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Directional Compton profiles~CP’s! of Li metal were measured for 11 directions of the momentum transfer
q with 0.14 a.u.~a.u.5atomic units:\5e5m51! momentum-space resolution using synchrotron radiation
from the DORIS~Doppel-Ring-Speicheranlage! storage ring monochromatized to 31 keV. Both the total
valence-electron CP’s and the directional differences of the CP’s exhibit considerable deviations from the most
recent density-functional calculations, performed by Sakuraiet al. @Phys. Rev. Lett.74, 2252~1995!# within
the limits of the local density approximation. These discrepancies are attributed to self-energy effects con-
nected with the excitation of so-called plasmaron modes. The three-dimensional~3D! valence-electron mo-
mentum density,r~p!, as well as the 3D occupation number densityN~k!, were reconstructed using the
Fourier-Bessel method. The reconstructedr~p! exhibits clear evidence of higher momentum components due
to 110 umklapp processes. The reconstructedN~k! enables a direct experimental access to the Fermi-surface
anisotropy of Li, which was found to be 3.661.1%. The reconstructedN~k! for ki @001# was fitted to a model
with the renormalization factorz as the only free parameter, which was found to bez50.160.1.
@S0163-1829~96!07843-5#

I. INTRODUCTION

Since early studies by DuMond,1 it is well known that the
measurement of the spectral distribution of the Doppler-
broadened Compton shift~Compton profiles! yields informa-
tion about the electron momentum distribution of the scatter-
ing system, provided the conditions for the so-called impulse
approximation are met, as formulated by Eisenberger and
Platzman.2 The first pioneering Compton profile measure-
ments~see, e.g., Refs. 1 and 3! were done by using conven-
tional x-ray sources and crystal dispersive analysis, ending
up with a momentum space resolution of the order of 0.2 a.u.
~a.u.5atomic units:\5e5m51!, but with relative poor sta-
tistical accuracy, so that only investigations on low-Z ele-
ments could be performed, for example Compton measure-
ments on single crystal Li metal.4 The improvement of the
energy resolution of solid-state detectors enabled measure-
ments of Compton profiles using monochromaticg-ray
sources with photon energies between 60 and 600 keV, first
introduced by Eisenberger and Reed.5 This way a rather
good statistical accuracy could also be obtained for high-Z
elements. But even by using high-performance solid-state
detectors and very high photon energies, theg Compton
technique could not achieve a better momentum resolution
than 0.45 a.u. Nevertheless, a large number of systems have
been investigated during that era ofg Compton scattering,
for a review see Ref. 6. Moreover, some steps were done
made toward a better understanding of the information con-
tent of Compton profiles by considering the properties of
their Fourier transforms ~so-called reciprocal form
factors!,7–9 and toward a more informative representation of
experimental results by utilizing methods for reconstructing
the three-dimensional~3D! momentum density10,11 and the
3D occupation number density in Blochk space.12,13 Only
the advent of strong synchrotron radiation sources with pho-
ton energies between 20 and 60 keV made feasible the
crystal-dispersive energy analysis of the scattered radiation,

so that a momentum-space resolution of the order of 0.1 a.u.
and, at the same time, a high statistical accuracy by using
highly penetrating x rays could be obtained.14–16 This way,
details of the electron momentum densities of simple metals
and alloys,17–19 not accessible ing Compton studies, could
be resolved, and were discussed in terms of Fermi-surface
features. For Li,18 the anisotropy of the Fermi surface was
determined by looking at the behavior of the second deriva-
tive of the directional Compton profiles, although the inter-
pretation of the data needed some support from calculations
presented together with measurements. Moreover, high-
resolution Compton profile measurements on Be~Ref. 17!
and Li ~Ref. 18! metals have revealed discrepancies, when
they were compared with calculations, performed within the
limits of the local-density approximation~LDA ! and cor-
rected with respect to correlation by using the Lam-Platzman
scheme.20 These discrepancies can certainly be attributed, at
least in part, to inadequacies in treating correlation, when
calculating the electron momentum densities and Compton
profiles. But part of them could also arise from difficulties
with handling background in the course of data processing,
or could be removed by going beyond the impulse approxi-
mation.

