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The temperature-dependent quasiparticle spectrum of a single conduction electron exchange coupled to a
ferro- or antiferromagnetically ordered localized-spin system~e.g., EuO, EuTe! is calculated by a moment-
conserving Green function technique. In the weak coupling regime the exchange interaction leads to an almost
rigid shift of the Bloch dispersion. The induced spin splitting of the conduction band states is proportional to
the magnetization̂Sz& of the localized-spin system. As soon as the coupling constant exceeds a critical value
an additional splitting of the quasiparticle dispersion for each spin projection sets in due to different elementary
excitations. One is based on a repeated emission and reabsorption of a magnon by the conduction electron
resulting in an effective attraction between magnon and electron. This gives rise to a polaronlike quasiparticle
~‘‘magnetic polaron’’!. Another excitation is due to a direct magnon emission or absorption by the electron
thereby flipping its own spin~‘‘scattering states’’!. For the exactly calculable special case of a ferromagneti-
cally saturated spin system (T50 K!, the magnetic polaron appears only in the↓ spectrum and turns out to be
a stable quasiparticle. For finite temperatures it gets a finite lifetime. In antiferromagnetic systems each
quasiparticle band exhibits an additional ‘‘Slater splitting’’ due to the reduced magnetic Brillouin zone. The
predicted strong correlation effects in the excitation spectrum require unconventional interpretations of respec-
tive inverse photoemission experiments.@S0163-1829~96!01344-6#

I. INTRODUCTION

The intensively investigateds-f model1–3 describes the
exchange coupling of itinerant electrons to localized mag-
netic moments. Such a situation is found in magnetic semi-
conductors like the europium chalcogenides4 EuX(X5O, S,
Se, Te! and the chromium chalcogenide spinels5

MCr2Y4(M5Hg, Cd;Y5S, Se!, as well as for metallic local
moment systems such as the rare earth metals Gd, Tb, and
Dy.6 The model Hamiltonian consists of three characteristic
partial operators,

H5Hs1Hf1Hsf , ~1!

concerning the mutual influences of the two well-defined
electronic subsystems.Hs stands for itinerant conduction
electrons, which are treated ass electrons without explicit
Coulomb interaction. At each lattice siteR a permanent
magnetic moment is localized represented by a spin operator
S. The moment results from an only partially filled electron
shell being strictly concentrated to the neighborhood of the
respective nucleus (4f 7 in Gd, Eu21). These moments~or
spins! exhibit a spontaneous magnetic order below a critical
temperature due to a certain~direct or indirect! exchange
interaction. That is described byHf . Many characteristic
features of the above mentioned materials may be traced
back to an intimate correlation between the two electronic
subsystems which is incorporated in thes-f model as an
intra-atomic exchange interaction (Hsf) between the conduc-
tion electron spins and the localizedf spinS.

Although thes-f model was originally thought to describe
the magnetism and the magneto-optic properties of local mo-
ment metals and insulators, it also proved to be applicable to
a lot of other phenomena in condensed matter physics. It has
been used for heavy fermion and mixed valence systems,7

because of its close relationship to the periodic Anderson
model.8 It will also have a certain relevance to the highTc
problem,9,10 not only because of its reference to the Ander-
son model. There is an obvious analogy to the Fro¨hlich
Hamiltonian if one relates thes-f exchangeHsf to the
electron-phonon interaction and the collective spin excita-
tions ~magnons;Hf) to the phonons. Another present day
application of thes-f Hamiltonian are the magnetic multi-
layers, which have been the subject of many recent
experimental11,12 and theoretical13,14 investigations.

The model Hamiltonian~1! creates a rather sophisticated
many body problem that cannot be solved exactly for the
general case. We propose in this paper a theory for the spe-
cial situation of a single electron in an otherwise empty con-
duction band that interacts vias-f exchange with the ferro-
magnetically or antiferromagnetically ordered localized spin
system.

The study aims at prototypical magnetic semiconductors
like the ferromagnet EuO and the antiferromagnet EuTe. Al-
ready some 30 years ago it has experimentally been detected
that the empty conduction band of EuO exhibits a remark-
able temperature dependence. A striking manifestation is the
well-known redshift of the optical absorption edge,4 ob-
served in the meantime for all ferromagnetic semiconduc-
tors. A large number of research projects have been focused
in the past on this special effect, which can easily be under-
stood for weak exchange couplings within a mean-field ap-
proximation. However, the same effect needs a rather differ-
ent explanation for intermediate or stronger interaction, as
will be shown in this paper.

Substantial progress in the understanding of thes-f model
has been brought about by the exact solution15–17of the spe-
cial case of a single conduction electron in contact with a
ferromagnetically saturated spin system (T50 K!. A de-
tailed evaluation17 reveals rather sophisticated correlation ef-
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fects in the energy spectrum. The wave-vector and energy
dependent down-spin spectral density consists for not too
weak couplings of a sharp quasiparticle peak and a rather
broad scattering spectrum. The quasiparticle structure~mag-
netic polaron! corresponds to a repeated emission and reab-
sorption of a magnon by the conduction electron resulting in
an effective electron-magnon attraction. Under certain con-
ditions, this can even result in a bound state, i.e., a quasipar-
ticle with infinite lifetime. The scattering part is caused by
magnon emission of the excited↓ electron. Altogether one
has to conclude that such features require a careful and un-
conventional interpretation of respective photoemission ex-
periments. It is the aim of this paper to extend theT50
special case to finite temperatures and different magnetic
spin structures. The results are represented in terms of spec-
tral densities, quasiparticle densities of states, and time-
dependent quasiparticle propagators. They yield a conclusive
impression of the striking consequences of thes-f exchange
interaction, the source of many current physical properties of
condensed matter.

