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Electron momentum-space densities of Li metal: A high-resolution Compton-scattering study
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Directional Compton profile§CP’s) of Li metal were measured for 11 directions of the momentum transfer
g with 0.14 a.u.(a.u=atomic units:z=e=m=1) momentum-space resolution using synchrotron radiation
from the DORIS (Doppel-Ring-Speicheranlagetorage ring monochromatized to 31 keV. Both the total
valence-electron CP’s and the directional differences of the CP’s exhibit considerable deviations from the most
recent density-functional calculations, performed by Saketail. [Phys. Rev. Lett74, 2252(1995] within
the limits of the local density approximation. These discrepancies are attributed to self-energy effects con-
nected with the excitation of so-called plasmaron modes. The three-dimen&@havalence-electron mo-
mentum densityp(p), as well as the 3D occupation number dengitik), were reconstructed using the
Fourier-Bessel method. The reconstructgp) exhibits clear evidence of higher momentum components due
to 110 umklapp processes. The reconstru®ékl) enables a direct experimental access to the Fermi-surface
anisotropy of Li, which was found to be 3:@..1%. The reconstructed(k) for kil [001] was fitted to a model
with the renormalization factorz as the only free parameter, which was found to be0.1+0.1.
[S0163-182806)07843-3

[. INTRODUCTION so that a momentum-space resolution of the order of 0.1 a.u.
and, at the same time, a high statistical accuracy by using
Since early studies by DuMorldt is well known that the  highly penetrating x rays could be obtain€d® This way,
measurement of the spectral distribution of the Dopplerdetails of the electron momentum densities of simple metals
broadened Compton shif€ompton profilesyields informa-  and alloys:’~*° not accessible iny Compton studies, could
tion about the electron momentum distribution of the scatterbe resolved, and were discussed in terms of Fermi-surface
ing system, provided the conditions for the so-called impulsdeatures. For L8 the anisotropy of the Fermi surface was
approximation are met, as formulated by Eisenberger andetermined by looking at the behavior of the second deriva-
Platzmar?. The first pioneering Compton profile measure-tive of the directional Compton profiles, although the inter-
ments(see, e.g., Refs. 1 and &ere done by using conven- pretation of the data needed some support from calculations
tional x-ray sources and crystal dispersive analysis, endingresented together with measurements. Moreover, high-
up with a momentum space resolution of the order of 0.2 a.uesolution Compton profile measurements on (Bef. 17
(a.u=atomic unitsai=e=m=1), but with relative poor sta- and Li (Ref. 18 metals have revealed discrepancies, when
tistical accuracy, so that only investigations on I@wele-  they were compared with calculations, performed within the
ments could be performed, for example Compton measurdimits of the local-density approximatioflLDA) and cor-
ments on single crystal Li met&lThe improvement of the rected with respect to correlation by using the Lam-Platzman
energy resolution of solid-state detectors enabled measurechemé® These discrepancies can certainly be attributed, at
ments of Compton profiles using monochromatieray  least in part, to inadequacies in treating correlation, when
sources with photon energies between 60 and 600 keV, firgtalculating the electron momentum densities and Compton
introduced by Eisenberger and Reée@his way a rather profiles. But part of them could also arise from difficulties
good statistical accuracy could also be obtained for Zigh- with handling background in the course of data processing,
elements. But even by using high-performance solid-stater could be removed by going beyond the impulse approxi-
detectors and very high photon energies, th&Compton  mation.
technique could not achieve a better momentum resolution Therefore, we decided to measure independently a set of
than 0.45 a.u. Nevertheless, a large number of systems hadé@ectional Compton profiles of Li with 0.14-a.u.
been investigated during that era efCompton scattering, momentum-space resolution, in order to attack the following
for a review see Ref. 6. Moreover, some steps were donproblems:(i) 3D reconstruction of the electron momentum-
made toward a better understanding of the information conspace density together with corresponding error maps in or-
tent of Compton profiles by considering the properties ofder to find unambigously location and strength of higher mo-
their Fourier transforms (so-called reciprocal form mentum componentsii) measurement of the Fermi-surface
factors,”~® and toward a more informative representation ofanisotropy, free from any models or any help from theoreti-
experimental results by utilizing methods for reconstructingcal calculations, by using a 3D reconstruction scheme for the
the three-dimensionaBD) momentum density"'* and the  occupation number density(k); (iii) fitting of the recon-
3D occupation number density in Blodhspace®!®Only  structed occupation number density to different models of
the advent of strong synchrotron radiation sources with phoeorrelation-induced reduction of the discontinuityMfk) at
ton energies between 20 and 60 keV made feasible th#he Fermi momentum, in order to test, to what extent current
crystal-dispersive energy analysis of the scattered radiatiortheories of correlation effects on momentum space densities
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can account for the experimental results; &mgla search for Under the conditions of the impulse approximafigthe

a semiquantitative explanation for discrepancies between thieansferred energfiw must be large compared with charac-

Compton measurements and LDA Compton profile calculateristic energies of the scattering system, and must be

tions on the basis of experimental results, by taking intosmall compared with the interparticle distapcéhe double-

account self-energy effects of the inelastic scattering procesdjfferential scattering cross section is connected with the

which provides the information on Compton profiles. electron momentum density(p) of the scattering system,
One very important reason for choosing Li metal as a testvhere this relation in the nonrelativistic limit reads

ground was the availability of highly sopqiifticated LDA-

based momentum density calculations on-Liyvhich can _

serve as a reliable reference. According to the program a8’ ol dw,dQ=(do/dQ)(2m) 3J dp p(p) [ (%%g?/2m)

sketched above, the rest of the paper is organized as follows:

In Sec. Il the fundamental relations are presented, which are —(hq-p/m)—f]. (4)

used to find an appropriate interpretation of the Comptonrye integral on the right-hand side of E@) contains the
data, and to perform both the 3D reconstruction of the elecprojection of the momentum densiiyp) on the scattering
tron momentum space densities from a set of dlrectlona\llectorq_ If q points in thez direction of momentum space,

Compton profiles, and the 3D reconstruction of the occupagne can perform the integration in E@) ending up with
tion number density of the Block space. In Sec. Il the

Compton experiment itself together with the various steps of

data processing are demonstrated. In Sec. IV the results of Li f dp p(p) & (fi*q?/2m) — (hq-p/m) —fiw)]
Compton profile measurements are shown in the form of

total valence Compton profiles and of directional difference

Compton profiles, in every case confronted with correspond- :(m/ﬁQ)J f p(p)dp,dpy=(M/%q)J(p,), (5
ing LDA calculations. In Sec. V we show the result of the )

3D reconstruction of the electron momentum densities towhere, by using Eq(1),

gether with the corresponding error maps, and in Sec. VI the

reconstruction of the occupation number denditgk) in P,=d-p/q=(%0/2) — (em/q) = —mc{[fiw,~r w;
Bloch k space, together with the determination of the Li — (42 /M) (1= cosH) VT 72w 2+ 7 2w-2
Fermi surface anisotropy as directly deduced from the recon- (A%wy0 ) NI w0 @2
structedN(k). Section VI offers the results of fitting jellium — 22w w,c099]Y3. (6)

models of N(k) with varying renormalization constant the i

experimentalN(k). Section VIl is devoted to a critical in- We call Jgpz) the Compton profile. It has been shown by
spection of the Compton-scattering process in terms of se|ﬂR|berfor§ that, even in the relativistic case, one can faqtor-
energy effects, which offers a semiquantitative explanatiodZz€ the DDSCS int@,-, w;-, and w,-dependent relativistic
of discrepancies between measurements and LDA calcul&r0SS sectiongsee Ref. 22 for the explicit expressjomhich
tions, and which sheds light on how to proceed with an im-2kes the place of the Thomson cross section in @g.

