PHYSICAL REVIEW B VOLUME 54, NUMBER 20 15 NOVEMBER 1996-II

Magnetic polaron in ferro- and antiferromagnetic semiconductors
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The temperature-dependent quasiparticle spectrum of a single conduction electron exchange coupled to a
ferro- or antiferromagnetically ordered localized-spin systeng., EuO, EuTgis calculated by a moment-
conserving Green function technique. In the weak coupling regime the exchange interaction leads to an almost
rigid shift of the Bloch dispersion. The induced spin splitting of the conduction band states is proportional to
the magnetizatiofS?) of the localized-spin system. As soon as the coupling constant exceeds a critical value
an additional splitting of the quasiparticle dispersion for each spin projection sets in due to different elementary
excitations. One is based on a repeated emission and reabsorption of a magnon by the conduction electron
resulting in an effective attraction between magnon and electron. This gives rise to a polaronlike quasiparticle
(“magnetic polaron’). Another excitation is due to a direct magnon emission or absorption by the electron
thereby flipping its own spiit“scattering states). For the exactly calculable special case of a ferromagneti-
cally saturated spin syster £ 0 K), the magnetic polaron appears only in thepectrum and turns out to be
a stable quasiparticle. For finite temperatures it gets a finite lifetime. In antiferromagnetic systems each
quasiparticle band exhibits an additional “Slater splitting” due to the reduced magnetic Brillouin zone. The
predicted strong correlation effects in the excitation spectrum require unconventional interpretations of respec-
tive inverse photoemission experimer{iS0163-182606)01344-4

[. INTRODUCTION because of its close relationship to the periodic Anderson
model® It will also have a certain relevance to the high
The intensively investigated-f model— describes the problem®*° not only because of its reference to the Ander-
exchange coupling of itinerant electrons to localized magson model. There is an obvious analogy to the hioh
netic moments. Such a situation is found in magnetic semiHamiltonian if one relates the-f exchangeH; to the
conductors like the europium chalcogenftigsX(X=0, S, electron-phonon interaction and the collective spin excita-
Se, Te and the chromium chalcogenide spirels tions (magnons;H;) to the phonons. Another present day
MCr,Y,4M=Hg, Cd;Y=S, Se, as well as for metallic local application of thes-f Hamiltonian are the magnetic multi-
moment systems such as the rare earth metals Gd, Tb, atalers, which have been the subject of many recent
Dy.® The model Hamiltonian consists of three characteristicexperimentdf-*2 and theoreticaf* investigations.
partial operators, The model Hamiltoniarfl) creates a rather sophisticated
many body problem that cannot be solved exactly for the
H=H¢+H;+Hg;, (1) general case. We propose in this paper a theory for the spe-
cial situation of a single electron in an otherwise empty con-
concerning the mutual influences of the two well-definedduction band that interacts viaf exchange with the ferro-
electronic subsystemdd stands for itinerant conduction magnetically or antiferromagnetically ordered localized spin
electrons, which are treated aselectrons without explicit system.
Coulomb interaction. At each lattice sife a permanent The study aims at prototypical magnetic semiconductors
magnetic moment is localized represented by a spin operatdike the ferromagnet EuO and the antiferromagnet EuTe. Al-
S. The moment results from an only partially filled electron ready some 30 years ago it has experimentally been detected
shell being strictly concentrated to the neighborhood of thehat the empty conduction band of EuO exhibits a remark-
respective nucleus {4 in Gd, E¢"). These momentsor  able temperature dependence. A striking manifestation is the
sping exhibit a spontaneous magnetic order below a criticalwell-known redshift of the optical absorption edfeb-
temperature due to a certaidirect or indirect exchange served in the meantime for all ferromagnetic semiconduc-
interaction. That is described bil;. Many characteristic tors. A large number of research projects have been focused
features of the above mentioned materials may be traceith the past on this special effect, which can easily be under-
back to an intimate correlation between the two electronicstood for weak exchange couplings within a mean-field ap-
subsystems which is incorporated in te€f model as an proximation. However, the same effect needs a rather differ-
intra-atomic exchange interactiokl {;) between the conduc- ent explanation for intermediate or stronger interaction, as
tion electron spinr and the localized spin S. will be shown in this paper.
Although thes-f model was originally thought to describe  Substantial progress in the understanding ofstiemodel
the magnetism and the magneto-optic properties of local mdaas been brought about by the exact solufioh of the spe-
ment metals and insulators, it also proved to be applicable toial case of a single conduction electron in contact with a
a lot of other phenomena in condensed matter physics. It hdsrromagnetically saturated spin systei=0 K). A de-
been used for heavy fermion and mixed valence sysfemstailed evaluatiol reveals rather sophisticated correlation ef-
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fects in the energy spectrum. The wave-vector and energy Taking into account the sublattice structure, the partial
dependent down-spin spectral density consists for not tooperators of thes-f Hamiltonian (1) read as follows:H
weak couplings of a sharp quasiparticle peak and a ratheefers to the conduction electrons being treated @ectrons
broad scattering spectrum. The quasiparticle strudimag-  without Coulomb interaction,

netic polaron corresponds to a repeated emission and reab-

sorption of a magnon by the conduction electron resulting in

an effective electron-magnon attraction. Under certain con- Hs:ij;a p TiPelaoCipo= k;:i 5 €ap(K)ChaoChpr - (5)
ditions, this can even result in a bound state, i.e., a quasipar- ' '

