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The temperature dependence of electronic states in thet-J model is studied in the moderately doped region
by use of the composite operator method. Self-energy effects are included in two-site approximation. At higher
temperature, the density of states shows a two-peak structure, and the coherent peak at the Fermi level
increases its intensity with decreasing temperature. The peak at the Fermi level splits into two peaks with
further decreasing temperature, corresponding to the electronic excitations from spin-singlet and -triplet states
of the nearest-neighbor electrons. Electronic excitations from the singlet states form a narrower band at the
Fermi level. This may relate to the spin gap formation observed in high-Tc superconductors.
@S0163-1829~96!02544-1#

I. INTRODUCTION

After the discovery of high-Tc superconductors, under-
standing the electronic states of highly correlated electron
systems has become one of the central issues to clarify the
mechanism of high-Tc superconductivity. Among many
models, thet-J mode1,2 is regarded as one of the simplest
which describes some essential features of those materials.
This model has been extensively studied,3 and is known to be
understood reasonably well by the Heisenberg model at the
half-filling; at high hole doping it is most likely described by
a normal Landau Fermi liquid. For the region of moderate
doping relevant for superconductivity, the motion of holes
and the dynamics of spins strongly interfere, and a self-
consistent treatment of both effects becomes essential in or-
der to understand the phenomena in this region. In experi-
ments, many crossover phenomena in temperature and
doping have been reported.4–11 It has been pointed out that
one of the common features in high-Tc superconductors in
the low-doped region is the appearance of the so-called spin-
gap phenomena7–12 before the critical temperature of super-
conductivity. It is necessary to clarify whether or not a vari-
ety of crossover phenomena in doping and temperature is
expected in thet-J model due to the nonlinear effects be-
tween the hole motion and spin fluctuation, and to investi-
gate, in relation to the mechanism of superconductivity,
whether or not such a crossover phenomena of the spin gap
is a necessary precursor for superconductivity, at least in the
low-doped region.

Many analytical approaches to treating highly correlated
electron systems have been proposed, such as the Hubbard
approximation,13 the noncrossing approximation~NCA!,14–16

slave boson method,17–19 d` method,20–23 and their
combination,24–25 as well as projection operator26–30 and
composite operator methods.31–38However, it is a hard prob-
lem to judge the reliability of their results due to nonlinear
effects essentially involved in this problem. One way to
judge the validity of approximation methods is through a

comparison with recently accumulated results of numerical
simulation,39–41,3which still are severely restricted in cluster
size and temperature. Then use of approximate analytical
methods can be extended to regions which the simulation
cannot cover. Recently we have developed a self-consistent
treatment based on the equation of motion, the composite
operator method.31–38 In this method global properties of
propagation are treated by mean fields felt by electronic
composite excitations, while self-energy corrections and
two-site correlation of mean fields are evaluated by two-site
local level transitions.42,43 In this way we can combine local
properties, especially those of the local-spin configuration
and global electron propagation, self-consistently. The
method was applied to the Hubbard model,42,43 and the re-
sults produced behavior very similar to that obtained by nu-
merical simulation. The composite operator method has the
advantage of describing crossover phenomena, since the
electronic excitation is described by a certain combination of
composite electronic operators. There, a crossover is de-
scribed as the phenomenon in which the weight of some
operator is shifted to another operator. Also, the operator
expansion gives an expansion scheme in terms of the weight
of the operator multiplied by coupling constants. By choos-
ing a suitable set of operators, one can reduce the weight of
the residual interactions, leading to a reasonable treatment of
the residual terms as perturbation. Further, from the evalua-
tion of contributions from two-site level transitions, it is eas-
ily seen what kind of local excitations play a dominant role
with doping and temperature.

In this paper we investigate the temperature dependence
of the density of states in thet-J model in the moderately
doped region. It will be shown that a coherent peak at the
Fermi level increases its intensity with decreasing tempera-
ture, and this coherent peak splits into two peaks when tem-
perature is further lowered. The tendency of the two-peak
structure around the Fermi level at low temperature is also
seen in the results of numerical simulation in Refs. 39–41. It
will be shown that this crossover originates from the forma-
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tion of spin-singlet states between nearest-neighbor elec-
trons. This may relate to the spin-gap formation observed in
high-Tc superconductors. A relation to superconductivity
will be discussed.