proved interpretation of Compton data. Finally in Sec. VIII multiplied by the Compton profile. How experimental results
we provide conclusions. can be influenced, when going beyond the impulse approxi-

mation, has been explicitly discussed in Ref. 23. As shown
by Holt and Ribberfor$? corrections to the impulse approxi-
mation, first order with respect tod,/lead to asymmetries in
The goal of inelastic x-ray scattering experiments is thethe Compton profile with respect f,, when these are ex-
measurement of the double-differential scattering cross sedracted from the DDSCS according to E¢4)—(6). Issolah
tion (DDSCS dzg'/dwde for a given momentum transfer €t al? gave expressions for the deviation of the maximum
values of these Compton profiles compared with those cal-
g=K;—K,, |q|=2|K4|sin(6/2), (1)  culated on the basis of the impulse approximation. In what
follows, we will use expressions, given in Ref. 23, in order to

whereK, andK; are the wave vectorsy, and w, are the  ogimate the influence of these deviations from the impulse
frequencies of the incident and the scattered photons, respe,

! . ) S ' P CSPE&Hproximation on our results.
tively. 6 is the_spa_ttenng anglg. Within the limits of a first- * 1ha momentum density(p) of an inhomogeneous system
order nonrelativistic perturbation treatment and by neglect

) X x can be expressed in terms of electron field oper t),
ing the p-A term (A vector potential operatprin the P peraidrst)

II. BASIC RELATIONS

interaction Hamiltonian, the DDSCS is related to the dy-
namical structure factd®(q,w) of the scattering electron sys- p(p)=(277)_3f drj driexdip-(r—r")]
tem byt
X(¥*(r,00w(r’,0)), (7)
d20/dw,dQ = (da/dQ)1,S(q, »), 2

) ~ where() means the thermal average for the systeniNof
where @o/dQ)q, is the well-known Thomson scattering electrons in the volum¥ of the crystal. We expand the field
cross section, and operators in Bloch waves,

ho=h(w,—w,) €©)]
t VD=3 S a0, ®

is the transferred energy.
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ay , annihilates an electron with wave vectom the bandv. )
The Bloch wave functiong, ,(r) can be expanded in B(0,02)= | J(pexp—ip,2)dp,, (14)

plane waves according to ) o )
if the z axis in real space is assumed to be paralle].tdhe

T . Fourier-Bessel method of reconstruction is based on the ex-
b 1) =V EG: a,(k+G)exdi(k+G)-rl. (9  pansion ofB(r) into lattice harmonics(6,¢),2” via

G is a reciprocal-lattice vector. The electron momentum den-

sity can then be written as follows: B(r)=2| bi(r)Fi(6,9). (15
_ * 0 and ¢ are the angular variables of For reconstructing
p(P) VEV: zk: 2(;: Mo (ke (k+ G)a, (k+G) p(r) we need the coefficients,(r) for as many lattice har-
monics as can be extracted from experiment. Let their num-
X 8(k+G—plh); (10) ber beN. If we have measured a finite set of directional
N Compton profiles of dimensiotM, N must obeyN<M,
N, (K)=(ay (0)a,,(0)) (11 since theb,(r) are obtained by solving the following system

can be interpreted as the mean occupation number density 8f linear equations:

Bloch states, where the nondiagonal elements of the occupa-

tion number density are due to mixing betv_veen different B(r)=2>, by(r)F (6,4, i=1,...M, (16)
bands caused by electron-electron interaction. Moreover, 1

electron-electron interaction gives rise to deviationa gfk) h h . diff | i di
from unity and zero, respective.In what follows we will ~ Where the sum is ovel different values of, according to

consider cases where the nondiagonal terms of the occupgle symmetry of the lattice under investigation. Because of
tion number density are neglected, which possibly could b a. (,14)’ o and_qb, are the angular varla_bles of tINsdlffer-
justified for alkali metals, as was shown by Lundquist angENtd's of the directional Compton profiles. If we write Eg.
Lyden® (16) in the form of a matrix equation

Equation (10), together with Eq.(5), tells us that the
Compton profile of solid-state electrons is determined, on
one hand, by the occupation number density, and, whenevee gbtains, foiM >N,
one can neglect its nondiagonal elements, by the shape of the
Fermi surface in the case of metals. On the other hand, the b= (F'F) 'F'B, (18)
Bloch-wave functions, represented by their plane-wave ex-
pansion coefficienta,(k+G), fix the shape of the Compton and, forM=N,
profile. According to Eq(10), the contribution of theGth
plane-wave expansion coefficient #@) is centered a6 in b=F"'B. (19
momentum space, where tl@&#0 contributions are called
higher-momentum component$IMC's). Like the Fermi
surface aroun@ =0, the Fermi surfaces around tkgs (so-
called secondary Fermi surfagesill also produce disconti-
nuities ofp(p) in the case of metals, which should also pro- p(p)=(1/87%)> f dr b(r)F,(6, ,¢,)exp(ip-r)
duce discontinuities in the first derivative of the Compton [
profiles according to Eq5).

By evaluating Compton profiles obtgined from single- :z pI(P)FI(6p, ),
crystal samples for a larger number of different orientations [
of q (directional Compton profilgsone can reconstruct both
p(p) in 3D momentum spadgee, e.g., Ref. J@nd, neglect- a o [ ) 5
ing the nondiagonal elements of the occupation number den- pi(p)=(i"12m )fo by(r)ji(prjr=dr, (20)
sity, the function

B=Fb, (17)

Using this set ofb,(r), we obtain p(p) reconstructed by
means of the inverse Fourier transformBif) according to

wherej (pr) are spherical Bessel functions.
N(K) =S n,, (k) (12) It was pointed out by Hans&hthat the quality of the
V reconstruction depends not only on the number of contribut-
ing directional Compton profiles but also on the way how the
corresponding directions of the scattering veciprare dis-
tributed in the irreducible triangle of their stereographic pro-
jections. Both high-symmetry directions and a nearly equal
distribution of the remaining directions within that triangle
are crucial, as one can demonstrate by means of an error
B(r)= f dp p(p)exp(—ip-r), (13 propagation analysis, which is presented in Appendix A. The
3D reconstruction oN(k)=X n, (k) rests on the fact that, as
so that, according to Ed5), B(0,0,2) is obtained from the can be shown easilfthe values of the reciprocal form factor
1D Fourier transform of Compton profiles: B(r) at a lattice translational vect® is given by

in the repeated zone scherf®:2® We will apply the so-
called Fourier-Bessel methtftfor this purpose, which uti-
lizes the properti€sof the so-called reciprocal form facfor
B(r), which is the Fourier transform gf(p),
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BR)=(87V)Y S S n,, (K)a,* (k+G) [t11]
v G K
X a,(k+G)expik-R), (21
where thek summation is over the whole Brillouin zone.
Neglecting the nondiagonal elements of the occupation num-
ber density and utilizing the normalization of the Bloch
waves, we obtain .
B(R)=(873/V) >, N(k)exp(ik-R). (22) .
k
Thus we can calculatd(k) in the repeated zone scheme by
means of the following Fourier expansion: (100] « [110]

