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We study the dynamical behavior of disordered quantum well-based semiconductor superlattices where the
disorder is intentional and short-range correlated. We show that, whereas the transmission time of a particle
grows exponentially with the number of wells in an usual disordered superlattice for any value of the incident
particle energy, for specific values of the incident energy this time increases linearly when correlated disorder
is included. As expected, those values of the energy coincide with a narrow subband of extended states
predicted by the static calculations of Domguez-Adameet al. [Phys. Rev. B51, 14 359(1994]; such states
are seen in our dynamical results to exhibit a ballistic regime, very close to the WKB approximation of a
perfect superlattice. Fourier transform of the output signal for an incident Gaussian wave packet reveals a
dramatic filtering of the original signal, which makes us confident that devices based on this property may be
designed and used for nanotechnological applications. This is more so in view of the possibility of controlling
the output band using a dc-electric field, which we also discuss. In the conclusion we summarize our results
and present an outlook for future developments arising from this W}8&163-182806)02943-§

[. INTRODUCTION established, showing that it is sufficiently large to allow the
wave packet to tunnel close to the ballistic regime. We also
In recent years, there has been a growing interest in stud:onsider the competition between quantum coherence, pre-
ies of disordered systems where the disorder presents sorserved by correlated disorder, and the loss of quantum co-
kind of correlation(see Ref. 1 and references thejeitim- herence due to an electric field acting on the SL. It is impor-
ing to find a physically realizable system of this type, tant to clarify that loss of quantum cohereficeeans in this
Sanchez and Dormguez-Adame developed a simplified, context any elastic processes causing a complete localization
continuous model in Ref. 2 for studying disordered semiconof electronic states since we are not considering dissipative
ductor superlatticeéSL'’s) where the disorder exhibits short- processes. Finally, we study the filterlike properties of these
range spatial correlations. In this particular class of disorsystems using the Fourier transform of tin@nsmittedpart
dered SL's bands of extended states appear, opposite to thé the wave packet and its dependence of the electric field,
conventional view that in one-dimensiofdD) random sys- obtaining that it is possible to control the width and the cen-
tems almost all eigenstates are exponentially localizeg, ter of the filtered band. It goes without saying that a correct
e.g., Ref. 3. Much more realistic calculations proved that understanding of these properties is crucial from the perspec-
these extended states are relevant to transport properties tbfe of technological applications of intentionally disordered
actual superlattices, giving rise to large dc conductivitiesSL's.
when the Fermi energy lies in one of these bahHswever, The paper is organized as follows. In Sec. Il we present
all those studies were carried out from a purely static view-our model and summarize our previous wrkywhich we
point, and provided no information about the dynamics offind convenient for a better understanding of the present pa-
electrons in this type of nanostructure. per, specifically as regards the behavior of the transmission
In view of the lack of this kind of analysis, we undertook coefficient, with and without electric field, for correlated and
the study of the dynamical properties of electrons in thesaincorrelated disordered SL's. The body of the paper is Sec.
systems to complete the static picture, already quite thorHl where we present our dynamical study of the system. We
ough. Thus, we compute the behavior of a wave packet inbegin by examining the transmission probability and the
cident on an intentionally disordered semiconductor SL bytransmission time for the two different kinds of SL’s. We
numerically solving the 1D time-dependent Salinger compute the dependence of the transmission time with the
equation for the complete Hamiltonidhe., without analyti-  size of the system in the WKB approximation for the ballis-
cal approximationsin the presence of an electric field. We tic regime and compare it with the numerical results. Most of
explore several dynamical characteristics of our system, sudhe section is devoted to the relation between the mean dwell
as the tunneling times and the relation between the dwelime and the density of states and, in addition, to the physical
time and the density of statés’ In addition, we estimate the significance of the dwell time in this class of disordered sys-
characteristic time over which the resonant quasilevel can bems. We complete this characterization with a study of the
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spreading of the wave packet as a function of time. Follow-
ing this equilibrium analysis, we devote Sec. IV to the study
of the effects produced by the electric field on the quantities L
presented in the last section, placing particular emphasis on T S e e W e B e
the filtering properties of the correlated disordered SL'’s. Fi-

nally, in Sec. V, we discuss our results and how these can be
related to actual measurements to infer the main characteris-
tics of the bands of the theoretically predicted extended

states from experiments on SL’s. We close the paper with a
few prospects on future developments that may be attained