The program of this paper is as follows. In Sec. II, we
present the formulation of thet-J model in the composite
operator method. In Sec. III, the two-site mean-field correla-
tion and self-energy are evaluated in the two-site approxima-
tion by use of the resolvent method. In Sec. IV, the results
from the self-consistent calculation is presented. Section V is
devoted to concluding remarks. Some necessary formula are
presented in Appendixes A, B, and C.

II. ELECTRON PROPAGATOR

We study thet-J model given by the following Hamil-
tonian:

H5(
i ,s

c̃s
†~ i !c̃s~ i !2t (

^ i , j &,s
„c̃s

†~ i !c̃s~ j !1 c̃s
†~ j !c̃s~ i !…

1J(
^ i , j &

S~ i !•S~ j !. ~2.1!

Here i indicates thei th site and the summation̂i , j & is over
the nearest-neighbor sites. The operatorS( i ) is the spin op-
erator of the electron, which is given, by use of creation and
annihilation electron operators at thei th sitecs

†( i ) andcs( i ),
asS( i )5 1

2(ss8cs
†( i )(s)ss8cs8( i ), with (s)ss8 being Pauli

matrices. The electronic operatorc̃s( i ) is an electron anni-
hilation operator restricted to the transitionn( i )
50↔n( i )51 with n( i )5(scs

†( i )cs( i ) , and is given by
c̃s( i )5cs( i )„12n2s~i!… with ns( i )5cs

†( i )cs( i ) . We in-
troduce an abbreviation, for example,c̃a, which is defined by

c̃a~x!5E d2y a~x,y!c̃~y!, ~2.2!

a~x,y!5
a2

~2p!2
E d2k eik•~x2y!a~k!, ~2.3!

where

a~k!5 1
2 ~coskxa1coskya!, ~2.4!

and a is the lattice length. We introduce level operators43

B( i ) andFs( i ) which describe the creation ofn50 and 1
levels at thei th site, respectively. The operatorB( i ) is
bosonic andFs( i ) is fermionic. By use of them, the spin
operatorSi( i ), the number operatorn( i ) and electron opera-
tor c̃s( i ) are expressed as

Si~ i !5 1
2F

†~ i !s iF~ i !, ~2.5!

n~ i !5F†~ i !•F~ i !, ~2.6!

and

c̃s~ i !5B†~ i !Fs~ i !. ~2.7!

Heres i is the Pauli matrix. Note that we have

15B†~ i !B~ i !1(
s

Fs
†~ i !Fs~ i !. ~2.8!

The equation of motion for the electron operatorc̃ is
given by

i
]

]t
c̃s5e c̃s2tR~B†Bc̃s

a1Fs
†Fsc̃s

a!12JSa~sc̃!s

5e c̃s2tR~12 1
2n1sS!c̃a12JSa~sc̃!s , ~2.9!

where

tR54t. ~2.10!

The level operators satisfy the equations

i
]

]t
B5eBB2tRc̃s

†aFs ~2.11!

and

i
]

]t
Fs5eFs

Fs2tRBc̃s
a12JSa~sF !s , ~2.12!

where the summation over the spin indexs is understood and
the level energieseB andeF are parametrized as

eB52e ~2.13!

and

eFs
50. ~2.14!

The equations for two-site level operators are presented in
Appendix A.

In the composite operator method, the electron propagator
S~v,k! is expressed as31–32

S~v,k!5P~k!
1

vP~k!2m~k!2dm~v,k!
P~k!. ~2.15!