ticle with infinite lifetime. The scattering part is caused by CiTw andc;,, are, respectively, the creation and the annihi-
magnon emission of the excited electron. Altogether one |ation operator of an electron with spin (c=1,]) at site

has to conclude that such features require a careful and ug. T2# is the hopping integral ane,5(k) the correspond-
conventional interpretation of respective photoemission exjq Blo]ch energy,

periments. It is the aim of this paper to extend the0

special case to finite temperatures and different magnetic 1 _

spin structures. The results are represented in terms of spec- Tﬁﬁzﬁz €qp(k)e* (RiITRY), (6)
tral densities, quasiparticle densities of states, and time- k

dependent quasiparticle propagators. They yield a conclusive

impression of the striking consequences of shieexchange At each lattice sitéR;, a permanent magnetic moment is
interaction, the source of many current physical properties ofecalized, represented by a spin operafgr. The spin sys-
condensed matter. tem is described by the Heisenberg model,

The paper is organized as follows. In the next section we
formulate the many-body problem posed by thé Hamil- Ho= 2 JeBs s %
tonian (1). Section Il deals with a self-energy approach as f ifap 1 e T

the main part of our theory. The special aspects of antiferro-

magnetic structures are worked out in Sec. IV. The resultéﬁ"8 are exchange integrals which are responsible for the
are presented and discussed in Sec. V. The paper ends withagnetic structure. Itinerant electrons and localized spins in-
some conclusions and with an outlook concerning applicateract via an intra-atomic exchangk;:

tions on real substances.

Hsf=—JZ 94 Sja
II. THE sf PROBLEM Je

Since we intend to study simultaneously the influence of
several magnetic spin structures on the electronic energy
spectrum of a magnetic semiconductor, we presume a solid
being built up by m penetrating sublattices « gj, is the electron spin operatam; ,,= c;rwcj «o the occu-
(¢=1,2...m). The local moments on each of the chemi- pation number operator, andl the s-f coupling constant.
cally egivalent sublattices order ferromagnetically, but pos+urthermore, we have introduced for abbreviation
sibly with different orientations of the spontaneous magneti-
zation for differenta. We refer to the total lattice as a S/.=S/t12,5,;
magnetic Bravais latticeR;) with an m-atom basis (),

1
== E‘J% (Zosjzanjaa+ quacjjrafa'cjaa)- (8)

ZT:+1’ Zl:_l (9)

We investigate in this paper the electronic quasiparticle
2) spectrum of a single electron in an otherwise empty conduc-
tion band which interacts with a magnetically ordered
. . . . . localized-spin system. The neglect of any Coulomb interac-
! lnutmbers .thte:]\l tS't]?S ]?f the Brav?li Iattlr(]:.ehpnly. TT? Sim' tion in (5) is then trivially justified. Since we are not inter-
P esﬂ::atset;]s a gl ?t' erro_m:gne ,borw rons equal OI ' ested in the purely magnetic properties of the local moment
SO tha € subatlice Indexx bEComMes meaningiess fystem, we disregard the direct spin-spin interactidn

Ria:Ri+r

ar

(r,=0). In general, translational symmetry can be assume ‘]ﬁﬁEo in (7)]. However, implicitly a spontaneous magnetic

within a sublattice; i.e., the thermodynamic average of an der i q i'b lained later. For th terial
site-dependent operat@; , is certainlyR; independent, order is assumed as will be explained ater. or the maternals
o that we are interested in, thef exchange coupling is
ferromagnetic §>0). In the case ofJ<0, the model-
(0i0)=(0,). (3)  Hamiltonian(1) is that of the so-called “Kondo lattice®1°
All of the information that we want to get can be read off

There may remain, however, a sublattice dependencgom the retarded single-electron Green function,

That is why we restrict Fourier transformations to the mag- GeB(E) = ot
netic lattice and the magnetic Brillouin zone, respectively: ijo(E)={Ciac:Cjpo) e

=i fowdt eXF( - I%Et) <[Cia0(t)1crﬁo(o)]+>'
> e4Roy,. @

oia:
K (10)

EUn
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Here and in the following[ ...,... ] ([...,...]2) Fip,jo(E):«SiZCpo;CjTg—))E- (18)
means the anticommutatgcommutatoyr. The equation of
motion of the Green function reads These functions prevent a direct solution of the equation
of motion (16). To proceed, we construct in the next step the
2 (ES, S —T‘”)G” (E) equation of motion of the higher functiori$7) and (18):
ay o

ry
=18y 0upt ([ Ciao Hstl - iClgo0e-  (1D) Z (ESp =T Fir jo(E)=((S “[Cp-g:Hsil-i¢[,))e,
The introduction of the self-energy matrit 24 (E), (19

ijo

<<[C|mr! Sf]—! JB(r>>E E er(r Gl‘yjlgrr(E)’ (12) 2 (E(Spr II’J(T(E)

formally solves the problem. After Fourier transformation , , ot
according to(4), it remains that =h(S") 6pj+{(STCpo Hstl- iCjp)e- (20

Because of the empty energy band,

ES,,— €,(K)—ME)IGYA(E)=h6,,. (13
2 [Eduy~€a(K) = MZ(E)IGIE) =80 (13 (n,)=(n,)=0, (21)

The seIf-energWIkﬁ(E) gathers all influences of the-f the Green functions
exchange interaction being therefore the central quantity of

our study. (IS 7 Hsil-Cp-giclo)),
A function of exactly the same usefulness as the Green
function Gﬁf(E) is the single-electron spectral density being ([S7 Hsl-Cpe ;CIT”»,

directly related, except for a respective dipole-transition ma-

trix element, to an angle- and spin-resolv@tverse photo-  Which, in principle, appear ifiL9) and(20), respectively, are
emission experiment, identical to zero. The treatment of the two other new func-
tions in(19) and(20) consists of two steps, since strong local
correlations require a special treatment when spin and elec-
tron operators act at the same site=p). We first discuss,
however, the nondiagonal terms#p).