]
starting from the present results. <
Il. MODEL AND BACKGROUND
We resume in this section previous results byufor J
correlated disordered SL’s in the stationary case, which will L0 L
be useful for the discussion of the dynamical properties
which we address in the next section. For our present pur- >
poses, it is enough to focus on electron states close to the X
band gap withk =0 and use the one-band effective-mass
framework to calculate the envelope functions, FIG. 1. Schematic diagram of the conduction-band profile of a

SL containing a DQW.
h? d?
“omr a2 T Vst —eFX[(x)=E)¢(x), (1) DQW is randomly placed in the SL. The transfer-matrix for-
malism allows us to compute exactly, although not in a

where an explicit dependence of bdhand (x) on quan- cloged analytical fashion, the transmi_ssion coeﬁicient_ in_an

tum numbers is understood and they will be omitted in thearbltr_ary SL. An example of the behavior of the transmission

rest of the paper. We have taken a constant effective-mag®efficient 7 around the resonant ener@=0.1%... is

m* at thel valley although this is not a serious limitation as Shown in Fig. 2a) for a GaAs-Gg gl 935As with N=200

our description can be easily generalized to include two difParriers. _ _ _ .

ferent effective masses. In the simplest picture, the SL po- We next elucidated whether the physical mechanisms giv-

tential Vg, derives directly from the different energies of the ing rise to delocalization in unperturbed systems are of rel-

conduction- and valence-band edges at the interfaces. Avance in the presence of an electric field, or the presence of

single quantum wellQW) consists of a layer of thickness the field destroyed the quantum coh_erencg that exists at

d, of a semiconductof embedded in a semiconduc®r In F=0. To obtain the transmission coefficient in the presence

our model of disordered SL, we consider thht takes at of an electric field, we develop a similar approach to that

random one of two values, anda’. We call this a random given in Ref. 10. As usual in scattering problems, we assume

SL (RSL). The thickness of layerB separating neighboring a0 electron in_cid_ent from _the left and defint_a the _reflection,

QW's is assumed to be the same in the whole &=b. A r, and transmissiort, amplitudes by the relationships

random dimer SLDSL) is built* by imposing the additional Ko .

: , - ' : : ek +re kX x<0

constraint that QW’s of thicknesa’ appear only in pairs, p)=1{_ . ' @)

called hereafter a dimer QWDQW), as shown in Fig. 1. As telkix, x>L,

a typical SL, we have chosen a GaAsyGaAl ¢ 35AS Struc-

ture. In this case, the conduction-band offsen&,=0.25  where ki=2m*E/#?, ki=[2m*(E+eFL)/4%], and L is

eV, and the effective massig* =0.067m, m being the elec- the length of the SL. The transmission coefficient is com-

tron mass. The origin of energies is taken at the GaAgputed as r=(k_/ko)[t|>. Now we define ()

conduction-band edge. In our computations we have takerr (|t| vk, )a(x)exdiZ(x)], where q(x) and {(x) are real

a=b=32 A anda’=26 A. The fraction of QW'’s of thick- functions. Inserting this factorization in Eql), we have

nessa’ is 40% of the total number of QW's of the SL. This 4(x)=q 2(x) and

is not an essential parameter of the model as similar results

are obtained taking other fractions. h? [ d?
We now consider a single DQW as shown in Fig. 1 in an| ~ 5p* a2 g¥(x)

otherwise perfect and periodic SL. We showed analytically

in Ref. 4 that there is an specific energy val&g)(for which  This nonlinear differential equation must be supplemented

the so built SL is perfectly transparent, i.e(E;) =1, where by appropriate boundary conditions. However, using @}.

7 is the transmission coefficient. The value Bf depends this problem can be converted into an initial conditions equa-

only on geometrical parameteflayer thicknessgsand it can  tion. In fact, it is straightforward to prove that

be fixed at the fabrication stage. This result concerning reso-

nant tunneling thro_ugh a single DQW in an otherwise peri- q(L)=k[1’2, ay(L)=0, (4)

odic SL does not imply that such a resonant phenomenon

will survive in a disordered SL, that is, when more than oneand that the transmission coefficient is given by

) +Vg (X)—eFx—E|g(x)=0. (3
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electric field in semiconductor SL’s. The equation which

