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Thek–p method of band-structure calculation provides a detailed description of a crystal’s energy dispersion
near a high symmetry point in the first Brillouin zone. The resulting parameters of this calculation are a series
of momentum matrix elements. Presented here is a set of band-structure parameters for the zinc-blende struc-
ture of GaAs at theG point that takes the lack of inversion symmetry into account as well ask-dependent
spin-orbit contributions to the Hamiltonian. A comprehensive optimization was performed in order to satisfy
effective mass data as well as conduction band spin-splitting data. It was found that the lack of inversion
symmetry has a profound influence on the nonparabolicity of the conduction band and the contribution of the
k-dependent spin-orbit effect cannot be ignored in the calculation of the effective mass of the conduction, light
hole, and spin-orbit bands.@S0163-1829~96!03543-6#

Many semiconductor heterostructures and devices depend
on GaAs or a compound with GaAs, such as AlxGa12xAs or
In xGa12xAs. Possibly important devices that depend on
GaAs technology include quantum well modulators, graded-
band-gap heterojunction transistors, high electron mobility
transistors, vertical cavity lasers, quantum cascade lasers,
and broad band light-emitting diodes. Growth techniques and
more sophisticated experimental investigations1–6 of these
GaAs based heterostructures are increasing the demands on
their theoretical treatments. We present a methodology for
the accurate description of bulk GaAs in a model that can be
applied to quantum heterostructures.

Many theoretical treatments of quantum heterostructures
are based on bulkk–p Hamiltonians in the envelope-function
approximation. Reviews of these treatments include Bastard
and co-workers,7–10 Smith,11 and Marzin and
co-workers.12,13 Typically, a transfer-matrix is applied to a
bulk k–p Hamiltonian in the envelope-function approxima-
tion. Effects such as strain, nonsquare wells, symmetry for-
bidden transitions, and electric and magnetic fields are ad-
dressed within thek–p model by a number of authors.14–22

All of these models depend on an estimation of thek–p
matrix elements. Many authors18,23–29have estimated some
of these matrix elements to explain a given set of data, but
the models used fall short of predicting other reliable data
found elsewhere. The most influential differences that distin-
guish one model from another are the band levels consid-
ered, inversion asymmetry, andk-dependent spin-orbit cou-
pling. The model that we consider here is an 838 k–p Kane
Hamiltonian30 that takes into account both the inversion
asymmetry of GaAs and thek-dependent spin-orbit coupling
of the Kane model.31 We present a set of matrix elements
that reproduces physically measured effective mass and con-
duction band spin-splitting data. The data selected are based
on the criteria discussed in Sec. II. The effective masses
considered here are those of the conduction band, heavy and
light hole bands in both the@001# and@111# directions, and
the spin-orbit band. With the proper determination of its ma-
trix elements, we expect this model to provide an improved
basis for the theoretical treatment of quantum heterostruc-
tures.

In Sec. I, thek–p model considered will be developed,
and the parameters that are to be optimized are identified and
defined. In Sec. II, a review of effective mass and spin-
splitting measurements over the past 35 years will be pre-
sented. Section III will illustrate the relationship between the
Kane matrix elements and effective mass. The optimization
of the Kane matrix elements to the relevant physical data
discussed in Sec. II will be described. In Sec. IV, the findings
of this model will be reviewed and compared to previous
work.

I. BULK ZINC-BLENDE BAND STRUCTURE

Early band theory work concerning the importance of
symmetry,32–34 boundary conditions,34 and time-reversal
symmetry35 have led to some powerful methods currently in
use today, such as the tight-binding method and thek–p
method. The tight-binding~TB! method of crystal band-
structure calculations has proven to be quite successful in the
determination of semiconductor energy dispersion. In the TB
approximation, the crystal wave functions are assumed to be
composed of free atomic wave functions. The resulting dis-
persion is defined by a series of overlap-function matrix el-
ements in the full zonek representation.

The k–p method has been developed and utilized by a
number of authors.23,30,31,36–43Instead of free atomic wave
functions, thek–p method assumes that a basis set ofunk0
Bloch functions completely spans the space of functions pe-
riodic in the entire first zone. This set of states is referred to
as thek–p representation. The result is a band structure that
is defined by a series of momentum matrix elements. The
relationship between TB andk–p has been illustrated by
Priester and Lannoo,41 who have derivedk–p parameters in
terms of TB parameters. With a reduced basis set, thek–p
method can provide detailed information about the band
structure of a given crystal in the vicinity of an arbitrary
point k0. Since the free electrons and holes of a semiconduc-
tor are usually confined to a small region about a high sym-
metry point in the first zone, thek–p method can be an effi-

PHYSICAL REVIEW B 15 NOVEMBER 1996-IIVOLUME 54, NUMBER 20

540163-1829/96/54~20!/14467~13!/$10.00 14 467 © 1996 The American Physical Society



cient and flexible model for the theoretical investigation
of semiconductors and semiconductor quantum hetero-
structures. Full zonek–p schemes have been developed by
Cardona and Pollak40 and others, but its power lies in ex-
tracting detailed dispersion information in the vicinity of
k0.

Consider the general Hamiltonian eigenvalue equation

F p2

2m0
1V~r !GCk~r !5E~k!Ck~r !.

Expressing thek representation eigenvector in Bloch form

Ck~r !5eik–ruk~r !

leads to the equivalent form in thek–p representation

F p2

2m0
1V~r !Geik–ruk~r !5E~k!eik–ruk~r !,

F ~p1\k!2

2m0
1V~r !Guk~r !5E~k!uk~r !,

F p2

2m0
1

\

m0
k–p1

\2k2

2m0
1V~r !Guk~r !5E~k!uk~r !.

With the inclusion of the spin-orbit interaction, the Hamil-
tonian becomes

HTot5
p2

2m0
1

\

m0
k–p1

\2k2

2m0
1V~r !1Hpso1Hkso,

~1.1!

Hpso5
\

4m0
2c2

~¹V!3p–s,

Hkso5
\2

4m0
2c2

~¹V!3k–s,

where Hpso corresponds to Kane’s31 H1 and Hkso corre-
sponds to Kane’sH2. Solutions to Eq.~1.1! can be obtained

by approximating the unknown Bloch states as an expansion
in the known Bloch states of a high symmetry point located
at k0,

unk~r !5(
n

cnnunk0~r !.