3 . FIG. 1. Irreducible orientation triangle of cubic symmetry; mea-
N(k) = (Vo/8m ); B(R)exp(—ik-R), (23)  sured directions of| are represented by points.

whereVj is the volume of the elementary cell. This way we |n order to minimize scattering from the analyzer crystal,
can 3D reconstrud(k) by using in Eq.(23) the reciprocal  which contributes to the background of the Compton spectra,
form factorB(r), as reconstructed according to E§if). This 3 slit is mounted at the position of the smallest diameter of
way, the reconstruction df(k) is on the same footing as the the beam trajectories between the analyzer crystal and detec-
reconstruction ofp(p). The error propagation of thBl(k)  tor.
reconstruction is shown in Appendix B. It should be men- The Li Sing|e Crysta| was a p|ate with an area oaf%mrnz
tioned that thisN(k)-reconstruction method is analogous to and 6 mm thick, mounted on a goniometer in order to bring
the application of the so-called Lock-Crisp-WedtCW) it into different orientations with respect . Besides the
theoren?® often used in angular correlation measurements Obrincipal directions[100], [110], and [111], another eight
2-y radiation from positron annihilatiotACAR) done in  directions were measured, equally distributed over the irre-
order to obtain Fermi-surface information. ducible orientation trianglgsee Fig. 1 The Li sample,
Even if we cannot neglect nondiagonal elememfs(k)  which was stored in water-free parafin oil, was cleaned from
of the occupation number densi(R) contains very useful parafin by heptan, then etched by highly pure methanol to a

information, as shown in Appendix C, namely, metallic luster and again cleaned by means of xylol. After
this treatment the sample was mounted immediately in the

B(R)=87732 P explik-R), (24) scattering chamber, which was evacuated t_(‘)SJIﬁbar._Af-
3 ter the measurement the sample had kept its metallic luster.

In each of the 11 directional Compton profiles P
counts were collected. A signal-to-background ratio of 40:1
could be achieved, where the main contribution to the back-
ground is due to scattering from the analyzer crystal, from

the air-path between analyzer and detector, and from the Al-
p—E(lN)J p(r)dr=> 7, (250 detector window.
K The goal of the data processing is to extract the Compton
so that profile J(p,) from the measured intensity distributidfx),
wherex is the linear position on the detector.Uf(x) is the

i background, and(p,) the multiple-scattering contribution,
W:(UBWSN)ER B(R)exp(—iR-k). (26 the following relation holds:

wherepy, is the total contribution of all Bloch states, belong-
ing to the samé, to the spatially averaged electron density,
according to

Il EXPERIMENT AND DATA PROCESSING J(pA))+M(p(i))=CFEM)N ()= Ux(i))]. 7
The Compton measurements were performed at the

Compton beamline of HASYLAB(Hamburger, Synchro- i stands for the channel number of the Ge-strip dete€ias,
tronstrahlungs labgrdescribed in detail in Ref. 16. Synchro- a normalization constant, arfé(E) contains the following
tron x-rays from the HARWI-Wigglérof the DORIS storage  energy-dependent corrections.
ring are monochromatized by a &11) double crystal to 31 (i) The energy calibration of the detector. This is done by
keV, and sagittally focused to a spot 0k8 mnt on the replacing the scattering sample by samples whosandK ,
sample. Radiation scattered l#=155° is energy analyzed fluorescence lines are between the primary energy of the ex-
by means of a cylindrically bent @00 Cauchois-type crys- periment and the maximum Compton shift recorded.
tal, so that the complete spectrum can be recorded simulta- (i) The correction with respect to the individual effi-
neously by a position-sensitive Ge-200-strip detéCttrip  ciency of the each strip of the position sensitive Ge detector,
width 200 wm, strip distance 4Qum), where each strip is measured by illuminating the detector with Bg, radiation
connected with its own chain of preamplifier and amplifier.from a soure 1 m away from the detector.
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(i) The absorption correction, where the energy-from the detector surfaggroduce a nonlinear background,
dependent absorption of the samfilehe Be window of the  which cannot be measured independently, we have combined
scattering chamber, the air path, and the Al-detector windowbackground subtraction and Compton profile normalization
were taken into account. in the following iterative procedure, with the aim of obtain-

(iv) The scale correctiondE/dx) ~* since one is measur- ing empirical values of the nonlinear background on both
ing the double-differential scattering cross sectionsides of the valence Compton profile, which could then be
d?g/dQ dx and notd?c/dQ dE. Only the latter one is di- extrapolated into th@, range of the valence Compton pro-

rectly related to the Compton profile according to E4). file.
(v) The correction with respect to the energy dependence We use Eq.(27) to calculateU(i) for that part of the
of the relativistic scattering cross section. Compton profile(p,< —pg or p,>p,), where only the core

(vi) The correction because of the energy dependence @fectrons are considerably contributing to the total profile,
the analyzer crystal reflectivity, which was approximated by . ) N . .
means of a layer model, as proposed in Ref. 16. U(@i)=1(1)—[CFE®I))] TIcordP2(1))+M(p(i))].

The multiple-scattering contributioM (p,) was calcu- (28
lated by means of a Monte Carlo simulation written byHere we use normalized core-electron Compton profiles,
Sakai®! For each simulation the path of A@hotons was J.,{Pp,), as calculated for free atom$assuming the influ-
followed. The relative portion of double scattering comparedence of the solid state ah,, to be neglegible. The normal-
to single scattering was 2.7%, in good agreement with calization constanC can be obtained from the normalization
culations of Paatero and Halon&nThe contribution of convention for Compton profiles,
triple scattering could be neglected.

According to Eq(23), background subtraction had to pre- f*”‘](p )dp,=Z (29)
cede the energy-dependent corrections. But this procedure is w L ETEE
only practicable if either the background is known from an
independent measurement, or the background can be a‘é
sumed to be linear and can thus be extrapolated ugixy +Po +p
values at energies larger than the primary energy on one side f J(P)dp,=Zyat f
of the Compton profile and much smaller than the Compton
shift on the other side. Since the air path between the andarom Egs.(28) and (30), we obtain the normalization con-
lyzer and detector and the detector windd® mm apart stant

is the number of electrons per atom. Thus we obtain

0
Jeord P2)AP; . (30

—Po —Po

+

+Po
C= Zval"'f Jcore(pz)dpz+f

-Po

p°M<pz>dszH p°F<E<i>)[|(pz<i>>—U<pz<i>)]dpz]. (31)

Po

Equations(28) and (31) were considered as a system of p,=1 a.u., and can be completely neglected [igr-2 a.u.
coupled equations fdd (i), which were solved iteratively by Therefore, the fitting of core profiles in the range 7
least-square fitting of a fourth-order polynomial ta(i)  @U<|p,/<2 a.u.is not influenced by the asymmetry. How-
within' [=Pmin.—Pol and [Po.Pmad, respectively with —€Ver, we defined the zero point of the scale as coinciding
Prmin=Pma—"7 a.U. andp,=2 a.u. The iterative process was with the peak position of the total profile. This is correct only

stopped, when self-consistency with respect of the constarﬁ?r symmetric profiles. Hence an asymmetric core profile

