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We study the weak-localization correction~WLC! to transport coefficients of a system of electrons in a static
long-range potential~e.g., an antidot array or ballistic cavity!. We found that the weak-localization correction
to the current response is delayed by the large timetE5l21u ln\u, wherel is the Lyapunov exponent. In the
semiclassical regimetE is much larger than the transport lifetime. Thus, the fundamental characteristic of the
classical chaotic motion, Lyapunov exponent, may be found by measuring the frequency or temperature
dependence of WLC.@S0163-1829~96!01844-9#

I. INTRODUCTION

An electron system in a static potential is characterized by
the following linear scales: the geometrical size of the sys-
tem,L; the transport mean free pathl tr5vFt tr being the char-
acteristic distance at which a particle can travel before the
direction of its momentum is randomized; the characteristic
scale the potential energy changes over,a; and de Broglie
wavelength lF ~for the Fermi systemlF5\/pF , with
pF5mvF being the Fermi momentum!. In the most impor-
tant metallic regime,lF!L,l tr . The scale of the potential
a may be arbitrary and depending upon this scale two re-
gimes can be distinguished:~i! quantum chaos~QC!,
a2.lFl tr ; and ~ii ! quantum disorder~QD!, a2,lFl tr . The
physics behind this distinction is quite transparent: after an
electron interacts with a scatterer of the sizea, the quantum
uncertainty in the direction of its momentumdu is of the
order of du.lF /a. Therefore, the uncertainty in the posi-
tion of the particledx on the next scatterer can be estimated
asdx. l trdu. ł trlF /a.

1 If dx!a, the quantum uncertainty in
the position of the particle is not important, and its motion
can be described by the classical Hamilton~or Liouville!
equations. Except for some special cases, these equations are
not integrable, the electron trajectory is extremely sensitive
to the initial conditions and the classical motion is chaotic.
The quantum phenomena in such a regime still bear essential
features of the classical motion; it is accepted in the literature
to call such a regime ‘‘quantum chaos.’’ In the opposite
limit, dx@a, and the electron loses any memory about its
classical trajectory after the first scattering. Any disordered
system where the Born approximation is applicable may
serve as an example of a QD regime.

Under the assumption of the ergodicity of the system, the
classical correlator is usually found from the Boltzmann or
diffusion equations. The form of these equations is identical
for both regimes. The only difference appears in the expres-
sion for the cross section entering into the collision integral.
For the QC, this cross section can be found by solving the
classical equations of motion, whereas in the QD it is deter-
mined by a solution of the corresponding quantum-

mechanical scattering problem.
The subject of weak-localization~WL! theory is the study

of the first order inlF / l tr corrections to the transport coef-
ficients of the system. WL in quantum disorder has been
studied for more than 15 years.2–4 The regime of quantum
chaos attracted attention only recently.5–10 This interest was
motivated mostly by technological advances which allowed
the fabrication of structures wherea@lF . Two examples of
these structures are~1! the antidot arrays,5 where the role of
a is played by the diameter of an antidot; and~2! ballistic
cavities,6,7 where a. l tr.L coincides with the size of the
cavity.

Weak-localization corrections are known to have an
anomalous dependence upon the frequencyv, temperature,
or applied magnetic field, and that is why they can be experi-
mentally observed. For the two-dimensional system case
L→`, the WL correction to the conductivityDs can be
conveniently written as

Ds52
e2s

4p2\
G~v!lnS 1

vt tr
D , vt tr&1, ~1.1!

wheres52 is the spin degeneracy, andG(v) is a renormal-
ization function. It is this function in which the difference
between quantum disorder and quantum chaos is drastic.
Gorkov, Larkin, and Khmelnitskii3 showed that, for the
whole frequency domain,G51 for the quantum disorder,
and does not depend upon the details of the scattering. The
question is: Does such a universality also persist for the
quantum chaos?

In this paper, we will show that, in the limitv→0, the
renormalization functionG approaches unity. This proves the
universality of the weak-localization correction for the quan-
tum chaos.11 However, unlike for quantum disorder,G ac-
quires a frequency dependence atv that is much smaller
than 1/t tr . This frequency dependence can be related to the
Lyapunov exponentl characterizing the classical motion of
the particle. This provides an opportunity to extract the value
of the Lyapunov exponent from the measurements of the
frequency dependence of the conductivity. We found
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G~v!5expS 2ivtE2
2v2l2tE

l2 D , ~1.2!

where the Ehrenfest timetE is the time it takes for the mini-
mal wave packet to spread over the distance of the order of
a, and is given by1

tE5
1

l
lnS alF

D . ~1.3!

Quantity l2.l in Eq. ~1.2! characterizes the deviation of
the Lyapunov exponents, and it will be explained in Sec. II
in more detail. In the time representation, result~1.2! corre-
sponds to the delay of the weak-localization correction to the
current response by large time 2tE ; see Fig. 1.

The paper is arranged as follows. In Sec. II, we present
the phenomenological derivation of Eq.~1.2!. The explicit
expression relating the weak-localization correction to the
solution of the Liouville equation will be derived in Sec. III.
In Sec. IV, we will find the quantum corrections to the con-
ductivity in the infinite chaotic system. Section V describes
the effects of the magnetic field and finite phase relaxation
time on the renormalization function. The conductance of the
ballistic cavities is studied in Sec. VI. Our findings are sum-
marized in Sec. VIII.

II. QUALITATIVE DISCUSSION

The classical diffusion equation is based on the assump-
tion that at long time scales an electron loses any memory
about its previous experience. However, during its travel, the
electron may traverse the same spatial region and be affected
by the same scatterer more than once. These two scattering
events are usually considered independently, because with
the dominant probability the electron enters this region hav-
ing completely different momentum.

However, if we wish to find the probabilityW0(T,r0)
for a particle to have a momentum opposite to the initial
one,p(T)52p(0) ~time T is much larger thant tr), and to

approach its starting point at small distanceur (T)
2r (0)u5r0!a, we should take into account the fact that the
motion of the particle at the initial and final stages are cor-
related. This is because the trajectory along which the par-
ticle moves on the final stage@r (T2t),p(T2t)# almost co-
incides with the trajectory particle moving along at the initial
stage@r (t),p(t)#; see Fig. 2. These correlations break down
the description of this problem by the diffusion equation.
The behavior of the distribution function for this case can be
related to the Lyapunov exponent, and we now turn to a
discussion of such a relation.@The relevance ofW0(T,r0) to
the weak-localization correction will become clear shortly.#

The correlation of the motion at the final and initial stages
can be conveniently characterized by two functions

r~ t !5r ~ t !2r ~T2t !, k~ t !5p~T2t !1p~ t !. ~2.1!

The classical equations of motion for these functions are

]r

]t
5
k~ t !

m
, ~2.2a!

]k

]t
5

]U@r ~T2t !#

]r
2

]U@r ~ t !#
]r

, ~2.2b!

whereU is the potential energy. If the distancer is much
larger than the characteristic spatial scale of the potentiala,
Eqs.~2.2! lead to the usual result^r(t)&}t1/2 at timest much
larger than t tr . The situation is different, however, for
r!a, where the diffusion equation is not applicable~we will
call this region of the phase space the ‘‘Lyapunov region’’!.
Thus the calculation of functionW0(T,r0) should be per-
formed in two steps. First, we have to calculate the condi-
tional probabilityW(a,r0 ;t), which is defined so that the

FIG. 1. The weak-localization correction to the conductivity in
the time domain,Ds(t)5*(dv/2p)Ds(v)e2 ivt for the quantum
chaos~solid line! and quantum disorder~dashed line! regimes. The
developed theory is valid fort*tE . Solid curve is calculated for
parametersl54l251/t tr and ln(a/lF)57.

FIG. 2. The classical trajectory corresponding to the probability
of return at the initial point with the momentum opposite to the
initial one. In the ‘‘Lyapunov region’’ the initial ‘‘i -1’’ and final
‘‘2- f ’’ fragments of the trajectory are governed by the same poten-
tial.
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probability for distancer(t) to become larger thana during
the time interval@ t,t1Dt# is equal toW(a,r0 ;t)Dt under
the conditionr(0)5r0. Second, we have to obtain the prob-
ability WD(a,t) for the diffusively moving particle to ap-
proach its starting point to the distance of the order ofa ~it
corresponds to the fragment ‘‘1-3-2’’ in Fig. 2!. Then, the
functionW0(T,r0) is given by

W0~T,r0!5E
0

T

dtWD~a,T22t !W~a,r0 ;t !. ~2.3!

Now, we perform the first step: finding the probability
W(a,r0 ;t). We consider the more general quantity
W(r,r0 ;t) for r,a. We expand the right-hand side of Eq.
~2.2b! up to the first order inr, which yields

]kj
]t

52Mi j ~ t !r i , Mi j ~ t ![
]2U@r ~ t !#

]r i]r j
. ~2.4!

It is easily seen from Eqs.~2.4! and Fig. 2 that the change in
the momentumk during the scattering event is proportional
to the distancer. On the other hand, it follows from Eq.
~2.2a! that the change in the value ofr between scattering
events is proportional tok. Therefore, one can expect that the
distancer grows exponentially with time. In Appendix A we
explicitly solve the model of weak dilute scatterersl tr@a and
find the expression for the distribution function
W(r)5^d„t2t(r)…&, where^ & means the average over di-
rections ofp. Here we present qualitative arguments which
enable us to establish the form of the functionW for the
general case.

We notice that, if matrixM̂(t) does not depend on time,
the solution of Eqs.~2.2a! and ~2.4! is readily available

r~ t !.r~0!elt, ~2.5!

where the quantityl is related to the maximal negative ei-
genvalue ofM̂. We will loosely calll the Lyapunov expo-
nent. If M̂ varies with time, a solution of Eqs.~2.2a! and
~2.4! is not possible. We argue, however, that for the large
time t@t tr , this variation may be described by a random
correction to the Lyapunov exponent

d lnr

dt
5l1dl~ t !. ~2.6!

At a time scale larger thant tr , the correlation between the
values ofdl(t) at different moments of time can be ne-
glected, ^dl(t1)dl(t2)&5l2d(t12t2), that immediately
gives the log-normal form for the functionW:

W~r,r0 ;t !5S l3

2pl2L~r! D
1/2

expF2
l~L~r!2lt !2

2l2L~r! G ,
~2.7!

L~r!5 lnr/r0 .

Formulas~2.7! are valid in general case even though analytic
calculation of the values ofl and l2 ~as well as of the
diffusion constant! can be performed only for some special
cases, e.g., forl tr@a. For the antidot arrays,l is given by the
inverse scattering time up to the factor of the order of
ln(ltr /a).

13 The model of the dilute weak scatterers is consid-

ered in the Appendix. The result isl,l2.t tr
21( l tr /a)

2/3. In
the ballistic billiards, coefficientsl andl2 are of the order
of the inverse flying time across the system.

Equations~2.7! describe the distribution function only in
the vicinity of its maximum,u ln(r/r0)2ltu&lt. However,
this result will be sufficient if timeT in Eq. ~2.3! is large
enough,T*L(a)/2l. At smaller times the probability of re-
turn is determined by the tail of the distribution function
W(r) which is by no means log-normal.

It is worth mentioning, that there is some arbitrariness in
our choice of the initial conditionsp(T)52p(0) and
ur (T)2r (0)u5r0. The other possible choices are
up(T)1p(0)u5k0 andur (T)2r (0)u50. In this case, formu-
las ~2.7! remain valid upon the substitutionr0→ak0 /p(0).

Now we can findW0(T,r0) from Eq. ~2.3!. Substituting
Eqs.~2.7! into Eq. ~2.3!, we arrive at the result for the prob-
ability W0(T,r0):

W0~T,r0!5E dv

2p
W0~v,r0!e

2 ivT,

~2.8!

W0~v,r0!5WD~v,a!expS 2ivL~a!

l
2
2v2l2L~a!

l3 D ,
whereWD(v,a) is the Fourier transform of the function
WD(t,a). FunctionWD(a,v)5WD(v;a→ l tr)WD(v,l tr) is
determined by two consecutive processes. The first process,
with the probabilityWD(v;a→ l tr), is the separation of the
trajectories from distancea, at which they become indepen-
dent of the distance larger thanl tr , where the diffusion equa-
tion is applicable. The characteristic time for such process is
of the order oft tr , and thusWD(v;a→ l tr)511O(vt tr).
The probabilityWD(v,l tr) is found by solving the standard
diffusion equation. For the two-dimensional case, which will
be the most interesting for us, functionWD(v,a) has the
form

WD~v,a!5
1

4pD
lnS 1

vt tr
D , ~2.9!

whereD5vF
2t tr/2 is the diffusion constant. Notice that this

function does not depend ona. Expressions~2.9! and ~2.7!
are written with logarithmic accuracy.

