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Divergence of classical trajectories and weak localization

I. L. Aleiner*
Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455

A. I. Larkin
Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455
and L. D. Landau Institute for Theoretical Physics, 117940 Moscow, Russia
(Received 18 March 1996; revised manuscript received 16 July)1996

We study the weak-localization correctiOWLC) to transport coefficients of a system of electrons in a static
long-range potentiale.g., an antidot array or ballistic cavityWe found that the weak-localization correction
to the current response is delayed by the large tigve\ ~|In#|, where\ is the Lyapunov exponent. In the
semiclassical regim&: is much larger than the transport lifetime. Thus, the fundamental characteristic of the
classical chaotic motion, Lyapunov exponent, may be found by measuring the frequency or temperature
dependence of WL{.S0163-18206)01844-9

I. INTRODUCTION mechanical scattering problem.
The subject of weak-localizatiafWL) theory is the study

An electron system in a static potential is characterized byf the first order in\g /I, corrections to the transport coef-
the following linear scales: the geometrical size of the sysficients of the system. WL in quantum disorder has been
tem, L; the transport mean free path=v 7, being the char-  studied for more than 15 yeafs! The regime of quantum
acteristic distance at which a particle can travel before thehaos attracted attention only recemtly® This interest was
direction of its momentum is randomized; the characteristianotivated mostly by technological advances which allowed
scale the potential energy changes owerand de Broglie the fabrication of structures whese>\r. Two examples of
wavelength A (for the Fermi systemhp=#/ps, with  these structures afd) the antidot array$where the role of
pPe=mug being the Fermi momentumin the most impor-  a is played by the diameter of an antidot; af®) ballistic
tant metallic regime\s<L,l,,. The scale of the potential cavities®’ where a=I,=L coincides with the size of the
a may be arbitrary and depending upon this scale two recavity.
gimes can be distinguishedi) quantum chaos(QC), Weak-localization corrections are known to have an
a?>Ngly; and (i) quantum disordefQD), a?<\gl,,. The anomalous dependence upon the frequencyemperature,
physics behind this distinction is quite transparent: after aor applied magnetic field, and that is why they can be experi-
electron interacts with a scatterer of the sigghe quantum mentally observed. For the two-dimensional system case
uncertainty in the direction of its momentud® is of the L—o, the WL correction to the conductivitho can be
order of 6=\ /a. Therefore, the uncertainty in the posi- conveniently written as
tion of the particledx ?n the next scatterer can be estimated
asox=I,60=t,\g/a.l If Sx<a, the quantum uncertainty in 1
the position of the particle is not important, and its m>(l)tion Ao= T A2k F(‘”)In( thr)' wry=1, (1.9)
can be described by the classical Hamilt@r Liouville)
equations. Except for some special cases, these equations areeres=2 is the spin degeneracy, ahidw) is a renormal-
not integrable, the electron trajectory is extremely sensitivézation function. It is this function in which the difference
to the initial conditions and the classical motion is chaotic.between quantum disorder and quantum chaos is drastic.
The quantum phenomena in such a regime still bear essenti@orkov, Larkin, and Khmelnitskli showed that, for the
features of the classical motion; it is accepted in the literaturavhole frequency domainl’=1 for the quantum disorder,
to call such a regime “quantum chaos.” In the oppositeand does not depend upon the details of the scattering. The
limit, 5x>a, and the electron loses any memory about itsquestion is: Does such a universality also persist for the
classical trajectory after the first scattering. Any disorderedjuantum chaos?
system where the Born approximation is applicable may In this paper, we will show that, in the limib—0, the
serve as an example of a QD regime. renormalization functiof’ approaches unity. This proves the

Under the assumption of the ergodicity of the system, theuniversality of the weak-localization correction for the quan-
classical correlator is usually found from the Boltzmann ortum chaos However, unlike for quantum disordeF, ac-
diffusion equations. The form of these equations is identicabuires a frequency dependence aatthat is much smaller
for both regimes. The only difference appears in the expreshan 1f. This frequency dependence can be related to the
sion for the cross section entering into the collision integral Lyapunov exponenk characterizing the classical motion of
For the QC, this cross section can be found by solving théhe particle. This provides an opportunity to extract the value
classical equations of motion, whereas in the QD it is deterof the Lyapunov exponent from the measurements of the
mined by a solution of the corresponding quantum-frequency dependence of the conductivity. We found
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arb. units

Ac (t)

FIG. 1. The weak-localization correction to the conductivity in
the time domainAo(t)=[(dw/2m)Ao(w)e ! for the quantum
chaos(solid line) and quantum disordédashed lingregimes. The
developed theory is valid for=tg. Solid curve is calculated for
parametera. =4\ ,=1/7, and In@/\g)=7.

FIG. 2. The classical trajectory corresponding to the probability
(1.2 of return at the initial point with the momentum opposite to the
initial one. In the “Lyapunov region” the initial f-1” and final
“2-f” fragments of the trajectory are governed by the same poten-
where the Ehrenfest timig is the time it takes for the mini- g

mal wave packet to spread over the distance of the order of

a, and is given by approach its starting point at small distande(T)
—r(0)|=po<<a, we should take into account the fact that the
_ (1.3 motion of the particle at the initial and final stages are cor-
related. This is because the trajectory along which the par-
ticle moves on the final stage(T—1t),p(T—t)] almost co-
incides with the trajectory particle moving along at the initial
stage[r(t),p(t)]; see Fig. 2. These correlations break down
the description of this problem by the diffusion equation.
. . ®he behavior of the distribution function for this case can be
cur_lr_ﬁr;t rzsgcr’r;:ea?élrl]argg ggn%ﬁo\‘j’vese :?1 'gé elc Il we resenrelated to the Lyapunov exponent, and we now turn to a
the phe%opr)nenologicalgderivation of .EQL.Z). 'I.'he, eprFi)cit biscussion of S-UCh- a reIatiohThe re_levance OWo(T, po) t0
. . o i the weak-localization correction will become clear shottly.
expression relating the weak-localization correction to the The correlation of the motion at the final and initial stages
solution of the Liouville equation will be derived in Sec. IIl. can be conveniently characterized by two functions
In Sec. IV, we will find the quantum corrections to the con-
ductivity in the infinite chaotic system. Section V describes p(H)=r(t)—r(T—t), k(t)=p(T—t)+p(t). (2.1
the effects of the magnetic field and finite phase relaxation
time on the renormalization function. The conductance of thel he classical equations of motion for these functions are
ballistic cavities is studied in Sec. VI. Our findings are sum- ap k()

marized in Sec. VIII. xr_-7
a4 m’ (229

. sz)\ztE
I'(w)=exp 2i wtg— T

a

Nr

thxln

Quantity A,=\ in Eq. (1.2) characterizes the deviation of
the Lyapunov exponents, and it will be explained in Sec. Il
in more detail. In the time representation, regtl?) corre-

sponds to the delay of the weak-localization correction to th

Il. QUALITATIVE DISCUSSION
Q ok U[r(T—1)] dU[r(1)]

The classical diffusion equation is based on the assump- ot or ar
tion that at long time scales an electron loses any memory
about its previous experience. However, during its travel, thavhere U is the potential energy. If the distangeis much
electron may traverse the same spatial region and be affectéarger than the characteristic spatial scale of the poteatial
by the same scatterer more than once. These two scatterifigs.(2.2) lead to the usual resulp(t))=t¥2 at timest much
events are usually considered independently, because witarger thanr,. The situation is different, however, for
the dominant probability the electron enters this region havp<a, where the diffusion equation is not applicablee will
ing completely different momentum. call this region of the phase space the “Lyapunov regipn”
However, if we wish to find the probabilityVy(T,pg) Thus the calculation of functioVy(T,p,) should be per-
for a particle to have a momentum opposite to the initialformed in two steps. First, we have to calculate the condi-
one,p(T)=—p(0) (time T is much larger tham), and to  tional probability W(a,pg;t), which is defined so that the

: (2.2b
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probability for distancep(t) to become larger thaa during
the time interval[t,t+ At] is equal toW(a,pq;t)At under
the conditionp(0)= py. Second, we have to obtain the prob-
ability Wp(a,t) for the diffusively moving particle to ap-
proach its starting point to the distance of the orderndft
corresponds to the fragment “1-3-2" in Fig.).2Then, the
function Wy (T, pg) is given by

;
WO(T,p0)=JOdtWD(a,T—Zt)W(a,po;t). 2.3

Now, we perform the first step: finding the probability
W(a,pg;t). We consider the more general quantity
W(p,pq;t) for p<a. We expand the right-hand side of Eg.
(2.2b up to the first order irp, which yields

PPUlr(1)]

i

ot

M;i(Opi,  Mij(t) (2.9
It is easily seen from Eq$2.4) and Fig. 2 that the change in
the momentunk during the scattering event is proportional
to the distancep. On the other hand, it follows from Eqg.
(2.2 that the change in the value pf between scattering
events is proportional th. Therefore, one can expect that the
distancep grows exponentially with time. In Appendix A we
explicitly solve the model of weak dilute scatteréys-a and
find the expression for the distribution function
W(p)=(5(t—t(p))), where() means the average over di-
rections ofp. Here we present qualitative arguments which
enable us to establish the form of the functidh for the
general case. A

We notice that, if matrixM(t) does not depend on time,
the solution of Eqs(2.29 and(2.4) is readily available

p(t)=p(0)e, (2.5

where the quantity\ is related to the maximal negative ei-
genvalue ofM. We will loosely call\ the Lyapunov expo-
nent. If M varies with time, a solution of Eq%$2.29 and

(2.4) is not possible. We argue, however, that for the large

time t> 7, this variation may be described by a random
correction to the Lyapunov exponent

din
—p=)\+ ON(1).

T (2.6

At a time scale larger tham,, the correlation between the
values of 6A(t) at different moments of time can be ne-
glected, (SN\(t1) ON(t,))=N,6(t1—1,), that immediately
gives the log-normal form for the functiow:

RS M(L(p)—\1)?
W<p1po’t>—(m) ex*{‘w}’
2.7
L(p)=Inplpg.
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ered in the Appendix. The result s\ ,= 7, *(I,/a)3. In
the ballistic billiards, coefficienta and\, are of the order
of the inverse flying time across the system.

Equations(2.7) describe the distribution function only in
the vicinity of its maximum,|In(p/py) —At|<\t. However,
this result will be sufficient if timeT in Eq. (2.3 is large
enough,T= £(a)/2\. At smaller times the probability of re-
turn is determined by the tail of the distribution function
W(p) which is by no means log-normal.

It is worth mentioning, that there is some arbitrariness in
our choice of the initial conditionsp(T)=—p(0) and
[r(T)—r(0)|=po. The other possible choices are
[p(T)+ p(0)|=kq and|r(T)—r(0)|=0. In this case, formu-
las (2.7) remain valid upon the substitutigny— aky/p(0).

Now we can findW,y(T,p,) from Eg. (2.3). Substituting
Egs.(2.7) into Eq.(2.3), we arrive at the result for the prob-
ability Wy(T,po):

do —iwT
Wo(T,pg)= EWo(w'Po)e ,

(2.9
2iwL(a) _2w2)\2£(a)

A AS

Wo(w,po)=WD(w,a)exp( ,
where Wp(w,a) is the Fourier transform of the function
Wp(t,a). Function Wp(a,w)=Wp(w;a—ly)Wp(w,l) is
determined by two consecutive processes. The first process,
with the probabilityWp(w;a—1y), is the separation of the
trajectories from distance, at which they become indepen-
dent of the distance larger thap, where the diffusion equa-
tion is applicable. The characteristic time for such process is
of the order ofr,, and thusWp(w;a—ly)=1+0O(wy).