The normalization matrixP~k! is given by

P~k!5F.T.̂ $c~x!,c†~y!%&, ~2.16!

with c being concerned electron operators and F.T. indicat-
ing the Fourier transform, the mean fieldm~k! by

m~k!5F.T.K H i ]

]t
c~x!,c†~y!J L ~2.17!

and the self-energydm~v,k! by

dm~v,k!52 iF.T.KRS i ]

]t
c D S i ]

]t
c D †L

I

, ~2.18!

with the subscript ‘‘I ’’ indicating an irreducible part. It
should be noted that expression~2.15! guarantees the sum
rules

E dvS 2
1

p D ImS~v,k!5P~k! ~2.19!

and
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E dv vS 2
1

p D ImS~v,k!5m~k! ~2.20!

under the conditiondm~v,k!→0 asuvu→`.
We consider the paramagnetic phase, and choosec̃ asc in

Eqs. ~2.16!–~2.18!. In the t-J model given by the Hamil-
tonian ~2.1!, the normalizationP is given by

P5^12 1
2n&, ~2.21!

and the mean-fieldm~k! is expressed as

m~k!5m01m1a~k!, ~2.22!

where

m05eP2mc̃ ~2.23!

and

m152tR~P21dPt!1JdPJ , ~2.24!

with

mc̃5tR^c̃ac̃†&22J^Sa
•S&, ~2.25!

dPt5^ 1
4dndna1S•Sa&, ~2.26!

and

dPJ53^c̃ac̃†&. ~2.27!

The dynamical correction of the self-energy is evaluated
from

dms5^Rd j sd j s
†& I , ~2.28!

where

d j s52tR~~B†B1Fs
†Fs!c̃s

a1F2s
† Fsc̃2s

a !

12J~sS3
ac̃s12S2s

a c̃2s!2a0c̃s2a1c̃s
a , ~2.29!

with

a052mc̃ /P, a15m1 /P. ~2.30!

In the expression of the mean fields~2.25! and ~2.26!
there appear the thermal expectation values which are not
able to be obtained from the electron propagator under con-
sideration. Since they are related to operators in two sites, we
evaluate their contribution by considering level transitions in
two sites. We also evaluate the dynamical correction of the
self-energydm~v,k! in the two-site approximation by con-
sidering the time delay of two-site level transitions. For such
purpose we use the resolvent method,14 which will be pre-
sented in Sec. III.

III. RESOLVENT FOR TWO-SITE LEVELS

In order to evaluate two-site correlations, we consider the
nearest-neighbor two sites~x,x8! as a representative cluster.
The orthogonal basis of level operators for this subsystem
areBB8, FBS8 , FBA8 , FsFs8 , (F↑F↓8)S , and (F↑F↓8)A with

FBS85
1

A2
~FB81BF8!, ~3.1!

FBA85
1

A2
~FB82BF8!, ~3.2!

~F↑F↓8!S5
1

A2
~F↑F↓81F↓F↑8!, ~3.3!

and

~F↑F↓8!A5
1

A2
~F↑F↓82F↓F↑8!, ~3.4!

where operators without the prime are for thex point, and
those with the prime are for thex8 point. Let us denote those
level operators in general asFn . Modification of these levels
from the surrounding system is evaluated by the
resolvent14,43 of Fn defined by

Rnm~ t2t8!5^^0uRFn~ t !Fm~ t8!†u0&&R

5
TrR@^^0uFn~ t !Fm~ t8!†u0&&e2bHR#

TrR@e2bHR#
u~ t2t8!

~3.5!

with u0&& being the local state vector withn50 andn850 on
the (x,x8) site. HereHR denotes the Hamiltonian for a sys-
tem other thanx andx8, which we will call a reservoir sys-
tem for convenience. The spectral functionsnm(v) of the
resolventRnm is defined by

Rnm~ t2t8!5
i

2p E dv e2 ivtRnm~v!, ~3.6!

snm~v!52
1

p
ImRnm~v!. ~3.7!

We also defines̄nm(v) by

s̄nm~v!5e2bvsnm~v!. ~3.8!

SinceFn satisfies

^^0uFnFm
† u0&&5dnm , ~3.9!

we have

Rnm~v!5S 1

v2E2S~v! D
nm

, ~3.10!

whereEnm is the energy of each level, andSnm(v) is the
self-energy of the resolvent. The level energies are param-
etrized as

EBB522e, ~3.11!

EFBS
52e2t, ~3.12!

EFBA
52e1t, ~3.13!