The paper is organized as follows. In the next section we
formulate the many-body problem posed by thes-f Hamil-
tonian ~1!. Section III deals with a self-energy approach as
the main part of our theory. The special aspects of antiferro-
magnetic structures are worked out in Sec. IV. The results
are presented and discussed in Sec. V. The paper ends with
some conclusions and with an outlook concerning applica-
tions on real substances.

II. THE s-f PROBLEM

Since we intend to study simultaneously the influence of
several magnetic spin structures on the electronic energy
spectrum of a magnetic semiconductor, we presume a solid
being built up by m penetrating sublatticesa
(a51,2 . . . .m). The local moments on each of the chemi-
cally eqivalent sublattices order ferromagnetically, but pos-
sibly with different orientations of the spontaneous magneti-
zation for differenta. We refer to the total lattice as a
magnetic Bravais lattice (Ri) with anm-atom basis (ra),

Ria5Ri1ra . ~2!

i numbers theN sites of the Bravais lattice only. The sim-
plest case is that of a ferromagnet, for whichm is equal to 1,
so that the sublattice indexa becomes meaningless
(ra[0). In general, translational symmetry can be assumed
within a sublattice; i.e., the thermodynamic average of any
site-dependent operatorOia is certainlyRi independent,

^Oia&5^Oa&. ~3!

There may remain, however, a sublattice dependence.
That is why we restrict Fourier transformations to the mag-
netic lattice and the magnetic Brillouin zone, respectively:

Oia5
1

AN(
k
eik•RiOka . ~4!

Taking into account the sublattice structure, the partial
operators of thes-f Hamiltonian ~1! read as follows:Hs
refers to the conduction electrons being treated ass electrons
without Coulomb interaction,

Hs5 (
i j s,ab

Ti j
abcias

† cjbs5 (
ks,ab

eab~k!ckas
† ckbs . ~5!

cias
† andcias are, respectively, the creation and the annihi-
lation operator of an electron with spins (s5↑,↓) at site
Ria . Ti j

ab is the hopping integral andeab(k) the correspond-
ing Bloch energy,

Ti j
ab5

1

N(
k

eab~k!eik•~Ri2Rj !. ~6!

At each lattice siteRia a permanent magnetic moment is
localized, represented by a spin operatorSia . The spin sys-
tem is described by the Heisenberg model,

Hf52 (
i j ,ab

Ji j
abSia•Sjb . ~7!

Ji j
ab are exchange integrals which are responsible for the
magnetic structure. Itinerant electrons and localized spins in-
teract via an intra-atomic exchangeHsf :

Hsf52J(
ja

sja•Sja

52
1

2
J(
jas

~zsSja
z njas1Sja

s cja2s
† cjas!. ~8!

s ja is the electron spin operator,njas5 cjas
† cjas the occu-

pation number operator, andJ the s-f coupling constant.
Furthermore, we have introduced for abbreviation

Sja
s 5Sja

x 1 izsSja
y ; z↑511, z↓521. ~9!

We investigate in this paper the electronic quasiparticle
spectrum of a single electron in an otherwise empty conduc-
tion band which interacts with a magnetically ordered
localized-spin system. The neglect of any Coulomb interac-
tion in ~5! is then trivially justified. Since we are not inter-
ested in the purely magnetic properties of the local moment
system, we disregard the direct spin-spin interactionHf

@Ji j
ab[0 in ~7!#. However, implicitly a spontaneous magnetic

order is assumed as will be explained later. For the materials
that we are interested in, thes-f exchange couplingJ is
ferromagnetic (J.0). In the case ofJ,0, the model-
Hamiltonian~1! is that of the so-called ‘‘Kondo lattice.’’18,19

All of the information that we want to get can be read off
from the retarded single-electron Green function,

Gi j s
ab~E!5k^cias ;cjbs

† &lE

52 i E
0

`

dt expS 2
i

\
EtD ^@cias~ t !,cjbs

† ~0!#1&.

~10!
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Here and in the following@ . . . , . . .#1 (@ . . . , . . .#2)
means the anticommutator~commutator!. The equation of
motion of the Green function reads

(
rg

~Ed irdag2Tir
ag!Grj s

gb ~E!

5\d i jdab1Š^@cias ,Hsf#2 ;cjbs
† &‹E. ~11!

The introduction of the self-energy matrixMi j s
ab (E),

Š^@cias ,Hsf#2 ;cjbs
† &‹E8(

rg
Mir s

ag ~E!Grj s
gb ~E!, ~12!

formally solves the problem. After Fourier transformation
according to~4!, it remains that

(
g

@Edag2eag~k!2M ks
ag~E!#Gks

gb~E!5\dab . ~13!

The self-energyM ks
ab(E) gathers all influences of thes- f

exchange interaction being therefore the central quantity of
our study.

A function of exactly the same usefulness as the Green
functionGks

ab(E) is the single-electron spectral density being
directly related, except for a respective dipole-transition ma-
trix element, to an angle- and spin-resolved~inverse! photo-
emission experiment,

Sks
ab~E!52

1

p
ImGks

ab~E1 i01!. ~14!

An additional wave-vector summation yields the~sublat-
tice! quasiparticle density of states, in terms of which we
shall partly discuss our results,

ras~E!5
1

N\(
k
Sks

aa~E!. ~15!

In the next section, we evaluate the electron self-energy
first for a ferromagnetic semiconductor.

III. SELF-ENERGY APPROACH „FERROMAGNETS …

In the case of a ferromagnetic semiconductor the total
system possesses translational symmetry. In the formalism of
Sec. II that meansm51, ra50. The sublattice indicesa,
b become meaningless and are suppressed in the following.