This can now be solved by perturbation theory, as is usually
the case, or by Schur-complement decomposition.37 Löwdin
perturbation theory44 will be considered here and the follow-
ing results are after Kane31 and Bahder.30 Löwdin perturba-
tion theory divides all possible eigenvectors into two classes,
A andB. The class-A states represent the primary states of
interest. The class-B states consist of all states outside of the
class-A states and are to be treated by perturbation theory.
Here, the class-A states are taken to be the band-edge eight-
dimensional manifold defined as

n15us&x↑ , n25ux&x↑ , n35uy&x↑ , n45uz&x↑ ,
~1.2a!

n55us&x↓ , n65ux&x↓ , n75uy&x↓ , n85uz&x↓ ,
~1.2b!

where

x↑5F10G , x↓5F01G .
The class-B states have a small effect on the class-A states,
meaning

uHiku!uHii2Hkku, i in class-A, k in class-B.

Renormalization of the class-A interactions of$n i% results in
an 838 Kane-like interaction Hamiltonian matrix. Trans-
forming $n i% by unitary transformation to a basis for the
$G6 , G7 , G8% irreducible representations of theTd double
group gives$ui% as defined in Appendix A.30 Now, renor-
malization of the class-A interactions of$ui% results in the
Hamiltonian matrix given by Bahder,30 which will be de-
noted asH0,

~1.3!
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The constants in matrix~1.3! are defined as follows:

A5Ec1FA81
\2

2m0
G~kx21ky

21kz
2!, ~1.4a!

U5
1

A3
P0kz , ~1.4b!

V5
1

A6
P0~kx2 iky!, ~1.4c!

W5 i
1

A3
Bkxky , ~1.4d!

T5
1

A6
Bkz~kx1 iky!, ~1.4e!

P52Ev1g1

\2

2m0
~kx

21ky
21kz

2!, ~1.4f!

Q5g2

\2

2m0
~kx

21ky
222kz

2!, ~1.4g!

R52A3
\2

2m0
@g2~kx

22ky
2!22ig3kxky#, ~1.4h!

S5A3g3

\2

m0
kz~kx2 iky!, ~1.4i!

Z5Ev2D2g1

\2

2m0
~kx

21ky
21kz

2!. ~1.4j!

The band structure given by matrix~1.3! is parametrized
by the constantsA8, B, Ep , g1 , g2 , and g3 , which are
defined in Appendixes B and C.A8 is the momentum matrix
element that couples class-B states to the class-A conduction
band edge,G6 , in the double group notation.B accounts for
the inversion asymmetry of the zinc-blende structure (Td
point group, Schoenflies notation!. If B50, then the structure
will be that of diamond (Oh point group, Schoenflies nota-
tion!. Ep is the energy associated with theP0 matrix element
that couplesG6 to the class-A valence band edgeG8 and is
defined as

Ep5
2m0

\2 P0
2 .

g i are the modified Luttinger parameters where the standard
Luttinger parameters will be denoted asg i

l . Matrix ~1.3!
accounts for the interactions given in Eq.~1.1!, except for the
k-dependent spin-orbit interactionHkso. This is accounted
for by the matrixM kso ~after Bahder30!,

~1.5!

where

C05
1

A3
\2

4m0
2c2 K sU]V]x UxL .

The complete Hamiltonian matrix is then given by

HT5H01M kso. ~1.6!

M kso couples class-A and class-B states in the second-order
perturbation. This results in the coupling ofG6 to bothG8
and G7 to first order ink. Hkso also generates matrix ele-
ments in^xu]V/]xuz&, which have been shown to be zero by
Bir and Pikus.45

Now the dispersion near theG point is defined and pa-
rametrized byEg , D, A8, B, Ep , C0 , g1 , g2 , andg3. The
energy gap is defined asEg5E(G6)2E(G8) and the spin-
orbit splitting asD5E(G8)2E(G7). Eg and D have been
determined to a reasonable degree of accuracy and will be
considered as known parameters, or constants, here. The set
of unknown parameters,S, is then taken to be

S5$g1
l ,g2

l ,g3
l ,A8,B,C0 ,Ep%. ~1.7!

We wish to optimizeS to effective mass and spin-splitting
data within the described model. To do this, it will be nec-
essary to pay considerable attention to the choice of data
used in the optimization.

Over the past 35 years, substantial experimental effort has
gone into the determination of the effective masses~electron
and hole! of GaAs. Here, we review this body of work and
determine a set of effective masses to be used in the deter-
mination ofS @Eq. ~1.7!#.

II. DETERMINATION OF PARAMETER SET

A. Conduction electron mass

Early work on determining theG point conduction band-
edge effective mass consisted of infrared reflectivity and Far-
aday rotation experiments as well as some cyclotron reso-
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nance experiments. Work by Spitzer and Whelan46 with
infrared reflectivity data and later refinements by
Ehrenreich47 lead to a conduction band-edge mass of
mc50.072m0. Faraday rotation experiments by Moss and
Walton48 and Cardona49 lead to measurements that were in
close agreement with this infrared reflectivity work. Al-
though there existed a great deal of agreement between most
of these early results, they tended to overestimate the con-
duction band effective mass with respect to more recent re-
sults listed in Table I. The mass that was measured in most
of these early experiments was the optical mass,mopt, and is
influenced by impurities and electron concentration, thus re-
quiring a correction for polaron interactions. The nonparabo-
licity of the conduction band also had the effect of producing
larger effective masses ifkÞ0 contributions were not kept to
a minimum.

The results of later work are given in Table I for a number
of different temperatures and experimental techniques. Still-
man and co-workers50 utilized the Zeeman effect on shallow
donors and obtained a value ofmc5(0.066560.0005)m0 at
liquid helium temperatures. Fetterman and co-workers51 em-
ployed cyclotron resonance with high purity GaAs. Narrow
cyclotron resonance absorption was observed at 337mm and
311mm, where the magnetic field used was accurately char-
acterized using NMR techniques and corrections that ac-
counted for the nonparabolicity of the conduction band were
made resulting in a value ofmc5(0.066 4960.000 03)m0 at
4.2 K. Other work utilizing magnetophonon magnetoresis-
tance, Hall coefficient data, and quantum well transitions all
yielded similar results. Using cyclotron resonance, Chamber-
lain and Stradling52 found no detectable change inmc over
the temperature range 4 K to 115 K.Considering the agree-
ment between the bulk of these more refined measurements,
a value ofmc50.0665m0 will be used in the determination
of S at 0K.