I rules the evolution of the wave packet is the time-dependent
Schralinger equation,
0.8 | (a) 1
o dP(x,t)
|ﬁT=H(x)\I’(x,t), (6)
e whereH(x) is the single-electron Hamiltonian given {f).
04 1 This equation has an elegant formal solution, given by
| P (x,t)=e (IMWHXWp(x 0). (7
Using Cayley’s form for the finite difference representation
00 { of the exponentiat
[
08 | (b) ] 1-o7H(x) ot
: . 2h
ef(|/h)7'-((x)5t2 -
[
L ] 1+ﬁH(X)5t
l_)
04 - | we obtain the finite-difference equation
[ [
_ ktl_| 1 k
i | 1+ 2ﬁHé‘t i (1 zﬁHé‘t)\IfJ, (8)
. b ] where we have replaced the wave function by its finite-
0'00.05 0.10 0.15 0.20 difference approximation, in timéindex k=0,1, ..., with
Energy (eV) ty=két) and in spacgindex j=0,1,... ) with x;=]ox

and NV the number of grid points. We will use a centered
FIG. 2. Transmission coefficientversus energ§ for a DSL at finite-_difference approxi_mation im for H(x) _and hence_ we
(@ F = 0 and(b) 10 kV/cm. The GaAs-GggeAl o 5As SL consists nave just a complex tridiagonal system. This method is com-
of N=200 barriers ob=32 A, whereas the thicknesses of QW are Monly used in_the solution of the time-dependent Sehro

a=32 A anda’=26 A. dinger equatioff because it ensures strict norm conservation
of the wave function at all times, and the error is only of the
4K,92(0) ) order (5t3). Norm conservation has been used at every time
T= . 5 i i-
1+2k0q2(0)+k§q4(0)+q2(0)q§(0) step as a first test of the accuracy of results. We use a uni

formly spaced set of spatial mesh points much larger than the
Hence, we can integrate numericalB) with the initial con-  SL’s under consideration, and we transform the continuous
ditions (4) backwards, fromx=L up to x=0, to obtain boundary conditions, which realt(«,t)=¥(—,t)=0, to
g(0) andg,(0), thus computing the transmission coefficient the corresponding discrete or1§'§1=‘lfb‘v+l=0. Of course
for given incoming energyE and applied voltag&/=FL.  this approximation is valid only if we choos¥ sufficiently
Figure 2b) shows the transmission coefficient as a functionjarge to make sure that the wave function never comes close
of the incoming energy for a moderate value of the appliedo the boundaries. We finally note that our initial wave func-
voltage F =10 kV/cm. We can see how the field shifts the tion will be a superposition of plane waves of the form
miniband to lower energies and destroy some of the quasi-
bound states, but an important number of them survive. Then 2114 iKoX— (X—Xg)?
we have achieved the first goal of this paper: to show that the W (x,0)=[2m(Ax)]" "ex N
extended states that appear in DSL'’s survive in the presence
of an electric field. Remembering that we proved previclisly where the average kinetic energyBs-72k3/2m* .
that these states also survive when interface roughness is
taken into account, we can conclude that the delocalization B. Tunneling times and other dynamical tools
due to structural correlations in the disorder is a very robust . . . o :
phenomena. In the next section we tackle the principal ob- The subject of tun;ulaal)lng times 'is rich in contrad|_ctory
jective of this paper, namely, to present a complete dynami(-j_eflnltlons and results!**When we measure tfeansmis-

cal study of the exciting properties of electrons in disordered'O" time tf.’ we are trylng to measure the “m? ”.‘amf‘s' .
DSL. mitted particle spent in the SL. The transmission time is

straightforwardly obtained in the WKB limit for a ballistic
electron,

)

IIl. DYNAMICAL RESULTS

A. Numerical method WKB fL m* q J‘L m* g
t = | \z=——=xu(¥adx+ | \/5=xp(x)dX,
As we mentioned in the Introduction, we are interested in ' (E) o Y2(AE.— E)XW( ) 0 2EX'°( )

the quantum diffusion of wave packets under an applied (10
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wherey,(z) andy,(z) are the characteristic functions of the have larger IPR. The mean-square displacement is frequently
barriers and the wells, respectively. The mean dwell timealso used to describe wave packet dynamics. In the asymp-
taw IS totic regime (—o) one expects a behavior of the form
) o(t)~t?. Here 0<y<1 for localization,y=1 for ordinary
_[” 2 diffusion, 1< y<2 for superdiffusion, ang=2 for ballistic
taw E) fo dtJO [pxDldx, (1) regime. The latter is found in homogeneous syst&ns.