EFFS
5 1

4 J, ~3.14!

and
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EFFA
52 3

4 J, ~3.15!

where we set the energy of theF level with J50 as the
origin of the level energy as in Eq.~2.14!.

In the evaluation of the self-energyS, we consider the
one-loop correction arising from electron hopping and from
two-site spin correlation. For example, the self-energy of
FFA8 is obtained from Eq.~A6! as

SFFA
~v!5E dk„12 f F~k!…„r c̃RS

~k!RFBS
~v2k!

1r c̃RA
~k!RFBA

~v2k!13J2fA~k!

3RFFS
~v2k!…, ~3.16!

where f F(k) is the Fermi distribution function, and
r c̃RA

(k) and r c̃RS
(k) are spectral functions of electron

propagators in the reservoir systemSc̃RA andSc̃RS given by

Sc̃RA~v!5F.T.12 ^R~ c̃ã2 c̃ã8!~ c̃†ã2 c̃†ã8!&R ~3.17!

and

Sc̃RS~v!5F.T.12 ^R~ c̃ã1 c̃ã8!~ c̃†ã1 c̃†ã8!&R , ~3.18!

andfA is the spin-correlation function of the reservoir sys-
tem

fA~v!54F.T.̂ $~Si
ã2Si

ã8!,~Si
ã2Si

ã8!%&R , ~3.19!

where the subscriptR indicates the reservoir system. The
approximation used to evaluate the electron propagators and
spin fluctuation in the reservoir system is presented in Ap-
pendix C. Mixture of the spin-singlet and -triplet states in the
self-energies occurs through spin-flip induced by the spin
interactionJ in the Hamiltonian.

Now we can evaluate two-site mean fields and the dy-
namical correction of the electron self-energy in the two-site
approximation. First, we define the quantityZFn

by

ZFn
5E dv s̄Fn

~v!. ~3.20!

Then we have

Z5ZBB12~ZFBS1ZFBA!13ZFFS1ZFFA. ~3.21!

The two-site occupation number for each state is given by

nBB5ZBBZ
21, ~3.22!

nFBS52ZFBSZ
21, ~3.23!

nFBA52ZFBAZ
21, ~3.24!

nFFS53ZFFSZ
21, ~3.25!

and

nFFA5ZFFAZ
21. ~3.26!

With these two-site occupation numbers, the one-site occu-
pation numbernB (5^B†B&) andnF (5^F†F&) are obtained
from

nB5^B†B18&

5 1
2 ~nFBS1nFBA!1nBB ~3.27!

and

nF5 1
2 „nFFS1nFFA1 1

2 ~nFBS1nFBA!…. ~3.28!

The electron filling number is given by

^n&52nF . ~3.29!

Quantities related to two sites are obtained as

4^SSa&5nFFS23nFFA, ~3.30!

^nna&5nFFS1nFFA, ~3.31!

dPt5
1
2 ~nFFS2nFFA2 1

2 ^n&2!, ~3.32!

and

dPJ5
3
2 ^~FBA8 !†FBA82~FBS8!†FBS8&. ~3.33!

The correction termdm~v,k! is evaluated in the two-site
approximation as

dm~v,k!5dm0~v!1dm1~v!a~k!, ~3.34!

wheredm0 is related to level transitions on the equal site,
while dm1 is related to transitions across the two sites. They
are evaluated by extracting the concerned two sitesx andx8,
and by expressingd j in Eq. ~2.29! in terms of transition
among two-site levels. Let us rewrited j s in Eq. ~2.29! as

d j s5(
nm

anmFn
†Fm ~3.35!

and

d j s85(
nm

anm8 Fn
†Fm , ~3.36!

whereFn is the complete set of operators for two-site levels,
and the coefficientsanm andanm8 are given in Appendix B. In
the noncrossing approximation, we have

dm0~v!5Z21E dk dk8 (
nmn8m8

anman8m8
*

3
smm8~k!s̄n8n~k8!1s̄mm8~k!sn8n~k8!

v2k1k81 id

~3.37!

and

dm1~v!5Z21E dk dk8 (
nmn8m8

anman8m8
* 8

3
smm8~k!s̄n8n~k8!1s̄mm8~k!sn8n~k8!

v2k1k81 id
.