) s ; . - _can, in principle, lead to an error in fixing of thg scale.
C with AC/C=<10 ~ was achieved. Since the scaitering Because of the rather small asymmetry of tisechre Comp-

angled of the experimental setup was not exactly known, Wey,, nrofile; this error turned out to be onfy0.003 a.u., and
let 6 be a free parameter. After having completed the above g pe neglected. Taking into account the smaliness of this
iterative process, using=155°, we determined the peak po- grror, the fictitious asymmetry of our valence Compton pro-
sition of the total Compton profile on the energy scale. Fromyje which is produced, since we have subtracted a symmet-
this peak position we calculated another value of the scattefic core profile from a total profile, which is, in reality, asym-
ing angled, by using the relativistic counterp&iof Eq. (6).  metric, will not influence further physical deduction, since
This value was used in a second round of the above iterativghey all are based on averaging te<0 and thep,>0 con-
process, and we proceeded until the shift of the Comptomributions to the valence Compton profile. Using the relations
peak position became smaller than one one-thousandth of th Issolahet al,?® we estimated the difference of the Ls1
momentum space resolution of the experiment. Compton profile maximum between the impulse approxima-
We estimated the influence of deviations from the impulsdion (hydrogenlike wave functions are used only to describe
approximation, as discussed in Ref. 23, on the evaluatiothe initial stat¢, and calculations, where hydrogenlike con-
procedure given above: According to relations of Holt andtinuum wave functions are additionally utilized to account
Ribberfors? the asymmetry of the Li 4 core Compton pro- for the final state. Under our experimental conditions, this
file, defined as J(p,) —J(—p,1/J(0), has, under our ex- difference was calculated to be only 0.2%, so that it could be
perimental conditions, a maximum value of 0.9% aroundneglected.
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FIG. 2. Total valence-electron Compton profiles of Li for ¢ j
gl[110]. Experiment: Points connected by a solid line: LDA calcu- &, 0.05 |
lated. Correlation correcte@Ref. 20: dashed line. & i
|
The total momentum-space resolution of the experiment % 0.00
was calculated ta p,=0.14 a.u. by using a relation as given 2
in Ref. 16, where the total energy resolution of the spectrom- & -0.05 - .
eter is determined mainly by the lateral resolution of the
position-sensitive 200-strip Ge deteci@d eV) and by the o0
energy resolution of the monochromat@7 eV), whereas 0.0 0.5 1.0 1};5 (a io) 2.5 3.0

the reflection width of the analyzer and the influence of the

analyzer bending could be neglected. This calculated energy )

resolution is, within the experimental error, in agreement F!G. 3. Difference between LDA-calculated and measured
with the full width at half maximum(FWHM) of the elasti- Valence-electron Compton profiles:----) gl [110]; (—) qll [100];
cally scattered line. The finite angular width of the incident(~~ ) dll [111]. (& LDA without correlation correction(b) LDA
and of the scattered radiation is of negligible influence. AIIWlth correlation correction according to Ref. 20.

theoretical Compton profiles shown in what follows are con-

voluted with a Gaussian whose FWHM is equal to 0.14 a.ucalculatlons[(a) without and(b) including correlation correc-

tion according to Ref. 2Dare plotted for differenty direc-
tions. An orientation dependence outside the experimental
IV. RESULTS error is evident, and seems to be due to the fact that the
theory generally overestimates the contributions of the sec-
ondary Fermi surfacesee Sec. I, Eq(10)] to the direc-
Figure 2 shows the Li valence-electron Compton profiletional profiles. This is demonstrated in Fig. 4, where, within
of Li after subtraction of the core contribution foi110], each secondary Fermi surface of the type 110, regions are
where the data points are the result both of averaging thkatched which contribute strongly to the momentum density,
p,<0 andp,>0 contributions and of interpolating on tile  due to a large strength of the relevant umklapp processes:
grid of the experiment. The relative error@t=0 is 0.27%, The hatched regions of altogether six secondary Fermi sur-
and cannot be represented in form of an error bar. Togethdaces contribute to thgl11] directional Compton profile at
with the experimental data, LDA theoretical calculatitns p,=0 (sectionAA’ through the momentum space, perpen-
are plotted, which were correlation correc®dnd convo- dicular to the[111]-direction in Fig. 4, whereas only two
luted with the experimental resolution. The discrepancy beeontribute to th¢110]-profile atp,=0, so that the difference
tween calculations and experiment is far from the experimenbetween theory and experiment @t=0 in Fig. 3 is maxi-
tal error, in spite of the fact that in the higher momentummum for the[111] directional profile and minimum for the
region, which represents the contribution of the core othogof110] directional profile. Aroundp,=0.4 a.u. the relations
nalization to the valence-electron Compton profile, theinvert. Now the hatched regions of four secondary Fermi
agreement is quite satisfactory. In that region the experimersurfaces contribute to tHa 10| profile (dashed sectiob D’
tal results of Ref. 18 disagree systematically with the LDAIn Fig. 4), whereas no hatched region is involved fid1]
calculations, possibly due to an incomplete allowance for grofile (dashed sectioBB’), so that the difference between
nonlinear background. As a consequence, the overall digheory and experiment gi,=0.4 a.u. is maximum for the
crepancy between calculation and experiment is also largdd10] profile and minimum for thg¢111] profile. In Sec. V
in Ref. 18 than in our results. In Sec. V we provide an ex-we propose a scheme which may qualitatively explain the
planation for the remaining discrepancy in our experimentreason for this overestimation of the contributions of the sec-
referring to a many-particle treatment of the Compton-ondary Fermi surfaces in the theoretical calculation. As a
scattering process. consequence of this general phenomenon the directional dif-
In Fig. 3, the difference between the experimental totaferences, as shown in Fig. 5, also have larger amplitudes in
directional Compton profiles and the corresponding LDAthe LDA calculations than in the experiment, whereas the

A. Total Compton profiles, difference profiles
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FIG. 4. Projection of the primary and the 12 110-type secondary
Fermi spheres of Li on thél10) plane. The hatched regions of the N ' . .
. . _ FIG. 5. Directional Compton profile differences of Li. Upper
secondary Fermi spheres are strongly occupied due to umklapp proanel:[llo]-[lll]. Lower panel{110}-[100]. Points: experimental

cesses at the 110-type Brillouin-zone boundaries. The solid lines a S . . )
) Co : ata. Solid line: experimental data obtained by averagingiked
traces of the planes of integration m space corresponding to ) .
and p,>0 parts of the Compton profiles. Dashed line: LDA-

=0: the lineAA’ for qgl[111], the line parallel to th¢110] axis . . ) . .
prZr qI[001]; and the Iing ;Earal]lel to thEQOpl] axis forqll?llo]]. The calculated directional differences of Li Compton profiles.
dashed !ines are traces of th,e planes of integratiqm $pace cor- same applies to the peak midw&P. The peak ofAp(p)
Begeigflgﬁlt%__o'd' a.uBB" for qi[111}, CC" for qi[001], and nearN within the fi_rst Brillou_in zone can be. attribufced to the

bulge of the Fermi surface in tH&10] direction, which will
. . e analyzed in more detail in connection with the reconstruc-
experimental zero passages and peak positions agree quﬁgn of the occupation number density in Sec. IV C. The
well with the calculations, thus indicating a proportional re—depression in th&H direction neap,. can be attributed fo a

duction of the secondary Fermi surfaces’ contribution. flattening of the free-electron Fermi sphere in f460] di-
rection(see Sec. IV € The second peak neb, outside the
B. 3D reconstruction of the momentum density first Brillouin zone, is a clear indication of a higher-

By using 11 directional Compton profiles, we recon momentum component due to the secondary Fermi surface

X > “centered aiG;,,. As shown in Fig. €); the double-peak

structed the 3D momentum dens according to Egs. 110 . ’ :