and measures the average time spent by a wave packet in a
given region of space. This time does not distinguish be-
tween particles transmitted or reflected, and hence the mean In this section we study the interaction of a Gaussian
dwell time becomes the transmission time of a transmittedvave packet with average kinetic energy with the two
particle when most of the wave packet is transmitted, as wadifferent classes of disordered SL’s, RSL, and DSL, which
pointed out by Bttiker and Landauet. we introduced in Sec. Il. For a RSL, we of course expect that
Numerically, it is simple to measutg,,, and physically it the wave packet will be essentially reflected for any selected
is a powerful tool to measure the density of states, as can benergy. However, in the case of a DSL we have two possible
shown that scenarios. On the one hand, if the dwell time is sufficiently
large to allow a quasibound state of characteristic widtio
be established, namety,=%/I" (see, for example, Ref.) 6
we expect that particles with the energy close to the resonant
one will be transmitted. If, on the contrary, the dwell time is
According to Ref. 7, this relationship is only valid for not sufficiently large, we never have a quasibound state and
symmetrical one-dimensional structures. For nonsymmetricahe behavior of the DSL will be the same that a R3L.
structures it should be replaced by p(E) priori, we have no means to decide between these two pos-
=(1/27rh)[t[,W(E)+t'dW(E)], where the superscript refers to sibilities, hence the necessity of the dynamical study that we
electrons coming from the rightr] or from the left (). are summarizing here to clarify whether extended states do
However we have found no differences betwégi{E) and  play a role in transport properties of DSL or not.
t'dW(E) with the parameters that we are using. Figure 3 collects the results of a typical simulation of a
Nevertheless, as E(LO) is only valid in a perfect ballistic wave packet for a DSL. In Fig.(8) we have a wave packet
regime and the mean dwell time is only the transmissiorvith a central energy ot =0.155 eV, very close to the reso-
time in an idealized limit, we need to develop a method tohant one obtained in Sec. Il, traveling to impinge on a DSL.
measured. This method is based on the probabilRy that ~Some time afterwards, we can see in Figo)3hat a small

at timet the particle is found to have crossed the SL, packet has emerged in the right part of the SL. We realize
that the structure hafiitered the initial wave packet, allow-

% ) ing only to pass the energies laying in the subband of ex-
Pr()= JL | b(x,0)]%dx, (13 tended states. We can confirm this interpretation by perform-
ing the Fourier transform of the emergent wave packet and
or the probabilityPy that the particle is found to have been comparing it with the initial one as shown in Fig(cB We

C. Quasiballistic scattering

1
p(E)=—tan(E). (12

reflected back by the SL, can see that the emergent wave packet has an energy spec-
o trum much narrower than the initial one, peaked around the
P.(t)= x.1)|2dx, 14 resonance; th_|s effect turns out to be much more drama_mc the
(1) LCJ px0)l (14 larger the SL is, but we preferred to keep within the limits of

available superlatticegote thatN=50 in Fig. 3 instead of

as will be explained in the next section. increasing the number of wells to get more spectacular re-
To get an estimation of the spreading of the wave packeg,

Its.
as a function of time, we will use the time-dependent inverse \yo can understand better what is happening by looking at

participation ratio(IPR) and the mean-square displacementhe gynamical evolution of the probability of transmission

(), defined, respectively, as (reflection P(E,t) [Pr(E,t)], i.e., the probability of find-
" ing the particle in the righfleft) side of the SL with energy
IPR(t)zf [p(x,1)|4dx, (153 E at timet. We notice that the stationary transmission prob-