B. Valence hole masses

The problems that researchers faced when measuring the
effective masses of theG8 valence band edge,mhh and
mlh , were very similar to the problems that were overcome
in measuringmc , yet there still remains a considerable
spread in the experimentally obtained values formhh and
mlh . This is due to the fact that theG8 band edge is not
spherical. There exists a considerable anisotropy such that,

for example,mhh
001Þmhh

111. As a result, early measurements
that were influenced by offG point contributions tended to
overestimate the effective mass in the@001# direction and
underestimated the effective mass in the@111# direction.
Due to GaAs’s inversion asymmetry and the electronic prop-
erties of its cation and anion, it is slightly ionic. Therefore,
cyclotron resonance measurements,42,43,53,54wherev,v lo ,
actually measure the polaron mass and must be
corrected.55,56 This correction depends on the Fro¨hlich po-
laron coupling constant,aF , which describes the coupling of
electrons and longitudinal optical phonons, and is fairly well
known for the conduction band, but is not so well known for
the light and heavy holes bands due to the anisotropy of
these bands.

Table II lists various results formhh andmlh obtained by a
variety of experimental methods. Generally, it is difficult to
correct bulk data from cyclotron resonance and magneto-
optic measurements for effects due to thekH dependence of
low-lying Landau levels, line shape broadening, hole con-
centration, and polaron mass. Looking at Table II, the data
seems to form two, fairly distinct, groups. Studying bulk
materials, Vrehen,57 Seisyan and co-workers,58 Balslev,59and
Skolnick and co-workers60 all obtained similar values for
mhh andmlh in the @001# direction, but their results vary
dramatically in the@111# direction. The second group of
measurements incorporates both bulk and quantum well sys-
tems. Hess and co-workers,61 Yamanaka and co-workers,62

Miller and co-workers,63 and Shanabrook and co-workers64

all obtained similar results formhh and mlh in the @001#
direction. Measurements ofmhh andmlh in the @111# direc-
tion were done on bulk GaAs by Hess and co-workers, and
on GaAs/Al0.3Ga0.7As quantum wells of varying well thick-
ness by Shanabrook and co-workers. The results of these two
experiments are in fair agreement, but their differences
should be discussed. The work done by Hess and co-workers
utilized high field magnetoreflectance of free excitons to
study bulk GaAs. Their data fit well within an adiabatic de-
scription of free excitons in a high magnetic field,65 but the
resulting band-structure parameters, from which effective
masses are calculated, are very sensitive to the band-
structure model used. Experimental data derived from quan-
tum well experiments are dominated by the new symmetry of
the quantum well system. The effective masses are primarily
defined by the bulk band structure~in the absence of strain,

TABLE I. Experimentally determined conduction band mass and spin-orbit splitting for GaAs.

Source mc* /m0 g ~eV Å3) Temp.~K! Method

Aspnes~Ref. 76! 0.067 * 0 Hall coefficient data
0.063 * 295

Stradling and Wood~Ref. 77! 0.0665 * 60 magnetophonon magnetoresistance
0.0636 * 290

Miller et al. ~Ref. 63! 0.0665 * 77 quantum well transitionsa

Fettermanet al. ~Ref. 51! 0.06649 * 4.2 cyclotron resonance, 337mm
Stillmanet al. ~Ref. 50! 0.0665 * 1.5–4.2 Zeeman effect, shallow donors
Narita and Miyao~Ref. 78! 0.067 * 4.2 Zeeman effect, shallow donors
Marushchaket al. ~Ref. 72! * 22 4.2 electron spin relaxation
Aronov et al. ~Ref. 71! * 20.9 4.2 electron spin relaxation

aSquare and parabolic wells, GaAs/Al0.3Ga0.7As, Lw5512521 Å.
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with strain, band mixing effects must be taken into account!
of a specific constituent material, but the effect of mass on
experimental data is dominated by the quantum well struc-
ture. Shanabrook and co-workers utilized electronic Raman
scattering to measure intersubband quantum well transitions
in GaAs/Al0.3Ga0.7As. The drawback to this kind of investi-
gation is that knowledge of the precise dimensions of the
quantum well system is required in order to extract informa-
tion on energy levels and effective mass. Shanabrook and
co-workers characterized the widths of their quantum wells
by growth characteristics, intersubband transitions of photo-
excited electrons, and photoreflectance spectroscopy. Since
intersubband transitions of holes were examined, the data is
more sensitive to changes in effective mass than the deter-
mination of the interband exciton energies themselves. Also,
this type of measurement is fairly insensitive to changes in
the band offset of the quantum well.63 Thus, for the determi-
nation ofS @see Eq.~1.7!#, we will employ the effective mass
measurements of Shanabrook and co-workers~see Table II!.

Measurements on the spin-orbit band mass,mso, were
done by Vrehen57 using interband magnetoabsorption. He
obtained a value of 0.159m0 at 77 K. Later work by Reine
and co-workers66 utilized stress-modulated interband magne-
toreflectivity data. They obtained a value of 0.154m0 at
about 30 K. Likemc , no detectable change in this mass is
anticipated to 0 K. Reine and co-workers results have since
been widely accepted and cited by a number of authors;67–69

therefore, a value of 0.154m0 at 0 K will be used for the
determination ofS.

C. Conduction band spin spitting

Table III lists experimental and theoretical values of the
conduction band spin-splitting parameter,g, defined by the
conduction band dispersion relation70

EG6
~k!5

\2

2mc
k21~a1sb!k46g~s29t !1/2k3, ~2.1!

where

s5
1

k4
~kx

2ky
21ky

2kz
21kz

2kx
2!, ~2.2!

t5
1

k6
~kx

2ky
2kz

2!.

The experimental values were obtained by electron spin re-
laxation measurements. The analysis of this data depends, in
part, on the Fro¨hlich polaron coupling constant,aF , which
itself depends on a number of previously measured
quantities.55 The experimental methods of Aronov71 and
Marushchak72 are similar, but Aronov used a value for the
Fröhlich polaron coupling constant ofaF50.06. Estimates
of aF vary to some degree, but the most often cited
value69,60,73,74is aF50.06. Aronov’s result is in fair agree-
ment with most of the theoretical calculations, especially the
results of Zawadzki28 using a five levelk–p analysis. As a
result, we will use Aronov’s value ofg520.9 eV Å3 in the
determination ofS.