So far, we considered a purely classical problem. We
found the probability for a particle, propagating in a classical
disordered potential, to approach its starting point with a
momentum opposite to its initial one. In a calculation of the
classical kinetic coefficients~e.g., conductivity!, an integra-
tion over all directions of the momentum is performed. As a
result, the peculiarities in the probability discussed above are
washed out and do not appear in the classical kinetic coeffi-
cients. However, the functionW0(r,t) plays a very impor-
tant role in the semiclassical approach to some quantum-
mechanical problems. One such problem arose a long time
ago in the study14 of the breakdown of the method of quasi-
classical trajectories in superconductivity theory.15 Another
problem is weak localization in the quantum chaos, and we
turn to a study of this phenomenon now.

It is well known16,12,17that the probabilityw for the par-
ticle to get from, say, pointi to point f @see Fig. 3~a!#, can be
obtained by, first, finding the quasiclassical amplitudes
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Aa for different paths connecting the points, and, then, by
squaring the modulus of their sum:

w5U(
a

AaU25(
a

uAau21 (
aÞb

AaAb* . ~2.10!

The first term in Eq.~2.10! is nothing else but the sum of the
classical probabilities of the different paths, and the second
term is due to the quantum-mechanical interference of the
different amplitudes. For generic pairsa,b, the product
AaAb* oscillates strongly on the scale of the order oflF as
the function of the position of pointf . This is because the
lengths of pathsa andb are substantially different. Because
all measurable quantities are averaged on scales much larger
than lF , such oscillating contributions can be neglected.
There are pairs of paths, however, which are coherent. An
example of such paths is shown in Fig. 3~b! ~paths 1 and
2). These paths almost always coincide. The only difference
is that fragmentBEB is traversed in the opposite directions
by trajectories 1 and 2. In the absence of magnetic field and
spin-orbit interaction, the phases of the amplitudesA1 and
A2 are equal because the lengths of the trajectories are close.
The region, where the distance between trajectories 1 and 2
is largest@see the inset in Fig. 3~b!#, deserves some discus-
sion. At this point the directions of the paths at pointsB1 and
B2 are almost opposite to those at pointsB18 andB28 . Fur-
thermore, the differences between lengths of paths 1 and 2
should not be larger thanlF . This imposes certain restric-
tion on angledf, at which trajectory 2 can intersect itself,
and on distancedr, at which trajectory 1 can approach itself.

A simple geometric consideration, self-evident from the inset
in Fig. 3~b!, gives the estimatedr.AlFl tr and df
.AlF / l tr, so that the uncertainty relationdfdr.lF holds.
In other words, one of the trajectories should almost ‘‘graze
itself’’ at point B.

The interference part of the contribution of the coherent
pairs to the probabilityw @see Eq.~2.10!# is of the same
order as the classical probability for these trajectories. There-
fore, the contribution of the interference effect to the conduc-
tivity s is proportional to the probability of finding trajecto-
ries similar to those from Fig. 3~b!. In order to calculate this
probability, we use functionW0(r,t) defined in the begin-
ning of this section: the probabilitydP for a trajectory to
graze itself during the time interval@ t1 ,t11dt1# is

dP15drdfvFdt1W0~AlFl tr,t1!5lFvFdt1W0~AlFl tr,t1!

~2.11!
in two dimensions. We are, however, interested in the cor-
rection to the transport coefficients~such as the diffusion
constant or the conductivity!. These quantities are contrib-
uted mostly by the pointsi and f located at the distance
. l tr from each other. Thus, in order to contribute to the
diffusion constant or the conductivity, ends of the trajectories
should separate from each other to the distance of the order
of a, i.e., the trajectories should overcome the Lyapunov
region one more time. The conditional probabilitydP2 that
the trajectories diverge at a distance;a during the time
interval @ t2 ,t21dt2# under the condition that the self-
grazing occurred at momentt1 is given by

dP25dt2W~a,AlFl tr,t22t1!, ~2.12!

whereW is given by Eq.~2.7!.
Summing over all the time intervals, for the quantum cor-

rection to the conductivityDs we obtain

Ds

s
'2E dP1dP2

'vFlFE
0

`

dt2E
0

`

dt1W0~AlFl tr,t1!W~a,AlFl tr,t2!.

~2.13!

If the correction at finite frequencyv is needed, the time
integration in Eq.~2.13! should be replaced with the Fourier
transform over the total time of travel between points initial
and final pointst52t21t1 in Eq. ~2.13!. This yields

Ds~v!52
s

p\n
W~a,AlFl tr,2v!W0~AlFl tr,v!, ~2.14!

wheren is the density of states per one spin. The coefficient
in Eq. ~2.14! and the signs in Eqs.~2.13! and~2.14!, known
for the quantum disorder, will be reproduced for the quantum
chaos in Sec. III. Substituting Eqs.~2.7! and ~2.9! into Eq.
~2.14! and using the Einstein relations5se2nD, we arrive
at the final result~1.2!.18

III. WEAK LOCALIZATION IN QUANTUM CHAOS

It follows from the previous discussion that the calcula-
tion of the quantum correction is related to the probability of

FIG. 3. Examples of the classical~a! noncoherent and~b! co-
herent paths between pointsi and f . The scatterers are not shown,
and the paths are straightened for clarity. The Lyapunov region is
encircled. The region of quantum switch between trajectories
~marked by the rectangular! is enlarged in the inset.

14 426 54I. L. ALEINER AND A. I. LARKIN



finding a classical trajectory with large correlated segments.
A standard diagrammatic technique3,4,12is not convenient for
this case because the averaging over the disorder potential is
performed on the early stage, and including the additional
correlations is technically difficult. That is why we will de-
rive an expression for the quantum correction in terms of
classical probabilities, which are solutions of the Liouville
equation in a given potential. This result is important on its
own, because it provides a tool for the description of quan-
tum effects in ballistic cavities. The averaging, then, can be
performed only on the final stage of the calculations. For the
sake of concreteness, we consider a two-dimensional case;
generalization to the other dimensions is straightforward. We
will omit the Planck constant in all intermediate calculations.

A. Introduction of basic quantities

It is well known that transport coefficients can be calcu-
lated using the product of two exact Green functionsKe :

Ke~v;r1 ,r2 ,r3 ,r4!5Ge1~v/2!
R ~r1 ,r2!Ge2~v/2!

A ~r3 ,r4!. ~3.1!

HereGR(A) is the exact retarded~advanced! Green function
of the electron in the disordered potentialU(r ), and it satis-
fies the equation

@e6 i02Ĥ1#Ge
R,A~r1 ,r2!5d~r12r2!, ~3.2!

where the one-electron Hamiltonian is given by

Ĥ152
¹

1

2

2m
1U~r 1!. ~3.3!

For instance, the Kubo formula for the conductivity is

sab~v;r1 ,r2!5
se2

4m2E de

2p S 2
] f

]e D @¹ r1
a 2¹ r4

a #@¹ r3
b 2¹ r2

b #

3Ke~v;r1 ,r2 ,r3 ,r4!U r45r1
r35r2

,

the expression for the polarization operator is

P~v;r1 ,r2!5sFnd~r12r2!

2 ivE de

2p

] f

]e
Ke~v;r1 ,r2 ,r2 ,r1!G , ~3.4!

and so on. Heref (e)5(e(e2m)/T11)21 is the Fermi distri-
bution function. Unfortunately, an exact calculation ofK is
not possible, and one has to resort on some approximations.

In general, functionKe(v;r1 ,r2 ,r3 ,r4) oscillates rapidly
with the distance between its arguments. It contains a
nonoscillating part only if its arguments are paired:
r15r4 ,r25r3 or, alternatively,r15r3 ,r25r4. If they are not
paired but still close to each other pairwise, then it is very
convenient to perform the Fourier transform over the differ-
ence of these close arguments:

Ke(v;r1 ,r2 ,r3 ,r4)5E dp1
~2p!2

dp2
~2p!2

eip1~r12r4!

3eip2~r32r2!Ke
D~v;p1 ,R1 ;p2 ,R2!,

R15
r11r4
2

, R25
r21r3
2

, ~3.5!

or, alternatively,

Ke~v;r1 ,r2 ,r3 ,r4!5E dp1
~2p!2

dp2
~2p!2

eip1~r12r3!eip2~r42r2!

3Ke
C~v;p1 ,R1 ;p2 ,R2!,

R15
r11r3
2

, R25
r21r4
2

. ~3.6!

Let us now derive the semiclassical equation for the func-
tion KD. From Eq.~3.2! and definition~3.1! we can write the
equation for functionK in the form

@v2Ĥ11Ĥ4#Ke~v;r1 ,r2 ,r3 ,r4!

5Ge2~v/2!
A ~r3 ,r4!d~r12r2!2Ge1~v/2!

R ~r1 ,r2!

3d~r32r4!. ~3.7!

If the distanceur 12r 4u is much smaller than the characteris-
tic scale of the potential, we expand termĤ42Ĥ1 in Eq.
~3.7! in distanceur 12r 4u, and perform a Fourier transform
analogous to Eq.~3.5!. The result can be expressed in terms
of the Liouvillean operatorL̂:

i ~Ĥ12Ĥ4!'L̂15
]H
]p1

•

]

]R1
2

]H
]R1

•

]

]p1
, ~3.8!

whereH(p,r ) is the Hamiltonian function

H~p,r !5
p2

2m
1U~r !. ~3.9!

With the help of Eqs.~3.7!, ~3.8!, and~3.5!, we obtain

@2 iv1L̂1#Ke
D~v;p1 ,R1 ;p2 ,R2!

52pd@e2H~p2 ,R2!#~2p!2d~p12p2!d~R12R2!.

~3.10!

d functions in the right-hand side of Eq.~3.10! should be
understood in the sense of there being a subsequent convo-
lution with a smooth function on a spatial scale larger than
lF . When deriving Eq.~3.10!, we used a semiclassical ap-
proximation for the Green functions,

Ge
R,A~r1 ,r2!5E dp

~2p!2
eip~r12r2!

e2H@p,~r11r2!/2#6 i0
, ~3.11!

in the right-hand side of Eq.~3.7!, and neglected small fre-
quencyv in comparison with the large energye.EF .

Liouvillean operator~3.8! describes the motion of an elec-
tron in a stationary potential. Because the energy is con-
served during such a motion, the functionKD can be factor-
ized to the form
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Ke
D~v;p1 ,R1 ;p2 ,R2!5De~v;n1 ,R1 ;n2 ,R2!

3
2p

n
d@e2H~p1 ,R1!#

3d@e2H~p2 ,R2!#, ~3.12!

where diffusionD is a smooth function of the electron en-
ergy, n is the unit vector along the momentum direction,
p5pFn5nA2m@e2U(r )#, and n5m/2p is the density of
states. DiffusonDe is the solution of the equation

@2 iv1L̂1#D5d12, d12[2pd~n12n2!d~R12R2!.
~3.13!

It is important to emphasize that the diffusonD is a solution
of the Liouville equation and not of the diffusion equation. In
this sense, a more correct term forD is ‘‘Liouvillon;’’ how-
ever, we follow the terminology accepted in the theory of
quantum disorder.

Let us consider classical chaotic motion such that the time
of the randomization of momentum direction is finite. At
small v, which corresponds to the averaging over a time
scale much larger than the time of the momentum random-
ization,De , averaged over small region of its initial condi-
tions, satisfies the diffusion equation

D5
1

2 iv2D¹2 , ~3.14!

whereD is the diffusion constant. The explicit relation of
D to the characteristics of the potentialU can be found in the
limit of dilute scatterersl tr@a: in this limit the diffusion
constant is given byD5vF

2t tr/2. It is worth emphasizing that
Eq. ~3.14! itself does not require such a small parameter, and
that it is always valid at large spatial scales and small fre-
quencies. We will ignore the possible islands in the phase
space isolated from the rest of the system.

The semiclassical equation for functionKe
C from Eq.~3.6!

is found in a similar fashion: in the absence of magnetic field
and spin-orbit scattering, it reads

@2 iv1L̂1#Ke
C~v;p1 ,R1 ;p2 ,R2!

52pd@e2H~p1 ,R1!#~2p!2d~p12p2!d~R12R2!.

~3.15!

FunctionKe
C can be factorized as

Ke
C~v;p1 ,R1 ;p2 ,R2!5C~v;n1 ,R1 ;n2 ,R2!

3
2p

n
d@e2H~p1 ,R1!#

3d@e2H~p2 ,R2!#. ~3.16!

Here cooperonCe is a smooth function of the electron energy
satisfying the equation

@2 iv1L̂1#C5d12. ~3.17!