The starting point is the equation of motion of the single-
electron Green function~11!. Evaluating explicitly the com-
mutator@cias ,Hsf#2 leads to

(
r

~Ed ir2Tir !Grj s~E!

5\d i j2
1

2
J@zsG i i , js~E!1Fii , js~E!#. ~16!

Two higher Green functions appear on the right hand side,
which we call the spin-flip function,

Fip, js~E!5Š^Si
2scp2s ;cjs

† &‹E , ~17!

and the ‘‘Ising function,’’ respectively:

G ip, js~E!5Š^Si
zcps ;cjs

† &‹E . ~18!

These functions prevent a direct solution of the equation
of motion ~16!. To proceed, we construct in the next step the
equation of motion of the higher functions~17! and ~18!:

(
r

~Edpr2Tpr!Fir , js~E!5Š^Si
2s@cp2s ,Hsf#2 ;cjs

† &‹E ,

~19!

(
r

~Edpr2Tpr!G ir , js~E!

5\^Sz&dp j1Š^Si
z@cps ,Hsf#2 ;cjs

† &‹E . ~20!

Because of the empty energy band,

^nis&5^ns&50, ~21!

the Green functions

Š^@Si
2s ,Hsf#2cp2s ;cjs

† &‹,

Š^@Si
z ,Hsf#2cps ;cjs

† &‹,

which, in principle, appear in~19! and~20!, respectively, are
identical to zero. The treatment of the two other new func-
tions in~19! and~20! consists of two steps, since strong local
correlations require a special treatment when spin and elec-
tron operators act at the same site (i5p). We first discuss,
however, the nondiagonal terms (iÞp).

A. iÞp

The starting point is to define Eq.~12! for the electronic
self-energy, which formally corresponds to the replacement

@cis ,Hsf#2⇒(
r
M ir s~E!crs ~22!

within the brackets of the Green function. The inspection of
the spectral representations20 of the two functions in~12!,
Š^@cis ,Hsf#2 ;cjs

† &‹E andŠ^cis ;cjs
† &‹, reveals that both must

have the same pole structure and can differ only by the spec-
tral weights of the poles. The equality of both sides in~12! is
installed by the self-energy componentsMir s(E). If we now
inspect, under the same aspect, the spectral decomposition of
the following two functions,

Š^Si
z@cps ,Hsf#2 ;cjs

† &‹E; Š^Si
zcrs ;cjs

† &‹,

then we come again to the conclusion that they can differ
only by their spectral weights, but must have the same pole
structure. In analogy to~12! we, therefore, propose to use
~22! in these functions, too:

Š^Si
z@cps ,Hsf#2 ;cjs

† &‹E ' (
r
Mprs~E!Š^Si

zcrs ;cjs
† &‹E

~ iÞp!. ~23!

The same justification can be used for
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Š^Si
2s@cp2s ,Hsf#2 ;cjs

† &‹E

' (
r
Mpr2s~E!Š^Si

2scr2s ;cjs
† &‹E ~ iÞp!.

~24!

For iÞp the equations~16!–~20!, ~23!, and ~24! build a
closed system. Fori5p we have to use another procedure
which takes stronger into account the local correlations.

B. i5p

We start with an explicit evaluation of the commutator in
the higher Green functions on the right hand sides of~19!
and ~20!. The higher spin-flip function in~19! yields for
i5p,

Š^Si
2s@ci2s ,Hsf#2 ;cjs

† &‹5 1
2 J@zsFii , js

~1! ~E!2Fii , js
~2! ~E!#.

~25!

Here we have abbreviated

Fii , js
~1! ~E!5Š^Si

2sSi
zci2s ;cjs

† &‹E , ~26!

Fii , js
~2! ~E!5Š^Si

2sSi
scis ;cjs

† &‹E . ~27!

The analogous evaluation of the higher Ising function in
~20! for i5p does not require the introduction of further
Green functions, because it can exactly be expressed by al-
ready defined terms:

Š^Si
z@cis ,Hsf#2 ;cjs

† &‹1zsŠ^Si
2s@ci2s ,Hsf#2 ;cjs

† &‹

5 1
2 J@G i i , js~E!1zsFii , js~E!#2 1

2 JzsS~S11!Gi j s~E!,

~28!

~25! and~28! are still exact. To get a closed system of equa-
tions for i5p, too, we are left with the determination of the
functionsFii , js

(1,2)(E). Both fulfill some important exact rela-
tions. ForS51/2 it holds for all temperatures:

Fii , js
~1! ~E!5 1

2 zsFii , js~E!, ~29!

Fii , js
~2! ~E!5 1

2 Gi j s~E!2zsG i i , js~E!. ~30!

The same two functions for arbitrary spinS, but in the
ferromagnetic saturation (^Sz&5S) are given by

Fii , js
~1! ~E!→@~S2 1

2 !1 1
2zs#Fii , js~E!, ~31!

Fii , js
~2! ~E!→SGi j s~E!2zsG i i , js~E!. ~32!

These exact relationships suggest the following general
structures:

Fii , js
~1! ~E!5a1sGi j s~E!1b1sFii , js~E!, ~33!

Fii , js
~2! ~E!5a2sGi j s~E!1b2sG i i , js~E!. ~34!

The five Green functions in~33! and~34! are of the same
type Š^A;B&‹E . For each of them we can calculate exactly
the first two spectral moments according to the relation

MAB
~n!5 K S i\ ]

]t D
n

@A~ t !,B~0!#1L
t50

, n50,1,2. . . . .

~35!