“B(E :—Lmeaﬁ E+i0"). 14
Sk (E) p ko ( ) (14

An additional wave-vector summation yields ttsublat-
tice) quasiparticle density of states, in terms of which we A i#p

shall partly discuss our results, ) o ! ]
The starting point is to define EqL2) for the electronic

1 wa self-energy, which formally corresponds to the replacement
paa’(E):N_ﬁ n o—(E)- (15)

. Cis Hsil .= M (E)C/ s 22
In the next section, we evaluate the electron self-energy (€ Hsil Er: ro(B)C 22

first for a ferromagnetic semiconductor. o ] ) ]
within the brackets of the Green function. The inspection of

the spectral representatidiof the two functions in(12),
([Ciy Hsl- ;¢l,)e and((c;,;c],)), reveals that both must
In the case of a ferromagnetic semiconductor the totahave the same pole structure and can differ only by the spec-
system possesses translational symmetry. In the formalism afal weights of the poles. The equality of both sidegif) is
Sec. Il that meansn=1, r,=0. The sublattice indices, installed by the self-energy componeMs; ,(E). If we now
B become meaningless and are suppressed in the followingnspect, under the same aspect, the spectral decomposition of
The starting point is the equation of motion of the single-the following two functions,
electron Green functiofill). Evaluating explicitly the com-

mutator[ i, ,Hsf]- leads to (STcpr Hsil—iClo)er  ((SfCrpiClo)),

Ill. SELF-ENERGY APPROACH (FERROMAGNETS)

then we come again to the conclusion that they can differ
Er: (Edir—Tir)Gijo(E) only by their spectral weights, but must have the same pole
structure. In analogy t412) we, therefore, propose to use

1 (22) in these functions, too:
:ﬁ5i'_—\][z{rrii jo(E)+Fiij(E)]. (16

Two higher Green functions appear on the right hand side, (Siepo Hstl - ’CJ(T>>E E Mpora(E){(SfCro; er»E
which we call the spin-flip function,

Fipo(E)=((S "Cp_0iClo))e. 17 (i#p). (23

and the “Ising function,” respectively: The same justification can be used for
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(S “TCo—0 Hsil- il e M(A“§=<(iﬁ%)n[A(t),B(O)]+>  n=012 ... .
~ 3 My (XS e il e (1P, o 39
(24) Because of the equivalent relation
Fori#p the eql_Jations{l6)—(20), (23), and(24) build a M;\n%: _ ifw dE E"Im((A,B))e, (36)
closed system. For=p we have to use another procedure wh ) e

which takes stronger into account the local correlations. ) - .
the moments can be used to fix the coefficients., Bm, iN

Bi= (33) and (34). After tedious but straightforward manipula-
1= tions, we get
We start with an explicit evaluation of the commutator in

the higher Green functions on the right hand sideg1® _(§7787S)+2,(S7S")

and (20). The higher spin-flip function in(19) yields for @1,=07 Py (S 7s7) . @D
i=p,
_ Ar5= <87 USU> - ﬁ20'< SZ>’ (38)
(ST Tei-g Hsil - seo)= 3 J[2,F (], (E) = Fi] (E)].
(25) (S77879)—(S)(S°S) -
Here we have abbreviated 207 ((S?H)?)—(SH)? (39)
FiN(E)=(S “SlCi_yiCl o), (26) The coefficients are determined biyspin correlation
functions, the determination of which has to be considered at
FiZl(E)={(S 7S CiyiCo)e- (27)  a later stage of our procedure.

The equationg16), (19), (20), (23)—(25), (33), (34), and
The analogous evaluation of the higher Ising function in(37)—(39) build a closed system, which can be solved self-
(20) for i=p does not require the introduction of further consistently for the single-electron Green function:
Green functions, because it can exactly be expressed by al-

ready defined terms: Gyo(E)=A[E—€(q)—Mg,(E)]™ % (40)
(STeio Hsid - 6]+ 24(STei— o Heil - 5¢f,)) The solution becomes possible by Fourier transformation,
=3 [T jo(E) + Z,Fii jo(E)]— 3 32,5(S+1)Gjj ,(E), qu(E):%Z Gijo(E)e @ Ri~Ry), (41)

(28) "
(25) and(28) are still exact. To get a closed system of equa- 1 KGR 4R -R)
tions fori =p, too, we are left with the determination of the Akp,QU(E):W% Aim,jo(E)e (K RitP-Rm=aR;
functions F{"2(E). Both fulfill some important exact rela- '
tions. ForS=1/2 it holds for all temperatures: (A=E.T). (42
Fitl(E)= 3 2,F ;i j,(E), (29 In addition, we can exploit translational symmetry
Fi(iz,}a(E) =3 Gij(E)—2z,i j,(E). (30) Axp,qo(E) = 8k+p,gAg—p p,qo(E)- (43
The same two functions for arbitrary sp@ but in the The evaluation yields a wave-vector independent electronic
ferromagnetic saturation $*)=S) are given by self-energy,
1 1
FiN(E)—=[(S=3)+32,1Fi j,(E), (3D Mo(E)=M ,(E) =~ 5 Im,(E). (44)