The probabilityWp(w,ly) is found by solving the standard
diffusion equation. For the two-dimensional case, which will
be the most interesting for us, functiohly(w,a) has the
form

WD(w,a):

(2.9

47D ln( Ty
WhereDzuﬁrtrIZ is the diffusion constant. Notice that this
function does not depend an Expressiong2.9) and (2.7)

are written with logarithmic accuracy.

So far, we considered a purely classical problem. We
found the probability for a particle, propagating in a classical
disordered potential, to approach its starting point with a
momentum opposite to its initial one. In a calculation of the
classical kinetic coefficienté.g., conductivity, an integra-
tion over all directions of the momentum is performed. As a
result, the peculiarities in the probability discussed above are
washed out and do not appear in the classical kinetic coeffi-
cients. However, the functiow/y(p,t) plays a very impor-
tant role in the semiclassical approach to some quantum-
mechanical problems. One such problem arose a long time
ago in the study of the breakdown of the method of quasi-

Formulas(2.7) are valid in general case even though analyticclassical trajectories in superconductivity theGtyAnother

calculation of the values ok and A, (as well as of the
diffusion constantcan be performed only for some special
cases, e.g., fdg>a. For the antidot arrays$, is given by the

problem is weak localization in the quantum chaos, and we
turn to a study of this phenomenon now.
It is well known'®121that the probabilityw for the par-

inverse scattering time up to the factor of the order ofticle to get from, say, pointto pointf [see Fig. 8a)], can be
In(l,,/a).*2 The model of the dilute weak scatterers is consid-obtained by, first, finding the quasiclassical amplitudes
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A simple geometric consideration, self-evident from the inset
in Fig. 3b), gives the estimatedp=+Agl, and 6¢
=Ag/ly, SO that the uncertainty relatio¥ Sp=\¢ holds.

In other words, one of the trajectories should almost “graze
itself” at point B.

The interference part of the contribution of the coherent
pairs to the probabilityw [see Eq.(2.10] is of the same
order as the classical probability for these trajectories. There-
fore, the contribution of the interference effect to the conduc-
tivity o is proportional to the probability of finding trajecto-
ries similar to those from Fig.(B). In order to calculate this
probability, we use functioW(p,t) defined in the begin-
ning of this section: the probabilitd P for a trajectory to
graze itself during the time intervét,,t; +dt;] is

dP;=6pSpvrdt;Wo( VARl 1) =Npvpdt;Wo( VAl )
(2.11

in two dimensions. We are, however, interested in the cor-
rection to the transport coefficientsuch as the diffusion
constant or the conductivity These quantities are contrib-
uted mostly by the point$ and f located at the distance
=l from each other. Thus, in order to contribute to the
diffusion constant or the conductivity, ends of the trajectories
should separate from each other to the distance of the order
of a, i.e., the trajectories should overcome the Lyapunov
FIG. 3. Examples of the classiced) noncoherent anb) co-  region one more time. The conditional probability, that

herent paths between poirit@and f. The scatterers are not shown, e trajectories diverge at a distaneea during the time
and the paths are straightened for clarity. The Lyapunov region i?nterval [t,,t,+dt,] under the condition that the self-
encircled. The region of quantum switch between trajectoriesgrazing occurred at momety is given by

(marked by the rectangulais enlarged in the inset.
. . . dP,=dt,W(a, VAply,to—ty), (2.12
A, for different paths connecting the points, and, then, by 2 2W( Flintz 1)

squaring the modulus of their sum: whereW is given by Eq.(2.7).
Summing over all the time intervals, for the quantum cor-

rection to the conductivitA o we obtain

2
w= =2 A+ 2 AALL (210
@ aFt B

> Aa
« Ao
The first term in Eq(2.10 is nothing else but the sum of the log

classical probabilities of the different paths, and the second . .

term is due to the quantum-mechanical interference of the *UFNFJ dtzf dt;Wo( VNl g t) W@, VA el o t).
different amplitudes. For generic paitg,3, the product 0 0

AQAZ oscillates strongly on the scale of the ordengf as 213
the function of the position of point. This is because the _ o _ )
lengths of pathsr and 8 are substantially different. Because If the correction at finite frequency is needed, the time
all measurable quantities are averaged on scales much larggfegration in Eq(2.13 should be replaced with the Fourier
than )\F, such Osci”ating contributions can be neg|ected_transform over the total time of travel between pOIntS initial
There are pairs of paths, however, which are coherent. AANd final pointst=2t,+t; in Eq. (2.13. This yields

example of such paths is shown in FigbB(paths 1 and -

2). These paths almost always coincide. The only difference, ()= — ——W(a, VA gl 20)Wo( VNl @) (2.14

is that fragmenBEB is traversed in the opposite directions whv P ORI

by trajectories 1 and 2. In the absence of magnetic field angpere, is the density of states per one spin. The coefficient
spin-orbit interaction, the phases of the amplitudgsand Eq. (2.14 and the signs in Eq$2.13 and(2.14), known

A, are equal because the lengths of the trajectories are closgy ihe quantum disorder, will be reproduced for the quantum
The region, where the distance between trajectories 1 and 4,505 in Sec. III. Substituting Eq&.7) and (2.9) into Eq.

is largest[see the inset in Fig.(B)], deserves some discus- (2.14 and using the Einstein relation=se&»D, we arrive
sion. At this point the directions of the paths at poiBtsand 4 the final resulf1.2).18

B, are almost opposite to those at poits and B, . Fur-
thermore, the differences between lengths of paths 1 and 2
should not be larger thang. This imposes certain restric-
tion on angled¢, at which trajectory 2 can intersect itself, It follows from the previous discussion that the calcula-
and on distancép, at which trajectory 1 can approach itself. tion of the quantum correction is related to the probability of

IIl. WEAK LOCALIZATION IN QUANTUM CHAOS
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finding a classical trajectory with large correlated segments. dp; dp;, -

A standard diagrammatic technigtfe'?is not convenient for Ke(@iry,r2,r3,rg) = j(—z—)z Palra=ra)

this case because the averaging over the disorder potential is

performed on the early stage, and including the additional x e'P23 2K P(:p; Ry ;P2 Ry),
correlations is technically difficult. That is why we will de-

rive an expression for the quantum correction in terms of ri+ry ro+rs

classical probabilities, which are solutions of the Liouville Ri=——, Roe=—5—, (3.5

equation in a given potential. This result is important on its

own, because it provides a tool for the description of quanor, alternatively,
tum effects in ballistic cavities. The averaging, then, can be

performed only on the final stage of the calculations. For thg¢ (@:F1,F5,F3,4)= dp, dp, @iP1(r1—r3)gipa(ra=ra)
sake of concreteness, we consider a two-dimensional case® = 27" * (2m)* (2m)*

generalization to the other dimensions is straightforward. We

C . .
will omit the Planck constant in all intermediate calculations. XK(@;p1,R1:P2,Ry),

ri+rs Fo+ry

2 ’ 2= 2 (36)

A. Introduction of basic quantities R.=

It is well known that transport coefficients can be calcu-
lated using the product of two exact Green functi#hs Let us now derive the semiclassical equation for the func-
tion KP. From Eq.(3.2) and definition(3.1) we can write the

Ke(w;flyfz,fs,u):G?+(w/z)(f1,fz)Gﬁ\f(w/z)(fsyf4)- (3.1) equation for functiorK in the form
Here GR(® s the exact retardetadvancet Green function [@—Hi+HyK(wir,r3.r5.14)

i i i i is- A R
g;;h;:lggt&ggc;g the disordered potentid(r), and it satis =G (T3l ) 8(r1—12) =GR, (1 (r1.12)
X 8(rg—ry). (3.7

If the distancer; —r,| is much smaller than the characteris-
tic scale of the potential, we expand tety—H,; in Eq.
(3.7 in distance|r,;—r,|, and perform a Fourier transform
analogous to Eq.3.5). The result can be expressed in terms

[exi0—H,IGRA(r ) =8(r1—12), (3.2

where the one-electron Hamiltonian is given by

|:|1= _ ;‘*‘U(H) 3.3 of the Liouvillean operatot.:
A A~ dH 9 IH
For instance, the Kubo formula for the conductivity is (Ha™ H4)%L1:<9_pl' dR; dRy dp;y’ 38
whereH(p,r) is the Hamiltonian function
aB( - _S€ [del ) o Caqrus_us
eI 4mzf 277( 66)[V’1 VrllVe =V H(p.r)= I°—2+U( r. (3.9
XK(wiry,ra,rs, u)’r —_ With the help of Eqs(3.7), (3.8, and(3.5), we obtain

r3—r2

[—iw+L;]KD(w;py,Ry;P2,R)
=278 e—H(p2,R2)1(27m)28(p1— P2) S(R1—Ry).

(3.10

é functions in the right-hand side of E¢3.10 should be
de of understood in the sense of there being a subsequent convo-
—iw | — _Ke(w;rler’rZirl)}i (3.9 lution with a smooth function on a spatial scale larger than
2m de A . When deriving Eq(3.10, we used a semiclassical ap-
proximation for the Green functions,

the expression for the polarization operator is

IM(w;ry,ry)=s/vé(ri—ry)

and so on. Herd(e)=(el*"#/T+1)"1 is the Fermi distri-
bution function. Unfortunately, an exact calculationkofis dp elP(ri—r)
not possible, and one has to resort on some approximation§~"(ry,r,) = 2m)2 e~ HIp.(r, 11121 =10’ (3.1

In general, functiork .(w;r¢,r,,r3,rs) oscillates rapidly
with the distance between its arguments. It contains an the right-hand side of E(3.7), and neglected small fre-
nonoscillating part only if its arguments are paired:guencyw in comparison with the large energy=Er.
ri=ry4,r>,=ryor, alternativelyy;=rs,r,=r,. If they are not Liouvillean operatof3.8) describes the motion of an elec-
paired but still close to each other pairwise, then it is verytron in a stationary potential. Because the energy is con-
convenient to perform the Fourier transform over the differ-served during such a motion, the functik® can be factor-
ence of these close arguments: ized to the form
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K?(w;pl,Rl;pz,Rz)=Ds(w;n1,R1;nz,Rz) magnetic field and spin-orbit scattering, it can be described
by an expression analogous to E§.14),

2w
X75[5_H(P1,R1)]

1
X 8l e—H(p2,Ry)], (3.12 C= Tio—_DV2 (3.18
where diffusionD is a smooth function of the electron en-
ergy, n is the unit vector along the momentum direction,
p=pen=ny2me—U(r)], and v=m/27 is the density of B. Quantum corrections to classical probabilities

states. DiffusorD, is the solution of the equation . . L
€ q So far, we considered the lowest classical approximation,

[—iw+|:1]D= 819 S15=278(N—Ny) SR —Ry). in which the classical probabilities were determined by de-
(3.13  terministic equations of the first order. However, the poten-

tial U contains not only the classical smooth part which is
taken into account by the Liouville equation, but also the part
responsible for the small angle diffraction. The quantum
weak-localization correction originates from the interference
uantum disorder of the diffracted electron waves. The interference of waves
q Let us consider. classical chaotic motion such that the tim iffracted at different locations is added. This results, as we
of the randomization of momentum direction is finite. At will show below, in .the quantgm cqrrectlon ceasing o de-
small w, which corresponds to the averaging over a timepend upon the details of the d|ﬁra_ct|on r_nechamsm, and be-
scale much larger than the time of the momentum randomc©mes universal. The only quantity which depends on the
ization, D, , averaged over small region of its initial condi- diffraction angle is the time it takes to establish this univer-

y €

It is important to emphasize that the diffusdnis a solution

of the Liouville equation and not of the diffusion equation. In
this sense, a more correct term fris “Liouvillon;” how-
ever, we follow the terminology accepted in the theory of

tions, satisfies the diffusion equation sality. We will show(see also Sec. )ithat the dependence of
this time on the diffraction angle is only logarithmical.