Because of the equivalent relation

MAB
~n!52

1

p\E2`

`

dE En Im Š^A,B&‹E, ~36!

the moments can be used to fix the coefficientsams , bms in
~33! and ~34!. After tedious but straightforward manipula-
tions, we get

a1s50; b1s5
^S2sSsSz&1zs^S2sSs&

^S2sSs&
, ~37!

a2s5^S2sSs&2b2s^Sz&, ~38!

b2s5
^S2sSsSz&2^Sz&^S2sSs&

Š~Sz!2‹2^Sz&2
. ~39!

The coefficients are determined byf -spin correlation
functions, the determination of which has to be considered at
a later stage of our procedure.

The equations~16!, ~19!, ~20!, ~23!–~25!, ~33!, ~34!, and
~37!–~39! build a closed system, which can be solved self-
consistently for the single-electron Green function:

Gqs~E!5\@E2e~q!2Mqs~E!#21. ~40!

The solution becomes possible by Fourier transformation,

Gqs~E!5
1

N(
i , j

Gi j s~E!e2 iq•~Ri2Rj !, ~41!

Akp,qs~E!5
1

N2(
i jm

Aim, js~E!e2 i ~k•Ri1p•Rm2q•Rj !

~A5F,G!. ~42!

In addition, we can exploit translational symmetry

Akp,qs~E!5dk1p,qAq2p p,qs~E!. ~43!

The evaluation yields a wave-vector independent electronic
self-energy,

Mqs~E![Ms~E!52
1

2
Jms~E!. ~44!

The reason of theq independence can be traced back to
the neglect of magnon energies. Spin flips of the conduction
electrons may be accompanied by magnon emission or ab-
sorption. Since we agreed upon settingHf50, the wave vec-
tor and energy dependence of the magnon energies\v(q)
do not enter our results. Since magnon energies are smaller
by two or three orders of magnitude than typical electronic
energies, as, for instance, the coupling constantJ and the
bandwidthW, such a neglect appears to be allowed. For the
self-energy we eventually get the following implicit equa-
tion:
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ms~E!5
Qs~E!

Ns~E!
, ~45!

Qs~E!5zs^Sz&1 1
2 J$@a2s2S~S11!#G0s~E!2@a2s

1^Sz&~b1s1b2s!2zs^Sz&m2s~E!#G02s~E!%

1 1
4 J

2$zsS~S11!~b1s1b2s!2a2sms~E!

1@a2s2S~S11!#m2s~E!%G0s~E!G02s~E!,

~46!

Ns~E!511 1
2 J$@ms~E!212zsb2s#G0s~E!1@m2s~E!

2zsb1s#G02s~E!%1 1
4 J

2$@ms~E!212zsb2s#

3@m2s~E!2zsb1s#1b2s~b1s2zs!%

3G0s~E!G02s~E!. ~47!

One recognizes immediately that the first-order expres-
sion coincides with the well-known mean-field result, valid
for very weaks-f exchange couplings:

Ms
~1!~E!52 1

2 Jzs^Sz&. ~48!

In ~46! and ~47! appears the propagator:

G0s~E!5
1

N(
q
Gqs~E!5E

2`

`

dx
r0~x!

E2x2Ms~E!
. ~49!

r0(x) is the Bloch density of states of the ‘‘free’’ conduction
electron system, which of course depends on the lattice struc-
ture. We have evaluated our theory for a simple cubic struc-
ture. Electron hopping is taken into account for the nearest
(T1) and next nearest (T2) neighbor hopping:

e~k!5T01T1f 1~k!1T2f 2~k!, ~50!

f 1~k!52@cos~kxa!1cos~kya!1cos~kza!#, ~51!

f 2~k!52$cos@~kx1ky!a#1cos@~kx1kz!a#

1cos@~ky1kz!a#1cos@~kx2ky!a#

1cos@~kx2kz!a#1cos@~ky2kz!a#%. ~52!

The Bloch energiese(k) are plotted in Fig. 1 for certain
symmetry directions as well as the Bloch density of states
r0(E).

For the concrete evaluation we have chosen

T050; T1520.05; T25T1 /A2. ~53!

The self-energy~45!–~47! is strongly influenced by the
coefficientsa2s , b1s , b2s, where these quantities are pure
f -spin correlation functions according to~37!–~39!. We did
not explicitly take into account the direct interaction between
the localizedf spins. We agreed to consider the spontaneous
magnetization̂Sz& as a given temperature-dependent param-
eter. Thef -spin correlations in~37!–~39! can be determined
by the pure Heisenberg model, since the assumed empty con-
duction band has no influence on the magnetic properties of

the spin system. It can be shown21 that the magnetization
^Sz& obeys the following formula:22

^Sz&5\
~11S1w!w2S111~S2w!~11w!2S11

~11w!2S112w2S11 , ~54!

provided the single-magnon Green function is a one-pole
function at the real magnon energyE(q):

w5w~S!5
1

N(
q

~ebE~q!21!21. ~55!

Equation ~54! holds for arbitrary spin values. Furthermore
one finds the very useful relations21

^S2S1&52\^Sz&w~S!, ~56!

^~Sz!2&5\2S~S11!2\^Sz&@112w~S!#, ~57!

^~Sz!3&5\3S~S11!w~S!1\2^Sz&@S~S11!1w~S!#

2\^~Sz!2&@113w~S!#, ~58!

so that lastly the coefficients in~37!–~39! are expressed in
terms ofw. Our procedure is as follows. We consider^Sz& as
a given parameter to which we ascribe by use of~54! a
certainw(S). Thatw(S) helps to derive the other spin cor-
relation functions. Figure 2 shows some examples.

The self-energy~44! turns out to be, in general, a complex
quantity

Ms~E!5Rs~E!1 i I s~E!. ~59!