F(Zlo(E)—>SGj,(E) = 2,Ti ,(E). (32)

The reason of the independence can be traced back to
These exact relationships suggest the following generdhe neglect of magnon energies. Spin flips of the conduction

structures: electrons may be accompanied by magnon emission or ab-
sorption. Since we agreed upon settitg=0, the wave vec-
Ffif}l,(E)zalUGij,,(E)Jr,BlUF“,J-U(E), (33 tor and energy dependenqe of the magnon e_nefgddsq)
do not enter our results. Since magnon energies are smaller
Fi(iZ}(r(E):a2<rGij(r(E)+BZ<rFii io(E). (34) by two or three orders of magnitude than typical electronic

energies, as, for instance, the coupling consthmind the

The five Green functions if83) and(34) are of the same bandwidthW, such a neglect appears to be allowed. For the
type ((A;B))e. For each of them we can calculate exactlyself-energy we eventually get the following implicit equa-
the first two spectral moments according to the relation  tion:
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Qu(E) 0.4
N, (E)" “9

m,(E)=

Qu(E)=24S)+ 3 H[aze— S(S+1)]Go(E) —[ @z,
H(S)(Brot Bao) —2S)M_4(E)1Go o(E)}
+ 7 I42,S(S+1)(Brot Bao) — @24My(E)
+[aze—S(S+1)IM_ ,(E)}Go,(E)Go— ,(E),
(46)

Energy (eV)

NO’(E) =1+ % J{[mO'(E) —-1- ZU'IBZU]GOO'(E) + [mfo'(E)

6.0 T T
_erBlrr]Gofrr(E)}_'—All‘]z{[m(r(E)_l_Z(rﬂZ(r] ;
X[m—a(E)_ZUBlU]+ﬁZU(Blc_ZU)} g
o 4.0 F .
X Goe(E)Go—o(E). (47) %
One recognizes immediately that the first-order expres- wn
sion coincides with the well-known mean-field result, valid 8 20 h

for very weaks-f exchange couplings:

MO(E) = — £ Jz,(S?). (48) 0.0 i
29245 ~0.8 -0.4 0.0 04
In (46) and (47) appears the propagator: Energy (eV)
Gy, (E)= EE Gy, (E)= fw dx & (49 FIG. 1. Bloch band structure and density of states for a simple
0ETNG T | L E—x=M,(E) oy y 0

cubic lattice in a tight-binding approximation with nearest and next

po(X) is the Bloch density of states of the “free” conduction "€arest neighbor hoppirigarameters in53)].

electron system, which of course depends on the lattice strucf‘ﬁe spin svstem. It can be shof¥rthat the magnetization
ture. We have evaluated our theory for a simple cubic struc; pin Sy : 9

Z : 2
ture. Electron hopping is taken into account for the neares(tS> obeys the following formuld

(T4) and next nearesfl() neighbor hopping: , (14 S+ @) 92514 (S— @) (1+ ¢)25*1
()= (1+ )2STIZ ;2571 ,
€(K)=To+T1f1(k) +Tof5(k), (50) ¢ ¢
provided the single-magnon Green function is a one-pole
f,(k)=2[cogk,a)+cogkya)+cogk,a)],  (51)  function at the real magnon energq):

(54)

fo(k) =2{cog (ky+ky)a]+cog (ks+k,)a]
+cog (ky+k;,)a]+cog (k,—ky)a]
+cod (ky—k,)a]+cog (k,—k,)al}. (52

p=0¢(9)= %; (efE@—1)"1, (55)

Equation(54) holds for arbitrary spin values. Furthermore
one finds the very useful relaticfts

The Bloch energieg(k) are plotted in Fig. 1 for certain (S™ST)=2h(S) (S), (56)
symmetry directions as well as the Bloch density of states
po(E)- ((8)?)=h?S(S+1)~W(SH[1+2¢(9],  (57)

For the concrete evaluation we have chosen
(83 =13S(S+1)p(S) +AXSH[S(S+ 1)+ ¢(S)]

—i{(S)?)[1+3¢(9)], (59)

The self-energy(45)—(47) is strongly influenced by the gq that lastly the coefficients i87)—(39) are expressed in
coefficientsay,, B1,, B2, Where these quantities are pure terms ofe. Our procedure is as follows. We consid&F) as
f-spin correlation functions according {87)—(39). We did 4 given parameter to which we ascribe by use(®4) a
not explicitly take into account the direct interaction bEtwee“certaincp(S). That ¢(S) helps to derive the other spin cor-
the localizedf spins. We agreed to consider the spontaneouge|ation functions. Figure 2 shows some examples.
magnetizatio(S’) as a given temperature-dependent param-  The self-energy44) turns out to be, in general, a complex
eter. Thef-spin correlations in37)—(39) can be determined quantity
by the pure Heisenberg model, since the assumed empty con-
duction band has no influence on the magnetic properties of M, (E)=R,(E)+il ,(E). (59

To=0; T;=-0.05 T,=T,/42. (53)
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45_0-'“"'.'_"“ That means
40.0 ¥, i (Mko(E) T(E) ) €9
s's" o = .
35.0 [ :(32)2: //-_ “ :(E) My-o(E)
300 [~ o — %3 h
L T <(SS+S)-> // ] Matrix inversion in(62) yields

25.0 | ===, .