~3.38!
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We have fixed all functions appearing in the composite op-
erator method within the two-site approximation.

In the present approximation, the propagation of elec-
tronic excitations in the system is expressed by the propaga-
tor S~v,k!, which is a function of the occupation number
^n&, mean fieldsmc̃ , dPt , anddPJ , and dynamically cor-
rected two-site self-energiesdm0(v) anddm1(v). For given
^n&, dPt , dPJ , dm0(v), and dm1(v), we can self-
consistently determinee andmc̃ from

^n&5^c̃†c̃& ~3.39!

and

mc̃5tR^c̃ac̃†&. ~3.40!

When the propagator is obtained, we can evaluate the irre-
ducible propagator,Sc̃RS(v) andSc̃RA(v), with respect to
the nearest-neighbor two sites. Then two-site resolvents are
self-consistently obtained, from whichdPt , dPJ and
dm0(v), dm1(v) and two-site spin fluctuation in the non-
crossing approximation are evaluated. This gives a totally
self-consistent scheme. We determinee in the resolvent and
e in the propagator independently for a given^n& in order to
guarantee that̂n& has the same value both in the calculation
of the propagator and resolvent. We regard that such a dif-
ference appears due to the difference of the approximation
scheme between local and itinerant values. The result shows
that both values are very close.

IV. RESULTS

The propagator and resolvent are self-consistently solved
by use of the formulas presented in previous sections. In this
paper we investigate the moderately doped region, and pa-
rameters are fixed asn50.875 andJ/t50.4. In Fig. 1, the
temperature behavior of the density of states~DOS!, s~v!, is
presented, where

s~v!5
a2

~2p!2
E d2kS 2

1

p D ImS~v,k!. ~4.1!

The Fermi level~FL! is chosen atv50. Temperature is
changed asT/t51.0, 0.2, 0.1, 0.05. AtT/t51.0 and 0.2, the
DOS has a two-peak structure, a large peak aroundv/t5
22.5 and a narrow peak around the Fermi level. The former
peak originates from the Van Hove singularity in the two-
dimensional model with the nearest-neighbor hopping. The
narrow peak at the FL increases its intensity with decreasing
temperature. Further decreasing the temperature~T/t50.1
and 0.05! causes an additional narrower peak to develop at
the FL. This narrower band~coherent band! ranges between
v/t521.0 and 1.0, and corresponds to the band near the
Fermi level reported in Ref. 39. In Fig. 2 we present the
spectral function2~1/p!ImS~v,k! in theG-M direction@i.e.,
the (0,0)2(p/a,p/a) direction# for T/t50.05. The band-
width of the coherent band identified from the peak disper-
sion is about 0.3t, while Ref. 39 gives about 2.0t. The slave
boson method44 gives 8td/21O(Jd);0.5t (d512n
50.125), close to the present result. The smaller dispersion
and less intensity of the coherent band and a larger intensity
for the high-energy incoherent contribution may be due to a
stronger local nature of the NCA in the present approxima-
tion.

In order to understand the above crossover of the DOS at
the FL, we show the spectral functions of various resolvents
for temperatureT/t50.2 in Fig. 3 andT/t50.05 in Fig. 4.
The electron self-energy receives contributions from transi-
tions among those levels, and it can be seen from Fig. 3 that
a nearly zero-energy transition, which is the origin of the
narrow peak at the FL, is induced by the transitions between
FBS and ~FFA , FFS!. In this calculation we have a bare
transition energy in the resolvente521.89 ~e521.83 in the
propagator!, and a lowering of the level energy forFBS is
induced by the continuum contribution formed by the~FFA ,
FFS! level and thec̃-hole excitation. Recalling the noncross-
ing approximation14–16 in the Kondo problem, we can say
that the appearance of the coherent peak at high temperature
is very similar to the case that occurs in the Kondo effect.

FIG. 1. Temperature dependence of the density of states.