(13—(20), where the profiles Werewiyrﬁ)t)erpolated %n an qequi_structure ofAp(p) near theN point as well as the depression

distant p ' scale (Ap,=0.025 a.u, and B(2) values up to in the I'H direction nearp are also found, when the 3D

; —3OZa U were Ztakén into. a.’ccount The limitina value reconstruction procedure is applied to 11 LDA-calculated di-

zmax_was c.hé)sen such thaB(z,,.)| =0 .where og isgthe rectional Compton profilesRef. 18§ (convoluted with the

max e max’|==~B . ; experimental resolutignwith the sameq orientations as in

standard deviation dB(z). In order to call special attention the experiment. Traces of theg@10) higher-momentum

to th_e physi(_:ally interesting anisof[ropy Qf the momentumcomponents were also found in 2D ACAR measurements of
density, in Fig. 68 we plot the anisotropic parp(p) of Oberli et a3

p(p) in the'NPH plane in the form of a level diagram by '

subtracting thd =0 contribution in Eq.(20). Additionally,
the corresponding error map ap(p) is plotted in Fig. &b),
calculated according to relations given in Appendix A. One
can easily verify that the only structures &dp(p), which are We also performed a 3D reconstruction of the occupation
clearly beyond experimental error, are the double peakumber densitN(k) in the repeated zone scheme according
around the(110 Brillouin-zone boundary near thd point,  to Eqg.(23) by using the interpolated values Bfr) as ob-
and the depression in tHeH direction neampg (0.58 a.u).  tained in the course of the(p) reconstruction. The result is
The strong oscillatory behavior @p(p) between 0 and 0.4 plotted in Fig. 7a) for the TNPH plane in the form of a
a.u. alongl’H seems to be an artefact of the reconstructiorlevel diagram. In Fig. (), the error map of the 3D recon-
procedure, since the oscillation amplitudes are of the samstruction of the occupation number density is plotted, as ob-
order as the error in this region of momentum space. Theained by means of relations given in Appendix B.

C. 3D reconstruction of the occupation number density
and of the Fermi surface
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The level-line distance is 0.1 a7. The trace of the Fermi surface,
as defined by Eq(393), is the dotted line. The dashed line is the
..... Brillouin-zone boundary(b) Error map corresponding t@). The

0.2f . 1 level-line distance is 0.005 a:tF.
8 . /\L/—\
$ e‘§

S8a 3 . . .
0.0 ',09 i ?m: m 1 © In the case of a monovalent metal like Li, the Fermi sur-
oo oz  os  oeN oz 10 face can be deduced from the reconstrudti¢kl) by making
pl[110] (au) use of the fact that the surface
FIG. 6. (a) Level diagram of the anisotropic pakp(p) of the Li N(k)=const=c, (32

momentum density in thél10) plane, 3D reconstructed from the
experimental directional Compton profiles. Solid lines: positive val-which defines the Fermi surface, has to enclose the volume

ues of Ap(p); dotted lines: negative values Ap(p); level-line dis-  of the corresponding free-electron Fermi sphere with radius
tance: 0.005 a.u?; dashed line: Brillouin-zone boundarip) Error Keo:

map corresponding t@); the level-line distance as i@). (c) Level

diagram_of the anisotropic patkp(p), of the Li momentum density 4 13

in the (110) plane, 3D reconstructed from the LDA-calculated di- f dk=37kg,, (33
rectional Compton profiles; level-line distance: 0.02 Zpall else, N(k)=c

see the legenh). where
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procedure of the occupation number density produces an ar-
[110] [“‘1] [001) tificial additional anisotropy oN(k), which can be estimated
the following way: We performed the 3D reconstruction pro-

Li cedure by using, instead of the 11 measured directional
-~ Compton uncorr. Compton profiles, 11 identical profiles, namely, the orienta-
raes TR Gorrsted tion averages of the directional profiles. In spite of starting
"""" non-local theory (Ref.35) with an isotropic distribution one ends up with a certain an-

isotropy of N(k), due to the fact that we have pressed the
anisotropic crystal symmetry of the bcc lattice upon the iso-
tropic momentum-space distribution. Since the whole recon-
struction procedure consists of linear operations, this artifi-
cial anisotropy can be subtracted from the long-dashed curve
in Fig. 8, ending up with the solid curve of Fig. 8, which
represents the Li Fermi-surface anisotropy. The error bars in
Fig. 8 are based on the error maphfk), as shown in Fig.
O(degrees) 7(b). In Fig. 8, we have also included the 2D ACAR results
_ _ _ _ of Oberli et al** and the calculations of McDonafd which
FIG. 8. Anisotropy of the Li Fermi surface as defined by Eq. ;564 nonlocal exchange and correlation terms in their mass-
(35). Long-dashed line: uncorrected data taken from the 3D recon: perator formalism. Both are in excellent agreement with our
struction of the occupation number density using the experiment easurements. But it must be stressed that our result has
directional Compton profiles. Solid line: data from the 3D recon-been directly derived from the reconstructed occupation
grumion’ bult Coggczeg Av;ith respect fo a Sy?tg?:atli.cl QHRM; tgxl number density distribution and, that we have not used any
en triangles: measurements o etlal. (Ref. ) . ! . . .
shport-dashgd line: nonlocal calculations of MacDor(zR(df. 353.ZD parametrlzed ’.“Ode' of the mome”t”m distribution or the
Fermi surface in order to obtain the shape of the latter, con-

(@) °/,

Keo=(372n,) 3 (34) trary to the procedure for obtaining the 2D ACAR results,
FO e where the Fermi radii were the result of comparing the first
andn, is the valence-electron density. derivative of the 2D ACAR curves, with corresponding

The trace of the Fermi surface in tlie&N PH plane, deter- curves deduced from a parametrized model of the Li momen-
mined this way, is marked in Fig(@ by a dotted line. This tum density. Moreover, these procedures are based on the
way the Fermi radius can be determined for arbitrary direcso-called LCW theorerff which has only a very limited
tions in Bloch wave-vector space. We characterize theapplicability for positron annihilation due to the influence of

Fermi-surface anisotropy by the following parameigk): the positron wave function, which is not taken into account
R R in the LCW theorem.
7(k)=10q (Kg(k) —Kgg)/Kgol, (35 The comparison of our experimental Fermi-surface an-

isotropy with additional experiments and calculations of
other authors is presented in Table |, where we used the
parameters, defined by

which is plotted in Fig. 8 as a function of the andlebe-
tweenk and the[110] direction in the(110) plane. The long-
dashed curve is directly deduced from E(#2)—(34) using
the reconstructed occupation number density. But this result

still contains a systematic error, since the 3D reconstruction 6=10(0 (kg(110 — kg(002))/ keo], (36)

TABLE |. Maximum Fermi-surface anisotropy of Li in experiment and theory.