20.0 F s ] Gy (E)

wor ] b (Eme-M(E) K+ T(E)

100 e T T ] CAGE) | t(KHTHE)  E—e(k)—My,(E))’

5.0 - (69)

. ./.I P PN T BT BT
0005101520253035 AE)=[E~€(k) = My (E)[[E~€(k) ~ My ,(E)]
—[t(k)+T(E)|% (70)
FIG. 2. Correlation functions of the localized-spin system as a
function of the magnetizatiotS?) (S=7/2). The sublattice spectral density of the antiferromagnet is then
given by
According to (14) and (40) the spectral density of the
ferromagnet is then given by 1 E—-ek)—M_,(E)
SAE)=——Im =SB (E). (71
w A(E)

1
Sko(BE)===ImGy,(E) _ _ _
™ We remember thék is a wave vector from the first Bril-
4 | (E) louin zone of the magnetic Bravais lattice, i.e., of tferro-
=== — Z ———. (60 magneti¢ sublattice. The angle- and spin-resolved photo-
7 [E-e(k)=Ro(E) "+ 1,(E) emission experiment observes the single-electron spectral
An additional wave-vector summation yields the quasiparti-density. Strictly speaking, the mentionémhverse photo-
cle density of state§QDOS), emission experiment refers to the total chemical lattice. If
g is from the first Brillouin zone of the total lattice, then the
following simple relation holds:

1
Po(B) =72 ScolB)- (61)

1
SiE)=52 S§ik,(E)+SEk(E)cogq: (ra=re)]. (72
IV. SELF-ENERGY APPROACH (ANTIFERROMAGNETS ) @

We now assume a two sublattice structueg B:A, B),  The observed spectral density of the two-sublattice anti-
where each sublattice orders ferromagnetically but with d'f'ferromagnet is of course spin independéftis just the re-

ferent directions of the spontaneous magnetization. The startjyocal lattice vector which transfexs into the first Bril-
ing point is again equatiot13) which reads in a matrix |,in zone of the magnetic Bravais lattice.

representation A further quantity of importance is the sublattice quasi-
- - ~ _ article density of states,
Gio(B)=h[E-e(-ME)] % 62 P v
Because of chemically totally equivalent sublattices it _ i aa _
holds for the elements of the Bloch matixk), Pao(E) N; Sio(B). a=AB. 73
ean(k) = ega(k)=e(k), (63 The nondiagonal elemeifi (E) of the self-energy matrix
(69) disappears at temperatures above thel@mperature
— _* —
ens(k) = ega(k)=t(k). 64) Tyn- Our approximation consists in the assumption that
That means T«(E) can be neglected for all temperatures and that the
self-energy partM,,(E) of the respective ferromagnetic
. e(k) t(k) sublattice has the same structydd) as that of a ferromag-
ek)=1 i« K ek (65 netic semiconductor. This assumption is realistic and accept-

o _ _ able and has been justified in Ref. 23 for the Hubbard model.
Similar symmetry relations are valid for the self-energy ma-  To allow a direct comparison to the ferromagnetic coun-

trix: terpart(Sec. Il)), we evaluate our theory again for a simple
AA BB cubic lattice, which is decomposed into two sublattices in
Mio (BE) =M= =My, (E), (66)  such a way that the nearest neighbors of each atom are from

AB B A the other sublattice. As if60), we have taken into consid-
Mi(E)=Mys" =Tw(E). (67)  eration the nearest and next nearest hopping. That means
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0.3 — Spin-up Spin-down
Lo <SZ >/S=1.0
| 0
0.1 | AN —~ 05
— | 1
S ! ! ' % -/\_
L 01 1 [ ~ 0.0 :
= [\ 2 PP——
? Lo g 0.3
| [
Lﬁ -0.3 1 [ M 1o |
| (|
05 P (0,0,0) Kk (1,1,1) (0,0,0) Kk 1,1,1)
X I' LWK T <§>/8=0.6
10.0 _ T * S 03 | om——— ﬁ
—~ 8.0 B = 3 |
< | ] g 0.0
L o0
2 60 ] 5 05 ,-
2 40} . Lo |
172} s |
8 o0 | ] (0,0,0) k (1,1,1) (0,0,0) k (1,1,1)
ol , <§>/8=0.0
0.0 P —~ 05
-05 -01 03 5 03] .
Energy (eV) < 0.0
>
o0 ﬁ
FIG. 3. Bloch-band structure and density of states for the fcc Qs:) 03 _ ’
sublattice of an antiferromagnetically ordered sc lattice in a tight- H 1.0/
binding approximation with nearest and next nearest neighbor hop- '

ping [parameters irf53)]. (0,0,0) k (L,L1)
. a a FIG. 4. Density plot of the spectral density of the ferromagnetic
e(k)=To+2T; COS((kX+ky)§ +C05((kx+kz)§) semiconductor as function of energy for wave vectors from the

(117 direction and for both spin projections. The degree of black-
+cos( (K—k )E) ening measures the magnitude of the spectral density. Results are
X Y9 plotted for three different magnetizations of the ferromagnetic
f-spin systemparametersJ=0.2 eV,S=7/2, sc lattice.

a
+ cos( (ky+ kZ)E

a
+C°5< (ky_kz)ﬁﬂ (74 est and next nearest neighbors. The corresponding Bloch en-
ergiese(k) are given in(50) for the crystal without and in
a a (73), (74) for the crystal with sublattice decomposition. Our
+co kyi +co kZE (75

a
+cos( (ky— kZ)E

a
t(k)=2T, COS( K3 interest is mainly focused on correlation and temperature ef-
fects in the energy spectrum of the single conduction elec-