ability 7(E) which we commented upon in Sec. Il is just the
limit of P+(E,t),

U(t):J:(x—x_)zw(x,t)Fdx. (15b) 7(E)=Clim P{(E,t), 17

t—x
with
whereC is a suitable normalization constant which depends
I on Ax and tends to unity adx—o. In Fig. 4, we plot
X= fﬁmX|l/I(X,t)|2dX. (16 p.(E,t) andPg(E,t) as a function of time for the resonant
energyE=0.155 eV(solid line) and forE=0.180 eV(dotted
Usually the IPR is a good estimation of the spatial extent ofine) for a DSL, and forE=0.155 eV (dashed ling for a
electronic states. Delocalized states are expected to preséREL. For a RSL the results are similar for any energy; we
small IPR(for long times IPR~1/L), while localized states have just selecteH, as a typical behavior. For the DSL there
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FIG. 4. Dynamical transmissioR; (lower curve$ and reflec-
tion Pk (upper curvesprobabilities are shown as a function of time
for a DSL with the same parameter as in Fig. 3, at energy
E=E,=0.155 eV(solid line) and 0.180 eMdotted ling and for a
plotted as a function af, for a DSL of N=>50 barriers ob=32 A, RSL (with the same parameters as that of a DSt energy
whereas the thicknesses of QW are32 A anda’=26 A. The E=0.155 eV(dashed ling The inset is an enlargement of the trans-
inset in(a) is an enlarged view of a portion of the SL potential. The mission probability for a RSL, the lowest curve in the plot.
probability density|(z,t)|? at timet=2 ps is shown inb). The
Fourier transform for the initial wave packgsee(a)], |#(E,0)|?
(dashed lingand for the transmitted packet through the DiSke
(b)] at timet=2 ps,|y(E,1)|? (solid line) are shown in(c) as a
function of the energy.

FIG. 3. The initial probability density(z,0)|?, corresponding
to a Gaussian function with Ax=200 A and energy
E=E,=0.155 eV, is shown irfa). The potential energy¥'s (x) is

If the particle transmitted through the DSL is tunneling
through a ballistic channel induced by spatial correlations in
the disorder, the packet will pass the same amount of time in
each well. Therefore, the time spent by the packet in passing

through the whole SL would scale linearly with the number

is a great dependence of the energy. When we select at \ s i o "the length of the SL. One of the goals of this
energy far from the resonant one, we have a behavior S|m|lara er is to show not only that there is a sianificant enhance-
to that of the RSL. However, when we choose the resonarﬁnepnt of the transmissior? robability for agrticular values of
one, in a short interval of timé; reaches practically its P y P

maximum value. In Fig. @) we can see that this fast en- the.en.ergy in D.SL.’ but also that we are in_the presence of
hancement is due to the arrival of a compact packet corrd2alliStic transmission phenomenon in a disordered system,
sponding to the components of the initial wave with energie/€"y close to the ideal WKB case for periodic SL’s. This
closer toE,. Again, we have selected a small number 0fconclu5|on_ca_n be_drawn from Flg. 6. There we have plotted
wells to allow an experimental verification of these results the transmission time as a function of the number of wells,
and we have checked that the larger the number of wells, th®r both types of SL’s, namely RSL and DSL, selecting an
larger the differences between RSL and DSL. energy laying in the DSL miniband. For comparison, we also
We are now going to use andPg to find approximately ~ show the results predicted by the WKB expression @Q).
the transmission timet{). We will choose the following Remarkably enough, the DSL the behavior is purely linear
convention: We obtain the time when the wave packet enand very close to that predicted by the WKB expression. On
tries in the SL by finding the maximum value of the contrary, for the RSL we have an exponential behavior
JdPR(t,E)/at, which indicates the time when the probability characteristic of Anderson localized states. It thus becomes
of finding the particle inside the SL is maximum, and we will well established, from the dynamical view point, the nature
fix our time origint;, at that instant{see Fig. 5. This willbe  of the DSL as a disordered system with good transport prop-
our time origint;,. As for the time when the wave packet erties.
exits the SL, we can think of it as the time when most of the  We now turn our attention to the mean dwell time. When
particles transmitted are on the right part of the SL, i.e., thave have a particle situated in an eigenstate, the mean dwell
time to,, when P+ is arriving to the final platea(cf. Fig. 5.  time in the DSL is exactly the transmission time and has a
We obtain t,, by finding the maximum value of clear relationship with the density of stafe€n the other
IP+(t,E)/ot. hand, if we have a Gaussian wave packet the relation with
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FIG. 6. The transmission timg; at the resonant energy as a
(b) | function of the number of wellsl for a DSL (squareswith a linear
i fit (dashed linpand a RSL(filled circles with an exponential fit
(solid ling). Also depicted is the WKB approximation for the DSL
- B case(dot-dashed ling showing a good qualitative agreeméssme
000 ' . “ s — linear behaviorwith the numerical results for the DSL. Parameters
time (pS) for both SL's are the same as in Fig. 3.