1 Therefore, with logarithmic accuracy, we can include the ef-
D= Tie—-DV2' (3-19  fect of this diffraction in the classical Liouville equation by

) - o ) any convenient method, provided that we do it consistently
whereD s the diffusion constant. The explicit relation of o g) quantities and preserve the conservation of the number
D to the characteristics of the potentidlcan be found inthe ¢ particles.
limit of dilute scattererd >a: in this limit the diffusion We will model the diffraction by adding the small amount
constant is given b =v /2. Itis worth emphasizing that of the quantum small angle scatterers to the left-hand side of
Eq. (3.14 itself does not require such a small parameter, anghe schidinger equatior(3.2. The effect of these scatterers
that it is always valid at large spatial scales and small freyii be twofold: (1) They will smooth the sharp classical

quencies. We will ignore the possible islands in the phas?)robabilities; and(2) they will induce interaction between

spa11_0he |soIaFe|d frqm lthe re?‘ Off th? sys.t;%nf. Ea.(3.6 the diffuson and cooperon modes, which results in the weak
e semiclassical equation for functié from Eq.(3.6 ocalization correction. Finally, the strength and density of

IS foun(_j na _S|m|Iar fa_shlo_n: in the absence of magnetic fiel hese scatterers will be adjusted so that the angle at which the
and spin-orbit scattering, it reads : S . .
classical probability is smeared during the travel to the dis-

[—iw+L,]K@:py,Ry:PasRy) tancea is equal to the genuine diffraction angl&(/a. This
e LT R T procedure is legitimate because, as we already mentioned,
=28 e—H(py1,R)](27)%28(p1—po) 8(R—Ry). the dependence of the weak-localization correction on the

diffraction angle is only logarithmical.
(3.19 It is worth emphasizing that, even though the weak-
Functioan can be factorized as localization correction takes its origin at a very short linear
scale(ultraviolet cutoff, the value of this correction at very
K&(w;p1,R1;P2,R2) =C(w;n;,Ry;N,,R,) large distances does not depend on this cutoff at all. Such
phenomena are quite typical in physi@s.g., in the theory of
X2—7T5[6—H(p1,R1)] turbulence, the theory of strong interaction, or in the Kondo
v effect.
Let us now implement the procedure. Consider a single
X de-H(pz,R)].  (3.16 impurity located at points, and creating the potential
Here cooperoii, is a smooth function of the electron energy V() =Vo(s—r), so that the potential part of Hamiltonian

satisfying the equation (3.3 is now given byU(r)+V(r). The characteristic size of
this potential,d, is much larger thamg but much smaller
[_iw+|:1]cz S1a. (3.17  thana. Our goal is to find the correction to EqR.13 and

(3.17 in the second order of perturbation theory in potential
Similar to the diffuson, the cooperon, averaged over smalV. (Correction of the first order vanishes T and C are
region of its initial conditions, is a self-averaging quantity atfunctions smooth on the spatial scalg In this order, cor-
large distances and small frequencies, and, in the absence rgiction to function(3.1) has the form
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_ R R dps dps
SK(rq,rp,r3,rg)= [ drsrg[G™(rq,rs)V(rs)G"(rs,r,) 6Dy(1,2)=— | drgadr,dR3dR, WW
X GA(r3,r)V(re)G(re,ra) X e 1PslstIPaTaD(1;3)D(4;2)
V(ry)V(ry)
Rip+ ¢+ VRAp— r—
+GR(r 19 V(T5) GR(rs,r) V(o) XGHrs r) G ) 5, (32

X GR(rg,ry)GA(rs,r,)

)

) o dn; dn,
FGR(r4,12) G5, r)V(rs) Kalri 31z ) =2 | @m 2
X GA(r5,re)V(rg)GR(rg,r2)1,  (3.19 X ePFMI=IPEN2I2 5D,(1,2),

Here we introduced the short-hand notatiea(n;,R;) and

where Green functions are the solutions of E8j2) without rjiz Rj*(r;/2).
the impurity potentiaV. We will omit the energy arguments What remains is to find the semiclassical expression for
in the Green function, implying everywhere that the energieshe productGRG” in Eq. (3.21). We notice that points
for the retarded and advanced Green functionseare/2  r3 ,r; lie within the radius of the potentiad(r). In order for
and e— w/2, respectively. the productGRG” in Eq. (3.21) not to vanish, points

In order to find the correction to the diffuson, we considerrs— ,F; must be close to pointsj ,TI . Because all the four
the pointsr,,ry andr,,rs in Eq. (3.19 which are close to  points are close to each other, one can wjite Eq. (3.6)],
each other pairwise, perform the Fourier transform defined
by Eq.(3.5), and express the right-hand side of E819 in  GR(r3 ,r;)GA(r; ,r3)
terms of the diffusons and cooperons. We demonstrate the

calculation by evaluating the second term in the right-hand = ,,ZJ dn,dnsd[ng(rg —r;)]16[ns(r, —r3)]
side of Eq.(3.19; let us denote it bypK.,,.
Consider the producBR(r,,rs)G*(rs,rs), pointsry,ry 5 @lPENa(r§ —13 ) +ipEns(ry —rg)

are close to each other, but poimtsr; are not. This means
that for a calculation of such a product we cannot use the
semiclassical approximatidi3.11) for the right-hand side of
Eq. (3.7), but still can use expansiaf3.9) for the left-hand
side of Eq.(3.7). Solving Eq.(3.7) with the help of Eq. X< C
(3.13, we obtain

v : = -+
+—1 dn.dn elpFnA(r3—r4)+|pFn5(r3—r4)
2’7Tf 44115

- -t
rg+ry rg—ry,
5 N5, =% (3.22

Ng,

Here the first term is the explicitly separated contribution of
GR(ry,r5)GA(r3,rg) the short straight-line trajectories connecting poinisr,
andrj,r,. These short trajectories can be well described by
the cooperon or by the diffuson. The second term describes
i dp; dp; the contribution of all the other trajectories connecting these
_;f dr7r8f (2m)? (2m)° points. It can be shown by explicit calculation that a repre-
sentation of Eq(3.22 in terms of the diffuson would only
lead to the loss of this second term. This is because the
cooperon describes interference effects corresponding to the
oscillating part of the diffuson which is lost in the semiclas-
X[GR(r7,r5)8(rg—r3) —GA(rs,rg) 8(r7—rs)] sical approximation(3.13.
4, Ftrg Now we are ready to find the correction coming from the
o 278 12

ri+ry r,+rg

X eipl(flu)ipz(ﬁfs)])( ny, T’nz —

X 6 , (3.20  single quantum scatterer. We substitute Ej22 into Eq.
(3.21) and perform the integration while neglecting the de-
pendence of the diffusons and cooperon on their spatial co-

with H(p,r) being the Hamilton functiof3.9). We will omit ordin'ates on the spa}le of the order_ of the scatterer sjze. We

the frequency argument in the diffusons and cooperons, imeonsider the remaining two terms in E@.19 in a similar
plying everywhere that it is equal . manner. The overall result is
We substitute Eq(3.20 into the second term on the left- 8D= §D5'+ 8D,

hand side of Eq(3.19. We neglect the product of three

retarded Green functions because this product is a strongly

oscillating function of its arguments, and vanishes after the &)St(l’z):f d3d4P(3.49D(1,9[D(4.2 ~D(3.2)],

averaging on a spatial scale larger thgn. The remaining (3.23

productGR(rg,r,)GA(r3,rg) is approximated by an expres-

sion similar to Eq(3.20, because points, andr; are close | C(3,9

to each other. Neglecting, once again, the product of two 5D(1,2)=f d3d4733(3,4)m[l)(1,3)—D(l,4)]

retarded Green functions and performing the Fourier trans- _ _

form over the differences,—r, andr,—r3, we find X[D(3,2—D(4,2)].
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Here we use the short-hand notatioa(n; ,R;). Integration ~ The second argument is the same for all the diffusons in Eq.
over the phase space on the energy shell is defined 48.259, and that is why we omitted it. Analogously, Eq.
dj=dn;dR;/2m, the time reversed coordinajeis given by  (3.24D reduces to
j=(—n;,R;), and the kerneP describing the scattering by
an impurity is .1 & d D(1,
—iw+Li— ———|C(1)= 81— —— ——— —/C(2).
5¢1 1

2
Py(1,2)=27v8(s—Ry) 8(s— Ry)

J dr e/PFr(m=m2)y/(r)

_ st o _ The second argument is the same for all the cooperons in Eq.
The first termoD>" in Eq. (3.24) coincides with that ob- (3.26h, and it is omitted. Quantum transport life time in Egs.
tained for otherwise free-moving electrons. The second terns.26) is given by

5D' describes the interference effect arising because the cha-

otically moving classical potentid)(r) electron may return 1 d 2

to the vicinity of the impurity one more time. =27vn f — = f dr ePFN TeV(r)
The correction to the cooperon due to the single impurity 2m 2

can be obtained from Eq3.19 by considering close pairs

r,,r; andr,,ry; this results in the expression similar to Eq.  Equations (3.25 describe how the classical Liouville

(3.24) with the replacemerD«:C. equation changes under the effect of the small-angle scatter-
So far, we considered the correction due to a single weakig (diffraction). We see that the quantum effects result in

impurity. If the number of these impurities is large, we can,two contributions to the Liouville equation. The first contri-

in the lowest approximation, consider the contributions frombution provides the angular diffusion and, thus, it leads to the

the different impurities independently of each other, by thesmearing of the sharp classical probabilities. Usually, for the

substitution on the right-hand side of E¢8.23 of the dif-  calculation of the transport coefficients, such as the diffusion

fusons and cooperons renormalized by all the other impuriconstant or the conductivity, the averaging over initial and

ties. As a result, we arrive at Boltzmann-like equations forfinal coordinates is performed anyway. Therefore, the angu-

2

Tq

the diffuson and cooperon: lar diffusion itself provides only a negligible correction to
the classical transport coefficients which are controlled by
[—iw+L,]D(1,2) classical potential. Conversely, the second contribution

giving the quantum correctioflast terms on the right-hand
side of Eq.(3.253] is proportional to the classical probabil-
=81+ >, fdSPS(l,S)[[D(S,Z)—D(l,Z)] ity C(1,1) where the initial and finite points of the phase
s space are related by the time inversion. In the absence of the
spreading due to the angular diffusiat,— =, this probabil-
(3.243 ity vanishes identically; see Sec. Il. In order to obtain the
correction at finite timeor finite frequency, one must keep
~ 74 finite even in the final results.
[-iw+L4]C(1,2 Let us estimate the value one should ascribetfor the
description of the diffraction effects in the system. As al-
_ ready discussed for the calculation with logarithmic accu-
= 510+ 2 J d3P5(1,3)[ [C(3,2—-C(1,2]+[C(1,2) racy, we do not need the numerical coefficient. The paramet-
s ric dependence ofr, can be established by using the
. D(1,§)+D(3,T)] foIIO\_/ving _argument. Co_nsjder two_ _independent electrons,
(32 ]————1, (3.24h  starting with the same initial conditions. If there were no
2my diffraction, they would propagate together forever. Due to
the angular diffusiorfdiffraction), the directions of these tra-
jectories deviates firstc\t and then exponentially,
(d(8¢?)/dt)~2N\(5¢%) +(1/27,), where angled¢ stands
for the angle between the momenta of two electrons \aisd
the Lyapunov exponent. This yields (5¢2(t))
~(4N7g) "}(e®'~1). Thus the characteristic time during
which the angular diffusion switches to the exponential
growth is alwayst.=1/A. On the other hand, quantum
spreading of the wave packet during this time interval is
1 2 p C(lT) PR given by 5x2:)\_Fthe. Taking into acqour)t the relatiqn
— i+ Ll_ = —5|D(1)= 61— — = D(1). Oox=tevg, We findte/7y=Ng/(vete). This yields the esti-
c9¢1 dpy YTy Iy mate for the quantum transport time entering into E§25
(3.258  corresponding to the small-angle diffraction

Here angleg; is defined so tham; = (cos; ,sing;), the nota-
tion for the coordinateg=(n; ,R;),j=(—n;,R;) is the same iz)\ZE. (3.26
as in Eq.(3.23), and thes symbol was defined in E43.13. Tq UF

— — C(1§)+C(3,T)]
+[D(1,2) - D(3,2) — = |

2Ty

where the notation for the coordinatgg§ was introduced
after Eq.(3.24), and thes symbol was defined in Eq43.13).