Similar to the diffuson, the cooperon, averaged over small
region of its initial conditions, is a self-averaging quantity at
large distances and small frequencies, and, in the absence of

magnetic field and spin-orbit scattering, it can be described
by an expression analogous to Eq.~3.14!,

C5
1

2 iv2D¹2 . ~3.18!

B. Quantum corrections to classical probabilities

So far, we considered the lowest classical approximation,
in which the classical probabilities were determined by de-
terministic equations of the first order. However, the poten-
tial U contains not only the classical smooth part which is
taken into account by the Liouville equation, but also the part
responsible for the small angle diffraction. The quantum
weak-localization correction originates from the interference
of the diffracted electron waves. The interference of waves
diffracted at different locations is added. This results, as we
will show below, in the quantum correction ceasing to de-
pend upon the details of the diffraction mechanism, and be-
comes universal. The only quantity which depends on the
diffraction angle is the time it takes to establish this univer-
sality. We will show~see also Sec. II! that the dependence of
this time on the diffraction angle is only logarithmical.
Therefore, with logarithmic accuracy, we can include the ef-
fect of this diffraction in the classical Liouville equation by
any convenient method, provided that we do it consistently
for all quantities and preserve the conservation of the number
of particles.

We will model the diffraction by adding the small amount
of the quantum small angle scatterers to the left-hand side of
the Schro¨dinger equation~3.2!. The effect of these scatterers
will be twofold: ~1! They will smooth the sharp classical
probabilities; and~2! they will induce interaction between
the diffuson and cooperon modes, which results in the weak
localization correction. Finally, the strength and density of
these scatterers will be adjusted so that the angle at which the
classical probability is smeared during the travel to the dis-
tancea is equal to the genuine diffraction angleAlF /a. This
procedure is legitimate because, as we already mentioned,
the dependence of the weak-localization correction on the
diffraction angle is only logarithmical.

It is worth emphasizing that, even though the weak-
localization correction takes its origin at a very short linear
scale~ultraviolet cutoff!, the value of this correction at very
large distances does not depend on this cutoff at all. Such
phenomena are quite typical in physics,~e.g., in the theory of
turbulence, the theory of strong interaction, or in the Kondo
effect!.

Let us now implement the procedure. Consider a single
impurity located at points, and creating the potential
V(r )5V0(s2r ), so that the potential part of Hamiltonian
~3.3! is now given byU(r )1V(r ). The characteristic size of
this potential,d, is much larger thanlF but much smaller
thana. Our goal is to find the correction to Eqs.~3.13! and
~3.17! in the second order of perturbation theory in potential
V. ~Correction of the first order vanishes ifD and C are
functions smooth on the spatial scaled.! In this order, cor-
rection to function~3.1! has the form
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dK~r1 ,r2 ,r3 ,r4!5E dr5r6@G
R~r1 ,r5!V~r5!G

R~r5 ,r2!

3GA~r3 ,r6!V~r6!G
A~r6 ,r4!

1GR~r1 ,r5!V~r5!G
R~r5 ,r6!V~r6!

3GR~r6 ,r2!G
A~r3 ,r4!

1GR~r1 ,r2!G
A~r3 ,r5!V~r5!

3GA~r5 ,r6!V~r6!G
R~r6 ,r2!], ~3.19!

where Green functions are the solutions of Eq.~3.2! without
the impurity potentialV. We will omit the energy arguments
in the Green function, implying everywhere that the energies
for the retarded and advanced Green functions aree1v/2
ande2v/2, respectively.

In order to find the correction to the diffuson, we consider
the pointsr 1 ,r 4 and r 2 ,r 3 in Eq. ~3.19! which are close to
each other pairwise, perform the Fourier transform defined
by Eq.~3.5!, and express the right-hand side of Eq.~3.19! in
terms of the diffusons and cooperons. We demonstrate the
calculation by evaluating the second term in the right-hand
side of Eq.~3.19!; let us denote it bydK2.

Consider the productGR(r1 ,r5)G
A(r3 ,r4), points r 1 ,r 4

are close to each other, but pointsr 5 ,r 3 are not. This means
that for a calculation of such a product we cannot use the
semiclassical approximation~3.11! for the right-hand side of
Eq. ~3.7!, but still can use expansion~3.8! for the left-hand
side of Eq. ~3.7!. Solving Eq. ~3.7! with the help of Eq.
~3.13!, we obtain

GR~r1 ,r5!G
A~r3 ,r4!

5
i

nE dr7r8E dp1
~2p!2

dp2
~2p!2

3eip1~r12r4!2 ip2~r72r8!DS n1 , r11r4
2

;n2 ,
r71r8
2 D

3@GR~r7 ,r5!d~r82r3!2GA~r3 ,r8!d~r72r5!#

3dFHS p1 , r11r4
2 D2HS p2 , r71r8

2 D G , ~3.20!

with H(p,r ) being the Hamilton function~3.9!. We will omit
the frequency argument in the diffusons and cooperons, im-
plying everywhere that it is equal tov.

We substitute Eq.~3.20! into the second term on the left-
hand side of Eq.~3.19!. We neglect the product of three
retarded Green functions because this product is a strongly
oscillating function of its arguments, and vanishes after the
averaging on a spatial scale larger thanlF . The remaining
productGR(r6 ,r2)G

A(r3 ,r8) is approximated by an expres-
sion similar to Eq.~3.20!, because pointsr2 andr3 are close
to each other. Neglecting, once again, the product of two
retarded Green functions and performing the Fourier trans-
form over the differencesr 12r 4 and r 22r 3, we find

dD2~1,2!52E dr3dr4dR3dR4E dp3
~2p!2

dp4
~2p!2

3e2 ip3r31 ip4r4D~1;3!D~4;2!

3GR~r3
1 ,r4

1!GA~r4
2 ,r3

2!
V~r3

1!V~r4
1!

2pn
, ~3.21!

dK2~r1
1 ,r2

1 ,r2
2 ,r1

2!52pnE dn1
~2p!

dn2
~2p!

3eipFn1r12 ipFn2r2dD2~1,2!,

Here we introduced the short-hand notationj[(nj ,Rj ) and
r j

65Rj6(r j /2).
What remains is to find the semiclassical expression for

the productGRGA in Eq. ~3.21!. We notice that points
r3

1 ,r4
1 lie within the radius of the potentialV(r ). In order for

the productGRGA in Eq. ~3.21! not to vanish, points
r3

2 ,r4
2 must be close to pointsr3

1 ,r4
1 . Because all the four

points are close to each other, one can write@cf. Eq. ~3.6!#,

GR~r3
1 ,r4

1!GA~r4
2 ,r3

2!

5n2E dn4dn5u@n4~r3
12r4

1!#u@n5~r4
22r3

2!#

3eipFn4~r3
1

2r4
1

!1 ipFn5~r3
2

2r4
2

!

1
n

2pE dn4dn5e
ipFn4~r3

1
2r4

2
!1 ipFn5~r3

2
2r4

1
!

3CS n4 , r311r4
2

2
;n5 ,

r3
22r4

1

2 D . ~3.22!

Here the first term is the explicitly separated contribution of
the short straight-line trajectories connecting pointsr 1 ,r 2
and r 3 ,r 4. These short trajectories can be well described by
the cooperon or by the diffuson. The second term describes
the contribution of all the other trajectories connecting these
points. It can be shown by explicit calculation that a repre-
sentation of Eq.~3.22! in terms of the diffuson would only
lead to the loss of this second term. This is because the
cooperon describes interference effects corresponding to the
oscillating part of the diffuson which is lost in the semiclas-
sical approximation~3.13!.

Now we are ready to find the correction coming from the
single quantum scatterer. We substitute Eq.~3.22! into Eq.
~3.21! and perform the integration while neglecting the de-
pendence of the diffusons and cooperon on their spatial co-
ordinates on the scale of the order of the scatterer size. We
consider the remaining two terms in Eq.~3.19! in a similar
manner. The overall result is

dD5dDSt1dDI ,

dDSt~1,2!5E d3d4Ps~3,4!D~1,3!@D~4,2!2D~3,2!#,

~3.23!

dDI~1,2!5E d3d4Ps~3,4!
C~3,4̄!
2pn

@D~1,3!2D~1,4!#

3@D~ 3̄,2!2D~ 4̄,2!#.
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Here we use the short-hand notationj[(nj ,Rj ). Integration
over the phase space on the energy shell is defined as
d j[dnjdRj /2p, the time reversed coordinatej̄ is given by
j̄[(2nj ,Rj ), and the kernelP describing the scattering by
an impurity is

Ps~1,2!52pnd~s2R1!d~s2R2!U E dr eipFr ~n12n2!V~r !U2.
The first termdDSt in Eq. ~3.24! coincides with that ob-

tained for otherwise free-moving electrons. The second term
dDI describes the interference effect arising because the cha-
otically moving classical potentialU(r ) electron may return
to the vicinity of the impurity one more time.

The correction to the cooperon due to the single impurity
can be obtained from Eq.~3.19! by considering close pairs
r 1 ,r 3 and r 2 ,r 4; this results in the expression similar to Eq.
~3.24! with the replacementD↔C.

So far, we considered the correction due to a single weak
impurity. If the number of these impurities is large, we can,
in the lowest approximation, consider the contributions from
the different impurities independently of each other, by the
substitution on the right-hand side of Eqs.~3.23! of the dif-
fusons and cooperons renormalized by all the other impuri-
ties. As a result, we arrive at Boltzmann-like equations for
the diffuson and cooperon:

@2 iv1L̂1#D~1,2!

5d121(
s
E d3Ps~1,3!H @D~3,2!2D~1,2!#

1@D~ 1̄,2!2D~ 3̄,2!#
C~1,3̄!1C~3,1̄!

2pn J , ~3.24a!

@2 iv1L̂1#C~1,2!

5d121(
s
E d3Ps~1,3!H @C~3,2!2C~1,2!#1@C~ 1̄,2!

2C~ 3̄,2!#
D~1,3̄!1D~3,1̄!

2pn J , ~3.24b!

where the notation for the coordinatesj , j̄ was introduced
after Eq.~3.24!, and thed symbol was defined in Eq.~3.13!.

Assuming that the distribution of the quantum impurities
is uniform with the densityni , we can make the continuous
approximation and replace(s→ni*ds on the right-hand side
of Eqs.~3.24!. Finally, taking into account that the scattering
angle is small, we reduce Eqs.~3.24! to a differential form.
Equation~3.24a! becomes

F2 iv1L̂12
1

tq

]2

]f1
2GD~1!5d122

]

]f1

C~1,1̄!
pntq

]

]f1
D~ 1̄!.

~3.25a!

Here anglef j is defined so thatnj5(cosfj ,sinfj), the nota-
tion for the coordinatesj[(nj ,Rj ), j̄[(2nj ,Rj ) is the same
as in Eq.~3.23!, and thed symbol was defined in Eq.~3.13!.

The second argument is the same for all the diffusons in Eq.
~3.25a!, and that is why we omitted it. Analogously, Eq.
~3.24b! reduces to

F2 iv1L̂12
1

tq

]2

]f1
2GC~1!5d122

]

]f1

D~1,1̄!

pntq

]

]f1
C~ 1̄!.

~3.25b!

The second argument is the same for all the cooperons in Eq.
~3.26b!, and it is omitted. Quantum transport life time in Eqs.
~3.26! is given by

1

tq
52pnniE df

2p

f2

2
U E dr eipFn•rfV~r !U2.

Equations ~3.25! describe how the classical Liouville
equation changes under the effect of the small-angle scatter-
ing ~diffraction!. We see that the quantum effects result in
two contributions to the Liouville equation. The first contri-
bution provides the angular diffusion and, thus, it leads to the
smearing of the sharp classical probabilities. Usually, for the
calculation of the transport coefficients, such as the diffusion
constant or the conductivity, the averaging over initial and
final coordinates is performed anyway. Therefore, the angu-
lar diffusion itself provides only a negligible correction to
the classical transport coefficients which are controlled by
classical potentialU. Conversely, the second contribution
giving the quantum correction@last terms on the right-hand
side of Eq.~3.25a!# is proportional to the classical probabil-
ity C(1̄,1) where the initial and finite points of the phase
space are related by the time inversion. In the absence of the
spreading due to the angular diffusion,tq→`, this probabil-
ity vanishes identically; see Sec. II. In order to obtain the
correction at finite time~or finite frequency!, one must keep
tq finite even in the final results.