FIG. 5. We show the typical behavior of tife) reflectionPy ~ FOr a RSL when the number of wells growsgoes to zero.
and (b) transmissionP; probabilities versus time for the resonant In this casety, is equal totg, and hence the plateau ob-
energy in a DSL with the same parameters as in Fig. 3. The dashegkrved in Fig. 7.
line represents the derivativega) JPg(t,E,)/ot and (b) From the preceding considerations and results, we can be
JPg(t,E,)/dt. The arrows mark the maximum values of the deriva- confident that in the DSL, when the transmission and dwell
tives of P and P, which we take, respectively, as the initial time times behave similarly and the propagation is quasiballistic,
tiy (i.e., when the wave packet goes inside the 8hd the outside the aforementioned relationship between peaks in the density
time to, (i.e., when the wave packet goes out of the).SThe  of states corresponding to peaks in the dwell time still holds,
transmission time is defined simply &s=to,—tin. the only discrepancy being just a normalization constant, re-
lated to the amount of reflected final states. Following this
the density of states is not at all evident. However, if weidea, we have plotted in Fig. 8 the density of states, obtained
consider wave packets with small spread in energies we capy using Eq.(12). We can see how we have a peaktig
expect that Eq(12) continues to hold. In Fig. 7 we have (and correspondingly in the density of states the resonant
plotted thet,, of an initial Gaussian wave packet of energy energy, as was expected for a packet that transmits through
E=E, as a function of the number of wells. We can see thathe whole SL by using the ballistic channel originated by the
for the DSL the behavior is close to the linearity exhibited byspatial correlation in an otherwise disordered SL. We note
the transmission time in Fig. @olid line represents a linear that this coincides with the predictions from the stationary
fit). On the contrary, for the RSL thig,, exhibits a plateau analysis in Ref. 9, thereby confirming again the results in
because for this kind of SL’s the dwell time is dominated bythat paper. In particular, the shape of the density of states
tR . In F|g 2 we saw that for a RSL most part of the wavecCurve in Flg 8is very similar to that obtained in our prEViOUS
packet just penetrates in the SL a small number of wellsWOrks. ) _ _
thereforet,, does not depend on the SL's size as soon as the T0 conclude this zero field study of the dynamics of
SL is larger than those few wells. This result agrees with thdSL’s, we close the section by studying the spreading of the
typical consistency check for any definition of tunneling initial wave packet versus time for both kinds of SL’s. In
time 13 wherety,, is related totr andtg by the expression Fig. 9, we have plotted on a log-log scale the mean-square
displacement as a function of time for a wave packet of
energyE=E, incident in a DSL(solid line) and in a RSL
tgw=(1— 1)t t+ 7t7. (18 (dot-dashed ling and for energye=0.180 eV impinging on
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FIG. 7. Mean dwell time,, at the resonant energy as a function ~ FIG. 8. Density of statep as a function of the incident energy
of the number of welldN, for a DSL (circles and a RSL(squares E obtained measuring,, of a Gaussian wave packet of eneigyn
A linear fit for the DSL(solid line) is also shown. Parameters for a DSL with the same parameters as in Fig. 3. The line is only a
both SL’s are the same as in Fig. 3. guide to the eye.

a DSL (dashed ling At short times we can see a practically DSL’s, as in this case it is obvious that technologically ap-
constant behavior af which can be associated to the period plicable phenomena would involve electric fields. Therefore,
while the wave packet is traveling towards the SL's. Whenin this section we study the dependence of the dynamical
the packet hits the SL, we see during a short time a decreag@aracteristics discussed in the previous paragraphs on an
of o, followed immediately by a rapid increasing of this gjectric field. In Sec. Il we explained that the subband of
magnitude. The decreasing is a consequence of the tails @ftended states appearing in DSL’s is shifted to lower ener-
the wave packet reaching the leading part, which is beingjieq ang reduces its width in the presence of moderate elec-
retained by its collision with the SL; once the whole packettriC fields. We want to confirm that the correspondingly

is interacting with the SL, the behavior is close to powerlike._, ; - ; : )
We have fitted the results shown in Fig. 9 for times Iargershlfted quasibound states will have time enough to be estab