FIG. 2. Spectral intensity atT/t50.05.
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Electron spins of occupied states are thermally fluctuating,
and the spin of a hole is shielded by the surrounding spins;
that is, the narrow peak is due to the spin-dressed hole propa-
gation. When temperature is decreased asT/t50.05, the
weight of FFA , which is the singlet state, increases, while
the FFS state ~the triplet state! continues to have a broad
spectrum. The spectrum ofFBS is also sharpened, which is
due to mixing with the continuum formed withFFA . Be-
cause of this dominance of the singlet states, the two-site
transition produces a two-peak structure: one originates from
the transitionFFA↔FBS , and the other fromFBS→FFS .
The former is the origin of the sharp peak at the FL in Fig. 1,
and the latter produces a broad peak at about energy scale 4
J above the FL, which is the energy necessary to break the
singlet bonds. This tendency of the two-peak structure at the
Fermi level at low temperature is also seen in results of nu-
merical simulations in Refs. 39–41; the bandwidth and the
positions of the peaks are roughly equal, though the strength
of the intensity is different. At low temperature, occupied
electron spins start to form spin-singlet states, and the hole
motion is changed to the excitation from such states.

From the analysis of this paper we conclude that, in the
moderately doped region of thet-J model, the hole motion
near the FL shows a crossover from a spin-dressed hole state
to excitation from the spin-singlet state with decreasing tem-
perature.

V. CONCLUDING REMARKS

In this paper we studied the temperature dependence of
the density of states in thet-J model in the moderately

doped region. There appears a crossover of the density of
states near the Fermi level with decreasing temperature, and
the coherent peak at high temperature splits into two peaks
with lowering temperature. From the analysis of two-site
level transition, we may be able to interpret this coherent
peak as the result of holes dressing with spin fluctuation. The
narrower peak developing at lower temperature originates
from the formation of spin-singlet states in nearest-neighbor
electrons. The splitting energy of the spin singlet and triplet
is of orderJ, and the band near the Fermi level is formed
mainly from the transition from the spin-singlet state. This
may relate to an observation of the spin gap in a high-Tc
superconductor, since it naturally relates to a diminishing of
spin freedom in the local sense. If the essential scenario of
superconductivity is hidden in thet-J model, this result
gives an interesting indication in the mechanism of high-Tc
superconductivity. In the present analysis, the formation of
the nearest-neighbor spin-singlet state is related to the anti-
ferromagnetic interaction. Local properties of two-site sys-
tems are affected by the surrounding system, while the total
system is controlled by properties of the transition among
local levels. The difference between effects from the sur-
rounding normal state and the superconducting system ap-
pears in the contribution from the nondiagonal electron
propagator, which induces mixing among levels with a two-
electron number difference in the superconducting state.
Such mixing occurs between the blank levelBB8 and the

FIG. 3. Various spectral functions for resolvents for two-site
levels atT/t50.2. FIG. 4. Various spectral functions for resolvents for two-site

levels atT/t50.05.
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spin-singlet levelFFA8 of two-site systems in thet-J model.
Therefore the appearance of the spin-singlet formation is a
necessary precursor to allow further lowering of the ground-
state energy by a possible mixing of the spinless blank state.
The present formalism can be extended straightforwardly to
investigate a superconducting phase in the same approxima-
tion scheme. Such an analysis will be a future problem.
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APPENDIX A: EQUATIONS FOR TWO-SITELEVEL OPERATORS

The orthonormalized basis of a two-site level operator is given byBB8, FBS8 , FBA8 , FFS8 , andFFA8 . The equation of
motion for these level operators are given as follows:

i
]

]t
BB852eBBB82

tR

A2
~ c̃s

†ã1 c̃s
†ã8!~FsB8!S2

tR

A2
~ c̃s

†ã2 c̃s
†ã8!~FsB8!A , ~A1!

i
]

]t
~FsB8!S5~eFB2 1

4 tR!~FsB8!S2
tR

A2
~ c̃s

ã1 c̃s
ã8!BB82

tR

A2
~ c̃s

†ã2 c̃s
†ã8!FsFs82

tR
2

~ c̃2s
†ã 2 c̃2s

†ã8!~FsF2s8 !S

1
tR
2

~ c̃2s
†ã 1 c̃2s

†ã8!~FsF2s8 !A12J~Sã1Sã8!~s!ss~FsB8!S12J~Sã2Sã8!~s!ss~FsB8!A , ~A2!