Let us estimate the value one should ascribe totq for the
description of the diffraction effects in the system. As al-
ready discussed for the calculation with logarithmic accu-
racy, we do not need the numerical coefficient. The paramet-
ric dependence oftq can be established by using the
following argument. Consider two independent electrons,
starting with the same initial conditions. If there were no
diffraction, they would propagate together forever. Due to
the angular diffusion~diffraction!, the directions of these tra-
jectories deviates first}At and then exponentially,
(d^df2&/dt)'2l^df2&1(1/2tq), where angledf stands
for the angle between the momenta of two electrons, andl is
the Lyapunov exponent. This yields ^df2(t)&
'(4ltq)

21(e2lt21). Thus the characteristic time during
which the angular diffusion switches to the exponential
growth is always te.1/l. On the other hand, quantum
spreading of the wave packet during this time interval is
given by dx2.lFvFte . Taking into account the relation
dx.ftevF , we find te /tq.lF /(vFte). This yields the esti-
mate for the quantum transport time entering into Eqs.~3.25!
corresponding to the small-angle diffraction

1

tq
.l2

lF

vF
. ~3.26!
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It is important to emphasize that the very sametq enters
into the angular diffusion term and into the diffuson-
cooperon interaction. This circumstance is extremely crucial
for the universality of the quantum correction at large time
(v→0), even though parametertq itself does not enter into
the result; see Sec. IV.

Let us now turn to a calculation of the lowest quantum
correction to the diffuson. Taking into account the last term
on the right-hand side of Eq.~3.25a! in the first order of
perturbation theory, we obtain

D~1,2!5D0~1,2!1DD~1,2!, ~3.27a!

DD~1,2!5E d3
C0~3,3̄!
pntq

]D0~1,3!

]f3

]D0~ 3̄,2!

]f3
,

~3.27b!

F2 iv1L̂12
1

tq

]2

]f1
2GD0~1,2!5d12, ~3.27c!

F2 iv1L̂12
1

tq

]2

]f1
2GC0~1,2!5d12, ~3.27d!

where j[(nj ,Rj ), integration over the phase space on the
energy shell is defined asd j[dnjdRj /2p, the time-reversed
coordinatej̄ is given by j̄[(2nj ,Rj ), and thed symbol was
defined in Eq.~3.13!.

Equation ~3.27b! can be rewritten in a different form.
Even though more lengthy than Eq.~3.28b!, this form turns
out to be more convenient for further applications:

DD~1,2!5D0~1,2̄!
C0~ 2̄,2!

2pn
1
C0~1,1̄!
2pn

D0~ 1̄,2!

1E d3D0~1,3!D0~ 3̄,2!

3F2iv2L̂31
1

tq

]2

]f3
2GC0~3,3̄!2pn

. ~3.28!

In order to derive Eq.~3.28! from Eq. ~3.27b!, from the
right-hand side of Eq.~3.28! we subtracted the expression

E d3L̂3FC~3,3̄!2pn
D~1,3!D~ 3̄,2!G ,

which vanishes because the integrand is the total derivative
along the classical trajectory. Then we integrated Eq.~3.27b!
by parts and, with the help of Eq.~3.27c!, we arrived at Eq.
~3.28!.

Equations~3.27b! and ~3.28! are the main results of this
section. They give the value of the lowest quantum correc-
tion to the classical correlator in terms of the nonaveraged
solutions of the Liouville equation~with small angular dif-
fraction added! for a given system. Besides the correction
found, there exist the other corrections@e.g., from the higher
terms in expansion~3.7!#; however, Eqs.~3.27b! and ~3.28!
are dominant at low frequencies. The quantum mesoscopic
fluctuations are neglected in Eqs.~3.27b! and ~3.28!, which
implies either that the temperature is high enough or that an
averaging over the position of the Fermi level is performed.
Then, if the relevant time and spatial scales are large, the

quantum correction becomes a self-averaging quantity ex-
pression which will be obtained in Sec. IV.

IV. AVERAGED QUANTUM CORRECTIONS

We will consider the quantum correction at large distance
and time scales. In this case, the classical probability does
not depend on the direction of the momentum, and is given
by Eq. ~3.14!. Our goal now is to find the expression for the
quantum correction in the same approximation. We will bear
in mind systems in which the diffusion constant is large
enough,D/avF*1. This is the case for the antidot arrays.
The conductance of the net of the ballistic cavities requires a
separate consideration.

For the calculation we use Eq.~3.28!. While performing
the averaging, we make use of the fact that the cooperon part
of the expression can be averaged independently on the dif-
fuson part. This is because the classical trajectories corre-
sponding to these quantities lie essentially in the different
spatial regions@see e.g., Fig. 3~b!, where segmentsiB and
fB correspond to diffusons, and segmentBEB corresponds
to the cooperon#, and, therefore, they are governed by the
different potentials and are not correlated. Performing such
an averaging, we obtain, from Eq.~3.28!,

DD~1,2!5F ^D0~1,2̄!&1^D0~ 1̄,2!&

12ivE d3^D0~1,3!D0~ 3̄,2!&G^C0~1,1̄!&2pn
,

~4.1!

where^ & stands for the averaging either over the realization
of potentialU or over the position of the ‘‘center of mass’’
of the cooperon and diffuson. The last two terms in brackets
in Eq. ~3.28! vanish after averaging, because the averaged
cooperon does not depend on the coordinatesn3 or R3.

On the other hand, as we already explained in Sec. II,
correlations in the motion at both ends of the cooperon can
not be neglected. The same is also true for the correlation
between motion of ends 3 and 3¯in the third term of Eq.
~3.29!. In what follows, we will separate the description of
the problem into the Lyapunov and diffusion regions. This
will be done in Secs. IV A and IV B for the cooperon and
diffusons, respectively, and the resulting correction to the
conductivity will be found in Sec. IV C. The description of
the Lyapunov region is presented in Secs. IV D and IV E.

A. cooperon in the diffusive and Lyapunov regions

In order to find ^C0(1,1̄)& we consider a more general
quantityC(f,r) defined as

C~f,r!5
1

SE dRdn

2p
C0~n1,R2;2n2,R1!,

n65ncos
f

2
6@n3 lz#sin

f

2
, R65R6

r

2
@n63 lz#,

~4.2!
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whereS is the area of the sample, andlz is the unit vector
perpendicular to the plane. FunctionC(0,0) coincides with
the necessary quantitŷC0(1,1̄)&.

It is easy to findC(f,r) in the diffusion region. At
r* l tr , it is given by

C~f,r!5
1

2 iv2D¹r
2 . ~4.3!

At r,AD/v the cooperon depends only logarithmically on
r and, ata&r& l tr , it becomes independent ofr. With the
logarithmic accuracy, we have

C~f,r!'
1

4pD
lnS 1

vt tr
D , r*a. ~4.4!

Equation ~4.4! serves as the boundary condition for
C(f,r) at the boundary between the diffusive and Lyapunov
regions:

C~f,r5a sgnf!'
1

4pD
lnS 1

vt tr
D . ~4.5!

The meaning of Eq.~4.5! is that both ends of the cooperon
enter into the Lyapunov region with the random momenta,
and thus the probability of this entrance is given by the so-
lution of the diffusion equation.

The next step is to findC(f,r) in the Lyapunov region.
To Eq. ~3.27d!, we add the equation conjugate to it, which
gives

F22iv1L̂11L̂22
1

tq

]2

]f1
2 2

1

tq

]2

]f2
2GC0~1,2̄!52d1 2̄ .

~4.6!

Formula ~4.6! enables us to find the equation for quantity
C0(n,R;f,r)[C0(n1,R2;2n2,R1) from Eq. ~4.2!. Ex-
panding potentialU up to the first order inr, and using the
fact that the anglef is small, we obtain

F22iv1L̂c1L̂ r2
1

2tq

]2

]f2GC0~n,R;f,r!50. ~4.7!

Here operator

L̂c5vFn•
]

]R
2

]U~R!

]R
•

]

]P
~4.8!

describes the motion of the ‘‘center of mass’’ of the coop-
eron along a classical trajectory, and operatorL̂ r character-
izes how the distance between the ends changes in a course
of this motion,

L̂ r52vFf
]

]r
1

]2U

pF]R'
2 r

]

]f
, ~4.9!

with R' being the projection ofR onto the direction perpen-
dicular to n. In Eq. ~4.7!, we neglected the effect of the
angular diffusion on the motion of the center of mass be-
cause the averaging over the position of the center of mass
n,R is performed in Eq.~4.2! anyway.

Now we have to find functionC(r,f) in the Lyapunov
region, satisfying the boundary condition given by Eq.~4.5!,

and consistent with Eqs.~4.2! and ~4.7!. A solution can be
represented in a compact form analogous to Eq.~2.3!,

C~f,r!5
w~v;f,r!

4pD
lnS 1

vt tr
D . ~4.10!

Functionw(v;f,r) is defined as

w~v;f,r!5
1

SE dR dn

2p
W~v;n,R;f,r!, ~4.11!

whereS is the area of the sample andW is the solution of the
equation,

F22iv1L̂c1L̂ r2
1

2tq

]2

]f2GW~v;n,R;f,r!50, ~4.12!

supplied with the boundary condition

W~v;n,R;f,r5a sgnf!51. ~4.13!

The necessary quantitŷC0(1,1̄)& is, thus, found by putting
r,f50 in Eq. ~4.10!,

^C0~1,1̄!&5
w~v;0,0!

4pD
lnS 1

vt tr
D . ~4.14!

B. Diffusons in the diffusive and Lyapunov regions

In this subsection we find the average
*d3^D0(1,3)D0(3̄,2)& entering into Eq.~4.2!. We use a pro-
cedure similar to the calculation of the cooperon in Sec.
IV A. We consider more general quantitiesM andM de-
fined as

M~1,2;n,R;f,r!5D0~1;2n2,R1!D0~n1,R2;2!,

M ~1,2;f,r!5E dR dn

2p
^M~1,2;n,R;f,r!&, ~4.15!

where the coordinatesn6 andR6 are defined in Eq.~4.2!.
FunctionM (1,2;0,0) coincides with the necessary quantity
*d3^D0(1,3)D0(3̄,2)&.

In the diffusive regionr*a two diffusons are governed
by the different potentials and, therefore, can be averaged
independently; each of them is given by Eq.~3.14!. Further-
more, if r!AD/v, functionM (1,2;f,r) becomes indepen-
dent ofr,f and it is given by

M ~1,2;f,r!5E d3^D0~1,3!&^D0~ 3̄,2!&. ~4.16!

Equation ~4.16! serves as the boundary condition for
M (1,2;f,r) at the boundary between the diffusion and
Lyapunov regions,

M ~1,2;f,r5a sgnf!5E d3^D0~1,3!&^D0~ 3̄,2!&.

~4.17!

The meaning of Eq.~4.17! is that the ends of both diffusons
enter into the Lyapunov region with the random momenta.
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The next step is to findM (1,2;f,r) in the Lyapunov
region. It follows from Eq.~3.28c! that the product of two
diffusonsD0(1;3̄)D0(4;2) satisfies the equation

F22iv1L̂31L̂42
1

tq

]2

]f3
2 2

1

tq

]2

]f4
2GD0~1;3̄!D0~4;2!

5d1 3̄D0~4;2!1d2 4̄D0~1;3̄!. ~4.18!

Equation~4.18! enables us to find the equation for quantity
M from Eq.~4.15!. We expand the potentialU up to the first
order in r, and use the fact that the anglef is small. This
yields

F22iv1L̂c1L̂ r2
1

2tq

]2

]f2GM~1,2;n,R;f,r!

52pd~n11n2!d~R12R1!D0~n1,R2;2!

12pd~n22n1!d~R22R2!D0~1;2n2,R1!, ~4.19!

where the operatorsL̂c and L̂ r are defined in Eqs.~4.8! and
~4.9!, respectively. In Eq.~4.19!, we neglected the effect of
the angular diffusion on the motion of the center of mass
because the averaging over the position of the center of mass
n,R is performed in Eq.~4.15!.

We have to find functionM (1,2;r,f) in the Lyapunov
region, satisfying the boundary condition given by Eq.~4.17!
and consistent with Eqs.~4.15! and ~4.19!. We represent
functionsM andM as the sum of two termsM5M11M2
andM5M11M2,

Mi~1,2;f,r!5E dR dn

2p
^Mi~1,2;n,R;f,r!&, ~4.20!

for i51 and 2. FunctionM1 is a solution of the inhomoge-
neous equation

F22iv1L̂c1L̂ r2
1

2tq

]2

]f2GM1~1,2;n,R;f,r!

52pd~n11n2!d~R12R1!D0~n1,R2;2!

12pd~n22n1!d~R22R2!D0~1;2n2,R1!, ~4.21!

without any boundary conditions imposed, and function
M2 is the solution of the homogeneous equation

F22iv1L̂c1L̂ r2
1

2tq

]2

]f2GM2~1,2;n,R;f,r!50, ~4.22!

with the boundary condition

M2~1,2;f,r5a sgnf!5E d3^D0~1,3!&^D0~ 3̄,2!&

2M1~1,2;f,r5a sgnf!. ~4.23!

