SL’s with correlated disorder give rise to the corresponding
dynamical phenomena of interest. To this end, we have re-
ported on dynamical properties of electrons in intentionally
disordered SL’s, computed by using high-accuracy numeri-
cal methods to solve the time-dependent Schro¨dinger equa-
tion for the complete Hamiltonian. In this respect, as the two
main global conclusions of the present paper, we want to
stress, first, that the dynamical results we show prove inde-
pendently the existence of extended states with physical con-
sequences in disordered systems, and second, that the valid-
ity of our previous static calculations in Refs. 4 and 9 to
characterize electron transmission through nanostructures
has been set on firm grounds due to its perfect agreement
with the dynamical analysis.

Aside from the above general conclusion, which we draw
from the consideration of a number of dynamical tools, we
would like to summarize a few aspects more that we have
learned from our simulation program. In particular, we have
proposed a method to find the transmission time by using the
temporal transmission probability, provided that such prob-
ability presents abrupt changes as a function of time. By
means of this procedure to compute the transmission time,

FIG. 9. Mean-square displacements of an initial Gaussian
wave packet incident in a DSL at the resonance energyEr50.155
eV ~solid line!, and at energyE50.180 eV~dashed line! and for a
RSL at energyE50.155 eV~dot-dashed line!. Parameters for both
SL’s are the same as in Fig. 3. Note the log-log scale.

FIG. 10. Transmission probabilityPT as a function of time for a
DSL with the same parameters as in Fig. 3, at energy
E5Er50.155 eV, for different values of the electric fieldF51
kV/cm ~dashed line! and 5 kV/cm~dot-dashed line!. For compari-
son we also show the result forF50 ~solid line!.
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we have been able to show that the propagation of electrons
with energies in the subband of extended states of a DSL is
ballistic, very similar to that of ordered SL’s. This is a dra-
matic manifestation of delocalization by correlations, more
so when compared to the exponential growth of the transmis-
sion time that we have obtained for usual RSL’s. In that
regime, we have shown that the relationship between dwell
times and density of states holds for Gaussian wave packets,
by computing the density of states and finding the same re-
sult as in our stationary calculations. Interestingly, the fact
that correlations do not impede the phase decoherence of the
wave packet, the properties depending on symmetries of the
system~translational invariance! are not recovered. This is
the case, e.g., of Bloch oscillations. In any event, measure-
ments of the IPR point out once more the differences be-
tween DSL’s and RSL’s. All this characterization is con-
firmed by measuring the mean-square displacement of
electrons, which are seen to evolve faster in DSL’s. Finally,
we have also confirmed that low to moderate electric fields
do not destroy the transport properties of DSL’s, which is
very important if DSL’s are to be built and used for any
practical purpose.

To conclude, a few words are in order regarding possible
applications of the present work. It seems quite clear to us
that several of our results can be useful for nanotechnologi-
cal devices with specific, special features. To begin with, the
great difference of transmission times between extended
states and localized ones may provide a powerful tool for
measure the extended character of the states in open systems.

FIG. 11. The Fourier transform for the transmitted packet versus
energy in the presence of an electric fieldF510 kV/cm ~dashed
line!; the solid line shows the result at zero field. The insets show
the transmission coefficientt as a function of energy for the two
values of the electric fieldF for reference. The SL parameters are
the same as in Fig. 3. FIG. 12. IPR of an initial Gaussian wave packet placed in a~a!

perfect SL,~b! DSL, and ~c! RSL as a function of time. For the
three kinds of SL’s, the number of wells isN5200 and the rest of
parameters are the same as in Fig.3.

FIG. 13. Mean-square displacements of an initial Gaussian
wave packet placed in a DSL~solid line! and RSL~dashed line!, in
the presence of an electric fieldF510 kV/cm, as a function of time.
SL parameters are the same as in Fig. 12.
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Besides, it can also be used to measure the amount and char-
acter of the disorder inherently present in anyperiodic SL,
by obtaining the width of the band of extended states in the
actual SL and comparing it to the theoretically predicted one.
However, what we think by far is the most promising appli-
cation of DSL in nanotechnology has to do with their filter-
like behavior. We have seen that it is possible, by means of
an applied electric field, to control the center and width of
the band of extended states, therefore allowing for a tunable
filtering of wave packets, i.e., of electrons. This capability,
present already in practically achievable DSL’s of some 50
wells, can be used to design a different family of electronic
devices. In this respect, it is quite clear that a natural exten-
sion of this work would be to study the interaction of RSL
and correlated disordered SL’s, with an ac-electric field, us-

ing the complete Hamiltonian. Preliminary tight-binding
results15 appear to show exciting phenomena in these struc-
tures. We envisage that appropriate choices of the frequency
and/or intensity of the field can give rise to crucial changes
in the filtering properties of DSL’s. Further work along these
lines is currently in progress.16
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