The wave vectok=(k,, k,, k;) is now from the first tron as a consequence of its exchange coupling to the
Brillouin zone of the fcc-magnetic Bravais lattice. The hop-localized-spin system. Thésublattice magnetization(S?)
ping constantsT,, Ty, T, are same as it53). The Bloch  ((S.)) is considered as a given parameter. Temperature
band structure and the corresponding density of states of theomes into play excludingly vidS?) and some other spin
fcc sublattice are shown in Fig. 3. As to tifiespin correla-  correlations(37)—(39), where, however, the latter are ex-
tions, we assume the same relat{éd), only ¢(S) hasto be pressible by S*) [see Eqs(56)—(58)]. The Bloch bandwidth
reinterpreted and all entities are sublattice entities. Sincés fixed by the parameter choi¢3) and the spin value of
(S) is our primary parameter, the different meaning ofthe f system is chosen t8=7/2.
¢(S) does not affect our procedure. From a given sublattice
magnetizationS.,), we determine via Eq(54) the corre- A. Ferromagnet
spondinge(S) and therewith all spin correlations necessary
for our theory[(56)—(58)].

In a ferromagnetically saturated spin system=(;
(S)=9) an 1-spin electron cannot exchange its spin. The
spin-flip terms of thes-f interaction[second term in8)] do
not work, only the Ising-like terrrzUSjan,, takes care for a

We have evaluated our theory for a simple cubic latticerigid shift of the quasiparticle energids,; (k) compared to
where the electron hopping is taken into account up to neathe Bloch energieg(k),

V. DISCUSSION OF THE RESULTS
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The up-spin spectral densif$0) is a singles function o \\\\\\&&\\&\&Q\\\\\\\\\\\{\\\\\\\'\(\\"’!'m &0
corresponding to a quasiparticle with infinite lifetime. This is “““\\\\\\\\\\\\\\@R{&&'{ N
represented in Fig. 4, where we have plotted the spectral (770 U 3
densityS,,(E) for wave vectors from thél11) direction as T= "12: 20 \O
a function Qf energy in the form of a density plot. The degree Polaron
of blackening measures the magnitudeSpf(E). For plot- part (3.3.9)

ting convenience, we have added a small imaginary part to

the self-energy giving the spectral density a small finite _ _

width. Equation(76) is a simple but exact resuif. This holds FIG. 6. Time-dependent propagafy,(t) [Fourier transform of

also for the down-spin spectral density in the case of ferroSk.(E)]as function of time for various wave vectors from 1d.1)

magnetic saturatiofiS?) = S. However, the down-spin quasi- direction. The upper part .bellongs to the scattgrﬂhlgv energy

particle spectrum is far from being trivial. For the coupling pgakzof tEel-spectra_I density n the ferromagnetlc saturatibig.

strengthJ=0.2 eV, used in Fig. 4, it consists of two promi- 4 <.S )S= 1.)' The middle part is .the Ffu”er t_ransforrg of t_he scat-
. . . tering part in the spectral density &t=T. (Fig. 4: (S)/S=0),

hent structures V\.Ihlc.:h ShOU|d. be observable in a I’esPect'V\ﬁhile the lower part represents the magnetic polarorm &iT, .

inverse photoemission experiment. Both structures may bg_ ameters as in Fig. 4.

understood on the basis of a repeated emission and absorp-
tion of magnons by the electron. The upper part refers to aneach for the electron to land after the spin flip. Since we

effective attraction between magnon and electron resulting imeglected magnon energigsw(q)=0] from the very be-

a polaronlike quasiparticléelectron plus magnon cloudit  ginning, the scattering spectrum of thespin electron there-
manifests itself as a pole of the single-electron Green funcfore stretches over the full region of finite up-spin density of
tion. We call this quasiparticle excitation the magnetic po-states(Fig. 5). However, in most cases the scattering states
laron. At (S?)=S and strong enough, it is even a bound are bunched together to a pronounced peak. To both peaks
state coming out as & function in the spectral density. For can be ascribed a spectral weight that scales with the area
weak J the polaron dispersion dips into the region, whereunder the respective peak. The total weight of the

T states exisfp,(E)#0]. Then the polaron may decay into (k,o)-dependent spectral density is normalized to one. The
a1 electron and a magnon, the quasiparticle peak is theraelative weight of the polaron peak compared to that of the
with getting a finite width. A direct emission of a magnon by scattering part appears to be strongly dependent on the posi-
the excited down-spin electron leads to the second structution in the Brillouin zone. We stress once more that the
in S, (E) (Fig. 4. Magnon emission by the down-spin elec- (S?)=S results are exact.

tron becomes possible always if there arstates within the Magnon emission by a down-spin electron should be
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FIG. 7. Down-spin spectral densig (E) of the ferromagnetic semiconductorB&0 K ((S?)/S=1) as function of energy for wave
vectors from thg111) direction. Each plot belongs to anotref exchange couplingexact results Other parameters as in Fig. 4. In the
lower row, the figures are represented in the form of a density plot.