First we find functionM1. We integrate both sides of Eq.
~4.21! overR,n and average them. This gives

F22iv2
1

2tq

]2

]f2GM1~1,2;r,f!

1E dn dR

2p
^L̂ rM1~1,2;n,R;f,r!&

5^D0~ 1̄;2!&1^D0~1;2̄!&. ~4.24!

Calculating the right-hand side of Eq.~4.24!, we neglect
r&a!ADv in the arguments of the averaged diffusons. The
right-hand side of Eq.~4.24! is independent ofr and f.
Therefore, we can seek for the functionM1(r,f) also inde-
pendent ofr,f. The last term on the left-hand side of Eq.
~4.24!, then, vanishes and we obtain

M1~1,2;r,f!5
^D0~ 1̄;2!&1^D0~1;2̄!&

22iv
. ~4.25!

Substituting Eq.~4.25! into Eq. ~4.23!, we find the boundary
condition for the functionM2,

M2~1,2;f,r5a sgnf!5E d3^D0~1,3!&^D0~ 3̄,2!&

2
^D0~ 1̄;2!&1^D0~1;2̄!&

22iv
. ~4.26!

Equation ~4.22!, supplied with the boundary condition
~4.26!, is similar to Eqs.~4.7! and ~4.5! for the cooperon
considered in Sec. IV A. Thus we use Eq.~4.10! to obtain

M2~1,2;f,r!5w~v;f,r!F E d3^D0~1,3!&^D0~ 3̄,2!&

2
^D0~ 1̄;2!&1^D0~1;2̄!&

22iv G , ~4.27!

where functionw is defined by Eq.~4.11!.
The necessary quantity*d3^D0(1,3)D0(3̄,2)& is, thus,

found by summing contributions~4.25! and ~4.27! and put-
ting r,f50. We obtain

E d3^D0~1,3!D0~ 3̄,2!&

5w~v;0,0!E d3^D0~1,3!&^D0~ 3̄,2!&

1
12w~v;0,0!

22iv
@^D0~ 1̄;2!&1^D0~1;2̄!&#. ~4.28!

C. Quantum correction to the conductivity

Now we are prepared to find the correction to the conduc-
tivity. Substituting Eqs.~4.14! and~4.28! into Eq. ~4.2!, and
using Eq.~3.14! for ^D0&, we find

DD52

w2~v;0,0!lnS 1

vt tr
D

4p2n

¹2

~2 iv2D¹2!2
, ~4.29!

where functionw is given by Eq.~4.11!. Comparing Eq.
~4.29! with Eq. ~3.14!, we see that all quantum corrections
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can be ascribed to the changeDD in the diffusion constant.
Restoring the Planck constant, we obtain

DD~v!52
w2~v;0,0!

4p2\n
lnS 1

vt tr
D . ~4.30!

The correction to the conductivityDs is related to the cor-
rectionDD by Einstein relationDs5se2nDD, wheres52
is the spin degeneracy. We immediately find

Ds52
e2s

4p2\
w2~v;0,0!lnS 1

vt tr
D . ~4.31!

Comparing Eq.~4.31! with Eq. ~1.1!, we obtain the renor-
malization functionG(v):

G~v!5w2~v;0,0!. ~4.32!

Here functionw is defined by Eq.~4.11!.

D. Universality of the weak-localization correction atv˜0

The universality of the weak-localization correction at
low frequencies,G(0)51, can be proven immediately. In-
deed, functionW51 is a solution of Eq.~4.12!, and it satis-
fies the boundary conditionW(r5a)51. BecauseW51 is
the solution of a nonaveraged equation in specific disordered
potential, the averaged functionw also equals unity. Then it
follows from Eqs. ~4.11! and ~4.32! that G(0)51, which
completes the proof of the universality. This fact is well
known for the weak short-range disorder, where the Born
approximation applies. We are not aware of any proof of the
universality of the disorder of the arbitrary strength and the
spatial scale.

We emphasize that this proof does not imply any small
classical parameters in the problem, and it requires only the
applicability of the semiclassical approximation,lF!a,l tr .
Universality is based on two elements:~1! the conservation
of the total number of particles on all spatial and time scales;
and ~2! the existence of a diffusive motion at large spatial
and time scales. Both these facts depend neither on the
strength of the scatterers nor on their spatial size.

It is also worth mentioning that the upper cutoff of the
logarithm in Eq.~1.1! is determined by the purely classical
quantity t tr , and does not contain Ehrenfest time as one
could expect. This result is due to the fact that the both lower
and upper limits of the logarithm in the solution of the dif-
fusion equation are related to the spatial scale and not to the
time scale. The upper limit of the logarithmAD/v is the
typical distance at which the electron can diffuse during time
.1/v. The lower linear scale is the largest of two distances:
~1! the distance between the initial and final points, or~2! the
transport mean free path—the smallest scale at which the
diffusion approximation is applicable. Because, for the prob-
lem in the diffusive region, we are interested in the probabil-
ity of an electron to approach its starting point at the distance
of the order ofa& l tr ~and by no meansADtE), we have to
use l tr as the short distance cutoff. This immediately gives
ln(AD/v/ l tr)5 ln(1/Avt tr).

Thus we conclude that the weak-localization correction
has precisely the same universal form as in the quantum
chaos regime. However, unlike in the QD regime, this uni-
versality persists only up to some frequency which is much

smaller thant tr , and breaks down at larger frequencies. The
description of such a breakdown is a subject of Sec. IV E.

E. Ehrenfest time andG„v… at finite frequency

Our goal now is to findw at frequenciestE
21&v,t tr

21 .
We would like to show that the functional form ofw is
log-normal even if the parametera/ l tr is not small, and deri-
vation of the equation analogous to the Boltzmann kinetic
equation is not possible. Let us, first, neglect the angular
diffusion in Eq. ~4.12! completely. We will take it into ac-
count in the end of the subsection. We rewrite Eq.~4.12! in
the time representation

F ]

]t
1S vFn• ]

]R
2

]U

]R
•

]

]PD
2S vFf

]

]r
2

]2U

pF]R'
2 r

]

]f D GW~ t;n,R;f,r!50, ~4.33!

W~ t !5E dv

2p
e22ivtW~v!,

where we used the explicit form of operatorsL̂c,r from Eqs.
~4.8! and~4.9!. Then we separate the motion of the center of
mass and the relative motion of the ends of the cooperon.
That is, we factorize functionW as

W~ t;n,R;f,r!

5E dR0dn0
2p

W'~ t;n0 ,R0 ;f,r!d@R2R~ t,R0 ,n0!#

3d@n2n~ t,R0 ,n0!#, ~4.34!

where the trajectory of the center of massR(t),n(t) is found
from the classical equations of motion

Ṗ52
]U

]R
, Ṙ5

P

m
, n~ t !5

P~ t !

uP~ t !u
,

~4.35!
R„0…5R0 , P„0…5n0pF~R0!,

and functionW' obeys the equations

F ]

]t
2vF~ t !f

]

]r
1F~ t !r

]

]fGW'50,

~4.36!

vF~ t ![vF@R~ t,R0!#, F~ t ![
]2U

pF]R'
2 U

R5R~ t,R0!

.

Equations~4.36! are invariant with respect to the scale
transformation of variablesr andf. This invites us to intro-
duce the variables

z5 lnFf21S r

aD
2G1/2, a5arctan

fa

r
. ~4.37!

Upon this substitution, Eqs.~4.36! take the forms
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H ]

]t
2B1~ t !sin~2a!

]

]z
1@B1~ t !cos~2a!1B2~ t !#

]

]a JW'

50, ~4.38!

B1,2~ t !5
vF~ t !

2a
7
aF~ t !

2
.

The formal solutions of Eqs.~4.38! are ~we omit argu-
mentsn0 ,R0 hereinafter!

W'~ t;z,a!5expFB3~ t,a!
]

]zGW'@0;z,â0~a,t !#,

~4.39!

B3~ t,a![E
0

t

dt1B1~ t1!sin$2â@â0~a,t !,t1#%,

where functionâ(a0 ,t) satisfies the equations of motion

]â

]t
5B1~ t !cos~2â !1B2~ t !, â~a0,0!5a0 , ~4.40!

and functionâ0(t,a) is implicitly defined by the relation

â@â0~ t,a!,t#5a. ~4.41!

Equations~4.39! enable us to find the time evolution of func-
tion w(t) from Eq. ~4.11!. Indeed, substitution of Eq.~4.34!
into Eq. ~4.11! immediately yields

w~ t;f,r!5E dR0dn0
2pS

W'~ t;n0 ,R0 ;f,r!. ~4.42!

The time dependence of the functionW' is given by Eqs.
~4.39!; using this formula we obtain

w~ t;z,a!5E dR0dn0
2pS

expFB3~ t !
]

]zGw@0;z,â0~ t,a!#.

~4.43!

We are interested in the time dynamics of the system at
time t much larger thant tr . At such large times, function
â(a0 ,t) averaged over an arbitrary small region ofR0 ,n0 is
a self-averaging quantity, and it no longer depends on the
initial conditiona0. ~This fact is similar to the randomization
of the direction of momentum in the derivation of the diffu-
sion equation!. Therefore, the functionB3 from Eq. ~4.39!
becomes independent ofa. Thus at large timesw(t;z,a) is
also independent ofa, and its evolution is governed by the
Focker-Planck type equation

F ]

]t
2FS ]

]zD Gw~ t,z!50, ~4.44!

whereF(x) is defined as

F~x!5 lim
t→`

1

t
lnH E dR0dn0

2pS
exp@xB~ t !#J ,

~4.45!

B~ t !5E
0

t

dtB1~ t !sin@2â~a0 ,t !#.

In Eq. ~4.45!, the initial conditiona0 may be chosen arbi-
trary. Furthermore, we will need functionw at large times. In
this casew is a smooth function onz, and we expandF in
the Taylor series:

F~x!5lx1
l2x

2

2
,

l5 lim
t→`

1

t E dR0dn0
2pS

B~ t !, ~4.46!

l25 lim
t→`

1

t H F E dR0dn0
2pS

B2~ t !G2l2t2J .
Returning to the frequency representation, we obtain the

equation describing the drift and diffusion of the logarithms
of the coordinates:

F22iv2l
]

]z
2

l2

2

]2

]z2Gw~v;z!50. ~4.47!

With the same accuracy, the boundary conditions Eq.~4.13!
take the form

w~v;z50!51. ~4.48!

For a generic system the actual calculation of the coefficients
l andl2 can be performed, e.g. by the numerical study of
the system of equations~4.35! and ~4.40! at times of the
order oft tr, and then using Eq.~4.46!. An analytic calcula-
tion of coefficientsl and l2 requires additional model as-
sumptions. An outline of such calculation for the weak
smooth disorder is presented in the Appendix.

The solution of Eq.~4.47! atvt tr!1 and with the bound-
ary condition~4.48! has the form

w~v;z!5expF S 2
2iv

l
1
2v2l2

l3 D zG . ~4.49!

However, in order to find the renormalization function
G(v), we need to knoww(r,f50); see Eq.~4.32!. This
corresponds to taking the limitz→2` in Eq. ~4.49!. One
immediately realizes thatw(r,f50)50 at any finite fre-
quencyv, which would mean that the time it takes for the
quantum correction to reach its universal value is infinite.
The reason for this unphysical result lies in neglecting the
angular diffusion term in Eq.~4.33!. This is the term that is
responsible for the quantum spreading of the classical prob-
ability, and which makes the Ehrenfest time finite.

In terms of the variables~4.37!, the angular diffusion op-
erator, is given by

]2

]f2 5
1

2 Fe22z
]2

]z2
2cos2a

]

]z
e22z

]

]zG1OS ]

]a D . ~4.50!

Because functionw is independent ofa, we can neglect all
the termsO(]/]a) completely. Furthermore, the condition
ltq@1 enables us to consider the angular diffusion~4.50! in
the lowest order of perturbation theory. As the result, Eq.
~4.47! acquires the form
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F2iv1l
]

]z
1

l2

2

]2

]z2
1
e22z

2tq

]

]z S 12g

2

]

]z
1g D Gw50,

~4.51!

where the numerical coefficientg&1 is given by

g5 lim
t→`

1

t E0
t

dtE dR0dn0
2pS

cos@2â~a0 ,t !#.

We now solve Eq.~4.51! with logarithmical accuracy,
taking into account the conditionltq@1. The result is

w5expF S ivl 2
v2l2

l3 D lnS ltq
ltqe

2z1g/2D G . ~4.52!

At uzu! lnltq , expression~4.52! matches with Eq.~4.49!.
By taking the limitz→2` in Eq. ~4.52! and making use

of Eq. ~4.32!, we obtain Eq.~1.2! with tE5(1/l)lnltq . Fi-
nally, we use estimate~3.27!, replace the logarithmic accu-
racyvF /l with the characteristic size of the potentiala, and
arrive at Eq.~1.3!.