Assuming that the distribution of the quantum impurities
is uniform with the densityr;, we can make the continuous
approximation and replacg.— n;fds on the right-hand side
of Egs.(3.24). Finally, taking into account that the scattering
angle is small, we reduce Eg8.24) to a differential form.
Equation(3.2439 becomes
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It is important to emphasize that the very sameenters

14 431

quantum correction becomes a self-averaging quantity ex-

into the angular diffusion term and into the diffuson- pression which will be obtained in Sec. IV.
cooperon interaction. This circumstance is extremely crucial

for the universality of the quantum correction at large time
(0—0), even though parametey, itself does not enter into

the result; see Sec. IV.

IV. AVERAGED QUANTUM CORRECTIONS

We will consider the quantum correction at large distance

Let us now turn to a calculation of the lowest quantumand time scales. In this case, the classical probability does
correction to the diffuson. Taking into account the last termnot depend on the direction of the momentum, and is given

on the right-hand side of E(3.253 in the first order of
perturbation theory, we obtain

by Eq.(3.14). Our goal now is to find the expression for the
guantum correction in the same approximation. We will bear
in mind systems in which the diffusion constant is large

D(12=D%12+AD(1,2, (3.273 enough,D/avg=1. This is the case for the antidot arrays.
0r o a0 0 The conductance of the net of the ballistic cavities requires a
AD(1 2)=J dBC (3,3 9D(1,3 ID(3,2) separate consideration.
' mYT, dd3 dps ' For the calculation we use E¢B.28. While performing
(3.27h  the averaging, we make use of the fact that the cooperon part

of the expression can be averaged independently on the dif-
fuson part. This is because the classical trajectories corre-
sponding to these quantities lie essentially in the different
spatial regiongsee e.g., Fig. ®), where segments8 and

i N fB correspond to diffusons, and segm&EB corresponds

“lotl,— T W to the cooperoly and, therefore, they are governed by the
a7 different potentials and are not correlated. Performing such

where j=(n;,R)), integration over the phase space on thean averaging, we obtain, from E(8.28),
energy shell is defined aj=dn;dR;/2m, the time-reversed
coordinate is given byj=(—n;,R;), and thes symbol was
defined in Eq(3.13.

Equation (3.27H can be rewritten in a different form.

~ 1
—iw+L1—T—W}DO(1,2)=512, (3.270
q 1

2

C%(1,2)= 645, (3.270

AD(1,2>=[<D°<1,?>>+<D°<1_,2>>

Even though more lengthy than E@.28b, this form turns _ o 0= <c0(1I)>
out to be more convenient for further applications: +2|wf d3(D(1,3D(32) |~ ——
—°(22) (1) , — 4.1
AD(1,2=D°1,2) (22 + ( )D°(1,2) “.D

2Ty 27V

where( ) stands for the averaging either over the realization
of potentialU or over the position of the “center of mass”

of the cooperon and diffuson. The last two terms in brackets
in Eq. (3.28 vanish after averaging, because the averaged

+ f d3D%(1,3D°%(3,2)

diw— Lot 1 921033 32 cooperon does not depend on the coordinatger R;.
X clo—Ls T_qﬁg 2av (329 On the other hand, as we already explained in Sec. I,

correlations in the motion at both ends of the cooperon can

' | i not be neglected. The same is also true for the correlation

right-hand side of Eq(3.28 we subtracted the expression between motion of ends 3 andiB the third term of Eq.
(3.29. In what follows, we will separate the description of
the problem into the Lyapunov and diffusion regions. This

d3L
J ° will be done in Secs. IV A and IV B for the cooperon and

which vanishes because the integrand is the total derivativéliffusons, respectively, and the resulting correction to the
along the classical trajectory. Then we integrated B®7H conductivity will b_e fo_und in Sec. I_V C. The description of
by parts and, with the help of E¢3.279, we arrived at Eq. the Lyapunov region is presented in Secs. IV D and IV E.
(3.28.

Equations(3.27h and (3.28 are the main results of this
section. They give the value of the lowest quantum correc- ! opn s i
tion to the classical correlator in terms of the nonaveraged !N order to find(C"°(1,1)) we consider a more general
solutions of the Liouville equatiofwith small angular dif- 9uantityC(¢,p) defined as
fraction addegl for a given system. Besides the correction
found, there exist the other correctidmsg., from the higher
terms in expansioi(3.7)]; however, Eqs(3.27h and (3.28
are dominant at low frequencies. The quantum mesoscopic
fluctuations are neglected in Eq8.270H and(3.28, which
implies either that the temperature is high enough or that an
averaging over the position of the Fermi level is performed.
Then, if the relevant time and spatial scales are large, the

In order to derive Eq(3.28 from Eq. (3.27h, from the

€(3,3) —
5-—D(13D(32)

A. cooperon in the diffusive and Lyapunov regions

1(dRdn . .
C(qﬁ,p):éf?C(n ,R7;—n",R7),

nt=ncos§i[n>< Iz]sing, R*= Rig[ntxlz],
(4.2
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whereS is the area of the sample, ahdis the unit vector and consistent with Eqs4.2) and (4.7). A solution can be
perpendicular to the plane. Functi@{0,0) coincides with represented in a compact form analogous to @),

the necessary quantity®(1,1)).

It is easy to findC(¢,p) in the diffusion region. At ~ W(w;¢,p) _)
p=ly, itis given by Cldp)= 47D in 0Ty (4.10
1 Functionw(w; ¢,p) is defined as
Clop)= = —pve (4.3
P 1(dRdn
At p<+/D/w the cooperon depends only logarithmically on w(wi¢,p)=g| 5 —WwnRi¢p), (411
p and, ata<p=ly, it becomes independent pf With the
logarithmic accuracy, we have where_S is the area of the sample aMdis the solution of the
equation,
C(o,p) ! In( ! ) =a (4.9 2
P amd Non) P —Diw+lotl, - o —|W(w:n,R;$,p)=0, (412
274 d¢p

Equation (4.4 serves as the boundary condition for
C(¢,p) at the boundary between the diffusive and Lyapunovsupplied with the boundary condition
regions:

W(w;n,R;¢,p=a sgnp)=1. (4.13

)- (4.9  The necessary quantityjo(l,T)) is, thus, found by putting

p,»=0 in Eq.(4.10,
The meaning of Eq(4.5) is that both ends of the cooperon

1
C(¢.p=a sgnp)~;—=In

@ Ty

enter into the Lyapunov region with the random momenta, —  w(w;0,0) 1
and thus the probability of this entrance is given by the so- <CO(1,1)>:477—D"1 o7 (4.14
. . . . tr
lution of the diffusion equation.
The next step is to fin€€(¢,p) in the Lyapunov region. _ ) - _
To Eg.(3.279, we add the equation conjugate to it, which B. Diffusons in the diffusive and Lyapunov regions
gives In this subsection we find the average
L2 12 o [d3(D°(1,3)DP°(3,2)) entering into Eq(4.2). We use a pro-
—2iw+L,+L,—— — —2}00(1 =267 cedure similar to the calculation of the cooperon in Sec.
Tq 01 Tq dP3 IV A. We consider more general quantitid4 and M de-

(4.6)  fined as

Formula (4.6) enables us to find the equation for quantity
(n,R;¢,p)=Cn",R";—n",R") from Eq. (4.2. Ex-
panding potential up to the first order irp, and using the

M(1,2n,R;¢,p)=D°1;—n",RD(n*,R;2),

; ; dR dn
fact that the anglep is small, we obtain . =f .
M(lazld)!p) 277_ <M(1121n1R1¢1p)>’ (415)
-~ - 92
—2io+L+L,— 73752 C°(n,R;¢,p)=0. (4.7  where the coordinates™ andR™ are defined in Eq(4.2).
q

FunctionM(1,2;0,0) coincides with the necessary quantity
Here operator [d3(D°(1,3)D°(3,2)).

In the diffusive regionp=a two diffusons are governed
by the different potentials and, therefore, can be averaged
independently; each of them is given by E§.14). Further-

more, if p<+/D/w, functionM(1,2;¢,p) becomes indepen-
describes the motion of the “center of mass” of the COOP-gant Ofppd) andai)t is given by( ¢:p) P

eron along a classical trajectory, and operdtprcharacter-
izes how the distance between the ends changes in a course

of this motion, M(1,2;¢,p)=f d3(D%(1,3)(D%(3,2). (4.16

LeTUEN SRR P 49

i+ 9V K2 4.9 Equation (4.16 serves as the boundary condition for
ap pFapr(w’ ' M(1,2;¢,p) at the boundary between the diffusion and
Lyapunov regions,

Li=—ved

with R, being the projection oR onto the direction perpen-
dicular ton. In Eq. (4.7), we neglected the effect of the _
angular diffusion on the motion of the center of mass be- M(1,2;¢,p=a sgrlgb):f d3(D°(1,3)(D°(3,2)).
cause the averaging over the position of the center of mass (4.17)
n,R is performed in Eq(4.2) anyway.

Now we have to find functiorC(p, ¢) in the Lyapunov  The meaning of Eq(4.17) is that the ends of both diffusons
region, satisfying the boundary condition given by E45), enter into the Lyapunov region with the random momenta.
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The next step is to findM(1,2;¢,p) in the Lyapunov

region. It follows from Eq.(3.280 that the product of two

diffusonsD®(1;3)D°(4;2) satisfies the equation

A a1 1P
—2Iw+L3+L4—T—r¢2—T—T¢2
q 3 q 4

= 5,3D%(4;2) + 5,3D%(1;3).

D(1;3)D°(4;2)

(4.18

DIVERGENCE OF CLASSICAL TRAJECTORIES AN.. ..
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, 1 & _
—2iw— 2—7_q W Ml(l,z,p,(f))
dndR - .
+ f ?<LrM1(1:21n:Ra¢1P)>
=(D°(1;2))+(D(1;2). (4.24)

Calculating the right-hand side of E@4.24, we neglect
p=<a<+Duw in the arguments of the averaged diffusons. The

Equation(4.18 enables us to find the equation for quantity right-hand side of Eq(4.24 is independent op and é.

M from Eq.(4.15. We expand the potentiél up to the first
order inp, and use the fact that the angfeis small. This
yields

02
=278(n;+n7)8(R;—RY)D°(n",R™:2)

—2iw+L+L,— M(1,20,R; b,p)

+27w8(n,—n")8(R,—R)D(1;—n",RT), (4.19

where the operatOI‘rAsC andIA_r are defined in Eq944.8) and
(4.9), respectively. In Eq(4.19, we neglected the effect of

the angular diffusion on the motion of the center of mass
because the averaging over the position of the center of mass

n,R is performed in Eq(4.15.