i
]

]t
~FsB8!A5~eFB1 1

4 tR!~FsB8!A2
tR

A2
~ c̃s

ã2 c̃s
ã8!BB81

tR

A2
~ c̃s

†ã1 c̃s
†ã8!FsFs81

tR
2

~ c̃2s
†ã 1 c̃2s

†ã8!~FsF2s8 !S

2
tR
2

~ c̃2s
†ã 2 c̃2s

†ã8!~FsF2s8 !A12J~Sã2Sã8!~s!ss~FsB8!S12J~Sã1Sã8!~s!ss~FsB8!A , ~A3!

i
]

]t
FsFs85~2eF1 1

4J!FsFs82
tR

A2
~ c̃s

ã2 c̃s
ã8!~FsB8!S1

tR

A2
~ c̃s

ã1 c̃s
ã8!~FsB8!A

12J„s~S3
ã1S3

ã8!FsFs81A2~S2s
ã 1S2s

ã8 !~FsF2s8 !S2A2~S2s
ã 2S2s

ã8 !~FsF2s8 !A…, ~A4!

i
]

]t
~FsF2s8 !S5~2eF1 1

4J!~FsF2s8 !S2
tR
2

~ c̃s
ã2 c̃s

ã8!~F2sB8!S1
tR
2

~ c̃s
ã1 c̃s

ã8!~F2sB8!A2
tR
2

~ c̃2s
ã 2 c̃2s

ã8 !~FsB8!S

1
tR
2

~ c̃2s
ã 1 c̃2s

ã8 !~FsB8!A12J„s~S3
ã2S3

ã8!~FsF2s8 !A1A2~S2s
ã 1S2s

ã8 !F2sF2s8 1A2~Ss
ã1Ss

ã8!FsFs8 …,

~A5!

i
]

]t
~FsF2s8 !A5~2eF2 3

4J!~FsF2s8 !A2
tR
2

~ c̃s
ã1 c̃s

ã8!~F2sB8!S1
tR
2

~ c̃s
ã2 c̃s

ã8!~F2sB8!A1
tR
2

~ c̃2s
ã 1 c̃2s

ã8 !~FsB8!S

2
tR
2

~ c̃2s
ã 2 c̃2s

ã8 !~FsB8!A12J„s~S3
ã2S3

ã8!~FsF2s8 !S1A2~S2s
ã 2S2s

ã8 !F2sF2s8 2A2~Ss
ã2Ss

ã8!FsFs8 ….

~A6!

APPENDIX B: TWO-SITE DYNAMICAL CORRECTION

The self-energy is obtained by evaluating the correction arising fromd j given in Eq.~2.29!. By choosing a representative
lattice ~x,x8!, from d j s(x) we have
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d j s~x,x8!52tR~B†BB†8Fs81Fs
†FsB

†8Fs81F2s
† FsB

†8F2s8 !1J~B†FsFs
†8Fs82B†FsF2s

†8 F2s8 12B†F2sF2s
†8 Fs8 !

2a0B
†Fs~B†8B81Fs

†8Fs81F2s
†8 F2s8 !2a1~B

†B1Fs
†Fs1F2s

† F2s!B†8Fs8

5aBBFBS~BB8!†~FBS8!s1aBBFBA~BB8!†~FBA8 !s1aFBSFFS~FBS8!s
†FF2s8 1aFBAFFS~FBA8 !s

†FF2s8

1
1

A2
aFBSFFS~FBS8!2s

† ~FFS8!01
1

A2
aFBAFFS~FBA8 !2s

† ~FFS8!01aFBAFFA~FBA!2s
† sFFA8

1aFBSFFA~FBS!2s
† sFFA8 , ~B1!

where

aBBFBS5
1

A2
~2tR2a12a0!, ~B2!

aBBFBA5
1

A2
~ tR1a12a0!, ~B3!

aFBSFFS5
1

A2
~2tR2a12J1a0!, ~B4!

aFBAFFS5
1

A2
~2tR2a11J2a0!, ~B5!

aFBAFFA5
1

2
~2tR1a123J2a0!, ~B6!

aFBSFFA5
1

2
~2tR1a113J1a0!. ~B7!