equivalent to magnon absorption by an up-spin electronin Fig. 5, the QDOS splits for both spin directions into two
However, in the ferromagnetic saturation the system does najuasiparticle subbands, the position of which do not change
contain any magnon. That is the reason whyf at0 K the  very much with temperature. Only the gap becomes slightly
1 spectrum is without a scattering part. At finite temperaturesvider with increasing temperature. The ordered magnetic
((S*»/S=0.6 in Fig. 4 the up-spin electron can absorb a state of thef system induces into the conduction band a
magnon, therewith reversing its spin and subsequently formremarkable spin asymmetry. This asymmetry gradually dis-
ing a polaron. A weak polaron peak is therefore observableppears with decreasirfgmagnetization S*); however, not
in Fig. 4 in the? spectrum for the case §5°)/S=0.6. The by a Stoner-like shift of respective spin bands, but rather by
low energy peak in the spectrum is built up at finite tem- a temperature-dependent shift of weight between the sub-
peratures, in principle, by two elementary processes. Becaug@nds. That means that the first-order t€#8) of the elec-
of finite deviations of thd spins from saturation the excited tronic self-energy, which is proportional {&), is overcom-
| electron has a finite probability of entering the local framepensated by the higher-order terms. The above mentioned
of the f-spins as up-spin electron. This probability is zero forredshift of the optical absorption edge is in such a case due
(S%)=S. On the other hand, it can first emit a magnon and byto a quasiparticle band narrowing effect and not so much to
that reverse its spin becoming then an up-spin electron in tha respective shift of the whole subband. For weaker cou-
external frame of coordinates. Afterwards it enters with aplings J/W the situation is changing drastically. The two
certain probability the local frame as up-spin electron. In thesubbands melt together shifting as a whole Stoner-like, i.e.,
second elementary process a magnon is involved, in the firgtroportional to(S?), with increasing temperature. Then the
it is not. The corresponding excitation energies differ moremean-field par{(48) of the self-energy dominates the spec-
or less by a magnon energy which is however neglected itrum. The ferromagnetic saturatioff)=S) in Fig. 5 rep-
our treatment. The splitting of the spectral density into aresents the already mentioned special case for that the upper
polaron part and a scattering part is not restricted to the ferquasiparticle subband disappears in thepectrum.
romagnetic phase, but remains 6T, ((S*)=0), too. It To demonstrate the quasiparticle character of the various
represents a striking correlation effect that is by no meanstructures in the spectral density, we have plotted in Fig. 6
reproduceable in a one-electron picture. A respective anglor three typical examples the contributions of the respective
and spin-resolved inverse photoemission experiment woulgeak to the time-dependent propagator,
require a careful interpretation since the excited single
(k,o) electron produces two peaks in the spectrum with ik
strongly wave-vector, spin, and temperature dependent spec- Sco(t)=5 | dE So(E)e (e, (77)
tral weights.

The splitting of the spectral density transfers itself to the Since the peaks are rather sharp we could restrict the en-
quasiparticle density of states as a gap. This of course dergy region for the Fourier transformation {(@7) closely
pends on the actual coupling strengiW. ForJ/W=0.2,as around the respective peak position. The polaron part of
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(0,0,0) k (1,1, Since the curves in Fig. 7 are exact results, they prove that

the correlation caused splitting of the spectral density into a

FIG. 8. Density plot of the sublattice spectral density of the polaronic and a scattering portion is not at all an artefact of
antiferromagnetic semiconductor as function of energy for waveany unavoidable approximation used in the calculation. It is

vectors from thg111) direction of the fcc-magnetic Brillouin zone. a fundamental feature of the underlying exchange-coupled
Results are plotted for three different sublattice magnetizatjpas physical system.
rameters:J=0.2 eV, S=7/2; total lattice: sc; sublattice: fic

S« (E) at(S?)=Sis ad function, so tha, (t) becomes an B. Antiferromagnet
undamped oscillation, not plotted in Fig. 6. The correspond- As described in Sec. IV, we have evaluated our theory
ing scattering part leads fdr vectors close to th€ pointto  also for a two-sublattice antiferromagnet. The chemical lat-
a damped oscillation. The lifetime of the oscillation turns outtice is simple cubic and the magnetic sublattice is face cen-
to be drasticallyk dependentupper part in Fig. § This  tered cubic. Figures 8—10 show the results for the sublattice
holds also for the two propagatorsTat T, . The propagator, spectral density and the quasiparticle density of states. The
which arises from the low energy peak in the spectral denwave vector and spin-resolved excitation spectrum as it
sity, represents a rather long living quasipartictéddle part comes out from the sublattice spectral density has the obvi-
of Fig. 6), at least for thosé vectors chosen in the figure. ous symmetry A,0)«—(B,— ). In that sense the spectral
The propagator from the upper peak of the=T. spectral  density S{7(E) for sublatticea exhibits a spin asymmetry
density exhibits a distinct wave-vector dependence of théelow the Neel temperatui@, . It is important to remember
quasiparticle lifetimglower part of Fig. 6. that k is a vector from the sublattice Brillouin zone. A
The J dependence of the exa€t=0 down-spin spectral majority-spin electron in sublatticA becomes a minority-
density, exhibited in Fig. 7, demonstrates the qualitativelyspin electron in sublattic® and vice versa. The hopping
different features for the weakly and strongly coupked between the sublattices therefore produces an excitation
system. For small only one quasiparticle dispersion ap- spectrum(Fig. 8) that is more complicated than that of the
pears, the system is describable in a single particle concegferromagnetFig. 4). Each of the two gquasiparticle structures
For strongJ the splitting into a polaron and a scattering peakin Fig. 4 is, in general, split once more because of the re-
takes place. In the intermediate regiod=(0.05-0.) the  duced magnetic Brillouin zon€‘Slater splitting”). How-
situation becomes fairly complicated. For sokneectors the ever, the detailed interpretation of the elementary process,
splitting is clearly observable, for others not. In the strongwhich causes the spectral density structures, is exactly the
coupling regime §=0.15 eV} the polaron peak consists of a same as in the ferromagnetic case. The sublattice quasiparti-
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FIG. 10. Total quasiparticle density of state&E) of the anti-  from the(111) direction of the fcc-magnetic Brillouin zone. Results
ferromagnetic semiconductor as function of energy for various valare plotted for two different exchange couplings. Parameters as in

ues of the sublattice magnetization. Parameters as in Fig. 8. Fig. 8.