We have to find functiorM (1,2;p,¢) in the Lyapunov
region, satisfying the boundary condition given by E417)
and consistent with Eqs4.195 and (4.19. We represent
functionsM and M as the sum of two terms1 =M+ M,
and M= M+ Mo,

dR dn
Mi(1,2:¢,p)=JW(Mi(LZ:nR:&P)), (4.20

fori=1 and 2. Function\; is a solution of the inhomoge-
neous equation

2

27, 087
=278(n;+n")8(R,—RM)Dn*,R™;2)

+278(n,—n")8(R,—R)D(1;—n",RY),

—2iw+L+L,—

}Ml(l,Z;n,Rw.p)

(4.21

without any boundary conditions imposed, and function

M, is the solution of the homogeneous equation

-~ A 92
—2iw+L+L,— 2—7_q W My(1,2n,R;,p)=0, (4.22
with the boundary condition
M (1,2:¢,p=asgnp) = f d3(D%(1,3)(D°(3,2))
—My(1,2;¢,p=asgnp). (4.23

First we find functionM ;. We integrate both sides of Eq.
(4.27) overR,n and average them. This gives

Therefore, we can seek for the functibh,(p, ¢) also inde-
pendent ofp,¢. The last term on the left-hand side of Eq.
(4.24), then, vanishes and we obtain

(D°(1;,2))+(D°(1;2))
—2iw '

Substituting Eq(4.25 into Eq.(4.23, we find the boundary
condition for the functiorM ,,

M(1,2:,p=a Sgnp) = J d3(D°(1,3(D(3,2))

(D°(3;2))+(1(1;2))
—2iw

(4.26

Equation (4.22, supplied with the boundary condition
(4.26), is similar to Egs.(4.7) and (4.5 for the cooperon
considered in Sec. IV A. Thus we use E4.10 to obtain

M2(1,2;,p) =W(w; b,p) f d3(D%(1,3)(D%(3,2))

O/1. O/1q -
(PL2))+(D <1,2>>}, 429
—2iw
where functionw is defined by Eq(4.11).
The necessary quantityd3(D°(1,3)D°(3,2)) is, thus,
found by summing contributiong!.25 and (4.27) and put-
ting p,»=0. We obtain

f d3(D%(1,3D°(3,2)

~w(:00 | d3(PP(1,3)(P(32)

1-w(w;0,0
+

—5 o [(D°(1,2))+(D°(1;2))].

(4.28

C. Quantum correction to the conductivity

Now we are prepared to find the correction to the conduc-
tivity. Substituting Eqs(4.14) and(4.28) into Eq.(4.2), and
using Eq.(3.14 for (D°), we find

2(;0,0) ( !
W(@:;0,0In Ty V2

AD=- (—iw—DV?)?’

(4.29

472y

where functionw is given by Eq.(4.11). Comparing Eq.
(4.29 with Eq. (3.14), we see that all quantum corrections
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can be ascribed to the chang® in the diffusion constant. smaller thanr,, and breaks down at larger frequencies. The

Restoring the Planck constant, we obtain description of such a breakdown is a subject of Sec. IV E.
w2(;0,0) 1 _ -
AD(w)=——F—7—In|— (4.30 E. Ehrenfest time andI' (w) at finite frequency
A7hv Ty

Our goal now is to findv at frequenciesg 1<w<r,*.
We would like to show that the functional form af is
log-normal even if the parametarl,, is not small, and deri-
vation of the equation analogous to the Boltzmann kinetic
) equation is not possible. Let us, first, neglect the angular

The correction to the conductivith o is related to the cor-
rection AD by Einstein relatiom o=s&vAD, wheres=2
is the spin degeneracy. We immediately find

2

Ao=— e;s (4.30) diffusion in Eq.(4.12 completely. We will take it into ac-
47 count in the end of the subsection. We rewrite Eq12 in
Comparing Eq.(4.31) with Eq. (1.1), we obtain the renor- the time representation
malization functionl’ (w):

w?(;0,0)In

W Ty

J d U 4
I'(@)=W*(;0,0). 432 | T oRT IR P
Here functionw is defined by Eq(4.13). P 2U
—|vE 2 p—) W(t;n,R;¢,p)=0, (4.33
D. Universality of the weak-localization correction atw—0 ( dp PrdRT" I

The universality of the weak-localization correction at do
low frequenciesI'(0)=1, can be proven immediately. In- W(t)= f —e 2NW(w),
deed, functionV=1 is a solution of Eq(4.12, and it satis- 2m
fies the boundary conditiow/(p=a)=1. BecausaN=1 is
the solution of a nhonaveraged equation in specific disordere
potential, the averaged functiam also equals unity. Then it
follows from Egs.(4.11) and (4.32 that I'(0)=1, which
completes the proof of the universality. This fact is well
known for the weak short-range disorder, where the Born
approximation applies. We are not aware of any proof of the/ /(LR ¢.p)
universality of the disorder of the arbitrary strength and the dR,dn,
spatial scale. = f 5
We emphasize that this proof does not imply any small .
classical parameters in the problem, and it requires only the X 8[n—n(t,Ry,No) 1, (4.34
applicability of the semiclassical approximatianz<<a,ly,.
Universality is based on two elementd) the conservation where the trajectory of the center of ma&),n(t) is found
of the total number of particles on all spatial and time scalesfrom the classical equations of motion
and (2) the existence of a diffusive motion at large spatial

here we used the explicit form of operatdrg, from Egs.

4.8) and(4.9. Then we separate the motion of the center of
mass and the relative motion of the ends of the cooperon.
That is, we factorize functiokV as

W, (t;no,Ro; ¢.p) SR—R(t,Rg,No)]

and time scales. Both these facts depend neither on the . ou . P P(t)
strength of the scatterers nor on their spatial size. P=—--xr R=g, nl= PO
It is also worth mentioning that the upper cutoff of the 4.39

logarithm in Eqg.(1.1) is determined by the purely classical
guantity 7., and does not contain Ehrenfest time as one RO)=Ro.  P(0)=nopr(Ro).
could expect. This result is due to the fact that the both Iowegnd functionw
and upper limits of the logarithm in the solution of the dif- +
fusion equation are related to the spatial scale and not to the

obeys the equations

time scale. The upper limit of the logarithgiD/w is the i—v,:(t)qﬁi-i—lz(t)pi W, =0,

typical distance at which the electron can diffuse during time at ap I

~1/w. The lower linear scale is the largest of two distances: (4.36
(1) the distance between the initial and final points(2)rthe U

transport mean free path—the smallest scale at which the vr(t)=ve[R(t,Ro)], |:('E)=—2-pF(9Rl
diffusion approximation is applicable. Because, for the prob-

lem in the diffusive region, we are interested in the probabil- ] ) ) )

ity of an electron to approach its starting point at the distance Eduations(4.39 are invariant with respect to the scale
of the order ofa<l, (and by no meangDtg), we have to transformation of variables and ¢. This invites us to intro-

usel, as the short distance cutoff. This immediately givesduce the variables
In(\D/w/ly)=In(1Nwry).

Thus we conclude that the weak-localization correction
has precisely the same universal form as in the quantum
chaos regime. However, unlike in the QD regime, this uni-
versality persists only up to some frequency which is much Upon this substitution, Eq$4.36) take the forms

R=R(t,Ry)

P
a

2+

z=In

271/2 ¢a
, a= arctanF. (4.37)
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J Jd d
¢ ~Bu(Dsin(2a)— +[By(t)cos 2a) + By(1)]5— (W,
-0, (4.38

t) _aF(t)
B =" = 5

The formal solutions of Eq94.38 are (we omit argu-
mentsng, R, hereinafter
W, [0;z,a0(a,t)],

(4.39
t
Bg(t,a’)E fodtlBl(tl)Sin{Z&[&o(a,t),tl]},

Wl(t;z,a)=exr{B3(t,a)%

where functiona(ag,t) satisfies the equations of motion

Z—’: =B,(t)cog2a)+By(t), a(ap,0)=ay, (4.40

and functionay(t,a) is implicitly defined by the relation

(4.4

alag(t,a),t]=a.

Equationg4.39 enable us to find the time evolution of func-

tion w(t) from Eq.(4.11). Indeed, substitution of Eq4.34)
into Eq. (4.11) immediately yields

dRydng
W(t;(ﬁ-p):fWWL(t;nOvRO;vaP)- (4.42

The time dependence of the functiéM, is given by Egs.
(4.39; using this formula we obtain

dRydng
W(t;Z,a)=f 57S

d -
exp{ Bg(t)ﬁ}w[o;z, ao(t,a)].
(4.43
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In Eq. (4.495, the initial conditioney may be chosen arbi-
trary. Furthermore, we will need functiom at large times. In
this casew is a smooth function oz, and we expand- in
the Taylor series:

(4.49

L 1 dRodno 2 2,2
)\z_lleHJ'WB (t)}—K tor.

t—oo

Returning to the frequency representation, we obtain the
equation describing the drift and diffusion of the logarithms
of the coordinates:

g A, 92
—|W(w;z)=0.

(4.4

With the same accuracy, the boundary conditions (Bd.3
take the form

W(w;z=0)=1. (4.48

For a generic system the actual calculation of the coefficients
N and\, can be performed, e.g. by the numerical study of
the system of equationgl.35 and (4.40 at times of the
order of 7, and then using Eq4.46. An analytic calcula-
tion of coefficientsh and \, requires additional model as-
sumptions. An outline of such calculation for the weak
smooth disorder is presented in the Appendix.

The solution of Eq(4.47) at wm,<1 and with the bound-
ary condition(4.48 has the form

2(1)2)\2)
z (4.49

2iw
W(w;Z)=eXL{( _T+ 3

We are interested in the time dynamics of the system at . i o )
time t much larger thanr,. At such large times, function However, in order to find the renormalization function

a(ag,t) averaged over an arbitrary small regionRyf,ng is

I'(w), we need to knoww(p,¢=0); see Eq.(4.32. This

a self-averaging quantity, and it no longer depends on th&0rresponds to taking the limid— —c in Eq. (4.49. One
initial condition arg. (This fact is similar to the randomization immediately realizes thaw(p,$=0)=0 at any finite fre-
of the direction of momentum in the derivation of the diffu- duéncy®, which would mean that the time it takes for the

sion equationh Therefore, the functioB; from Eq. (4.39
becomes independent af Thus at large times(t;z,«) is

also independent of, and its evolution is governed by the

Focker-Planck type equation

J J
h—f(ﬁ) w(t,z)=0, (4.44
where F(x) is defined as
f(x)znm%mu deSnoexp{xB(t)]],
t—so0
(4.45

B(t)=f;dtBl(t)sir{Z&(ao,t)].

quantum correction to reach its universal value is infinite.
The reason for this unphysical result lies in neglecting the
angular diffusion term in Eq4.33. This is the term that is
responsible for the quantum spreading of the classical prob-
ability, and which makes the Ehrenfest time finite.