V. RELEVANT PERTURBATIONS

So far, we considered only the frequency dependence of a
weak-localization correction in the quantum chaos. In this
section we concentrate on two more factors which affect our
results:~1! the finite phase relaxation timetw , and ~2! the
presence of a magnetic field.

A. Effect of finite phase relaxation timetw

As was discussed in Sec. II, the weak-localization correc-
tion has its origin in the interference between the coherent
classical paths. If the particle experiences inelastic scattering
during its motion, this coherence is destroyed and the weak-
localization correction is suppressed.4,12,17This effect is de-
scribed conventionally by the introduction of the phase re-
laxation timetw ~see Ref. 12 for a lucid discussion of the
physical meaning oftw), into the Liouville equation for
cooperon~3.28d!,

F2 iv1
1

tw
1L̂12

1

tq

]2

]f1
2GC5d12. ~5.1!

The equation for the diffuson~3.27c! remains unchanged, as
well as relations~3.27b! and~3.28! between the correction to
the classical probability and the cooperon and diffusons.

Thus we have to modify the cooperon part of Eq.~4.31!;
that is, Eq.~4.10! acquires the form

C~f,r!5
w~v1 i /tw ;f,r!

4pD
lnS t tr

21

Av21tw
22D . ~5.2!

Comparing Eqs.~4.14! and ~5.2!, with the help of Eqs.
~4.31! and ~4.32! we obtain

Ds52
e2s

4p2\ FG~v!GS v1
i

tw
D G 1/2lnS t tr

21

Av21tw
22D .

~5.3!

For v50 andtw@t tr , expression~5.3! acquires the form

Ds52
e2s

4p2\
expF2

tE
tw

S 12
l2

l2tw
D G lnS tw

t tr
D . ~5.4!

The factore2tE /tw in Eq. ~5.4! can be easily understood. A
relevant trajectory may not close earlier than it leaves the
Lyapunov region; factore2tE /tw is nothing but the probabil-
ity for an electron not to be scattered inelastically while it is
in the Lyapunov region. Let us also note that the dependence
of the weak-localization correction on the phase relaxation
time is always slower than an exponential. The reason for
this is the following. The probability for a trajectory to leave
the Lyapunov region during time intervaltw/2 is determined
by the corresponding Lyapunov exponent and, thus, it can be
increased due to the fluctuation of this exponent. The prob-
ability of finding such a fluctuation is given by the Gaussian
distribution. The optimization of the product of these two
probabilities immediately yields the exponential factor in Eq.
~5.4!.

At this point, we should caution the reader that the fact
that the sametw enters into the logarithmic factor and into
the renormalization factorG in Eq. ~5.3! is somewhat model
dependent. Strictly speaking, this statement is valid only if
phase breaking occurs via a single inelastic process with
large energy transfer. If the main mechanism of the phase
breaking is associated with the large number of scattering
events with the small energy transfer,12,17phase breaking oc-
curs when the distancer between the cooperon ends is large
enough,AD/T&r&ADtw. Thus this mechanism does not
affect the cooperon in the Lyapunov region at all. A further
discussion of the microscopic mechanisms of the phase
breaking is beyond the scope of the present paper.

B. Effect of magnetic field

Similar to the phase relaxation time, the effect of the mag-
netic field on the weak-localization correction is taken into
account by the change in the equation of motion for the
cooperon only,4,12,19

F2 iv1L̂11
2ie

c
v1A12

1

tq

]2

]f1
2GC5d12, ~5.5!

where A15A(R1) is the vector potential of the external
magnetic field. The cooperon given by Eq.~5.5! is not a
gauge invariant quantity, butC(1,1̄) is. It is very convenient
to separate the gauge noninvariant part of the cooperon ex-
plicitly by writing

C5expS 2iec E A dr D Cgi , ~5.6!

where integration in the first factor is carried out along the
straight line connecting the cooperon ends. Substituting Eq.
~5.6! into Eq.~5.5!, we obtain the gauge invariant part of the
cooperon,

F2 iv1L̂11
i @z3r#

lH
2 GCgi5d12, ~5.7!
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where r5R12R1, and lH5(c\/eH)1/2 is the magnetic
length. When the ends of the cooperon coincide,Cgi5C, and,
therefore, the correction to the conductivity~4.31! is modi-
fied as

Ds52
se2

p\
w~v;0,0!~^Cgi~1,1̄!&D !. ~5.8!

Our purpose now is to obtain an expression forCgi . Simi-
lar to the case for zero magnetic field, we would like to
separate the problem into Lyapunov and diffusion regions.
This separation, however, is valid only if the condition

lH@ l tr ~5.9!

holds. This condition follows from the fact that the charac-
teristic area enclosed by the relevant trajectory should not
exceedlH

2 . If Eq. ~5.9! is not fulfilled, the trajectory should
turn back at distances much smaller thanl tr . The probability
of such an event is determined by optimal configurations
consisting of a small number of scatterers and, thus, separa-
tion of the diffusion region is not possible.20 In all subse-
quent calculations, we assume that condition~5.9! is met.

In the diffusion region, the cooperon satisfies the equation

F2 iv2DS ¹r1
i @z3r#

lH
2 D 2G^Cgi&5d~r!. ~5.10!

At a&r& l tr , the cooperonCgi ceases to depend onr, and
with the logarithmic accuracy we have

^Cgi&'
1

4pD F lnS 1

vt tr
D 2YS D

2 ivlH
2 D G , ~5.11!

where the dimensionless functionY(x) is given by19

Y~x!5CS 121
1

4xD1 ln4x, ~5.12!

andC(x) is the digamma function.
The solution in the Lyapunov region with the boundary

condition ~5.11! can be represented in a form similar to Eq.
~4.10!,

^Cgi&5
wc~v;f,r!

4pD F lnS 1

vt tr
D 2YS D

2 ivlH
2 D G . ~5.13!

Here functionwc is related toWc by Eq.~4.11!; however, the
equation for the latter function,@see Eq.~4.33!#, is modified

H ]

]t
1FvFn• ]

]R
2

]U

]R
•

]

]PG
2FvFS f

]

]r
1
2ir

lH
2 D 2

]2U

pF]R'
2 r

]

]fG JWc50. ~5.14!

Equation ~5.14! is supplied with the boundary condition
~4.13!.

Now we will show that this modification does not affect
functionWc in the Lyapunov region, provided that condition
~5.9! holds. Thus the renormalization functionG(v) is not
affected by the magnetic field. In order to demonstrate this
we use the following arguments. The effect of the extra in

comparison with Eq.~4.33! term in Eq.~5.14! can be taken
into account by multiplying functionW' from Eq. ~4.34! by
the factor exp(2iA(t)/lH

2 ), whereA(t) is the area enclosed
by the trajectory in the Lyapunov region and it is given by

A~ t !5E
0

t

dt1vF~ t1!r~ t1!. ~5.15!

Let us estimate the maximal value of areaA. In the
Lyapunov region, the distancer does not exceed the charac-
teristic scale of the potentiala. In the vicinity of the bound-
ary of the Lyapunov region,r depends exponentially on time
r(t).aelt ~here timet,0 is counted from the moment of
arrival of the trajectory to the boundary of the Lyapunov
region!. Substituting this estimate into Eq.~5.15!, we obtain

maxuAu.avF /l& l tr
2. ~5.16!

Comparing estimate~5.16! with condition~5.9!, we conclude
that uAu!lH

2 and, therefore, the magnetic field has no effect
in the Lyapunov region.

Thus, the final formula for the weak-localization correc-
tion in the magnetic fieldH reads

Ds~H,v!2Ds~0,v!5
e2s

4p2\
G~v!YS D

2 ivlH
2 D , ~5.17!

where functionsG and Y are defined by Eqs.~1.2! and
~5.12!, respectively. It is worth noting that the effects of the
phase relaxation@see Eq.~5.4!# and magnetic field on the
renormalization function are different. This is because the
effect of the phase relaxation is determined by the time the
particle spends in the Lyapunov region, which is signifi-
cantly larger thant tr , whereas the effect of the magnetic
field is governed by the area enclosed by the trajectory in the
Lyapunov region, which is always much smaller thanl tr

2 .
For weak magnetic fields,lH

2 @D/max(v,tw
21), from Eq.

~5.17! we obtain

Ds~H !2Ds~0!5
e2s

6p2\ FG~v!GS v1
i

tw
D G1/2

3F Dtw

~12 ivtw!lH
2 G2. ~5.18!

The study of the frequency dependence or temperature~via
tw) of the magnetoresistance may provide an additional tool
for measuring the Lyapunov exponent.

VI. WEAK LOCALIZATION IN BALLISTIC CAVITIES

In this section we study how the Lyapunov region affects
the weak-localization correction in the ballistic cavities. At
zero frequency andtw→`, this problem was studied in Refs.
8–10.

For the sake of simplicity, we restrict ourselves to the
case of zero magnetic fieldH50 and concentrate upon the
dependence of the weak-localization correction to the con-
ductanceDg of a ballistic cavity on frequencyv and phase
relaxation timetw . The effect of the magnetic field on the
weak localization was studied in Ref. 8.
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Let us consider a system consisting of three cavities~see
Fig. 4! connected by channels. The size of the central cavity
(B in Fig. 4! is much smaller than that of the outer cavities
(L andR in Fig. 4!, which act as reservoirs. The conductance
of the system is controlled by the channels so that their
widths dL,R are much smaller than the characteristic size of
the central cavity,dL,R!a. We assume that the motion of an
electron in the channel still can be described by the classical
Liouville equation, which impliesdL,R@lF .

Because of the inequalitydL,R!a, the time it takes to
establish the equilibrium distribution function in the cavity is
much smaller than the escape time.~The equilibration time is
of the order of the flying time of the electron across the
cavity.! Under such conditions the classical escape times
from the cavity through the left~right! channeltL(R) are
given by

1

tL~R!
5

1

AB
E dn

2pE u~n•dl !vL~R!n•dl
L ~R!5

dL~R!vL~R!

2AB
,

~6.1!

whereAB is the area of the cavity, the linear integration is
performed along the narrowest cross-section of the corre-
sponding channel,dl L(R) is directed outside cavityB nor-
mal to the integration line, andvL(R) are the Fermi velocities
in the contacts. Equation~6.1! corresponds to the classical
Sharvin formula21 for the two-dimensional~2D! case, and
the escape times are related to the classical conductance of a
single channelgL(R) by

gL~R!5
se2nAB

tL~R!
. ~6.2!

If the external biaseV(t) is applied to, say, the left res-
ervoir ~the right reservoir is maintained at zero bias!, the
electric currentI from the left to the right reservoir appears.
This current is linear in the applied bias:

I ~ t ![2Q̇L~ t !5E
2`

t

dt8g~ t2t8!V~ t8!,

~6.3!

g~ t !5E dv

2p
e2 ivtg~v!,

whereQL is the charge of the left reservoir. Relation~6.3!
defines the conductance of the systemg(v). Performing ac-
tual calculations in Eq.~6.3!, one has to take into account the

condition of the electroneutrality in the cavityB, Q̇B50.
The electroneutrality requirement is valid at times larger the
characteristic time of the charge relaxation. This timetc can
be estimated astc.CB /(maxgL,R), whereCB is the capaci-
tance of the cavity. Using estimateCB;a and formulas~6.1!
and~6.2!, we findtc.t f laB /(maxdL,R), wheret f l5a/vF is
the flying time of the electron across the cavity, andaB is the
screening radius in 2D electron systems. For wide channels
dL,R@lF.aB , we havetc!t f l . We are interested in the
dynamics of the system at times much larger than the flying
time and, therefore, we can assume that the electroneutrality
holds.

Then, the standard linear response calculations enable us
to relate the conductanceg to the diffusonD defined in Sec.
II. The charge response ini th cavity,Qi to the applied biases
V(t),VB(t)5V,VBe

2 ivt can be expressed by means of the
polarization operator as

Qi5e2E dr1dr2P~v;r1 ,r2!u i~r1!@VuL~r2!1VBuB~r 2!#,

~6.4!

where functionu i(R) is equal to unity if vectorR lies in the
i th region (i5L,R,B) and is equal to zero otherwise. The
potentialVB is to be found self-consistently from the elec-
troneutrality requirement. Substituting Eq.~3.4! into Eq.
~6.4! and making use of Eqs.~3.5!, and~3.12!, with the help
of definition ~6.3! we obtain

g~v!5se2nH 2 ivAL1v2FDLL~v!1DLB~v!
VB

V G J ,
~6.5!

Di j ~v!

[E dn1dn2dR1dR2

~2p!2
u i~R1!u j~R2!DeF

~v;n1,R1;n2,R2!,

where Ai is the area of the corresponding region
( i5L,R,B).