cle density of statep,,(E) (72) results from the spectral course the additional Slater splitting of each quasiparticle
density by a wave-vector summation over the first Brillouin band. For not too weak-f coupling, we have to again con-
zone(Fig. 9). As for the ferromagnetic systeffrig. 5) it is  clude that a respective inverse photoemission experiment
composed for each spin direction of two quasiparticle subcannot at all be understood within a one particle theory. The
bands. Majority- and minority-spin spectra occupy exactlyexchange coupling leads to drastic and unconventional cor-
the same energy regions. That is of course a consequence féfation effects, so that the presentation of the spectrum in
the intersublattice hopping by which the electron changes itthe usual way by a conventionejuasiparticlg band struc-
character from a majority-spin to a minority-spin electronture becomes rather doubtful.
and vice versa. That is the reason why, contrary to the fer-
romagnet(Fig. 5), there appears even f¢6.)=S a finite
up-spin contribution in the upper part of the energy spec-
trum. We note in passing that our parameter choice We have presented a theory for the energy spectrum of a
(S)=Sis of course somewhat unrealistic since the localizedsingle electron in an otherwise empty conduction band,
spin system, also, cannot reach the full sublattice magnetizavhich is coupled by an intra-atomic exchange interaction to
tion. That is a typical property of any antiferromagnet. Thea ferromagnetically or antiferromagnetically ordered
zero point deviation is, however, rather small. But even undocalized-spin system. This situation is realized in ferromag-
der the assumption that the spin system is in the so-calledetic (antiferromagnetic semiconductors like EUQEUTE.
Neel state(full polarization of the spin sublattigethe con-  Our approach uses a moment-conserving decoupling proce-
duction band quasiparticle states behave differently thadure for suitably defined Green functions. It turns out to be
those of the ferromagnet. The majority-spin electron is neveexact for the rigorously treatable, but nevertheless nontrivial
in an eigenstate lik€76). limiting case of a single-electron exchange coupled to a fer-
A photoemission experiment cannot distinguish betweemomagnetically saturatefl-spin system. Futhermore, it ful-
the two sublattice$72). The sublattice QDOS is therefore fills the exact zero-bandwidth limf The fact that our
not observable, but the total QDOS which is plotted in Fig.theory evolves continuously from the exactly solvable limit-
10 for various temperatures, say varioftispin sublattice ing cases to arbitrary temperature, finite bandwidths, and dif-
magnetizations is observable. The QDOS does not show f@rent magnetic spin structures gives it a certain trustworthi-
remarkable temperature dependence because the temperatness.
variations of the two sublattices are more or less compensat- The exchange coupling of the conduction electron to the
ing each other. spin system gives rise to some extraordinary correlation ef-
The formation of separated polaron and scattering parts ifects. In a ferromagnetic semiconductor the excitation spec-
the sublattice spectral density with increasing strength of thérum is split into a polaronic and a scattering part. The po-
s-f exchange couplingFig. 11) appears much more compli- laron part may be interpreted as a repeated emission and
cated than in the ferromagnetic cdbég. 7). The reason is of reabsorption of a magnon by the conduction electron result-

VI. CONCLUSIONS
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ing in an effective attraction. The rather broad scattering part We intended to apply the presented model study to real
is due to a magnon emission or absorption by the conductiosubstances such as EuO and EuTe. A first attempt for the
Qlectron. It occupies the same energy region as the qué}sipaferromagnetic system EuO has already been perfoffhed,
ticle density of states of the opposite spin because emissidfowever, based on a simpler theory. The quasiparticle band
or absorption of a magnon means a spin flip of the conducstructure of the prototypical antiferromagnetic semiconduc-
tion electron. However, in most cases the scattering spectrugr EuTe is the next goal of our research work. We have to
is bunched to a prominent quasiparticle peakl 16 smaller  combine the presented many body theory with realistic one-
than a certain critical coupling, then the exchange interactioectron band structure calculations performed within the
only leads to a renormalization of the one-electron energyamework of the density functional theory. The extension of
For higher values ofl, the mentioned splitting into & PO- he theory to antiferromagnetic me@isvill allow us to in-
laronic and a scattering part happens; a fact that requ'res\?estigate the highly interesting alloy Y®d, ,Te that

rather unconventional interpretation of the respective inversghanges its physical behavior from a paramagnetic insulator

photoemission experiment. The ustiE(k) band struc- )?YbTe) via a spin glass phase to an antiferromagnetic metal

ture representation becomes insufficient. A decisive quantit GdTe .25 The corresponding magnetic phase diagram means
is, for instance, the spectral weight of the quasiparticle exci- ) P g mag P 9

tation, which regulates the relative importance of the variou
poles, i.e., the intensities of the corresponding photoemission
line shapes. Because of the additional Slater splitting, the
spectral density structure becomes still a bit more compli- ACKNOWLEDGMENT

cated for an antiferromagnetic semiconductor. Each quasi-

particle dispersion splits once more due to the reduced mag- This work has been sponsored by the “Deutsche Fors-

further challenge of our investigation.
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