In terms of the variable§t.37), the angular diffusion op-
erator, is given by

el PYRAR LA WD (i 4.5
W—Ee (7_22 Ccos Ee E 0,)—0[ (4.50

Because functionv is independent ofr, we can neglect all
the termsO(d/ da) completely. Furthermore, the condition
A 74>1 enables us to consider the angular diffusiérs0 in

the lowest order of perturbation theory. As the result, Eq.
(4.47 acquires the form
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" H\a )\2&2+e2201y¢9+ o Ao S tE(l Ao I(Tq, 54
N2 2 o 2\ T2 a2 YT e e R toN LU E
(4.5
— /T . .
where the numerical coefficient<1 is given by The factore ''"¢ in Eq. (5.4) can be easily understood. A
relevant trajectory may not close earlier than it leaves the
Lyapunov region; factoe™'e/7¢ is nothing but the probabil-
= I|m f J 005{201(&0,'[)] ity for an electron not to be scattered inelastically while it is

in the Lyapunov region. Let us also note that the dependence
of the weak-localization correction on the phase relaxation
Lo L S : time is always slower than an exponential. The reason for
taking into account the conditionrg>1. The result is this is the following. The probability for a trajectory to leave
o w\, N7 the Lyapunov region during time interval/2 is determined
w=ex (T_ N )In( N 67+ 712 (4.52 _by the corresponding Lyapunov exponent and, thus, it can be
a increased due to the fluctuation of this exponent. The prob-
At |z|<In\7,, expression(4.52 matches with Eq(4.49. ability of finding such a fluctuation is given by the Gaussian
By taking the limitz— —« in Eq. (4.52 and making use distribution. The optimization of the product of these two
of Eq. (4.32, we obtain Eq(1.2) with tg=(1/\)In\7,. Fi- probabilities immediately yields the exponential factor in Eq.
nally, we use estimaté3.27), replace the logarithmic accu- (5.4).

We now solve Eq.(4.51) with logarithmical accuracy,

racyv g /\ with the characteristic size of the potentiland At this point, we should caution the reader that the fact
arrive at Eq.(1.3. that the samer,, enters into the logarithmic factor and into
the renormalization factdr in Eq. (5.3) is somewhat model
V. RELEVANT PERTURBATIONS dependent. Strictly speaking, this statement is valid only if

phase breaking occurs via a single inelastic process with

So far, we considered only the frequency dependence of arge energy transfer. If the main mechanism of the phase

weak-localization correction in the quantum chaos. In thispreaking is associated with the large number of scattering
section we concentrate on two more factors which affect ouevents with the small energy transtért” phase breaking oc-

results: (1) the finite phase relaxation time,, and(2) the  curs when the distangebetween the cooperon ends is large

presence of a magnetic field. enough,\D/T<p=\D7,. Thus this mechanism does not
affect the cooperon in the Lyapunov region at all. A further
A. Effect of finite phase relaxation time discussion of the microscopic mechanisms of the phase

As was discussed in Sec. I, the weak-localization correcbreaklngl is beyond the scope of the present paper.

tion has its origin in the interference between the coherent

classical paths. If the particle experiences inelastic scattering B. Effect of magnetic field
during its motion, this coherence is destroyed and the weak-
localization correction is suppressétfl’ This effect is de-
scribed conventionally by the introduction of the phase re-
laxation time 7, (see Ref. 12 for a lucid discussion of the
physical meaning ofr,), into the Liouville equation for
cooperon(3.284,

Similar to the phase relaxation time, the effect of the mag-
netic field on the weak-localization correction is taken into
account by the change in the equation of motion for the
cooperon only1%1°

2ie 1 9
—ilw+ L1+ V]_Al - C 512, (55)

{92
C=51. (5.1) mq 96}

1 -
—iw+—+L;——
@ Ty T Tq &q&l
The equation for the diffuso(8.279 remains unchanged, as where A,=A(R,) is the vector potential of the external
well as relation3.27h and(3.28 between the correction to magne'Flc f'?ld' The cpoperon _g_lv_en b_y EG.5 is not. a
the classical probability and the cooperon and diffusons. 9auge invariant quantity, bai(1,1) is. It is very convenient

Thus we have to modify the cooperon part of E431); to separate the gauge noninvariant part of the cooperon ex-
that is, Eq.(4.10 acquires the form plicitly by writing
W(w+i/7,;¢,p) Tyt 2ie
C(o,p)= 27D \/w2+7;2 . (5.2 C=ex TJ Adr |Cy;, (5.6
Comparing Eqgs(4.14) and (5.2), with the help of Egs. where integration in the first factor is carried out along the
(4.31) and (4.32 we obtain straight line connecting the cooperon ends. Substituting Eq.
12 (5.6) into Eq. (5.5, we obtain the gauge invariant part of the
A e’s )| ot i | Tyt cooperon,
O= — 75, w w — nl ———s|.
4 zh Tcp \/w2+ T;Z
(5.3 i[zXr]
. . —Iw+Ll+— Cgi:512l (57)
For w=0 andr,> 7, expression5.3) acquires the form H
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where r=R;—R;, and \y=(ch/eH)¥? is the magnetic comparison with Eq(4.33 term in Eq.(5.14 can be taken
length. When the ends of the cooperon coinciggsC, and,  into account by multiplying functioW, from Eq.(4.34 by
therefore, the correction to the conductivi#.31 is modi-  the factor exp(RA(t)/\Z), where A(t) is the area enclosed

fied as by the trajectory in the Lyapunov region and it is given by
sé€ — t
Ao=— —W(0;0,0((C4(1,1)D). (5.9 A(t):f dtyue(ty)p(ty). (5.19
0
Our purpose now is to obtain an expressiondgr Simi- | et ys estimate the maximal value of ared In the

lar to the case for zero magnetic field, we would like to| yapunov region, the distangedoes not exceed the charac-
separate the problem into Lyapunov and diffusion regionsieristic scale of the potentia. In the vicinity of the bound-
This separation, however, is valid only if the condition ary of the Lyapunov regiorp depends exponentially on time
s 5.9 p(t_)zaeM (here timet<0 is counted from the moment of
= ' arrival of the trajectory to the boundary of the Lyapunov
holds. This condition follows from the fact that the charac-region. Substituting this estimate into E¢5.15, we obtain
teristic area enclosed by the relevant trajectory should not
exceed\? . If Eq. (5.9 is not fulfilled, the trajectory should max.A|=avg /A<IZ. (5.16
turn back at distances much smaller than The probability ) fimatés. 16 with dition(5.9 ud
of such an event is determined by optimal configurationscompa”ngzeS imates.16 with condition(5.9), we conclude
consisting of a small number of scatterers and, thus, separi1at|Al<\{ and, therefore, the magnetic field has no effect
tion of the diffusion region is not possibf8.In all subse- N the Lyapunov region. o
quent calculations, we assume that conditibr®) is met. Thus, the final formula for the weak-localization correc-

In the diffusion region, the cooperon satisfies the equatiodion in the magnetic field reads

i[Z><p:|>2

2
—iw—D(Vp‘F—)\r
H

e’s D
(Cgp=0(p). (5.10 AO’(H,w)—AO'(O,w)ImF(w)Y<m), (5.17

At aspshr’ the Cooperorﬁfgi ceases to depend mand where functionsI' and Y are defined by EC]S(].Z) and
with the logarithmic accuracy we have (5.12, respectively. It is worth noting that the effects of the
phase relaxatiofisee Eg.(5.4)] and magnetic field on the

1 1 D renormalization function are different. This is because the
(Cgi%”*m '”( thr) _Y< _iw)\z) ' (511 effect of the phase relaxation is determined by the time the
H particle spends in the Lyapunov region, which is signifi-
where the dimensionless functiof(x) is given by® cantly larger thanr,, whereas the effect of the magnetic
field is governed by the area enclosed by the trajectory in the
Y(x) =W EJF i 4 Indx (5.12 Lyapunov region, which is always much smaller thén
2 4x ’ For weak magnetic fields,%>D/max(w, 7, "), from Eq.

andW¥(x) is the digamma function. (5.17 we obtain

The solution in the Lyapunov region with the boundary 2 S\ 112
condition(5.11) can be represented in a form similar to Eq. Ac(H)—A0(0) == |T(0)T w+'_ }
(4.10, 6mh Ty
2
_We(wigp)[ (1 D | DPTe (5.18
=2 | ar) Y| TTanz /| G139 (1—iwT NG

Here functiorw, is related toA, by Eq.(4.11); however, the ~The study of the frequency dependence or temperdtiae

equation for the latter functiofisee Eq(4.33)], is modified  7,) of the magnetoresistance may provide an additional tool
for measuring the Lyapunov exponent.

VI. WEAK LOCALIZATION IN BALLISTIC CAVITIES

d 2ip 92U d In this section we study how the Lyapunov region affects
UF( ¢%+ )\_2> T ]WCIO' (5.149  the weak-localization correction in the ballistic cavities. At
H PO zero frequency and,— , this problem was studied in Refs.
Equation (5.14 is supplied with the boundary condition 8-10.

(4.13. For the sake of simplicity, we restrict ourselves to the
Now we will show that this modification does not affect case of zero magnetic field=0 and concentrate upon the
function W, in the Lyapunov region, provided that condition dependence of the weak-localization correction to the con-
(5.9 holds. Thus the renormalization functidi(w) is not  ductanceAg of a ballistic cavity on frequency and phase
affected by the magnetic field. In order to demonstrate thigelaxation timer,,. The effect of the magnetic field on the

we use the following arguments. The effect of the extra inweak localization was studied in Ref. 8.
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FIG. 4. Schematic view of the ballistic cavi§ between two
reservoirsL andR.

Let us consider a system consisting of three cavitses
Fig. 4) connected by channels. The size of the central cavit
(B in Fig. 4) is much smaller than that of the outer cavities

condition of the electroneutrality in the cavify, Qg=0.
The electroneutrality requirement is valid at times larger the
characteristic time of the charge relaxation. This tirgean
be estimated as,=Cg/(maxg,_ ), whereCy is the capaci-
tance of the cavity. Using estimafy~a and formulag6.1)
and(6.2), we find 7= ryag/(maxd, g), whererq=alvg is
the flying time of the electron across the cavity, apds the
screening radius in 2D electron systems. For wide channels
d_r>\g=ag, we haver,<7y. We are interested in the
dynamics of the system at times much larger than the flying
time and, therefore, we can assume that the electroneutrality
holds.

Then, the standard linear response calculations enable us
to relate the conductanegto the diffusonD defined in Sec.
Il. The charge response ith cavity,Q; to the applied biases
V(t),Vg(t)=V,Vge 't can be expressed by means of the
)f)olarization operator as

(L andR in Fig. 4), which act as reservoirs. The conductance
of the system is controlled by the channels so that theirQi=e2f drdroIl(w;rq,ro) 0;(r)[VOL(ro) +Veba(rayl,

widths d|_ r are much smaller than the characteristic size o
the central cavityd g<a. We assume that the motion of an
electron in the channel still can be described by the classic
Liouville equation, which impliesl; g>\g.

Because of the inequalitg, r<a, the time it takes to
establish the equilibrium distribution function in the cavity is
much smaller than the escape tinfiEhe equilibration time is

f (6.4
alhere functiond;(R) is equal to unity if vectoR lies in the
ith region {=L,R,B) and is equal to zero otherwise. The
potential Vg is to be found self-consistently from the elec-
troneutrality requirement. Substituting E¢B.4) into Eq.
(6.4 and making use of Eq$3.5), and(3.12, with the help

of the order of the flying time of the electron across theof definition (6.3 we obtain
cavity) Under such conditions the classical escape times

from the cavity through the leftright) channelr g, are
given by

1 1
TL(R) Ag

dn dL(R)UL(R)
d/ .d/LR) = V7N
jz fﬁ(n d7)vgn-d” 24,
(6.1

where Ag is the area of the cavity, the linear integration is

Vg
DLL(w)WLDLB(w)vH .
(6.5

g(w)=sezv( —iwA + w?

Djj(w)
_f dn;dn,dR;dR,

(277_)2 0|(R1) Hj(RZ)DeF(w;nlan;nzsz),

performed along the narrowest cross-section of the cormeynere 4, is the area of the corresponding region

sponding channeld/-(® is directed outside cavit nor-
mal to the integration line, angl gy are the Fermi velocities
in the contacts. Equatiof6.1) corresponds to the classical
Sharvin formul&® for the two-dimensional2D) case, and

(i=L,R,B).