III. DETERMINATION OF S

We now wish to determine the band-structure parameter
setS that produces the measured observable setT byHT @see
Eq. ~1.6!#.

S5$g1
l ,g2

l ,g3
l ,A8,B,C0 ,Ep%, ~3.1!

T5$mc ,mhh
001,mhh

111,mlh
001,mlh

111,mso,g%,

where the elements ofT were defined previously as

mc50.0665, mhh
00150.34,

mhh
11150.75, g520.9 eV Å3, ~3.2!

TABLE II. Valence band effective masses and Luttinger parameters for GaAs.

Source mhh
001 mhh

111 mlh
001 mlh

111 g1
l g2

l g3
l Temp ~K! Method

Skolnicket al. ~Ref. 60! 0.45 0.57 0.082 0.079 7.21 2.49 2.73 50-77 CRa

Vrehen~Ref. 57! 0.45 0.45 0.082 0.082 7.21 2.49 2.49 77 MOAb

Seisyanet al. ~Ref. 58! 0.434 0.469 0.0829 0.0817 7.18 2.44 2.53 77 MOAb

Balslev ~Ref. 59! 0.45 0.99 0.088 0.080 6.79 2.29 2.87T<100 PTc

0.46 1.03 0.083 0.075 7.11 2.47 3.09T>200
Mears and Stradling~Ref. 73! 0.475 * 0.087 * 6.80 2.35 * 50 CRd

Miller et al. ~Ref. 63! 0.34 * 0.094 * 6.79 1.92 * 77 QWTe

Hesset al. ~Ref. 61! 0.38 0.95 0.090 0.070 6.85 2.10 2.90 5 HFMRf

Yamanakaet al. ~Ref. 62! 0.34 * 0.12 * 5.64 1.35 * 295 PCSg

Shanabrooket al. ~Ref. 64! 0.34 0.75 0.094 0.082 6.80 1.90 2.73 10 ERSh

aCyclotron resonance, 337mm and 2.2 mm.
bInterband magneto-optic absorption.
cPiezotransmission.
dCyclotron resonance, 155 GHz, high purity epitaxial films.
eQuantum well transitions in square and parabolic GaAs/Al0.3Ga0.7As, Lw5212521 Å.
fHigh field magnetoreflectance of excitons.
gPhotocurrent spectroscopy, GaAs/Al0.34Ga0.66As quantum wells.
hElectronic Raman scattering, GaAs/Al0.3Ga0.7As qauntum wells,Lw51002400 Å.
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mso50.154, mlh
00150.094, mlh

11150.082.

It should be understood that the given electron and hole
masses are in terms of the bare electron rest massm0 , and
that the valence band masses are actually negative quantities.
The parameters ofHT that are taken to be constant are, for
T50 K,

E~G6!51.519 eV, E~G8!50 eV, ~3.3!

D5E~G7!50.341 eV, a55.652 28 Å.

A first attempt at solving this problem might consist of solv-
ing for the eigenvalues ofHT , $l i(S,k)%, analytically and
then simply solving for the masses of the respective bands.
This would involve selecting two specific directions fork,
k001, and k111 and solving for the respective eigenvalues
~one direction at a time! $l i(S,k001)% and$l i(S,k111)%. The
elements ofS could then be solved for from the resulting
expressions for the six possible effective masses and the con-
duction band spin splitting of the observable setT. This is
not possible owing to the overwhelming complexity of the
analytic representations of$l i(S,k001)% and $l i(S,k111)% as
well as the time required to complete~if possible! such a
task.

A second attempt might be to tackle the problem as a
whole with a multiparameter search method such as utilizing
a seven-dimensional closed simplex in an eight-dimensional
Euclidean space. The problem with this and other similar
methods is that a simple closed form function does not exist
in this application. Here,HT must be diagonalized and evalu-
ated numerically for a number of values ofk, and then cur-
vefit to obtain any member of the observable setT.

Examine Figs. 1–6. These were generated by successive
numerical solutions for the eigenvalues ofHT . With this
information, the problem could be simplified by obtaining a
linear approximation of these curves about a trial seven-
dimensional solution point and solving for the elements of
S by general matrix methods. Since these curves are sensi-
tive to changes in parameters that are assumed to be held

fixed, successive iterations from one solution to the next will
have to be made until a final, stable, point is reached. The
problem with this method is that the function space defined
here is extremely sensitive to this kind of linear approxima-
tion. Attempts at linearizing all seven dimensions and solv-
ing by general matrix methods has proven to be divergent,
meaning successive, finer, iterations diverge quadratically,
regardless of the initial point chosen.

The problem has been solved by linearizing only one di-
mension at a time. In order to do this, prior knowledge of the
one-dimensional partial derivatives is used to preprogram a
given path through the seven-dimensional parameter space as
discussed below. Figures 1–6 illustrate the dependence of
effective mass on the different elements ofS. Matrix element
B ~see Appendix B for definition! has no effect on any of the
effective masses, but it does have a sizable influence on the
third- and fourth-order nonparabolicity parameters as will be

TABLE III. Experimental and calculated nonparabolicity parameters (a, b, g) and momentum matrix element energyEp for GaAs.

Source 2a ~eV Å4) 2b ~eV Å4) g ~eV Å3) Ep ~eV! Ep8 ~eV! Temp ~K! Method

Balslev ~Ref. 59! * * * 22.93 * 205–295 piezotransmission
Aspnes~Ref. 76! * * * 22.53 * 0–295 Hall coefficient data
Lawaetz~Ref. 23! * * * 25.7 * 0 k–p a

Rössler~Ref. 24! 1984 1380 19 * * 0 838 k–p
2132 2493 30 * * 0 14314k–p

Christensen and Cardona~Ref. 25! * * 18 26.29 3.55 0 five levelk–p
* * 17 * * 0 modified LMTO

Yoo ~Ref. 26! 1937 * * * * 0 838 k–p b

Hermann and Weisbuch~Ref. 27! * * * 28.9 6 0 five level k–p
Zawadzkiet al. ~Ref. 28! * * 20.7 28.9 5.72 0 five levelk–p
Eppengaet al. ~Ref. 18! * * * 28.8 * 0 8 38 k–p c

Marushchaket al. ~Ref. 72! * * 22 * * 4.2 electron spin relaxation
Aronov et al. ~Ref. 71! * * 20.9 * * 4.2 electron spin relaxation

aSemiempirical five level.
bTransfer matrix applied to GaAs/AlxGa12xAs quantum wells.
cApplied to GaAs/Al0.25Ga0.75As quantum wells in the envelope-function approximation.