Reference Method (%)
This work Compton scattering 36l.1
Oberli et al. (Ref. 39 2D ACAR 2.8+0.6
Hunt, Reinders, and Springfof@&Ref. 39 dHVA 4.8+0.3
Randles and Springfor(Ref. 37 dHVA 2.6+0.9
Sakuraiet al. (Ref. 18 Compton scattering 441.0
Rajputet al. (Ref. 40 2D ACAR 4.7+0.2
Donaghy and StewartRef. 38 1D ACAR (long slit) 5.0
Paciga and WilliamgRef. 39 2D ACAR (rotating specimen 2.9
Rasolt, Nickerson, and Voskd&ef. 41) orthogonalized plane wavéOPW) LDA (local) 5.5

theory

OPW (nonlocal mass operator 1.4
MacDonald(Ref. 39 linear augmented plane-wayeAPW) LDA (local) 6.0

theory

LAPW (nonlocal mass operator 3.7
Sakuraiet al. (Ref. 18 Korringa-Kohn-Rostoke(KKR) LDA (local) theory 5.6

Rajputet al. (Ref. 40 KKR LDA (local) theory 5.6
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in order to describe the maximum deviation of the Li Fermi 1.0

surface from sphericity. Our results on the asphericity of the Jeseooeem

Li Fermi surface agree, within the experimental errors, with :\”M&“\\
other Compton measuremenfsyith the 2D ACAR results 0.8
of Oberli et al,* and also with the de Haas—van Alphen ]
measurement®;®” where the latter were performed in a
polycrystalline state on small clusters in order to supress the
Martensitic transition, so that the Fermi-surface anisotropy
could not be obtained directly. The early long-s{itD)
ACAR measuremefit does not contain error bars, and may
suffer from the double integration in momentum space.
Moreover, the evaluation of this experiment did not include
corrections for the anisotropy of the higher-momentum com-
ponents. Those corrections were performed in the rotating-
specimen ACAR experiment of Paciga and Willigthshich
reduced the Fermi-surface anisotropy by a factor of 1.6. Only
the 2D ACAR results of Rajpuet al*® seem to deviate sig-
nificantly from all the other experimental results. Neverthe-  F|G. 9. Squares: model occupation number denbifk) ac-
less, details of the procedure used by the latter authors tgording to Eqs(37) and (38) with z=0.713. Solid line:N(k) cal-
obtain the Fermi-surface asphericity are missing, so that it isulated by Takada and YasuhgRef. 45 for r,=3.0.

difficult to come to a final judgment. Concerning the calcu-

lations of the Li Fermi-surface anisotropy, one can find athe appearance of nondiagonal terms/(k), as mentioned
general trend: When compared with the average experimeria Sec. Il has not yet been proved by corresponding calcu-
tal results, all calculations using a local approach, when hanations of the spectral density functions. Therefore, in order
dling exchange and correlation within a density-functionalto confront the occupation number densities of the various
scheme, seem to overestimate the Fermi-surface asphericitjieoretical treatments with the experiment, we were left to
whereas the nonlocal approaches fit the experiment mucihe jellium results ofN(k). For that reason we constructed
better. This fact was first stated by Rasolt, Nickerson, andhe following modeIN(k), which contains as a single pa-

N(k) r,=3.0

0.6 -

calc. Ref.45
model

uuuuu

N(k)

0.4

0.0 1

Vosko?! and were confirmed by MacDonald.Therefore, rameter:
the rather high values of, found in the most recent calcu-
lations of Raijputet al*° and Sakuraét al'® may also suffer (1-a)—%(1-a-2)(k/ke)® for k<kg
from local treatment of exchange and correlation. N(k)=y , 8 for k>k
The direct access to the occupation number demsik) 2(1=a=2)(ke/k) F ’(37)

by the 3D reconstruction method applied to directional
Compton profiles offers a unique possibility to test the theowherea is determined by the normalization condition
retical treatment of exchange and correlation in calculations
of N(k). Those calculations have so far been done only for
homogeneous systems, by Daniel and V&8keithin the
limits of the random-phase approximatiéRPA), by Lan{?
including some of the exchange terms, by Overhddses-  toa=Z(1—z). How well this model fits most recent calcu-
ing his plasmon-pole model together with a local-field cor-lations, is shown in Fig. 9: Our model is plotted against the
rection of the static dielectric function, by Larffanakinga  N(k) of Takada and Yasuhdfafor r =3, wherez=0.713
Fermi hypernetted-chain calculation, and by Takada andsee Fig. 4 of Ref. 45

Yasuhar® applying an effective potential expansion to- By using this modeN(k), we calculated the correspond-
gether with a self-consistency relation betwégik) and the ing model Compton profile on the sampling distance of the
correlation energy per electrog, known very accurately experiment, and convoluted it with the experimental resolu-
from Monte Carlo calculation® All these calculations have tion. Then we performed thi (k) reconstruction, by using,
held in common a valudl(0)<1, a discontinuityz<1 (z is instead of the experimental directional profiles, 11 identical
the renormalization factpit the Fermi momenturk: and a  model profiles, to whom we attributed tiqedirections of the
tail for k>ke which behaves like/kr) 8. But the param- experimental ones. Finally, the constantvas determined
eters which characterize these common features took vemccording to Eq.33). In Fig. 10 the model-reconstructed
different values in the various theoretical treatments. TheN(k)/c in the [100Q] direction for different values of the
physical reason for the reduction of the discontinuity at therenormalization factor are compared with the experimental

4 f :N(k)kzd k= (4m/3)kg3 (39

Fermi momentum and for the appearance of a tailkfok,
was clarified by Lundquist’ The spectral functio®\(k, w)
exhibit a coupled mode of a hole and a plasnidre so-
called plasmaron of appreciable spectral weight, whose
width on the w scale is not zero ak=kg. The spectral
weight of this mode is thus directly coupled to the value.of

ones aroundkgy, with the rather surprising result that the
experiment fits the model calculations best #5r0.1+0.1,
which is by far smaller then all theoretical jellium results for
r.=3.3 obtained so far, ranging from=0.5 (RPA, Ref. 24
to z=0.75(Ref. 44. This result is a very strong indication of
a considerable deviation dfi(k) in crystalline Li from its

To what extent the presence of the lattice potential mayellium counterpart, whereas the “experimental” valuezpf

change the characteristics Nfk) for simple metalgbesides

obtained above, must not be considered that serious, since
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tions (see Fig. 3. In what follows, we will show that a criti-
1 . cal investigation of self-energy effects connected with the
o0 2000 experiment Compton-scattering process may offer a unique explanation
of these discrepancies.

For that reason we go back to Eg), where the double-
differential scattering cross section of the Compton process
was connected with the dynamic structure facs(q,w). It
was shown by Ng and Dabrowskithat, as far as electron-
hole-pair excitations domina®(q,w), self-energy effects on
S(q,w), including of-shell contributions, can be obtained via
the spectral density functioA(p,E),

1.4

N

DSUN=O

NNNN
RN
—oool

0
S(q.w)=(1/p7T)J:ﬁ (dE/ZW)J (dp/8m®)A(p,E)A(p

+q,E+hw), (39
FIG. 10. The assignment of the different line styles; see thevherep is the electron d_enSiW-
inset. Normalized occupation number densitk)/c is in the[100] In a Compton-scattering process the momentum and en-
direction, as reconstructed from model jellium=3.3). Compton  ergy transfer are so large that the self-energy effecta@n
profiles for different values of the renormalization factor Tri- +q,E+#Aw) consist mainly of a finite width of the order of