FIG. 1. Bloch band structure and density of states for a simple
cubic lattice in a tight-binding approximation with nearest and next
nearest neighbor hopping@parameters in~53!#.
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According to ~14! and ~40! the spectral density of the
ferromagnet is then given by

Sks~E!52
1

p
ImGks~E!

52
\

p

I s~E!

@E2e~k!2Rs~E!#21I s
2~E!

. ~60!

An additional wave-vector summation yields the quasiparti-
cle density of states~QDOS!,

rs~E!5
1

N\(
k
Sks~E!. ~61!

IV. SELF-ENERGY APPROACH „ANTIFERROMAGNETS …

We now assume a two sublattice structure (a, b:A, B),
where each sublattice orders ferromagnetically but with dif-
ferent directions of the spontaneous magnetization. The start-
ing point is again equation~13! which reads in a matrix
representation

Ĝks~E!5\@E2 ê~k!2M̂ ks~E!#21. ~62!

Because of chemically totally equivalent sublattices it
holds for the elements of the Bloch matrixê(k),

eAA~k!5eBB~k![e~k!, ~63!

eAB~k!5eBA* ~k![t~k!. ~64!

That means

ê~k!5S e~k! t~k!

t* ~k! e~k!
D . ~65!

Similar symmetry relations are valid for the self-energy ma-
trix:

M ks
AA~E!5M k2s

BB [M ks~E!, ~66!

M ks
AB~E!5M ks

BA*[Tk~E!. ~67!

That means

M̂ ks~E!5SM ks~E! Tk~E!

Tk* ~E! M k2s~E!
D . ~68!

Matrix inversion in~62! yields

Ĝks~E!

5
\

Dk~E! S E2e~k!2M k2s~E! t~k!1Tk~E!

t* ~k!1Tk* ~E! E2e~k!2M ks~E!
D ,

~69!

Dk~E!5@E2e~k!2M ks~E!#@E2e~k!2M k2s~E!#

2ut~k!1Tk~E!u2. ~70!

The sublattice spectral density of the antiferromagnet is then
given by

Sks
AA~E!52

1

p
Im

E2e~k!2M k2s~E!

Dk~E!
5Sk2s

BB ~E!. ~71!

We remember thatk is a wave vector from the first Bril-
louin zone of the magnetic Bravais lattice, i.e., of the~ferro-
magnetic! sublattice. The angle- and spin-resolved photo-
emission experiment observes the single-electron spectral
density. Strictly speaking, the mentioned~inverse! photo-
emission experiment refers to the total chemical lattice. If
q is from the first Brillouin zone of the total lattice, then the
following simple relation holds:

Sq~E!5
1

2(a Sq1Ks
aa ~E!1Sq1K

AB ~E!cos@q•~rA2rB!#. ~72!

The observed spectral density of the two-sublattice anti-
ferromagnet is of course spin independent.K is just the re-
ciprocal lattice vector which transfersq into the first Bril-
louin zone of the magnetic Bravais lattice.

A further quantity of importance is the sublattice quasi-
particle density of states,

ras~E!5
1

N(
k
Sks

aa~E!, a5A,B. ~73!

The nondiagonal elementTk(E) of the self-energy matrix
~68! disappears at temperatures above the Ne´el-temperature
TN . Our approximation consists in the assumption that
Tk(E) can be neglected for all temperatures and that the
self-energy partM ks(E) of the respective ferromagnetic
sublattice has the same structure~44! as that of a ferromag-
netic semiconductor. This assumption is realistic and accept-
able and has been justified in Ref. 23 for the Hubbard model.

To allow a direct comparison to the ferromagnetic coun-
terpart~Sec. III!, we evaluate our theory again for a simple
cubic lattice, which is decomposed into two sublattices in
such a way that the nearest neighbors of each atom are from
the other sublattice. As in~50!, we have taken into consid-
eration the nearest and next nearest hopping. That means

FIG. 2. Correlation functions of the localized-spin system as a
function of the magnetization̂Sz& (S57/2).
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e~k!5T012T2FcosS ~kx1ky!
a

2D1cosS ~kx1kz!
a

2D
1cosS ~ky1kz!

a

2D1cosS ~kx2ky!
a

2D
1cosS ~kx2kz!

a

2D1cosS ~ky2kz!
a

2D G ~74!

t~k!52T1FcosS kx a2D1cosS ky a2D1cosS kza2D G . ~75!

The wave vectork5(kx , ky , kz) is now from the first
Brillouin zone of the fcc-magnetic Bravais lattice. The hop-
ping constantsT0, T1, T2 are same as in~53!. The Bloch
band structure and the corresponding density of states of the
fcc sublattice are shown in Fig. 3. As to thef -spin correla-
tions, we assume the same relation~54!, only w(S) has to be
reinterpreted and all entities are sublattice entities. Since
^Sa

z & is our primary parameter, the different meaning of
w(S) does not affect our procedure. From a given sublattice
magnetization̂ Sa

z &, we determine via Eq.~54! the corre-
spondingw(S) and therewith all spin correlations necessary
for our theory@~56!–~58!#.

V. DISCUSSION OF THE RESULTS

We have evaluated our theory for a simple cubic lattice
where the electron hopping is taken into account up to near-

est and next nearest neighbors. The corresponding Bloch en-
ergiese(k) are given in~50! for the crystal without and in
~73!, ~74! for the crystal with sublattice decomposition. Our
interest is mainly focused on correlation and temperature ef-
fects in the energy spectrum of the single conduction elec-
tron as a consequence of its exchange coupling to the
localized-spin system. The~sublattice! magnetization^Sz&
(^Sa

z &) is considered as a given parameter. Temperature
comes into play excludingly viâSz& and some other spin
correlations~37!–~39!, where, however, the latter are ex-
pressible bŷSz& @see Eqs.~56!–~58!#. The Bloch bandwidth
is fixed by the parameter choice~53! and the spin value of
the f system is chosen toS57/2.