FIG. 1. Effective mass in the@001# direction as a function of
g1
l . The values of the matrix elements used in the calculation of the

curves are given in the first row of Table IV.
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discussed in the next section. Figures 1–8 were made with
the final data given in Table IV forA850. The data for the
original versions of Figs. 1–8 used in the determination of
S were derived from an initial guess~a seven-dimensional
initial point, Si) and showed the same trends and dependen-
cies as the final figures.

Both S andT have seven elements, but it turns out that
this system is still underdefined. There are four valence band
hole masses, two in the@001# direction, and two in the
@111# direction. Within the 434 Luttinger Hamiltonian,
these four valence band effective masses,mhh( lh)

001 and
mhh( lh)
111 , are completely defined by the three Luttinger pa-

rameters,g1
l , g2

l , andg3
l ,

mhh~ lh!
001 5~g1

l 72g2
l !21, ~3.4a!

mhh~ lh!
111 5~g1

l 72g3
l !21. ~3.4b!

Within the 838 Hamiltonian discussed here,HT , the above
relation formhh in both directions still holds. Under a unitary
transformation, the heavy hole valence band will completely
decouple from the 838 Hamiltonian matrix in both the
@001# and the @111# directions. Formlh , which remains
coupled to theG6 andG7 states, Eqs.~3.4! are not exact, but
are still a good approximation. What this means is that a
given set of parameters,S, will produce specific values for
the four valence band effective masses, but no setS exists
that can manipulate the value of one of these effective
masses without affecting the other masses as defined by Eq.
~3.4!. Another way to look at this is to define the three Lut-
tinger parameters by rewriting Eq.~3.4! as

FIG. 2. Effective mass in the@001# direction as a function of
g2
l . The values of the matrix elements used in the calculation of the

curves are given in the first row of Table IV.

FIG. 3. Effective mass in the@111# direction as a function of
g3
l . The values of the matrix elements used in the calculation of the

curves are given in the first row of Table IV.

FIG. 4. Effective mass in the@001# direction as a function of
Ep. The values of the matrix elements used in the calculation of the
curves are given in the first row of Table IV.

FIG. 5. Effective mass in the@001# direction as a function of
A8. The values of the matrix elements used in the calculation of the
curves are given in the first row of Table IV.
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g1
l 5

1

2 S 1

mhh
0011

1

mlh
001D , ~3.5a!

g2
l 5

1

4 S 1

mlh
0012

1

mhh
001D , ~3.5b!

g3
l 5

1

4 S 1

mhh
0011

1

mlh
001D 2

1

2mhh
111. ~3.5c!

Therefore, within the 434 Luttinger model, only three ef-
fective masses are required to completely define the three
Luttinger parameters. Equations~3.5a!–~3.5c! are not exact
when applied to the case defined byHT , but the approxima-
tion is strong enough to reduce by one the number of degrees
of freedom of the observable setT. Thus, to a large extent,
the seven members ofT will actually behave as six with

respect to the parameters inS. One parameter inSwill have
to be fixed at a constant value during the search process.

The search process involved in the determination ofS
depended on the linearization ofmlh

001 vs g1
l . From an initial

point S0 , two mlh
001 vs g1

l points were determined from
g1

15g1(0)
l 1h/2 andg1

25g1(0)
l 2h/2, whereh is some ini-

tial iteration step. Two sets,S1 andS2, were constructed
from g1

1 andg1
2 as follows.

~1! Data for g1
1/2 , mhh

001, andmhh
111 were used to obtain

g2
l andg3

l for each ofS1 andS2. They will be denoted as
g2

1/2 andg3
1/2 .

~2! Dispersion data formc vs Ep andmso vs C0 were
linearized aboutS0 for g1

1/2 , g2
1/2 , andg3

1/2 in order to
obtainEp

1/2 andC0
1/2. This procedure completedS1 and

S2 for the first iteration.
~3! To complete the first iteration, a pair of points for

mlh
001 vsg1

l was obtained byHT andS
1/2. From these points,

a different value forg1
l was calculated from the known value

for mlh
001.

~4! A procedure analogous to lines 1–3 was used to cal-
culate a new central pointS0. Dispersion for this new central
point was calculated and used to generate a first iteration
approximation of the observable setT. This iteration process
was then continued until the approximation ofT fell within a
predetermined tolerance.

The primary line of iteration,mlh
001 vs g1

l , was chosen
based on two criteria, linear approximation and the magni-
tude of its slope aboutS0. Examination of Fig. 1 shows that
mlh
001 vs g1

l is approximately linear aboutg1
l 57.0 and has a

slope large enough to have a fairly predictable influence over
the search process. Also, all of the valence band masses are
influence byg1

l with the same sign of their partial deriva-
tives. This adds to the predictability of the search process.

We have chosenA8 to be fixed at one of two values, 0
and214.70 eV Å2. Table IV shows the final results of both
values. An estimate ofA8 was determined from Bahder’s36

analytic dispersion relation for the conduction band which
considersC0 to be zero.

FIG. 6. Effective mass in the@001# direction as a function of
C0. The values of the matrix elements used in the calculation of the
curves are given in the first row of Table IV.

FIG. 7. Nonparabolicity parameters as a function ofB. The
values of the matrix elements used in the calculation of the curves
are given in the first row of Table IV.

FIG. 8. Nonparabolicity parameters as a function ofC0. The
values of the matrix elements used in the calculation of the curves
are given in the first row of Table IV.
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m0

mc
511

2m0

\2 A81Ep

Eg1
2
3 D

Eg~Eg1D!
. ~3.6!

Now, Hermann and Weisbuch27 have defined the conduction
electron’s effective mass in terms of the band parameters of
a five levelk–p model. Their result is given by

m0

mc
511

Ep

3 S 2Eg
1

1

Eg1D D
2
Ep8
3 S 2

E~G8
c!2Eg

1
1

E~G7
c!2Eg

D 1C. ~3.7!

Solving forA8 gives

2m0

\2 A8>2
Ep8
3 S 2

E~G8
c!2Eg

1
1

E~G7
c!2Eg

D 1C.