The electroneutrality conditio®g=0 gives us the equa-
tion for the potential of the cavityg. Using Eq.(6.4) for
i =B, we find, with the help of Eqg3.4), (3.5, and(3.12),

the escape times are related to the classical conductance of a

single channeg, (g, by

Sezl/.AB

TL(R)

OL(RrR)= (6.2

If the external biaeV(t) is applied to, say, the left res-
ervoir (the right reservoir is maintained at zero biathe
electric current from the left to the right reservoir appears.
This current is linear in the applied bias:

t
dt’g(t—t")Vv(t"),

uwz—oaw=f
(6.3
t _j dw —iwt
9()= | ;e '“g(w),
whereQ, is the charge of the left reservoir. Relati¢b3)

defines the conductance of the systg(w). Performing ac-
tual calculations in Eq(6.3), one has to take into account the

ioD g(w)V+[Ag+iwDgg(w)]Vg=0. (6.6)

A. Classical conductance

Let us first calculate the classical conductagggof the
system. We consider frequencies much smaller than the
flying time of the electron in a cavity. Assuming that the
motion in the cavity is ergodic and the areas of the reservoirs
are large, Ay (ry/ Ag> w7 (r), We obtain that the diffuson
changes only within the channels. Fy from Eq.(6.5, we
find

0 Ag 1 1 1
Dgg(w)=——— —=—+—, (673
i+ — B TR

B
A A D3
D% (0)=—1 - B . i=L,R, (8.7b

; 2 21
—lo 1o (Tl-w)
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Dig(w) :
0 (0)=DL ()=—28 i= AD;=0, i=L,R,B, 6.1
Dls(@)=Dgj(w) =, I=LR (679 2, AP (6.11
0 o DgB(w) which can be easily proven with the help of the relation
DLR(w):DRL(w):—m- (6.70  3,P°(1)=1/-iw and Eq.(3.270. Equation(6.11) enables

us to consider only nondiagonal elementsAd®;;, which is

Equation(6.79 describes the exponentially decaying in time technically easier.

probability to find the electron in caviti if it started in this Analogous to the discussion in Sec. IV, we assume that
cavity. The first term in Eq(6.7b corresponds to the classi- the cooperon part of the expression can be calculated inde-
cal correlator of thgth reservoir disconnected from the cav- pendently of the diffuson part. This is because classical tra-
ity, the second term describes the finite probability for thejectories corresponding to these quantities traverse essen-
electron to enter cavity from the jth reservoir, and the tially the different regions of the phase space.

third term corresponds to the process in which an electron First, we use this assumption to evaluate contribution
from the jth reservoir visits the cavity once and then comesp D) from Eq. (6.9). We notice that the classical trajectory
back. Equatiori6.7¢9 gives the probability for the electron to can close only inside the cavity. Therefore, the cooperon
appear in thgth reservoir starting from the cavity. Finally, ¢(1,1) also exists only inside cavity. For the calculation of
Eq.(6.7d is the probability for an electron to move from the the diffuson, we notice that, at times much larger than the
left to the right reservoir. flying time across the cavity;, , the position of the electron

~ Substituting Egs(6.7) into Eq. (6.6), we find that the 54 its momentum is randomized. This suggests using the
bias of the cavityVy does not depend on frequencys  approximation

=g, /(g.+9Rr). Then, by substitution of Eq$6.7) into Egs.
(6.5), with the help of Eq(6.2) we obtain

j?

0 - 1 0 _DiOB
Di(l)NA_BJ dlDi(l)é’B(Rl)—A—B, (6.12

__90r
+
9T Or if vector R, lies inside the cavity. Here functiof] is de-
in agreement with the Kirchhoff law. It is worth mentioning fined in Eq.(6.7). Using Eq.(6.12, we obtain
that result(6.8) at w=0 can be obtained without the require-
ment of the electroneutrality. <Co(1f)>
AD[Y=[Djydig+ Dipdel—_——. (613

(6.9

Jel

B. Weak-localization correction

In order to calculate the weak-localization correction towhere the average inside the cavity is defined as
the conductancAg(w), we have to find the correction to the

classical correlatoA D and then use Eq$6.5) and(6.6). For 1

such a calculation, it is most convenient to use E328. (.= JTBJ d16g(Ry). .. .

Our strategy will be analogous to the one we used in Sec. IV

for the calculation of the correction to the conductivity. Let us turn to the calculation of the contributiml)i(jz). As

Integrating both sides of Eq3.29 over the coordinates e already saw in Secs. Il and 1V, two diffusons cannot be
1 and 2 within the regions specified Wyfunctions in Eq.  averaged independently, because the motions of their ends
(6.5, and using the obvious relatioP(1,2)=D(2,1), we  are governed by the same potential during petjod . On

obtain the other hand, the randomization of the motion of the center
1 5 of mass occurs during a time interval of the oretgr. There-
AD; =AD" +AD;, fore, we can approximate
— ° 1,? 0 0/ 1Y 0 0
D= f d1[ (1) 6(Ry) +DY(1) 0J<R1)]2(TV), 6.9 DD~ 0s(RUDILIDL). (619

_ Expression6.14) is written in the lowest order in small pa-

) ~ C%(1,1) rameterAg /A g, and we exclude from our consideration
2io—Li+ T4 04%| 2wy cases =]=L,R. In the latter cases, there are also nonvan-
a7 ishing contributions in Eq(6.14) corresponding to the coor-

where dinateR; in the reservoird or R. This would require a more
careful investigation of the behavior of the diffuson in the
Dio(l)EJ d26,(R,)D%(2,1). (6.10  Channels. However, we simply bypass this difficulty by uti-
lizing identity (6.11) for the calculation of the diagonal ele-
Here, we use the short-hand notatiea(n, ,R), integration = MentsAD;; andADgg. Using the approximatiof6.14), we
over the phase space on the energy shell is defined dipd
dl=dn,dR,/27, and the time-reversed coordindtés given _
by 1=(—n ,Ry). (LY
It is noteworthy that the quantum correctiarD;; satisfies 27y
the charge conservation condition (6.195

1 5
ADP = f d1DY(1)DY(1)

27y

ADR=(DALDYD) [ d105(Ry[2i0— L]
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Liouvillean operatoﬂil in the second term on the right-hand — w(w,0,0)
side of Eq.(6.19 is the total derivative along a classical (C(1,1))= 1 (6.20
trajectory and, therefore, it can be reduced to the linear inte- AB< —iw+T—

B

grals across the channels

In the calculation of the product of two diffusons
(DY(1)D)(1)) the change should be made in E4.25. The
reason for this is that the integration ouern for reducing
Eq. (4.22 to Eq. (4.24) is performed now only inside the

:J(;_:rl(f nl'd/”&"'J n1~d/?)vFCO(1j, (6.1  cavity. As a result, one more term

f d165(Ry)L,C(1,1)

where the linear integration is defined similar to that in Eq. 5 Og(R)L.M1(1,2n,R; b, p)~ ————
(6.1). Then we notice that a classical trajectory can close . 7B
only inside the cavity. Therefore, only cooperons with initial [cf. with the derivation of Eq(6.17)] has to be added to the

momentum directed inside the cavity exist. Let us assumeeft-hand side of Eq(4.24). Equation(4.25, then, acquires
that the randomization of the momentum direction occurshe form

only inside the cavity, and consider times much larger than

the flying time. We conclude that the cooperon in the contact <DO(1_;2)>+<DO(1;2_)>
vanishes if itsn; directed inside the cavity, and if the mo- M1(1,2:p,¢)= 1 ,
mentum is directed outside the cavity, the cooperon — i+ —
coincides with its value inside the cavity((1,1) B

=60(n,-d/ ' (r))(C(1,1)), for the coordinatdr, located inthe and we obtain, instead of E¢.28),

left or right channel, respectively. This enables us to reduce

Eq. (6.16 to the simple form oo DD
Ag(DY(1)DY(1)) =w(w;0,0

Ag
- — Ay —
f leB(Rl)Llco(lil):T_<C(111)>a (6.17 1-w(w;0,0 o
® — 1 [DPigdis+ Digdie ],
where the total escape timg is defined in Eq(6.79. De- —2io+ T_B
riving Eg. (6.17), we use the definition of the escape times
(6.1). Arguments above are essentially equivalent to those in (6.2

the derivation of the classical Sharvin conductafice.

Combining formulas6.13, (6.19, (6.17, and (6.9, we where functionsD;; are given by Egs(6.78 and (6.70.

Result(6.2]) is not applicable for=j=L,R cases. Deriving

obtain Eq. (6.21), we used Eq(6.12 for the average of the single
(AT L diffuson(_pﬁ(l». _ '
AD, = ' DQB5iB+DiOB5'B+ % w— _) Substituting Eqs(6.20 and (6.21) |nt(_) Eqg. (6.18, with
] 27Ty ] ! 7B the help of Egs(6.7) and(4.32 we obtain
X A DY) D)D) (6.19 1
I'(w) 8
i i : ADgg(w)= 3, (6.223
We reiterate that E6.18 is not applicable for the case of 2wy . 1
i=j=L,R. In order to find the diagonal element®, | and ( —iw+ ™
ADgg, One has to use the identitg.11). L
The calculation of the corresponding averag€y(1,1)) T8 )
and(D(1)DY(1)) is performed along the lines of the deri- ADjg=ADgj=—_—~ADgs, j=L.R  (6.220
vations in Sec. IV. In the calculation of the cooperon the .
only change is in expressio@.3) for the cooperon outside 1-2iwrg
the Lyapunov region, ADLRzmADBB(w). (6.220

CorrectionsADj; for j=L,R found with help of Eq.
C((Z'),p): (6.19) orrections i or | are rouna wi elp o q

( ) 1\’ (6.11), and are given by
Al —lo+—
B .
apy = 2ot e p 6.220
which is analogous to Eq6.7a. The solution for the coop- I\ e’ o1 BB (6.

eron in the Lyapunov region is analogous to one presented in

Secs. IV A and IV E. The calculation of functiom may be Substituting Eqs(6.223 and (6.229 into Eq. (6.6), we

performed for the cavity disconnected from the reservoirspbserve that the voltage in the cavit§g does not acquire
provided that the conditiome<< 75 holds. As the result we any quantum correction¥/g=Vg, /(ggt9.). Finally, sub-

obtain stituting Egs.(6.22 into Eq. (6.5 and using Eq(6.2), we
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obtain the final result for the frequency-dependent Weakdomaintg1<w<rt:l appearg tg is the Ehrenfest time; see
localization correction to the conductance of the ballisticeq, (1.3)], where the classical dynamics is still governed by
cavity, the diffusion equation, but the WL correction deviates from
s@ g9 (o) the universal law. We were able to investigate the frequency
Ag(w)=— LYR 5 . , (6.23 dependence of the WL correction at such frequenfies
2mh (9Lt gr) [1-iwTs Egs. (1.1) and (1.2)], and to find out how the fundamental

where the total escape timg is defined in Eq(6.7a. We  characteristic of the classical chaos appears in the quantum
emphasize that Eq6.23 at zero frequency can be obtained correction. At lower frequenciesp<tz*, we proved the
without the electroneutrality requirement. universality of the weak-localization correction for the disor-
Equation (6.23 is the main result of this section. At der potential of an arbitrary strength and spatial size.
=0, this result agrees with the findings of Ref. 9 in the These results may be checked experimentally by studying
limit of large number of quantum channels in the contactthe frequency or temperatur@ia 7,) dependence of the
We are aware neither of any calculation at finite frequencyweak-localization correctior(e.g., negative magnetoresis-
nor of a description of the role of the Ehrenfest time in thetance. Indeed, at low frequency or temperature, a conven-
conductance of the ballistic cavities. The renormalizationijonal dependence should be observed. This dependence is
function I'(w) in Egs. (6.23 describes the effect of the yather weaklogarithmical for large samples and a power law
Lyapunov region on the weak localization, and it is given byfor the ballistic cavities With the increase of the frequency
Egs.(1.2 and(1.3)._,§n analytic calculation of the Lyapunov o temperature, the dependence becomes exponential; such a
exponentsk A=y~ for the ballistic cavity is a separate crossover may be used to find the Ehrenfest timand thus
problem and it will not be done in this paper. Itis assumed ingyract the value of the Lyapunov exponent. The parameters
Eq. (6.23 that the conditiortg< 75 holds. The result for the ¢ the pallistic cavities studied in Ref. 7 age=1 um and
opposite Iimit(which corresponds to the equne_ntially small Ae=400 A, so that Iné/\p)=3. We believe, however, that
Planck constapt is obtained by substitution['(w)  the size of the ballistic cavities may be raised up to the mean

—TI'(w+i/7g) in Eq. (6.23, and the weak-localization cor- free path=17 um:; the Ehrenfest time in this case would be

rection turns out to be suppressed by the faCtorappreciably larger than the flying time, &t{-)=6, and the
eXp(—ZtE/TB).