A. Ferromagnet

In a ferromagnetically saturated spin system (T50;
^Sz&5S) an ↑-spin electron cannot exchange its spin. The
spin-flip terms of thes-f interaction@second term in~8!# do
not work, only the Ising-like termzsSj

znjs takes care for a
rigid shift of the quasiparticle energiesE↑(k) compared to
the Bloch energiese(k),

FIG. 3. Bloch-band structure and density of states for the fcc
sublattice of an antiferromagnetically ordered sc lattice in a tight-
binding approximation with nearest and next nearest neighbor hop-
ping @parameters in~53!#.

FIG. 4. Density plot of the spectral density of the ferromagnetic
semiconductor as function of energy for wave vectors from the
~111! direction and for both spin projections. The degree of black-
ening measures the magnitude of the spectral density. Results are
plotted for three different magnetizations of the ferromagnetic
f -spin system~parameters:J50.2 eV,S57/2, sc lattice!.
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E↑~k!5e~k!2 1
2 JS. ~76!

The up-spin spectral density~60! is a singled function
corresponding to a quasiparticle with infinite lifetime. This is
represented in Fig. 4, where we have plotted the spectral
densitySks(E) for wave vectors from the~111! direction as
a function of energy in the form of a density plot. The degree
of blackening measures the magnitude ofSks(E). For plot-
ting convenience, we have added a small imaginary part to
the self-energy giving the spectral density a small finite
width. Equation~76! is a simple but exact result.17 This holds
also for the down-spin spectral density in the case of ferro-
magnetic saturation̂Sz&5S. However, the down-spin quasi-
particle spectrum is far from being trivial. For the coupling
strengthJ50.2 eV, used in Fig. 4, it consists of two promi-
nent structures which should be observable in a respective
inverse photoemission experiment. Both structures may be
understood on the basis of a repeated emission and absorp-
tion of magnons by the electron. The upper part refers to an
effective attraction between magnon and electron resulting in
a polaronlike quasiparticle~electron plus magnon cloud!. It
manifests itself as a pole of the single-electron Green func-
tion. We call this quasiparticle excitation the magnetic po-
laron. At ^Sz&5S and strong enoughJ, it is even a bound
state coming out as ad function in the spectral density. For
weak J the polaron dispersion dips into the region, where
↑ states exist@r↑(E)Þ0#. Then the polaron may decay into
a ↑ electron and a magnon, the quasiparticle peak is there-
with getting a finite width. A direct emission of a magnon by
the excited down-spin electron leads to the second structure
in Sk↓(E) ~Fig. 4!. Magnon emission by the down-spin elec-
tron becomes possible always if there are↑ states within the

reach for the electron to land after the spin flip. Since we
neglected magnon energies@\v(q)50# from the very be-
ginning, the scattering spectrum of the↓-spin electron there-
fore stretches over the full region of finite up-spin density of
states~Fig. 5!. However, in most cases the scattering states
are bunched together to a pronounced peak. To both peaks
can be ascribed a spectral weight that scales with the area
under the respective peak. The total weight of the
(k,s)-dependent spectral density is normalized to one. The
relative weight of the polaron peak compared to that of the
scattering part appears to be strongly dependent on the posi-
tion in the Brillouin zone. We stress once more that the
^Sz&5S results are exact.

Magnon emission by a down-spin electron should be

FIG. 5. Quasiparticle density of statesrs(E) of the conduction
band of the ferromagnetic semiconductor as function of energy for
various values of thef -spin magnetization. Full line fors5↑ and
broken line fors5↓. Parameters as in Fig. 4.

FIG. 6. Time-dependent propagatorSks(t) @Fourier transform of
Sks(E)# as function of time for various wave vectors from the~111!
direction. The upper part belongs to the scattering~low energy!
peak of the↓-spectral density in the ferromagnetic saturation~Fig.
4: ^Sz&/S51). The middle part is the Fourier transform of the scat-
tering part in the spectral density atT5Tc ~Fig. 4: ^Sz&/S50),
while the lower part represents the magnetic polaron atT5Tc .
Parameters as in Fig. 4.
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equivalent to magnon absorption by an up-spin electron.
However, in the ferromagnetic saturation the system does not
contain any magnon. That is the reason why atT50 K the
↑ spectrum is without a scattering part. At finite temperatures
(^Sz&/S50.6 in Fig. 4! the up-spin electron can absorb a
magnon, therewith reversing its spin and subsequently form-
ing a polaron. A weak polaron peak is therefore observable
in Fig. 4 in the↑ spectrum for the case of^Sz&/S50.6. The
low energy peak in the↓ spectrum is built up at finite tem-
peratures, in principle, by two elementary processes. Because
of finite deviations of thef spins from saturation the excited
↓ electron has a finite probability of entering the local frame
of the f -spins as up-spin electron. This probability is zero for
^Sz&5S. On the other hand, it can first emit a magnon and by
that reverse its spin becoming then an up-spin electron in the
external frame of coordinates. Afterwards it enters with a
certain probability the local frame as up-spin electron. In the
second elementary process a magnon is involved, in the first
it is not. The corresponding excitation energies differ more
or less by a magnon energy which is however neglected in
our treatment. The splitting of the spectral density into a
polaron part and a scattering part is not restricted to the fer-
romagnetic phase, but remains forT.Tc (^S

z&50), too. It
represents a striking correlation effect that is by no means
reproduceable in a one-electron picture. A respective angle
and spin-resolved inverse photoemission experiment would
require a careful interpretation since the excited single
(k,s) electron produces two peaks in the spectrum with
strongly wave-vector, spin, and temperature dependent spec-
tral weights.