~3.8!

Zawadzki28 definedEp855.72 eV ~see Table III!, and Her-
mann and Weisbuch definedC522 ~in terms of 2m0 /\

2).
This gives an estimate ofA85214.70 eV Å2. This is only
an estimate, meaning that the sign and order of magnitude
are probably the most one could hope to glean from this
value, but it does illustrate the dependence of the other band
parameters to changes inA8 ~see Table IV.! This is not to
say that the other elements ofS depend explicitly, or analyti-
cally, onA8, but changingA8 to a different constant value
will force the other elements ofS to change in order to
produce the same observable setT by HT .

The elements ofS can now be calculated as a set of para-
metric relations inA8. This was done by simply determining
a setS for each of ten different arbitrary values ofA8 and
then curve fitting the results for each element ofS. The result
is given below and assumesA8 in units of eV Å2,

g1
l 56.672311.902731024A8, ~3.9a!

g2
l 51.865519.476231025A8, ~3.9b!

g3
l 52.669519.476231025A8, ~3.9c!

Ep522.82720.42760A8, ~3.9d!

C050.1256822.088131023A8, ~3.9e!

B541.9010.18978A8. ~3.9f!

The three parametersEp , B, andC0 are the most sensitive to
changes inA8 ~see Appendix B and Table IV!. The effective
hole mass in the@011# direction has also been calculated and
appears to be independent of the choice made forA8. The
masses aremhh

01150.593m0 andmlh
01150.0841m0. The data

given in Table IV and in Eqs.~3.9a!–~3.9f! provide a de-
tailed description of the band-structure parameters for the
eight-bandk–p model discussed here. The original model
was defined by seven independent parameters. The param-
etrization has now been reduced to one,A8. With the param-
eter values given in Eq.~3.9! and Table IV, the model now
reproduces some of the best physical measurements made on
effective mass and conduction band spin splitting.

IV. DISCUSSION

A. Kane nonparabolicity parameters

One of the most interesting results of this study is the
dependence ofa and b on matrix elementB. Recall Eqs.
~2.1! and~2.2!, in order to determinea andb, a fourth order,
in k, curve fit of the energy dispersion in two different di-
rections must be performed. Then,a andb can be solved for
by way of Eqs.~2.1! and ~2.2!. Table V lists the results of
this calculation for four different high symmetry directions
of the zinc-blende structure. The data corresponding to
B50 gives consistent results fora and b for all possible
combinations of the four directions examined. The data for
BÞ0 produces inconsistent results fora and b. Only the
data from the two main cubic axes,@001# and @111# pro-
duces a result that is consistent with Fig. 7, which illustrates
howa andb vary with matrix elementB. A maximum mag-
nitude value forb occurs atB50 and the curve shows a
parabolic symmetry forBÞ0. Therefore, we conclude that
the fourth-order term of Eq.~2.1! neglects the lack of inver-
sion symmetry of the zinc-blende structure as well as the
k-dependent spin-orbit interaction which, in reality, has a

TABLE IV. Final optimized values of the Kane 838 band-structure parameters,T50 K. Both sets of
parameters will produceT.

A8 Ep C0 B
~eV Å2) g1

l g2
l g3

l ~eV! ~eV Å! ~eV Å2)

0.0 6.672 1.866 2.669 22.827 0.1257 41.90
214.70 6.669 1.864 2.668 29.112 0.1564 39.11

TABLE V. Fourth-order nonparabolicity parameter,
(a1sb)k4, dependence on matrix elementB (A850).

Directions B ~eV Å2) a ~eV Å4) b ~eV Å4)

@001#@011# 0 21919.74 21211.56
@001#@111# 0 21919.74 21211.55
@001#@11

20] 0 21919.74 21211.56
@011#@111# 0 21919.73 21211.52
@011#@11

20] 0 21919.74 21211.56
@111#@11

20] 0 21919.74 21211.54

@001#@011# 36 21919.74 174889.20
@001#@111# 36 21919.74 2410.58
@001#@11

20] 36 21919.74 193714.19
@011#@111# 36 173380.06 2226309.92
@011#@11

20] 36 16446.94 141422.56
@111#@11

20] 36 127041.75 287294.98
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strong influence on the nonparabolicity of the conduction
band ~see Fig. 8!. The results shown in Table VI are from
calculations using the optimized band-structure parameters
of Eq. ~3.9!. The first row of Table VI used the same data as
the second row, exceptB was set to equal zero. The results
in Table VI should be compared to the previous work done
on determininga andb given in Table III. The data corre-
sponding toA8,B50 seems to agree with the work done by
Rössler.24 The magnitude ofa andb given here are smaller
than those proposed by Ro¨ssler since thek-dependent spin-
orbit interaction was not taken into account~see Fig. 8!, nor
was B explicitly taken into account. Table VI suggests a
smaller value forb than shown previously, sinceB cannot
be zero ~in order to account for conduction band spin-
splitting data.!

The third-order parameter,g, is best calculated by deter-
mining the spin splitting of the conduction band and fitting to
Eq. ~2.1!. This calculation produces consistent values ofg
(BÞ0) for all directions of high symmetry. IfB is set to
zero, theng will be zero. By examination of Fig. 8, It should
be apparent that the matrix elementC0 , which accounts for
the k-dependent spin-orbit coupling interaction, has a mea-
surable effect ong. Analytic expressions offered by other
workers25,31,28 neglect this effect and produce varying re-
sults.

B. Valence band parameters

The valence band parameters are defined by Dresselhaus
as38

EG8
~k!5Ak26@B2k41C2~kx

2ky
21ky

2kz
21kz

2kx
2!#1/2.

~4.1!

Table VII lists a number of values by different authors. As a
result of the work done here, we propose the following va-
lence band parameters forT50 K:

A526.672, B523.731, C2543.75.

TABLE VI. Final optimized values of the Kane nonparabolicity
parametersa, b, g and their dependence onA8 andB, T50 K.

A8 B a b g
~eV Å2) ~eV Å2) ~eV Å4) ~eV Å4) ~eV Å3)

0.0 0.0 21919.86 21211.56 0.0
0.0 41.90 21919.86 2126.38 20.90

214.70 39.11 21827.17 2599.01 20.90

TABLE VII. Valence band parameters for GaAs.