than 1 ps to a function of the fora(t)~t?. We have ob- lished in the dynamical interaction of a Gaussian wave

tained for the DSL at the resonant energy 1.120, i.e., we 'FI)%Ctkhei; V;:,t]g ainleiIE; pf(’[)e\?vtéalh\;v\?:r;“glteg|?oa;\r;aepgﬂzgi;|r?|d.
are in a superdiffusive regime, whereas for the DSL awa ave packe’t incidént on a DSL witB=0.155 eV for dif-
from the resonant energy=1.000, right at the limit be- ferent values of the electric ficld ‘ '
tween a localized regime and an ordinary diffusive one. Fi- We can see that. at least for. moderate fields. the dwell
nally, fprthe R_SLy=O.837, indicating that we are clearly in time is large enoug1htngh/1“) to allow the qua,sibound
%Eﬁ?gﬁﬂereggf'am&irzggggeisvbnﬁ iv}/;é‘c’e:n;ggrg\gﬁgt states to be established thus permitting the transmission of
exponent, i.e., after some time-@L ps the packet is much She resonant components o_f the packet. The _maximum ya_lue
more Iocéliie& for the RSL than for the D$é&ven out of the of Py decreases with the_ f!eld due to the shift of the mini-
resonance This is evidently a consequence of localization band and becau;e .the m|n|panc_j becomes much narrower the
. : larger the electric field applied is. Interestingly, we can still
effects coming from the uncorrelated disorder of the RSL,find a dynamical resonant energy looking at the Fourier

and.wh_o_se influence is much less in the DSL case given thﬁansform of the transmitted wave packet, as shown in Fig.
availability of extended states. Such a phenomenon furth 1. We want to stress that these results can be of interest for

;?onrferrfistzgcgg:Cuséoxifl ég?r:evézcii\éeth%iinredsﬁ\gri]r? tﬁlapplications, because a DSL turns out to be a structure that
nextgsection wheﬁ dealing with electric field effects Svorks like an adaptive electronic filter, namely, by tuning
’ 9 : properly the SL parameters we can filter the energies con-
IV. ELECTRIC FIELD EFFECTS tained in a narrow band. Moreover, this band can be dis-

placed to the desired values by selecting a particular value of
The zero field simulations that we have been presentinghe applied electric field.

provide an incomplete picture of electron dynamics in There is another aspect of the influences of electric fields
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) o . FIG. 10. Transmission probability+ as a function of time for a
FIG. 9. Mean-square displacemeat of an initial Gaussian pg| with the same parameters as in Fig. 3, at energy
wave packet incident in a DSL at the resonance en&igy0.155 E=E,=0.155 eV, for different values of the electric fiekl=1

eV (solid line), and at energ=0.180 eV(dashed lingand fora  y/cm (dashed lingand 5 kV/cm(dot-dashed line For compari-
RSL at energyE=0.155 eV(dot-dashed ling Parameters for both g4 e also show the result f6r=0 (solid line).

SL’s are the same as in Fig. 3. Note the log-log scale.

on electron dynamics which is worth considering, namely/Again, we can see how in the DSL the wave packet is much
the following: It is well known that, when an electric field is more delocalized than in the RSL as a consequence of the
applied to a periodic SL, the localization of the initially ex- Presence of a narrow band of extended states.

tended states produces an oscillatory behavior of the wave
packet, the so-called Bloch oscillations. Of course, Bloch
oscillations require a quasiperfect quantum coherence and a
perfectly defined phase to be self-sustained in time. This is In this work we have successfully shown that the good
not the case in a DSL where electronic states increment theiransport properties predicted by previous static studies of
phase by a factofr whenever they pass over a DQMThe  SL’s with correlated disorder give rise to the corresponding
question then arises as to what will the corresponding phedynamical phenomena of interest. To this end, we have re-
nomenology in this case be. In order to answer this questiomported on dynamical properties of electrons in intentionally
in Fig. 12 we plot the IPR, defined in E(LS), as a function  disordered SL'’s, computed by using high-accuracy numeri-
of time for (a) a perfect SL(b) a DSL and(c) a RSL, in the  cal methods to solve the time-dependent Sdimger equa-
presence of an electric field. The initial condition of thesetion for the complete Hamiltonian. In this respect, as the two
simulations was that, &t=0, we placed a Gaussian wave main global conclusions of the present paper, we want to
packet with an energy d=0.155 eV andAx=20 A inthe  stress, first, that the dynamical results we show prove inde-
center of each one of those SL's with 50 wells. In our casgendently the existence of extended states with physical con-
F=10 kV/cm,d=a+b=64 A. In an ordered SL, the Bloch sequences in disordered systems, and second, that the valid-
period will then beTg,,,=h/eFd~0.646 ps, in perfect ity of our previous static calculations in Refs. 4 and 9 to
agreement with what was obtained from Fig(d2For the characterize electron transmission through nanostructures
disordered superlattices there is an oscillatory behavior at thieas been set on firm grounds due to its perfect agreement
beginning but in a short time the IPR achieves a randomlyith the dynamical analysis.