The splitting of the spectral density transfers itself to the
quasiparticle density of states as a gap. This of course de-
pends on the actual coupling strengthJ/W. ForJ/W50.2, as

in Fig. 5, the QDOS splits for both spin directions into two
quasiparticle subbands, the position of which do not change
very much with temperature. Only the gap becomes slightly
wider with increasing temperature. The ordered magnetic
state of thef system induces into the conduction band a
remarkable spin asymmetry. This asymmetry gradually dis-
appears with decreasingf magnetization̂Sz&; however, not
by a Stoner-like shift of respective spin bands, but rather by
a temperature-dependent shift of weight between the sub-
bands. That means that the first-order term~48! of the elec-
tronic self-energy, which is proportional to^Sz&, is overcom-
pensated by the higher-order terms. The above mentioned
redshift of the optical absorption edge is in such a case due
to a quasiparticle band narrowing effect and not so much to
a respective shift of the whole subband. For weaker cou-
plings J/W the situation is changing drastically. The two
subbands melt together shifting as a whole Stoner-like, i.e.,
proportional to^Sz&, with increasing temperature. Then the
mean-field part~48! of the self-energy dominates the spec-
trum. The ferromagnetic saturation (^Sz&5S) in Fig. 5 rep-
resents the already mentioned special case for that the upper
quasiparticle subband disappears in the↑ spectrum.

To demonstrate the quasiparticle character of the various
structures in the spectral density, we have plotted in Fig. 6
for three typical examples the contributions of the respective
peak to the time-dependent propagator,

Sks~ t !5
1

2p\E dE Sks~E!e2~ i /\!Et. ~77!

Since the peaks are rather sharp we could restrict the en-
ergy region for the Fourier transformation in~77! closely
around the respective peak position. The polaron part of

FIG. 7. Down-spin spectral densitySk↓(E) of the ferromagnetic semiconductor atT50 K (^Sz&/S51) as function of energy for wave
vectors from the~111! direction. Each plot belongs to anothers-f exchange coupling~exact results!. Other parameters as in Fig. 4. In the
lower row, the figures are represented in the form of a density plot.
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Sk↓(E) at ^S
z&5S is ad function, so thatSk↓(t) becomes an

undamped oscillation, not plotted in Fig. 6. The correspond-
ing scattering part leads fork vectors close to theG point to
a damped oscillation. The lifetime of the oscillation turns out
to be drasticallyk dependent~upper part in Fig. 6!. This
holds also for the two propagators atT5Tc . The propagator,
which arises from the low energy peak in the spectral den-
sity, represents a rather long living quasiparticle~middle part
of Fig. 6!, at least for thosek vectors chosen in the figure.
The propagator from the upper peak of theT5Tc spectral
density exhibits a distinct wave-vector dependence of the
quasiparticle lifetime~lower part of Fig. 6!.

The J dependence of the exactT50 down-spin spectral
density, exhibited in Fig. 7, demonstrates the qualitatively
different features for the weakly and strongly coupleds-f
system. For smallJ only one quasiparticle dispersion ap-
pears, the system is describable in a single particle concept.
For strongJ the splitting into a polaron and a scattering peak
takes place. In the intermediate region (J50.05–0.1! the
situation becomes fairly complicated. For somek vectors the
splitting is clearly observable, for others not. In the strong
coupling regime (J>0.15 eV! the polaron peak consists of a

d function, representing a quasiparticle with infinite lifetime.
Since the curves in Fig. 7 are exact results, they prove that
the correlation caused splitting of the spectral density into a
polaronic and a scattering portion is not at all an artefact of
any unavoidable approximation used in the calculation. It is
a fundamental feature of the underlying exchange-coupled
physical system.

B. Antiferromagnet

As described in Sec. IV, we have evaluated our theory
also for a two-sublattice antiferromagnet. The chemical lat-
tice is simple cubic and the magnetic sublattice is face cen-
tered cubic. Figures 8–10 show the results for the sublattice
spectral density and the quasiparticle density of states. The
wave vector and spin-resolved excitation spectrum as it
comes out from the sublattice spectral density has the obvi-
ous symmetry (A,s)↔(B,2s). In that sense the spectral
densitySks

aa(E) for sublatticea exhibits a spin asymmetry
below the Neel temperatureTN . It is important to remember
that k is a vector from the sublattice Brillouin zone. A
majority-spin electron in sublatticeA becomes a minority-
spin electron in sublatticeB and vice versa. The hopping
between the sublattices therefore produces an excitation
spectrum~Fig. 8! that is more complicated than that of the
ferromagnet~Fig. 4!. Each of the two quasiparticle structures
in Fig. 4 is, in general, split once more because of the re-
duced magnetic Brillouin zone~‘‘Slater splitting’’!. How-
ever, the detailed interpretation of the elementary process,
which causes the spectral density structures, is exactly the
same as in the ferromagnetic case. The sublattice quasiparti-

FIG. 8. Density plot of the sublattice spectral density of the
antiferromagnetic semiconductor as function of energy for wave
vectors from the~111! direction of the fcc-magnetic Brillouin zone.
Results are plotted for three different sublattice magnetizations~pa-
rameters:J50.2 eV,S57/2; total lattice: sc; sublattice: fcc!.