Source 2A 2B C2 Temp ~K! Method

This work 6.67 3.73 43.75 0 A850
6.67 3.73 43.72 0 A85214.70

Skolnicket al. ~Ref. 60! 6.98 4.4 38.4 50–77 CRa

Vrehen~Ref. 57! 7.2 5 0 77 MOAb

Seisyanet al. ~Ref. 58! 7.183 4.88 12.82 77 MOAb

Balslev ~Ref. 59! 6.77 4.55 37.45 T<100 PTc

7.13 4.98 39.56 T>200
Cardona~Ref. 79! 5.5 4.5 21 0 five levelk–pd

Pollaket al. ~Ref. 80! 7.39 4.93 25.7 0 five levelk–p
Bowers and Mahan~Ref. 29! 5.80 2.43 27.7 0 15315k–pe

Lawaetz~Ref. 23! 7.65 4.82 59.40 0 five levelk–pf

Miller et al. ~Ref. 63! 6.79 3.84 * 77 QWTg

Hesset al. ~Ref. 61! 6.85 4.20 48.0 5 HFMRh

Yamanakaet al. ~Ref. 62! 5.64 2.70 * 295 PCSi

Shanabrooket al. ~Ref. 64! 6.8 3.8 46.1 10 ERSj

Eppengaet al. ~Ref. 18! 7.06 4.43 49.5 295 838 k–pk

Mears and Stradling~Ref. 73! 6.80 4.69 * 50 CRl

aCyclotron resonance, 337mm and 2.2 mm.
bInterband magneto-optic absorption.
cPiezotransmission.
dTd symmetry wave functions approximated by antisymmetric perturbing potential applied to diamond struc-
ture.
eMatrix elements evaluated by zinc-blende pseudopotential.
fSemiempirical model, considers the dependence of matrix elements on lattice constant, ionicity, and
d-electron shells.
gQuantum well transitions, square and parabolic GaAs/Al0.3Ga0.7As, Lw5512521 Å.
hHigh field magnetoreflectance of excitons.
iPhotocurrent spectroscopy of GaAs/Al0.34Ga0.66As quantum wells.
jElectronic Raman scattering, GaAs/Al0.3Ga0.7As quantum wells,Lw51002400 Å.
kApplied to GaAs/Al0.25Ga0.75As quantum wells.
lCyclotron resonance, 155 GHz, high purity epitaxial films.
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This result is virtually independent of the choice made for
A8. There should be no confusion between matrix element
B and valence band parameterB. The above valence band
parameters were calculated from the Luttinger parameters
given in Table IV ~also see Appendix C.! It should be no
surprise that the parameters given above are very close to
those of Shanabrook and co-workers64 and Miller and
co-workers,63 since it was their values for effective hole
masses that were used in the optimization, but take note that
there is some difference.

C. Momentum matrix element energyEp

Table III lists some of the previous work done in the
determination ofEp . A comparison with the values obtained
here in Table IV shows thatEp varies between 22.827 eV for
A850 and 29.112 eV forA85214.70. This range encom-
passes all but one of the previously obtained values in Table
III. Zawadzki28 used a five-levelk–p to obtaing520.7 eV
Å 3 andEp528.9 eV, both of which are close to the values
obtained here forA85214.70. The work done which ig-
noresA8 or its equivalent produces values ofEp around 22
to 23 eV, while the work that tookA8 or its equivalent into
account obtained values ofEp that are 25 eV or greater.

V. SUMMARY

We have fit the matrix elements of an eight-bandk–p
model for the zinc-blende structure of GaAs to experimental
data on effective masses and conduction band spin splitting.
This model is now parametrized by only one matrix element,
A8, and reproduces reliably measured values for effective
masses and the conduction band spin splitting of GaAs. Fu-
ture work will involve the definition of the final matrix ele-
ment by further analysis of reliable experimental data. The
data already available for the nonparabolicity parameters,a
and b, are too model dependent and varied to determine
A8. It was found that the fourth-order conduction band dis-
persion terms are greatly influenced by matrix elementsB
andC0. The effective masses also showed a strong sensitiv-
ity to C0. This model is well suited for the theoretical ex-
amination of semiconductor heterostructures.
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APPENDIX A: Td SYMMETRY BASIS FUNCTIONS

The class-A states as basis functions for the$G6 ,G7 ,G8%
irreducible representations of theTd double group are given
by30

u
21/2
G6 5us&x↓ , ~A1a!

u1/2
G65us&x↑ , ~A1b!

u
23/2
G8 5

2 i

A6
@ ux&1 i uy&]x↓1 iA2

3
uz&x↑ , ~A1c!

u
21/2
G8 5

i

A2
@ ux&1 i uy&]x↑ , ~A1d!

u1/2
G85

2 i

A2
@ ux&2 i uy&]x↓ , ~A1e!

u3\2
G8 5

i

A6
@ ux&2 i uy&]x↑1 iA2

3
uz&x↓ , ~A1f!

u
21/2
G7 5

2 i

A3
@ ux&2 i uy&]x↑1

i

A3
uz&x↓ , ~A1g!

u1/2
G75

2 i

A3
@ ux&1 i uy&]x↓2

i

A3
uz&x↑ . ~A1h!

APPENDIX B: DEFINITION
OF THE KANE MATRIX ELEMENTS

The Kane matrix elements that make up Eq.~1.3! are
defined as follows:

A85
\2

m0
2(
n j

z^supxunG5 j & z2

Ec2En,G5

, ~B1a!

B52
\2

m0
2(
n j

^supxunG5 j &^nG5 j upxuz&
~Ec1Ev!/22En,G5

, ~B1b!

M5H11H2 , ~B1c!

L85F812G, ~B1d!

N85F82G1H12H2 , ~B1e!

P052 i
\

m0
^supxux&, ~B1f!

G5
\2

2m0
2(
n j

z^xupxunG3 j & z2

Ev2En,G3

, ~B1g!

F85
\2

m0
2(
n j

z^xupxunG1 j & z2

Ev2En,G1

, ~B1h!

H15
\2

2m0
2(
n j

z^xupxunG5 j & z2

Ev2En,G5

, ~B1i!

H25
\2

2m0
2(
n j

z^xupxunG4 j & z2

Ev2En,G4

. ~B1j!