angles with error bars: normalized occupation number dehKiky half the free-electron plasmon energy, due to the imagi-
reconstructed from the experimental directional Compton profileshary part of the self-energy, as has been shown for jellium by
of Li. Lundquist®® within the limits of the RPA. Thus this self-
energy effect is adequately described by an additional con-
we fitted a simple one-parameter modiglk) to the experi-  volution of LDA-calculated Compton profiles by a Lorentz-
ment, so that deviations from the jellium model can also béan with a FWHM of 0.5<E,, which is 4 eV in the case of
the result of a behavior of the crystdl(k), which is different  Li. Since in our case the experimental energy resolution is of
from the jellium model in other respects besides differentthe order of 50 eV, this effect is of minor significance. But it
values ofz. may play a role, whenever a much higher-energy resolution,
Nevertheless, one may speculate that it is the opening ajf the order of 1 eV, is aspired #8,in order to obtain a
additional channels for collective excitations in the crystal-corresponding high-momentum-space resolution. In these
line solid, the so-called zone-boundary collective stdtés  cases this self-energy effect sets natural limits to what a mo-
observed in Li(Ref. 50 and Be>! which may enhance the mentum space resolution can be achieved. The self-energy
contribution of the above-mentioned coupled modes of holegffect on the spectral density functiéx(p,E) in Eq. (39) is
and collective excitations, thus diminishirgaccordingly. more important, sincé\(p,E) has a characteristic structure
On the other hand, the whole reconstruction procedure fofor E<0 andp<pg, as shown for jellium by Lundquit.
N(k) is based on the assumption that the nondiagonal el€Fhis structure consists of a quasiparticle peak, whose disper-
ments ofn,,(k) can be neglected in the case of Li, as esti-sion follows the free-particle one, and a second peak shifted
mated by Lundquist and LydeR If this was not the case, the by roughly 1.5< E, to lower energies. The second peak is
above comparison between model calculated and experimeattributed to a bound hole-plasmon state, the so-called plas-
tal values ofN(k) would lose its foundation. In that case it is maron, and contains up to 30% of the total spectral density.
not N(k) that is plotted in Figs. 7 and 10, but, according to The double-peak structure leads to a doubling of the mea-
Eq. (26), the quantityp, , thekth contribution to the spatially sured Compton profile with two components shifted by
averaged electron density. Of course, the determination af.5XE,. We have calculated the effect of the self-energy on
the Fermi-surface anisotropy is also based on the neglectiahe shape of a Compton profile within the limits of the
of the nondiagonal elements of,(k), though the contribu- random-phase approximation for a free-electron system of
tion of these nondiagonal elements seem to be much mothe density of Li under the conditions of our Li Compton
isotropic due to the interband mixing. So it is time to find experiment =32Xkg) by using Eq.(39). In Figs. 11a)—
appropriate theoretical treatments to clarify this unsatisfyingl1(c) three spectral density functions fpr=0, 0.%;, and
situation. 0.7ke, respectively, are shown, which are contributing to
A(p,E) in Eq. (39. In Fig. 11(d) a representative spectral
density function forip+q|=32xkg is plotted, which stands
for A(p+qg,E+7%w) in Eq. (39). In Fig. 12 the self-energy
effect onS(q,w), which according to Eq(2) is proportional
Two prominent discrepancies between our Li Comptonto the Compton profile, is presented. The contributions of the
results and corresponding LDA calculations need explanaguasiparticle peak(~70% and of the plasmaron peak
tion, at least a qualitative one, that is, the lower experimental~30%), respectively, are specified. Additionally a Compton
values of the total Compton profile for smad], compared profile[(in terms 0fS(q,))] is plotted, which is correlation
with the calculated onesee Fig. 2, and the smaller contri- corrected according to Ref. 20, and where this correction has
butions of the secondary Fermi surfaces to the directionabeen calculated on the same footing as the self-energy cor-
profiles in the experiment in comparison with the calcula-rection. The self-energy correction according to E§9)

V. SELF-ENERGY EFFECTS
IN THE COMPTON-SCATTERING PROCESS
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leads to a reduction of the valence-electron Compton peak bynent compared with the calculation finds its explanation, if
4%, when compared with the correlation-corrected one. Thi®ne separately considers the contribution of the quasiparticle
reduction is just what we have found for tHeLQ] Li profiles  states to the higher-momentum components, on one hand,
(see Fig. 2 Certainly the reduction for the other two princi- and the corresponding contribution of the plasmaron states
pal directions, as found in the experiment, is somewhabn the other hand. For this reason we utilize Lundquist's
larger, see Fig. 3. Nevertheless, we feel we are on the righowest-order representation of the perturbed hole state, con-
track as far as the reason for these discrepancies is conected with the spectral weight functidrk,E) in Eq. (39),
cerned. where the unperturbed hole statg0) is coupled to the prod-
Likewise the smaller contribution of the secondary Fermiuct stateck,Qbe|O), involving one hole and one plasmon,
surfaces to the directional Compton profiles in the experithe plasmaron state. Ld0) be the filled Fermi sea, and
C¢ » Cx, andbg ,bg creation and annihilation operators for

0.08 7 P Tar—— fermions and bosonglasmong respectively. Then we can
] T pamhetmen corr. write the perturbed hole state in the Bloch representation as
S(q,0) IR o Hlemden conir. follows:

0.06 ]

| ) = (1IN ) Cp,+ (RIV)H2

X PdolCk—0.b o/ (E-E,(k—Q)
Q,\k—EQKkF %l G-04b-0 (k=Q

S(q,w) (arb. units)
e
=]
e

+th>]] 0), (40)

0.00 Frerer s S SSU— S e
155 160 165 170 175 180 185 190

energy transfer « (Hartree)

whereN, is a normalization factor? means that the princi-
pal value should be takewy, is the electron-plasmon cou-
pling strength,E (k) is the single-particle eigenvalue spec-

FIG. 12. JelliumS(q, r,=3.3, corresponding to Li For the . -
S(g,0) (s P gt dgum, andiiwg is the energy of a plasmon with wave vector

assignment of the different line styles, see the inset. The upper thr

curves are as follows. Solid line: Self-energy corrected. Long-<¢- . . .
dashed line: correlation corrected according to Ref. 20. Short- ASsume that in a Compton scattering process the first

dashed line: free-electron inverted parabola, noninteracting. Thi€rm on the right-hand side of E¢40), ¢, ,|0), might give
lower two curves are as follows. Long-dashed line: contribution offiS€ to higher-momentum componert$MC's) due to um-
the quasiparticle peak to the self-energy-corrected Compton profilklapp processes &, so that these HMC'’s strongly contrib-
Short-dashed line: plasmaron-peak contribution to the self-energydte to directional differences of Compton profiles. Then the
corrected Compton profile. second term on the right side of E@0) (plasmaron states
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will diminish the amplitude of the directional differences, of Li near the Fermi momentum in tH&00Q] direction, as
since theQ summation makes the contributions of HMC's, found by means of a 3D reconstruction method, fits a jellium
due to umklapp processeslat-Q, isotropically distributed. model, subjected to the same reconstruction procedure, for
LDA does not take into account the self-energy-inducedz=0.1+0.1, wherez is the renormalization factor. This find-
plasmaron states. Therefore, the LDA-calculated directionaihg can be interpreted either as being due to a drastic reduc-
Compton profile differences must be reduced, when selftion of z in a real metallic solid, as being brought about by
energy effects are properly allowed for. According to theadditional channels for collective excitations, which lets us
jellium calculations, presented in Fig. 12, the contribution ofincrease the plasmaron contribution, or as a hint that the
the second(isotropig term of Eqg.(40) to the momentum nondiagonal elements of the occupation number density,
density is roughly 30%. Therefore this isotropic contributionmixing between different bands, cannot be neglected.
can, at least partly, account for the discrepancy between
measured and LDA-calculated Compton profile anisotropies.
As already discussed in Sec. IV C, this contribution could
even be larger in a real metallic solid due to additional col- We would like to thank A. Bansil and S. Kaprzyk for
lective stategso-called zone-boundary collective states  providing result of their LDA calculations prior to publica-
tion, and for many fruitful conversations. Helpful discussions
with N. Shiotani are grateful acknowledged. We thank K.-J.
VI. CONCLUSIONS Gabriel for help with measurements. This work was funded
(1) All measured total directional valence-electron Comp-PY the German Federal Ministry of Research and Technol-
ton profiles of Li exhibit smaller values @, =0, and larger ©9Y under Contract No. 05 SPEAXB 6.
values atp,~kg than the corresponding LDA-calculated
ones, where the latter are convoluted with the experimental APPENDIX A
resolution, and correlation corrected according to Lam and
Platzmarf’ The g-orientation dependence of this discrep- Letl; be the distribution of the number of scattered pho-
ancy is consistent with a contribution of the secondary Fermions in a Compton experiment, measured on an equidistant
surfaces to the momentum density, which is smaller tharP, scale(distanceAp,). We assume the measurement at dif-
predicted by the LDA calculations. This leads to oscillationsferent points to be uncorrelated, and to be subjected to Pois-
of the measured directional differences with amplitudesson statistics. Then
smaller than the LDA-calculated ones.
(2) The above-mentioned discrepancies can be interpreted
as being due to self-energy effects connected with the
Compton-scattering process. The double-peak structure (1{
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COV(li,lj):liéij. (Al)