FIG. 9. Sublattice quasiparticle density of statesrAs(E) of the
conduction band of the antiferromagnetic semiconductor as func-
tion of energy for various values of thef-spin sublattice magnetiza-
tion. Full line fors5↑ and broken line fors5↓. Parameters as in
Fig. 8. Symmetry:rAs(E)5rB2s(E).
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cle density of statesras(E) ~72! results from the spectral
density by a wave-vector summation over the first Brillouin
zone~Fig. 9!. As for the ferromagnetic system~Fig. 5! it is
composed for each spin direction of two quasiparticle sub-
bands. Majority- and minority-spin spectra occupy exactly
the same energy regions. That is of course a consequence of
the intersublattice hopping by which the electron changes its
character from a majority-spin to a minority-spin electron
and vice versa. That is the reason why, contrary to the fer-
romagnet~Fig. 5!, there appears even for^Sa

z &5S a finite
up-spin contribution in the upper part of the energy spec-
trum. We note in passing that our parameter choice
^Sa

z &5S is of course somewhat unrealistic since the localized
spin system, also, cannot reach the full sublattice magnetiza-
tion. That is a typical property of any antiferromagnet. The
zero point deviation is, however, rather small. But even un-
der the assumption that the spin system is in the so-called
Neel state~full polarization of the spin sublattice!, the con-
duction band quasiparticle states behave differently than
those of the ferromagnet. The majority-spin electron is never
in an eigenstate like~76!.

A photoemission experiment cannot distinguish between
the two sublattices~72!. The sublattice QDOS is therefore
not observable, but the total QDOS which is plotted in Fig.
10 for various temperatures, say variousf -spin sublattice
magnetizations is observable. The QDOS does not show a
remarkable temperature dependence because the temperature
variations of the two sublattices are more or less compensat-
ing each other.

The formation of separated polaron and scattering parts in
the sublattice spectral density with increasing strength of the
s-f exchange coupling~Fig. 11! appears much more compli-
cated than in the ferromagnetic case~Fig. 7!. The reason is of

course the additional Slater splitting of each quasiparticle
band. For not too weaks-f coupling, we have to again con-
clude that a respective inverse photoemission experiment
cannot at all be understood within a one particle theory. The
exchange coupling leads to drastic and unconventional cor-
relation effects, so that the presentation of the spectrum in
the usual way by a conventional~quasiparticle! band struc-
ture becomes rather doubtful.

VI. CONCLUSIONS

We have presented a theory for the energy spectrum of a
single electron in an otherwise empty conduction band,
which is coupled by an intra-atomic exchange interaction to
a ferromagnetically or antiferromagnetically ordered
localized-spin system. This situation is realized in ferromag-
netic ~antiferromagnetic! semiconductors like EuO~EuTe!.
Our approach uses a moment-conserving decoupling proce-
dure for suitably defined Green functions. It turns out to be
exact for the rigorously treatable, but nevertheless nontrivial
limiting case of a single-electron exchange coupled to a fer-
romagnetically saturatedf -spin system. Futhermore, it ful-
fills the exact zero-bandwidth limit.24 The fact that our
theory evolves continuously from the exactly solvable limit-
ing cases to arbitrary temperature, finite bandwidths, and dif-
ferent magnetic spin structures gives it a certain trustworthi-
ness.

The exchange coupling of the conduction electron to the
spin system gives rise to some extraordinary correlation ef-
fects. In a ferromagnetic semiconductor the excitation spec-
trum is split into a polaronic and a scattering part. The po-
laron part may be interpreted as a repeated emission and
reabsorption of a magnon by the conduction electron result-

FIG. 10. Total quasiparticle density of statesr(E) of the anti-
ferromagnetic semiconductor as function of energy for various val-
ues of the sublattice magnetization. Parameters as in Fig. 8.

FIG. 11. Sublattice spectral density of the antiferromagnetic
semiconductor atT50 K as a function of energy for wave vectors
from the~111! direction of the fcc-magnetic Brillouin zone. Results
are plotted for two different exchange couplings. Parameters as in
Fig. 8.
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ing in an effective attraction. The rather broad scattering part
is due to a magnon emission or absorption by the conduction
electron. It occupies the same energy region as the quasipar-
ticle density of states of the opposite spin because emission
or absorption of a magnon means a spin flip of the conduc-
tion electron. However, in most cases the scattering spectrum
is bunched to a prominent quasiparticle peak. IfJ is smaller
than a certain critical coupling, then the exchange interaction
only leads to a renormalization of the one-electron energy.
For higher values ofJ, the mentioned splitting into a po-
laronic and a scattering part happens; a fact that requires a
rather unconventional interpretation of the respective inverse
photoemission experiment. The usualE5E(k) band struc-
ture representation becomes insufficient. A decisive quantity
is, for instance, the spectral weight of the quasiparticle exci-
tation, which regulates the relative importance of the various
poles, i.e., the intensities of the corresponding photoemission
line shapes. Because of the additional Slater splitting, the
spectral density structure becomes still a bit more compli-
cated for an antiferromagnetic semiconductor. Each quasi-
particle dispersion splits once more due to the reduced mag-
netic Brillouin zone.

We intended to apply the presented model study to real
substances such as EuO and EuTe. A first attempt for the
ferromagnetic system EuO has already been performed,25

however, based on a simpler theory. The quasiparticle band
structure of the prototypical antiferromagnetic semiconduc-
tor EuTe is the next goal of our research work. We have to
combine the presented many body theory with realistic one-
electron band structure calculations performed within the
framework of the density functional theory. The extension of
the theory to antiferromagnetic metals21 will allow us to in-
vestigate the highly interesting alloy YbxGd12xTe that
changes its physical behavior from a paramagnetic insulator
~YbTe! via a spin glass phase to an antiferromagnetic metal
~GdTe!.26 The corresponding magnetic phase diagram means
a further challenge of our investigation.
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