The above sums involvingunG j & terms run over the single
group class-B states of the indicated irreducible representa-
tion. The notation used for the irreducible representations is
that of Koster-Dimmock-Wheeler-Statz,75 see Bahder30 and
Bir and Pikus45 for more information.
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APPENDIX C: LUTTINGER PARAMETERS AND
VALENCE BAND PARAMETERS

The standard Luttinger parameters are defined from the
Dresselhaus38 k–p matrix elements, (L, M , N) as follows:

g1
l 52

2m0

3\2 ~L12M !21, ~C1a!

g2
l 52

m0

3\2 ~L2M !, ~C1b!

g3
l 52

m0

3\2N. ~C1c!

The modified Luttinger parameters are defined from the
Kane31,70 k–p matrix elements, (L8, M , N8) as follows:

g152
2m0

3\2 ~L812M !21, ~C2a!

g252
m0

3\2 ~L82M !, ~C2b!

g352
m0

3\2N8. ~C2c!

The difference between these two developments is that Kane
used a$us&, ux&, uy&, uz&% manifold for his class-A states,
while Dresselhaus used a$ux&, uy&, uz&% manifold. The two
are related by

g1
l 5g11

Ep

3Eg1D
, ~C3a!

g2
l 5g21

1

2

Ep

3Eg1D
, ~C3b!

g3
l 5g31

1

2

Ep

3Eg1D
, ~C3c!

where

F5F81
P0
2

Ev82Ec
, Ev85Ev2

D

3
, ~C4!

L5F12G,

N5F2G1H12H2 .

The Dresselhaus38,53 valence band parameters are defined as
follows.

A5
1

3
~L12M !1

\2

2m0
, ~C5a!

B5
1

3
~L2M !, ~C5b!

C25
1

3
@N22~L2M !2#. ~C5c!

The standard Luttinger parameters are related to the valence
band parameters by

g1
l 52A ~A,0!, ~C6a!

g2
l 52

1

2
B ~B,0!, ~C6b!

~g3
l !25

1

12
~C213B2!, ~C6c!

C2512@~g3
l !22~g2

l !2#. ~C6d!
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44P. Löwdin, J. Chem. Phys.19, 1396~1951!.
45G. Bir and G. Pikus,Symmetry and Strain-Induced Effects in

Semiconductors~Wiley, New York, 1974!.
46W. Spitzer and J. Whelan, Phys. Rev.114, 59 ~1959!.
47H. Ehrenreich, Phys. Rev.120, 1951~1960!.
48T. Moss and A. Walton, Proc. Phys. Soc.74, 131 ~1959!.
49M. Cardona, Phys. Rev.121, 752 ~1961!.
50G. Stillman, C. Wolfe, and J. Dimmock, Solid State Commun.7,

2671 ~1969!.
51H. Fettermanet al., Q. Tech. Rep. Solid State Res.3, 37 ~1970!.
52J. Chamberlain and R. Stradling, Solid State Commun.7, 1275

~1969!.
53G. Dresselhaus, A. Kip, and C. Kittel, Phys. Rev.98, 368~1955!.
54J. Maan, inOptical Properties of Semiconductors,Vol. 228 of

NATO Advanced Study Institute, Series E: Applied Sciences, ed-
ited by G. Martinez~Kluwer, Boston, 1993!, p. 181.

55P. Harper, J. Hodby, and R. Stradling, Rep. Prog. Phys.36, 1
~1973!.

56R. Palmer, Ph.D. thesis, Oxford University, 1970.
57Q. Vrehen, J. Phys. Chem. Solids29, 129 ~1968!.

58R. Seisyan, M. Abdullaev, and V. Drazin, Fiz. Sov. Phys. Semi-
cond.7, 522 ~1973!.

59I. Balslev, Phys. Rev.177, 1173~1969!.
60M. Skolnick et al., J. Phys. C9, 2809~1976!.
61K. Hesset al., Physics of Semiconductors: Proceedings of the

13th International Conference, Rome~North-Holland, New
York, 1976!, p. 142.

62K. Yamanakaet al., Appl. Phys. Lett.48, 840 ~1986!.
63R. Miller, D. Kleinman, and A. Gossard, Phys. Rev. B29, 7085

~1984!.
64B. Shanabrook, O. Glembocki, D. Broido, and W. Wang, Phys.

Rev. B 39, 3411~1989!.
65N. Lipari, M. Altarelli, and R. Dingle, Solid State Commun.16,

1189 ~1975!.
66M. Reine, R. Aggarwal, and B. Lax, Phys. Rev. B2, 458 ~1970!.
67S. Adachi, J. Appl. Phys.53, 8775~1982!.
68Intrinsic Properties of Group IV Elements and III-V, II-VI, and

I-VII Compounds, edited by K.-H. Hellwege and O. Madelung,
Landolt-Börnstein, New Series, Group III, Vol. 22, Pt. a
~Springer-Verlag, Berlin, 1987!, p. 82; Physics of Group IV El-
ements and III-V Compounds, edited by K.-H. Hellwege and O.
Madelung, Landolt-Bo¨rnstein, New Series, Group III, Vol. 17,
pt. a ~Springer-Verlag, Berlin, 1982!.

69J. Blakemore, J. Appl. Phys.53, R123~1982!.
70E. Kane, J. Phys. Chem. Solids1, 249 ~1957!.
71A. Aronov, G. Pikus, and A. Titkov, Sov. Phys. JETP57, 680

~1983!.
72V. Marushchak, M. Stepanova, and A. Titkov, Sov. Phys. Solid

State25, 2035~1983!.
73A. Mears and R. Stradling, J. Phys. C3, L22 ~1970!.
74L. Shantharama, A. Adams, C. Ahmad, and R. Nicholas, J. Phys.

C 17, 4429~1984!.
75G. Koster, J. Dimmock, R. Wheeler, and H. Statz,Properties of

the ThirtyTwo Point Groups~MIT Press, Cambridge, 1963!.
76D. Aspnes, Phys. Rev. B14, 5331~1976!.
77R. Stradling and R. Wood, J. Phys. C3, L94 ~1970!.
78S. Narita and M. Miyao, Solid State Commun.9, 2161~1971!.
79M. Cardona, J. Phys. Chem. Solids24, 1543~1963!.
80F. Pollak, C. Higginbotham, and M. Cardona,Physics of Semi-

conductors: Proceedings of the 8th International Conference,
Kyoto ~North-Holland, New York, 1966!, p. 20.

54 14 479EVALUATION OF MATRIX ELEMENTS OF THE 838 k•p . . .