The electroneutrality conditionQB50 gives us the equa-
tion for the potential of the cavityVB . Using Eq.~6.4! for
i5B, we find, with the help of Eqs.~3.4!, ~3.5!, and~3.12!,

ivDLB~v!V1@AB1 ivDBB~v!#VB50. ~6.6!

A. Classical conductance

Let us first calculate the classical conductancegcl of the
system. We consider frequenciesv, much smaller than the
flying time of the electron in a cavity. Assuming that the
motion in the cavity is ergodic and the areas of the reservoirs
are large,AL(R) /AB@vtL(R) , we obtain that the diffuson
changes only within the channels. ForDi j from Eq.~6.5!, we
find

DBB
0 ~v!5

AB

2 iv1
1

tB

,
1

tB
5
1

tL
1

1

tR
, ~6.7a!

Dj j
0 ~v!5

Aj

2 iv
1
AB

t jv
2 2

DBB
0

~t jv!2
, j5L,R, ~6.7b!

FIG. 4. Schematic view of the ballistic cavityB between two
reservoirsL andR.
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DjB
0 ~v!5DB j

0 ~v!5
DBB
0 ~v!

2 ivt j
, j5L,R, ~6.7c!

DLR
0 ~v!5DRL

0 ~v!52
DBB
0 ~v!

v2tLtR
. ~6.7d!

Equation~6.7a! describes the exponentially decaying in time
probability to find the electron in cavityB if it started in this
cavity. The first term in Eq.~6.7b! corresponds to the classi-
cal correlator of thej th reservoir disconnected from the cav-
ity, the second term describes the finite probability for the
electron to enter cavityB from the j th reservoir, and the
third term corresponds to the process in which an electron
from the j th reservoir visits the cavity once and then comes
back. Equation~6.7c! gives the probability for the electron to
appear in thej th reservoir starting from the cavity. Finally,
Eq. ~6.7d! is the probability for an electron to move from the
left to the right reservoir.

Substituting Eqs.~6.7! into Eq. ~6.6!, we find that the
bias of the cavityVB does not depend on frequency,VB
5gL /(gL1gR). Then, by substitution of Eqs.~6.7! into Eqs.
~6.5!, with the help of Eq.~6.2! we obtain

gcl5
gLgR
gL1gR

~6.8!

in agreement with the Kirchhoff law. It is worth mentioning
that result~6.8! atv50 can be obtained without the require-
ment of the electroneutrality.

B. Weak-localization correction

In order to calculate the weak-localization correction to
the conductanceDg(v), we have to find the correction to the
classical correlatorDD and then use Eqs.~6.5! and~6.6!. For
such a calculation, it is most convenient to use Eq.~3.28!.
Our strategy will be analogous to the one we used in Sec. IV
for the calculation of the correction to the conductivity.

Integrating both sides of Eq.~3.29! over the coordinates
1 and 2 within the regions specified byu functions in Eq.
~6.5!, and using the obvious relationD(1,2)5D(2̄,1̄), we
obtain

DDi j5DDj i
~1!1DDj i

~2! ,

DDj i
~1!5E d1@Dj

0~1!u i~R1!1Di
0~ 1̄!u j~R1!#

C0~1,1̄!
2pn

, ~6.9!

DDj i
~2!5E d1Di

0~1!Dj
0~1!F2iv2L̂11

1

tq

]2

]f1
2GC0~1,1̄!2pn

,

where

Di
0~1![E d2u i~R2!D0~2,1!. ~6.10!

Here, we use the short-hand notationl[(nl ,Rl), integration
over the phase space on the energy shell is defined as
dl[dnldRl /2p, and the time-reversed coordinatel̄ is given
by l̄[(2nl ,Rl).

It is noteworthy that the quantum correctionDDi j satisfies
the charge conservation condition

(
j5L,R,B

DDi j50, i5L,R,B, ~6.11!

which can be easily proven with the help of the relation
( iDi

0(1)51/2 iv and Eq.~3.27c!. Equation~6.11! enables
us to consider only nondiagonal elements ofDDi j , which is
technically easier.

Analogous to the discussion in Sec. IV, we assume that
the cooperon part of the expression can be calculated inde-
pendently of the diffuson part. This is because classical tra-
jectories corresponding to these quantities traverse essen-
tially the different regions of the phase space.

First, we use this assumption to evaluate contribution
DD(1) from Eq. ~6.9!. We notice that the classical trajectory
can close only inside the cavity. Therefore, the cooperon
C(1,1̄) also exists only inside cavityB. For the calculation of
the diffuson, we notice that, at times much larger than the
flying time across the cavityt f l , the position of the electron
and its momentum is randomized. This suggests using the
approximation

Di
0~1!'

1

AB
E d1Di

0~1!uB~R1!5
DiB
0

AB
, ~6.12!

if vector R1 lies inside the cavity. Here functionDi j
0 is de-

fined in Eq.~6.7!. Using Eq.~6.12!, we obtain

DDj i
~1!5@DjB

0 d iB1DiB
0 d jB#

^C0~1,1̄!&
2pn

, ~6.13!

where the average inside the cavity is defined as

^ . . . &5
1

AB
E d1uB~R1! . . . .

Let us turn to the calculation of the contributionDDi j
(2) . As

we already saw in Secs. II and IV, two diffusons cannot be
averaged independently, because the motions of their ends
are governed by the same potential during periodtE@t tr . On
the other hand, the randomization of the motion of the center
of mass occurs during a time interval of the ordert f l . There-
fore, we can approximate

Di
0~1!Dj

0~1!'uB~R1!^Di
0~1!Dj

0~1!&. ~6.14!

Expression~6.14! is written in the lowest order in small pa-
rameterAB /AL,R , and we exclude from our consideration
casesi5 j5L,R. In the latter cases, there are also nonvan-
ishing contributions in Eq.~6.14! corresponding to the coor-
dinateR1 in the reservoirsL orR. This would require a more
careful investigation of the behavior of the diffuson in the
channels. However, we simply bypass this difficulty by uti-
lizing identity ~6.11! for the calculation of the diagonal ele-
mentsDDLL andDDRR. Using the approximation~6.14!, we
find

DDj i
~2!5^Di

0~1!Dj
0~1!&E d1uB~R1!@2iv2L̂1#

C0~1,1̄!
2pn

.

~6.15!
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Liouvillean operatorL̂1 in the second term on the right-hand
side of Eq. ~6.15! is the total derivative along a classical
trajectory and, therefore, it can be reduced to the linear inte-
grals across the channels

E d1uB~R1!L̂1C0~1,1̄!

5E dn1
2p

S E n1•dl 1
L1E n1•dl 1

RDvFC0~1,1̄!, ~6.16!

where the linear integration is defined similar to that in Eq.
~6.1!. Then we notice that a classical trajectory can close
only inside the cavity. Therefore, only cooperons with initial
momentum directed inside the cavity exist. Let us assume
that the randomization of the momentum direction occurs
only inside the cavity, and consider times much larger than
the flying time. We conclude that the cooperon in the contact
vanishes if itsn1 directed inside the cavity, and if the mo-
mentum is directed outside the cavity, the cooperon
coincides with its value inside the cavity,C(1,1̄)
5u(n1•dl L(R))^C(1,1̄)&, for the coordinateR1 located in the
left or right channel, respectively. This enables us to reduce
Eq. ~6.16! to the simple form

E d1uB~R1!L̂1C0~1,1̄!5
AB

tB
^C~1,1̄!&, ~6.17!

where the total escape timetB is defined in Eq.~6.7a!. De-
riving Eq. ~6.17!, we use the definition of the escape times
~6.1!. Arguments above are essentially equivalent to those in
the derivation of the classical Sharvin conductance.21

Combining formulas~6.13!, ~6.15!, ~6.17!, and ~6.9!, we
obtain

DDj i5
^C0~1,1̄!&
2pn FDjB

0 d iB1DiB
0 d jB1S 2iv2

1

tB
D

3AB^Di
0~1!Dj

0~1!&G . ~6.18!

We reiterate that Eq.~6.18! is not applicable for the case of
i5 j5L,R. In order to find the diagonal elementsDDLL and
DDRR, one has to use the identity~6.11!.

The calculation of the corresponding averages^C0(1,1̄)&
and ^Di

0(1)Dj
0(1)& is performed along the lines of the deri-

vations in Sec. IV. In the calculation of the cooperon the
only change is in expression~4.3! for the cooperon outside
the Lyapunov region,

C~f,r!5
1

ABS 2 iv1
1

tB
D , ~6.19!

which is analogous to Eq.~6.7a!. The solution for the coop-
eron in the Lyapunov region is analogous to one presented in
Secs. IV A and IV E. The calculation of functionw may be
performed for the cavity disconnected from the reservoirs,
provided that the conditiontE!tB holds. As the result we
obtain

^C~1,1̄!&5
w~v,0,0!

ABS 2 iv1
1

tB
D . ~6.20!

In the calculation of the product of two diffusons
^Di

0(1)Dj
0(1)& the change should be made in Eq.~4.25!. The

reason for this is that the integration overR,n for reducing
Eq. ~4.22! to Eq. ~4.24! is performed now only inside the
cavity. As a result, one more term

E dndR

2p
uB~R!L̂cM1~1,2;n,R;f,r!'

M1~1,2;f,r!

tB

@cf. with the derivation of Eq.~6.17!# has to be added to the
left-hand side of Eq.~4.24!. Equation~4.25!, then, acquires
the form

M1~1,2;r,f!5
^D0~ 1̄;2!&1^D0~1;2̄!&

22iv1
1

tB

,

and we obtain, instead of Eq.~4.28!,

AB^Di
0~1!Dj

0~1!&5w~v;0,0!
DiB
0 DjB

0

AB

1
12w~v;0,0!

22iv1
1

tB

@DiB
0 d jB1DjB

0 d iB #,

~6.21!

where functionsDiB
0 are given by Eqs.~6.7a! and ~6.7c!.

Result~6.21! is not applicable fori5 j5L,R cases. Deriving
Eq. ~6.21!, we used Eq.~6.12! for the average of the single
diffuson ^Di

0(1)&.
Substituting Eqs.~6.20! and ~6.21! into Eq. ~6.18!, with

the help of Eqs.~6.7! and ~4.32! we obtain

DDBB~v!5
G~v!

2pn

1

tB

S 2 iv1
1

tB
D 3 , ~6.22a!

DDjB5DDB j52
tB
t j

DDBB , j5L,R, ~6.22b!

DDLR5
122ivtB
v2tLtR

DDBB~v!. ~6.22c!

CorrectionsDDj j for j5L,R are found with help of Eq.
~6.11!, and are given by

DDj j5S 2ivtB21

v2tLtR
1

tB
t j

DDDBB . ~6.22d!

Substituting Eqs.~6.22a! and ~6.22c! into Eq. ~6.6!, we
observe that the voltage in the cavityVB does not acquire
any quantum corrections,VB5VgL /(gR1gL). Finally, sub-
stituting Eqs.~6.22! into Eq. ~6.5! and using Eq.~6.2!, we
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obtain the final result for the frequency-dependent weak-
localization correction to the conductance of the ballistic
cavity,

Dg~v!52
se2

2p\

gLgR
~gL1gR!2 F G~v!

12 ivtB
G , ~6.23!

where the total escape timetB is defined in Eq.~6.7a!. We
emphasize that Eq.~6.23! at zero frequency can be obtained
without the electroneutrality requirement.

Equation ~6.23! is the main result of this section. At
v50, this result agrees with the findings of Ref. 9 in the
limit of large number of quantum channels in the contact.
We are aware neither of any calculation at finite frequency
nor of a description of the role of the Ehrenfest time in the
conductance of the ballistic cavities. The renormalization
function G(v) in Eqs. ~6.23! describes the effect of the
Lyapunov region on the weak localization, and it is given by
Eqs.~1.2! and~1.3!. An analytic calculation of the Lyapunov
exponentsl,l2.t f l

21 for the ballistic cavity is a separate
problem and it will not be done in this paper. It is assumed in
Eq. ~6.23! that the conditiontE!tB holds. The result for the
opposite limit~which corresponds to the exponentially small
Planck constant! is obtained by substitutionG(v)
→G(v1 i /tB) in Eq. ~6.23!, and the weak-localization cor-
rection turns out to be suppressed by the factor
exp(22tE /tB).

The finite phase relaxation timetw is taken into account
by substitutionv→v1 i /tw in Eq. ~6.20!. At tw@tE , the
result fordc conductance agrees with the result of Ref. 22.
For v50 we obtained

Dg52
se2

2p\

gLgR
~gL1gR!2

t i
tB

3expF2
tE
t i

S 12
l2

l2t i
D2

tE
tB

S 12
l2

l2tB
D G , ~6.24!

wheret i is the time it takes for an electron to be scattered
inelastically or to escape the cavity,

1

t i
5

1

tB
1

1

tw
.