the spectral density function, which describes the creation o he foHO\I/(\:/Iin.g relation betwees; and the Compton profile
the hole during the scattering process, leads to two Compto (P2i) holds:

profiles separated on an energy scale by 1.5 times the plas-

mon energy, where the second peak of the spectral density (0.0 =(ZINADI A2
function is attributed to the so-called plasmaron, a bound (P2) =l 20 A2

plasmon-hole state. This _dogbling of the Compton prome%here we assume the Compton profile to be normalized to
can account, even quantitatively, for the lower maximumy,. umberz of electrons per atom, and=31;. For the
value of the resulting profile, when compared with a theo- ' nr

retical one, calculated within the limits of the LDA, on the covariance” of J(p,) we obtain

basis of the impulse approximation. Moreover, it could be

shown that the formation of the plasmaron state during the

Compton-scattering process diminishes the contribution of COVJI(P,),J(p))= 2 X (33(p)/ 3l )(I(p)!dl )

higher-momentum components, or will lead to their smear- nom

ing over momentum space, which can account for the re- xcovlp,lm)

duced oscillations of the measured orientation difference n

profiles when compared with the LDA-calculated ones. =(ZINAP)I(P,i) &= I(P2)I(Py)).-
(3) The reconstructed 3D momentum density exhibits

higher-momentum components due to the umklapp processes (A3)

near the 110 zone boundary, visible in the anisotropic part of

the reconstructed momentum density ACCOI’ding to Eq(ll), and tak|ng intO account the Symmetry
(4) The reconstructed 3D occupation number density enof the Compton profile, we can write the reciprocal form

ables a determination of the Fermi-surface anisotropy, aftefctor as a discrete cosinus transform:

subtraction of a systematic error. The maximum Fermi-

surface anisotropyrelative difference between the diameter

of the Fermi surface ih110] and[100] directiong was found = . )

to be 3.6:1.1%, where this value is closer to the result of B(2) Z J(P2)COSP2Z) AP A4

theories with a nonlocal treatment of electron correlation

than to findings of “local” theories. Using Eq.(A3), we can write the covariance &f(z) in the
(5) The shape of the occupation number density functiorfollowing way:



14 394 W. SCHULKE, G. STUTZ, F. WOHLERT, AND A. KAPROLAT 54

cov(B(zi),B(zj))=(ZZIZN){[B(zi+zj)/Z]+[B(zi—zj)/Z] Thus by using Eq(A9) together with Eq(A5) the variance
of the 3D-reconstructed momentum dengifp) can be cal-

—2[B(z)B(z))/Z?]} culated:
0 for z=0 or z;=0
= (z/zN)BZ(zi_z].)r Zje|se, (A5) Uﬁ(p)=2k El Fr(Qp)Fi(Qp)covipi(p),pi(P)).
(A10)

where the approximation uses the fact tBr) is a rapidly
decreasing function od.

Relations(A3) and(A5) apply not only to the total Comp- APPENDIX B
ton profile and itsB function but also to the valence part,
since the subtracted core profile can be assumed to be free of Equation(12) enables us to obtain the reciprocal form
error. According to Eq(15), the expansion coefficients, ~ factor B(r) for any r, provided the expansion coefficients
are obtained by solving a system M linear equations, bi(r) are known. Using Eq(12) together with Eq(A7), we
where M is the number of different crystal orientations. can calculate the covariance B{R), whereR is a lattice
Since the anisotropy d8(z) is small compared t8(0), we translational vector:
can approximate the covarianceRfz) to be independent of
the crystal orientation. If we additionally assume that the
measurements of the Compton profiles with different orien- COMB(R),B(R’))=couB(R),B(R"))
tation of the momentum transfer are performed indepen-
dently, we can write x}k: §|: F(QR)FI(Qr)(FF) L.

COV(B,(r1),B«(rj))= ;s COV(B,(r;),B/(r)),  (AB) (B1)

wherer ands refer to different crystal orientations. For prac- By means of Eq(20) and using Eq(B1), we end up with the
tical calculations we can insert the orientation averageg  following expression for the variance of the occupation num-
functions into Eq.(A6). By taking into account that there ber densityN(k):

exists a twofold correlation for the expansion coefficidnts

one ends up with

aﬁ(k)z% > exfdik-(R+R’)]cov(B(R),B(R’))
RI

cov(bk<ri>,b|<rj>>=2 ZS [ab(r;)/9B,(r})]

x; EI Fi(Qr)F(Qr)(FF) (B2)

X[&bl(rj)/aBs(rj)]COV(Br(ri)aBs(rj))

=(F'F)i* cov(B(r),B(r))). (A7) APPENDIX C

The electron density in position spagsr), is expressed

We can approximate the integral of E by a discrete
PP ¢ a0 by in terms of field operators

summation

rN=(¥*(r,00¥(r,0)). C1
pi(P)=i'(L2m*) 2 bi(r)ji(prorfAr,  (A8) pO=Cr T On o) ()
' By inserting both the expansion of the field operators in
so that the covariance of the expansion coefficients of th8loch waves, according to E¢8), and the expansion of the
momentum densityp,(p), can be writter(taking again into  Bloch waves in plane wavd&q. (9)], one ends up with
account that they also are twofold correlgted

coupy(P)o1 (D) PIN=VTI2 2, (g, (002, (0) 2 e (' +G e (k

=3 3 [apu P B rm) 301 (PI D1 )] TExexdik+G —k=G)-r]. €3

The spatial average
X cov(by(rm),bi(ry,))
=i (AT (FF)G D 2 Jpirm)rpAr p_zv*f p(r)dr ©3
m n

X J1(Pir )T HAT COMB(I 1), B( ). (A9)  of the electron density is then given by
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p=V71Y X (8 ,(0)a,(0)) X a¥(k'+G )a,(k

v’ Kk’ GG’
+G)8(k—k")s(G—-G")

:v—lg > nw,(k)% af,(k+G)aV(k+G)E; Pr.

(C4

ELECTRON MOMENTUM-SPACE DENSITIES OFiL ..
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Now we can easily expre®3(R) of Eq. (21) in terms of the
kth contributionp, to the spatial average of the electron
density, namely,

B(R)=8ﬂ-3; e explik-R), (C5)

which is just the relation of Eq24).
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