We have

d j s~x,x8!85d j s~x8,x!

5aBBFBS8 ~BB8!†~FBS8!s1aBBFBA8 ~BB8!†~FBA8 !s1aFBSFFS8 ~FBS8!s
†FF2s8 1aFBAFFS8 ~FBA8 !s

†FF2s8

1
1

A2
aFBSFFS8 ~FBS8!2s

† ~FFS8!01
1

A2
aFBAFFS8 ~FBA8 !2s

† ~FFS8!01aFBAFFA8 ~FBA!2s
† sFFA8

1aFBSFFA8 ~FBS!2s
† sFFA8 , ~B8!

where
aBBFBS8 5aBBFBS, ~B9!

aBBFBA8 52aBBFBA, ~B10!

aFBSFFS8 52aFBSFFS, ~B11!

aFBAFFS8 5aFBAFFS, ~B12!

aFBAFFA8 52aFBAFFA, ~B13!

aFBSFFA8 5aFBSFFA. ~B14!

APPENDIX C: SITE-IRREDUCIBLE PROPAGATORS

The reservoir propagators defined by Eqs.~3.17! and
~3.18! are expressed as

Sc̃RA5Sc̃R2Sc̃R8 , ~C1!

Sc̃RS5Sc̃R1Sc̃R8 , ~C2!

with
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Sc̃R5tR
2^Rc̃ãc̃†ã&R , ~C3!

Sc̃R8 5tR
2^Rc̃ãc̃†ã8&R , ~C4!

where the subscriptR indicates that the propagator avoids to
cross the lattice pointx and x8. By denoting the Hamilto-
nians of the total system, the concerned two sites and the
reservoir asH, HS , andHR , respectively, we have

HR1HS5H2HRS ~C5!

whereHRS is the interaction between the system and reser-
voir. We evaluateSc̃R and Sc̃R8 as an impurity scattering

induced byHRS. By denotingC5( c̃ ã/ c̃ ã8), we approxi-
mate as

F.T.̂ RCC†&R'@S̃#1tR
2@S̃#@S0#@S̃#1•••, ~C6!

where

@S̃#5S S̃ S̃8

S̃8 S̃
D , ~C7!

with

S̃5F.T.̂ Rc̃ãc̃†ã&

5F.T.~ 1
2 ^Rc̃ac̃†a&1 1

16 ^Rc̃c̃
†&! ~C8!

and

S̃85F.T.̂ Rc̃ãc̃†ã8&

5F.T.~^Rc̃ac̃†a&2 7
16 ^Rc̃c̃

†&!, ~C9!

and [S0] is the on-site propagator for the concerned two-site
systems. Since the total propagator is rewritten in the present
approximation as

S~v,k!5
1

S0
21~v!1tRa~k!V~v!

, ~C10!

we have

@S0#
215S S021 1

4V

1
4V S0

21D . ~C11!

Then we have

@SR#215
1

t2
@S̃#212@S0#, ~C12!

with

@SR#5S Sc̃R Sc̃R8

Sc̃R8 Sc̃R
D . ~C13!

To evaluate the loop correction arising from the spin fluc-
tuation, we also need the spin-correlation functions

f~ t2t8!54^$Si
ã~ t !,Si

ã~ t8!%&R , ~C14!

f8~ t2t8!54^$Si
ã~ t !,Si

ã8~ t8!%&R . ~C15!

We approximate them in the two-site approximation by con-
sidering the six-site cluster including~x,x8!, in which each
pair of sites aligns in parallel,

f~ t2t8!' 1
2 ^$Si~ t !,Si~ t8!%&, ~C16!

f~ t2t8!8' 1
2 ^$Si~ t !,Si~ t8!8%&. ~C17!

Then ^$Si(t),Si(t8)%&, etc. is evaluated by the noncrossing
approximation in the resolvent method.

*Present address: ICCMP, Universidade de Brasilia, Caixa Postal
04667, 70919-970 Brasilia-DF, Brazil.
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