fluctuating, but stationary in mean, value. This indicates the Aside from the above general conclusion, which we draw
existence of decoherence effects in both disordered latticefrom the consideration of a number of dynamical tools, we
the difference between the RSL and the DSL being that thevould like to summarize a few aspects more that we have
latter shows a smaller mean value of the IPR, in agreemengarned from our simulation program. In particular, we have
with the less localized character of its states. The remnants giroposed a method to find the transmission time by using the
oscillatory behavior for the disordered SL'’s are more clearlytemporal transmission probability, provided that such prob-
characterized by looking at the mean-square displacemeiability presents abrupt changes as a function of time. By
o as a function of the time, which is shown in Fig. 13. means of this procedure to compute the transmission time,

V. DISCUSSION AND CONCLUSIONS
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line); the solid line shows the result at zero field. The insets show

the transmission coefficient as a function of energy for the two

values of the electric field for reference. The SL parameters are N .
FIG. 12. IPR of an initial Gaussian wave packet placed {g)a

the same as in Fig. 3.
g perfect SL,(b) DSL, and(c) RSL as a function of time. For the
three kinds of SL's, the number of wells =200 and the rest of
we have been able to show that the propagation of electrongarameters are the same as in Fig.3.

with energies in the subband of extended states of a DSL is
ballistic, very similar to that of ordered SL'’s. This is a dra-
matic manifestation of delocalization by correlations, more
so when compared to the exponential growth of the transmis-
sion time that we have obtained for usual RSL’s. In that
regime, we have shown that the relationship between dwell
times and density of states holds for Gaussian wave packets,
by computing the density of states and finding the same re-
sult as in our stationary calculations. Interestingly, the fact
that correlations do not impede the phase decoherence of the 10000 - '
wave packet, the properties depending on symmetries of the
system(translational invariangeare not recovered. This is S0
the case, e.g., of Bloch oscillations. In any event, measure-
ments of the IPR point out once more the differences be-
tween DSL’s and RSL's. All this characterization is con-
firmed by measuring the mean-square displacement of 5000 - /s
electrons, which are seen to evolve faster in DSL’s. Finally, g
we have also confirmed that low to moderate electric fields
do not destroy the transport properties of DSL'’s, which is )
very important if DSL’s are to be built and used for any )

15000 T

0 (Angstroms)

practical purpose.
To conclude, a few words are in order regarding possible 2
time (ps)

applications of the present work. It seems quite clear to us

that several of our results can be useful for nanotechnologi-
Cal deviCES with SpeCifiC, SpeCial features. To begin W|th, the FIG. 13. Mean_square disp|acemaﬁtof an initial Gaussian

great difference_ of transmission times between extende@ave packet placed in a DSkolid line) and RSL(dashed ling in
states and localized ones may provide a powerful tool fothe presence of an electric fieid= 10 kV/cm, as a function of time.

measure the extended character of the states in open systerss.parameters are the same as in Fig. 12.
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Besides, it can also be used to measure the amount and charg the complete Hamiltonian. Preliminary tight-binding
acter of the disorder inherently present in gmgriodic SL,  result$® appear to show exciting phenomena in these struc-
by obtaining the width of the band of extended states in theures. We envisage that appropriate choices of the frequency
actual SL and comparing it to the theoretically predicted oneand/or intensity of the field can give rise to crucial changes
However, what we think by far is the most promising appli- in the filtering properties of DSL’s. Further work along these
cation of DSL in nanotechnology has to do with their filter- lines is currently in progress.

like behavior. We have seen that it is possible, by means of

an applied electric field, to control the center and width of ACKNOWLEDGMENTS
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