The finite bh | L is taken i characteristic frequenc;o=tgl for this case can be esti-
e finite phase relaxation tims, IS taken Into account 104 a5,~5x10° s~ 1. Measurements of the frequency
by substitutionw— w+i/7, in Eq. (6.20. At 7,>tg, the

It ford d h th It of Ref. 22 dependence of the WL correction in the quantum disorder
result fordc conductance agrees with the result of Ref. 22.o4ime \vere performed in Ref. 23 at frequencies as high as
For w=0 we obtained

16.5 GHz. Thus a measurement of the Ehrenfest time in bal-

<& . listic cavities does not seem to be unrealistic.
Ag=— — &Rz il We expect that effects associated with the Ehrenfest time
27hi (9L +0r)” 78 may also be found in optics. They may be observed, e.g., in

the dependence of the enhanced backscattering on frequency
\ (6.24  of the amplitude modulatiow. This dependence should be
still given by our functionI'(w), with A\¢ being replaced
4with the light wavelength.
We showed that the description of the intermediate region

tz'<w<7, ! can be reduced to a solution of the purely clas-

1 1 1 sical equation of motion; however, averaging leading to the

—=—+t— Boltzmann equation is not possible because the initial and

T T final phase cells of the relevant classical correlgtmop-
Usually, the Ehrenfest timg: is much smaller than the es- eron are related by the time inversion. Therefore, the initial
cape timerg. In this case, one can immediately see theand finite segments of the corresponding classical trajectory
dramatic crossover at the temperature dependéumseally  are strongly correlated, and their relative motion is described
7, is a power function of temperature; see Ref).12 at by the Lyapunov exponent and not by the diffusion equation.
7,>tg, the dependence on temperature is a power law, withVe took this correlation into account, showed that it is de-
the increase of the temperature the change to the exponentigribed by the log-normal distribution function, and related
drop occurs. Thus a study of the crossover in the temperatuitée Ehrenfest time to the parameters of this function.
or frequency dependence of the ballistic cavities may pro- Because a description by the Boltzmann equation was not
vide the information about the values and the distribution ofpossible, we derived the lowest-order quantum correction to

te A te Ao
>< —_ — —_ —
exp{ Ti(l A Ti) T8 ! ATg

where 7; is the time it takes for an electron to be scattere
inelastically or to escape the cavity,

the Lyapunov exponents in the cavity. the classical correlator in terms of the solution of the Liou-
ville equation, smeared by the small-angle diffraction; see
VIl. CONCLUSION Eq. (3.27h. The derivation was based on the equations of

motion for the exact Green functions, and did not imply av-

In this paper we developed a theory for the weak-eraging over the realization of the potential.
localization (WL) correction in a quantum chaotic system, Closing the paper, we would like to discuss its relation to
i.e., in a system with a characteristic spatial scale of the statithe other works and to make a few remarks concerning how
potential a being much larger than the Fermi wavelengththe Ehrenfest time appears in the level statistics. First, we
Ae. We showed that for the quantum chaos, a frequencyotice that, though quite popular in the classical mechanics
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and hydrodynamics, the Lyapunov exponent very rarely enp(e):Tm(e_g)_ For the orthogonal Gaussian ensemble
ters in the expressions for observable quantities in solid-Stat®e random matrix theory yiel#s R(s)=—(ms) 2
physics; see Ref. 14. The possibility to observe the interme;(1+00§7.rs)/(ws)*4+..., wheres>1 is measured in units
diate frequency regiot *<w<, appeared only recently of mean level spacing. We expect that the first term in this
with technological advances in the preparing of ballisticexpression is not affected by the presence of the Lyapunov
cavities, and that is why the region has not been studiegegion, whereas the following terms are. In the supersym-
systematically as of yet. Let us mention that the importancenetric approacH this follows from the fact that the first
of the Ehrenfest time in the semiclassical approximationerm arises from noninteracting diffuson modes, whereas all
was already noted in Ref. 14, where it was shown that th@thers come from the interaction of these modes. Such inter-
method of quasiclassical trajectories in the theory of superaction is analogous to the one giving rise to the weak local-
conductivity”® fails to describe some nontrivial effect at ization, which was shown to have the frequency dispersion
times larger tharte which were calculated for the dilute described by the renormalization functidi(w); see Eq.
scatterers. The term “Ehrenfest time” for quantit.3) was  (1.2). We believe that the same renormalization factor will
first introduced in Ref. 24. The relevancetgfin the theory  appear in all the effects associated with the coupling of the
of weak localization was emphasized by Arganm@mow- diffuson-cooperon modes.
ever, he focused only on times much larger than the Ehren-
fest time. _ o , ACKNOWLEDGMENTS
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oped in by Muzykantskii and Khmelnitskir, and more re- APPENDIX: LYAPUNOV EXPONENT
cently by Andreevet al,?® who suggested the effective FOR WEAK SCATTERERS
supersymmetrfd action in the ballistic regime. In Ref. 26, i .
the supersymmetric action was written in terms of the_ VW€ consider explicitly the case where the potentiain
Perron-Frobenius operator, which differs from the first-orderEd- (4.33 is weak and its distribution function is Gaussian.
Liouville operator by the regularizator of second order. ThisFOr the sake of simplicity we neglect the angular diffusion
regularizator is similar to the angular diffusion termi/z, due to the quantum impurities in the Lyapunov region, be-

in Egs.(3.27. These authors mentioned that all physical re-C2use this diffusion does not affect valueshoaind,; see
sults can be obtained if the limit of vanishing regularizator is>€¢- IV E. In this case it is more convenient not to follow the
taken in the very end of the calculation. Our findings indicatedeneral procedure outlined in Sec. IV E, but to make use of

that the time it takes for the quantum correction to reach itdn€ Small parametea/l,, first. Considering the disorder po-
universal value is<In(r,). Thus, at any finite frequency, the tential in the second order of the perturbation theory, for the

limit rq— cannot be taken, and the regularizator in theP2 of the functionW, thatis independent @,n, we obtain

supersymmetric action should be assigned its physical value;
see Eq(3.26.

In principle, our formula for the weak-localization correc-
tion (3.270 can be derived using the supersymmetry techhere the transport lifetime is given by
nique. However, our approach seems to be technically easier
and more physically tractable for a calculation of the first- 1 1 o
order weak-localization corrections. We believe that super- T
symmetry may serve as a powerful tool for an investigation
of the effect of the Ehrenfest time on higher-order correc-and the dimensionless functidghis defined as
tions and on level statistics. -

It is generally accepted that the level statistics at low en- Ep)=1— JZ2dx(dyU(x,p)3,U(0,0))

JZ.dx(ayU(x,0)8,U(0,0)) -

ergies is described by the Wigner-Dyson distribufidfor a
small disordered particle it was first proven by Efetéand In Eq. (A1), we assumeds<1 only and lifted the other
| assumption of Eq(4.33 p<a. If p<a, we expand€ in

for ballistic cavities by Andreewet al?® For quantum disor-
jaylor series,&(p) ~p?/2a2, which rigorously defines the

J d 25 92
at UFd’ap . (P)ad)z

W, =0, (A1)

= Jernr I U(x0aU(0,0),  (A2)

(A3)

der, Altshuler and Shklovski showed that the universa

Wigner-Dyson statistics breaks down at the Thouless energy. ha in thi d . h ion d ibi
For ballistic cavities the universal statistics is believed to bacndtha In this case, and we arrive at the equation describing

valid up to the energies of the order of the inverse flying timet€ Lyapunov region for the weak disorder potential,

T, at smaller energies the corresponding corrections are
small asst;. However, we anticipate deviations at para-
metrically smaller energies of the ordert@fl, and correc-
tions of the order oftg at energie$<t,§1. It is worth noting that our approach is equivalent to one
Let us consider for concreteness the correlator of thenvolving the multiplication of the vectorg| ¢) by a Mono-
density of statesR(s)=(p(e)p(e+5s))—(p(€))?>, where dromy matrix after each scattering event. Equatié#) is

d g p? &

— —Up¢

ot % - _Ttraz W WL =0. (A4)
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valid because each Monodromy matrix defined on a time oBhift of W! by an arbitrary constant does not affect the re-
the ordera/vg is close to a unit matrix. Otherwise, the last sults; see Eq9A13) and(A10). Substituting Eq(A1l) into
term in the brackets in EqA4) becomes an integral opera- Eqg. (A9), in accordance with general formuld.47) we ob-

tor. tain
After introduction of variables
a SPIMEL t (1,23 7 gl g i WO (7:2)=0 (A12)
z=In—, y=— =, = —(—r) ,  (Ab) ar gz P2ezZ| 7 ’
p pla Ty | &
Eq. (A4) acquires a simple form where the numerical coefficiemt, is given by
g d a9

A S
o7 Yoz Y ay ay?

W, =0. (A6) ﬂz=f dy(y—8)g(y)h(y). (A13)

We are interested in the case when functidp changes Comparing Eqs(A12) and (A5) with Eq. (4.47), for the
slowly as a function ofz. The corresponding gradient is Lyapunov exponenk and its deviation, we find,
small, and we can employ a procedure similar to reducing 2
the Boltzmann equation to the diffusion equation. Let us rep-
resent functiorW, as N B

| 213
tr

a

2/3 _ 232

e
Il 2 -

a

(A14)

T Tir

W, (7;2y)=W2(1,2)+WX(7;2,y), Wi<W,. (A7)

- ; - A simple calculation of the numeral coefficiemgsand 3, is
zﬁfitgﬁg?gfq(m) Into Eq. (A6), multiplying the resultby - 4 out with the help of EqgA10), (A8), (A13). and

(A11), with the final results
2

d d
— 2 —_— = =
[dyy +dyz}g(y) 0, fdyg(y) L (A3 7 _dy e YRy [V _dy, 8

_ _ _ ; +— ~0.365,
and integrating ovey, we obtain [Z.dy e YRy _dy, en”®
3 P P (A15)
B W J dy[(y=B)g(y)W (y)]=0,  (A9) I dy[eY  dy; @33(idyy(B—y,)e ¥2R)?]
’32: o 7y3/3 y y3/3
where the numerical coefficiertt is given by JZ.dye V=1 dy, e
~0.705.
B=f dyydy), (A10)

In order to avoid any confusion, let us note that the log-
and functionW! can be written as normal distribution function cannot be used to find the aver-
WO o ) aged moments of the coordinajeand ¢, and it is sufficient
Wi=hy) W, (7;2) [yZi_ d—}h(y)=y—,8 (A11) only for a calculation of the low moments of the logarithm of
gz dy dy? ' the coordinates.
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