Usually, the Ehrenfest timetE is much smaller than the es-
cape timetB . In this case, one can immediately see the
dramatic crossover at the temperature dependence~usually
tw is a power function of temperature; see Ref. 12!. If at
tw@tE , the dependence on temperature is a power law, with
the increase of the temperature the change to the exponential
drop occurs. Thus a study of the crossover in the temperature
or frequency dependence of the ballistic cavities may pro-
vide the information about the values and the distribution of
the Lyapunov exponents in the cavity.

VII. CONCLUSION

In this paper we developed a theory for the weak-
localization ~WL! correction in a quantum chaotic system,
i.e., in a system with a characteristic spatial scale of the static
potential a being much larger than the Fermi wavelength
lF . We showed that for the quantum chaos, a frequency

domaintE
21!v!t tr

21 appears@ tE is the Ehrenfest time; see
Eq. ~1.3!#, where the classical dynamics is still governed by
the diffusion equation, but the WL correction deviates from
the universal law. We were able to investigate the frequency
dependence of the WL correction at such frequencies@see
Eqs. ~1.1! and ~1.2!#, and to find out how the fundamental
characteristic of the classical chaos appears in the quantum
correction. At lower frequencies,v!tE

21 , we proved the
universality of the weak-localization correction for the disor-
der potential of an arbitrary strength and spatial size.

These results may be checked experimentally by studying
the frequency or temperature~via tw) dependence of the
weak-localization correction~e.g., negative magnetoresis-
tance!. Indeed, at low frequency or temperature, a conven-
tional dependence should be observed. This dependence is
rather weak~logarithmical for large samples and a power law
for the ballistic cavities!. With the increase of the frequency
or temperature, the dependence becomes exponential; such a
crossover may be used to find the Ehrenfest timetE and thus
extract the value of the Lyapunov exponent. The parameters
of the ballistic cavities studied in Ref. 7 area.1 mm and
lF.400 Å, so that ln(a/lF).3. We believe, however, that
the size of the ballistic cavities may be raised up to the mean
free path.17mm; the Ehrenfest time in this case would be
appreciably larger than the flying time, ln(a/lF).6, and the
characteristic frequencyv5tE

21 for this case can be esti-
mated asv.53109 s21. Measurements of the frequency
dependence of the WL correction in the quantum disorder
regime were performed in Ref. 23 at frequencies as high as
16.5 GHz. Thus a measurement of the Ehrenfest time in bal-
listic cavities does not seem to be unrealistic.

We expect that effects associated with the Ehrenfest time
may also be found in optics. They may be observed, e.g., in
the dependence of the enhanced backscattering on frequency
of the amplitude modulationv. This dependence should be
still given by our functionG(v), with lF being replaced
with the light wavelength.

We showed that the description of the intermediate region
tE

21!v!t tr
21 can be reduced to a solution of the purely clas-

sical equation of motion; however, averaging leading to the
Boltzmann equation is not possible because the initial and
final phase cells of the relevant classical correlator~coop-
eron! are related by the time inversion. Therefore, the initial
and finite segments of the corresponding classical trajectory
are strongly correlated, and their relative motion is described
by the Lyapunov exponent and not by the diffusion equation.
We took this correlation into account, showed that it is de-
scribed by the log-normal distribution function, and related
the Ehrenfest time to the parameters of this function.

Because a description by the Boltzmann equation was not
possible, we derived the lowest-order quantum correction to
the classical correlator in terms of the solution of the Liou-
ville equation, smeared by the small-angle diffraction; see
Eq. ~3.27b!. The derivation was based on the equations of
motion for the exact Green functions, and did not imply av-
eraging over the realization of the potential.

Closing the paper, we would like to discuss its relation to
the other works and to make a few remarks concerning how
the Ehrenfest time appears in the level statistics. First, we
notice that, though quite popular in the classical mechanics

54 14 441DIVERGENCE OF CLASSICAL TRAJECTORIES AND . . .



and hydrodynamics, the Lyapunov exponent very rarely en-
ters in the expressions for observable quantities in solid-state
physics; see Ref. 14. The possibility to observe the interme-
diate frequency regiontE

21!v!t tr appeared only recently
with technological advances in the preparing of ballistic
cavities, and that is why the region has not been studied
systematically as of yet. Let us mention that the importance
of the Ehrenfest time in the semiclassical approximation
was already noted in Ref. 14, where it was shown that the
method of quasiclassical trajectories in the theory of super-
conductivity15 fails to describe some nontrivial effect at
times larger thantE which were calculated for the dilute
scatterers. The term ‘‘Ehrenfest time’’ for quantity~1.3! was
first introduced in Ref. 24. The relevance oftE in the theory
of weak localization was emphasized by Argaman;10 how-
ever, he focused only on times much larger than the Ehren-
fest time.

The universality of weak-localization corrections at small
frequencies was known for the case of weak quantum
impurities3 and for ballistic cavities.9 We are not aware of
any proof of the universality for the disorder potential of
arbitrary strength and spatial scale.

The description of quantum corrections in terms of the
nonaveraged solutions of the Liouville equation was devel-
oped in by Muzykantskii and Khmelnitskii,25 and more re-
cently by Andreevet al.,26 who suggested the effective
supersymmetric27 action in the ballistic regime. In Ref. 26,
the supersymmetric action was written in terms of the
Perron-Frobenius operator, which differs from the first-order
Liouville operator by the regularizator of second order. This
regularizator is similar to the angular diffusion term,}1/tq
in Eqs.~3.27!. These authors mentioned that all physical re-
sults can be obtained if the limit of vanishing regularizator is
taken in the very end of the calculation. Our findings indicate
that the time it takes for the quantum correction to reach its
universal value is} ln(tq). Thus, at any finite frequency, the
limit tq→` cannot be taken, and the regularizator in the
supersymmetric action should be assigned its physical value;
see Eq.~3.26!.

In principle, our formula for the weak-localization correc-
tion ~3.27b! can be derived using the supersymmetry tech-
nique. However, our approach seems to be technically easier
and more physically tractable for a calculation of the first-
order weak-localization corrections. We believe that super-
symmetry may serve as a powerful tool for an investigation
of the effect of the Ehrenfest time on higher-order correc-
tions and on level statistics.

It is generally accepted that the level statistics at low en-
ergies is described by the Wigner-Dyson distribution.28 For a
small disordered particle it was first proven by Efetov,27 and
for ballistic cavities by Andreevet al.26 For quantum disor-
der, Altshuler and Shklovskii29 showed that the universal
Wigner-Dyson statistics breaks down at the Thouless energy.
For ballistic cavities the universal statistics is believed to be
valid up to the energies of the order of the inverse flying time
tfl , at smaller energiess the corresponding corrections are
small asstfl . However, we anticipate deviations at para-
metrically smaller energies of the order oftE

21 , and correc-
tions of the order ofstE at energiess!tE

21 .
Let us consider for concreteness the correlator of the

density of statesR(s)5^r(e)r(e1s)&2^r(e)&2, where

r(e)5Trd(e2Ĥ). For the orthogonal Gaussian ensemble
the random matrix theory yields28 R(s)52(ps)22

1(11cos2ps)/(ps)241•••, wheres@1 is measured in units
of mean level spacing. We expect that the first term in this
expression is not affected by the presence of the Lyapunov
region, whereas the following terms are. In the supersym-
metric approach27 this follows from the fact that the first
term arises from noninteracting diffuson modes, whereas all
others come from the interaction of these modes. Such inter-
action is analogous to the one giving rise to the weak local-
ization, which was shown to have the frequency dispersion
described by the renormalization functionG(v); see Eq.
~1.2!. We believe that the same renormalization factor will
appear in all the effects associated with the coupling of the
diffuson-cooperon modes.
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APPENDIX: LYAPUNOV EXPONENT
FOR WEAK SCATTERERS

We consider explicitly the case where the potentialU in
Eq. ~4.33! is weak and its distribution function is Gaussian.
For the sake of simplicity we neglect the angular diffusion
due to the quantum impurities in the Lyapunov region, be-
cause this diffusion does not affect values ofl andl2; see
Sec. IV E. In this case it is more convenient not to follow the
general procedure outlined in Sec. IV E, but to make use of
the small parametera/ l tr first. Considering the disorder po-
tential in the second order of the perturbation theory, for the
part of the functionW' that is independent ofR,n, we obtain

F ]

]t
2vFf

]

]r
2

2

t tr
E~r!

]2

]f2GW'50, ~A1!

where the transport lifetime is given by

1

t tr
5

1

4eFpF
E

2`

`

dx^]yU~x,0!]yU~0,0!&, ~A2!

and the dimensionless functionE is defined as

E~r!512
*2`

` dx^]yU~x,r!]yU~0,0!&

*2`
` dx^]yU~x,0!]yU~0,0!&

. ~A3!

In Eq. ~A1!, we assumedf!1 only and lifted the other
assumption of Eq.~4.33! r!a. If r!a, we expandE in
Taylor series,E(r)'r2/2a2, which rigorously defines the
lengtha in this case, and we arrive at the equation describing
the Lyapunov region for the weak disorder potential,

F ]

]t
2vFf

]

]r
2

r2

t tra
2

]2

]f2GW'50. ~A4!

It is worth noting that our approach is equivalent to one
involving the multiplication of the vector (r,f) by a Mono-
dromy matrix after each scattering event. Equation~A4! is
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valid because each Monodromy matrix defined on a time of
the ordera/vF is close to a unit matrix. Otherwise, the last
term in the brackets in Eq.~A4! becomes an integral opera-
tor.

After introduction of variables

z5 ln
a

r
, y5

af

r S l tra D 1/3, t5
t

t tr
S l tra D 2/3, ~A5!

Eq. ~A4! acquires a simple form

F ]

]t
2y

]

]z
1y2

]

]y
2

]2

]y2GW'50. ~A6!

We are interested in the case when functionW' changes
slowly as a function ofz. The corresponding gradient is
small, and we can employ a procedure similar to reducing
the Boltzmann equation to the diffusion equation. Let us rep-
resent functionW' as

W'~t;z,y!5W'
0 ~t;z!1W1~t;z,y!, W1!W' . ~A7!

Substituting Eq.~A7! into Eq.~A6!, multiplying the result by
functiong(y),

F ddyy21 d2

dy2Gg~y!50, E dy g~y!51, ~A8!

and integrating overy, we obtain

F ]

]t
2b

]

]zGW'
02

]

]zE dy@~y2b!g~y!W1~y!#50, ~A9!

where the numerical coefficientb is given by

b5E dy yg~y!, ~A10!

and functionW1 can be written as

W15h~y!
]W'

0 ~t;z!

]z
, Fy2 ddy2

d2

dy2Gh~y!5y2b. ~A11!

Shift of W1 by an arbitrary constant does not affect the re-
sults; see Eqs.~A13! and~A10!. Substituting Eq.~A11! into
Eq. ~A9!, in accordance with general formula~4.47! we ob-
tain

F ]

]t
2b

]

]z
2b2

]2

]z2GW'
0 ~t;z!50, ~A12!

where the numerical coefficientb2 is given by

b25E dy~y2b!g~y!h~y!. ~A13!

Comparing Eqs.~A12! and ~A5! with Eq. ~4.47!, for the
Lyapunov exponentl and its deviationl2 we find

l5
b

t tr
S l tra D 2/3, l25

2b2

t tr
S l tra D 2/3. ~A14!

A simple calculation of the numeral coefficientsb andb2 is
carried out with the help of Eqs.~A10!, ~A8!, ~A13!, and
~A11!, with the final results

b5
*2`

` dy e2y3/3y*2`
y dy1e

y1
3/3

*2`
` dy e2y3/3*2`

y dy1e
y1
3/3

'0.365,

~A15!

b25
*2`

` dy@ey
3/3*2`

y dy1e
y1
3/3~*y

`dy2~b2y2!e
2y2

3/3!2#

*2`
` dy e2y3/3*2`

y dy1e
y1
3/3

'0.705.

In order to avoid any confusion, let us note that the log-
normal distribution function cannot be used to find the aver-
aged moments of the coordinatesr andf, and it is sufficient
only for a calculation of the low moments of the logarithm of
the coordinates.

*Current address: NEC Research Institute, Inc., Princeton, NJ
08540.

1This result, strictly speaking, is applicable for the case of the
strong scatterers where the transport and elastic mean free paths
are of the same order. For the case of weak scatterers one should
usevF /l instead ofl tr . Herel is the Lyapunov exponent, see
the Appendix.

2E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Phys. Rev. Lett.42, 673 ~1979!.

3L. P. Gorkov, A. I. Larkin, and D. E. Khmelnitskii, Pis’ma Zh.
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