Therefore, we decided to measure independently a set of
directional Compton profiles of Li with 0.14-a.u.
momentum-space resolution, in order to attack the following
problems:~i! 3D reconstruction of the electron momentum-
space density together with corresponding error maps in or-
der to find unambigously location and strength of higher mo-
mentum components;~ii ! measurement of the Fermi-surface
anisotropy, free from any models or any help from theoreti-
cal calculations, by using a 3D reconstruction scheme for the
occupation number densityN~k!; ~iii ! fitting of the recon-
structed occupation number density to different models of
correlation-induced reduction of the discontinuity ofN~k! at
the Fermi momentum, in order to test, to what extent current
theories of correlation effects on momentum space densities
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can account for the experimental results; and~iv! a search for
a semiquantitative explanation for discrepancies between the
Compton measurements and LDA Compton profile calcula-
tions on the basis of experimental results, by taking into
account self-energy effects of the inelastic scattering process,
which provides the information on Compton profiles.

One very important reason for choosing Li metal as a test
ground was the availability of highly sophisticated LDA-
based momentum density calculations on Li,18 which can
serve as a reliable reference. According to the program as
sketched above, the rest of the paper is organized as follows:
In Sec. II the fundamental relations are presented, which are
used to find an appropriate interpretation of the Compton
data, and to perform both the 3D reconstruction of the elec-
tron momentum space densities from a set of directional
Compton profiles, and the 3D reconstruction of the occupa-
tion number density of the Blochk space. In Sec. III the
Compton experiment itself together with the various steps of
data processing are demonstrated. In Sec. IV the results of Li
Compton profile measurements are shown in the form of
total valence Compton profiles and of directional difference
Compton profiles, in every case confronted with correspond-
ing LDA calculations. In Sec. V we show the result of the
3D reconstruction of the electron momentum densities to-
gether with the corresponding error maps, and in Sec. VI the
reconstruction of the occupation number densityN~k! in
Bloch k space, together with the determination of the Li
Fermi surface anisotropy as directly deduced from the recon-
structedN~k!. Section VI offers the results of fitting jellium
models ofN(k) with varying renormalization constant the
experimentalN~k!. Section VII is devoted to a critical in-
spection of the Compton-scattering process in terms of self-
energy effects, which offers a semiquantitative explanation
of discrepancies between measurements and LDA calcula-
tions, and which sheds light on how to proceed with an im-
proved interpretation of Compton data. Finally in Sec. VIII
we provide conclusions.

II. BASIC RELATIONS

The goal of inelastic x-ray scattering experiments is the
measurement of the double-differential scattering cross sec-
tion ~DDSCS! d2s/dv2dV for a given momentum transfer

q5K12K2 , uqu>2uK1usin~u/2!, ~1!

whereK1 andK2 are the wave vectors,v1 andv2 are the
frequencies of the incident and the scattered photons, respec-
tively. u is the scattering angle. Within the limits of a first-
order nonrelativistic perturbation treatment and by neglect-
ing the p•A term ~A vector potential operator! in the
interaction Hamiltonian, the DDSCS is related to the dy-
namical structure factorS~q,v! of the scattering electron sys-
tem by21

d2s/dv2dV5~ds/dV!ThS~q,v!, ~2!

where (ds/dV)Th is the well-known Thomson scattering
cross section, and

\v[\~v12v2! ~3!

is the transferred energy.

Under the conditions of the impulse approximation2 ~the
transferred energy\v must be large compared with charac-
teristic energies of the scattering system, andq21 must be
small compared with the interparticle distance!, the double-
differential scattering cross section is connected with the
electron momentum densityr~p! of the scattering system,
where this relation in the nonrelativistic limit reads

d2s/dv2dV5~ds/dV!Th~2p!23E dp r~p!d@~\2q2/2m!

2~\q•p/m!2\v#. ~4!

The integral on the right-hand side of Eq.~4! contains the
projection of the momentum densityr~p! on the scattering
vectorq. If q points in thez direction of momentum space,
one can perform the integration in Eq.~4! ending up with

E dp r~p!d@~\2q2/2m!2~\q•p/m!2\v!]

5~m/\q!E E r~p!dpxdpy5~m/\q!J~pz!, ~5!

where, by using Eq.~1!,

pz5q•p/q5~\q/2!2~vm/q!52mc$@\v12\v2

2~\2v1v2 /mc2!~12cosu!#/@\2v1
21\2v2

2

22\2v1v2cosu#1/2%. ~6!

We call J(pz) the Compton profile. It has been shown by
Riberfors22 that, even in the relativistic case, one can factor-
ize the DDSCS intopz-, v1-, andv2-dependent relativistic
cross sections~see Ref. 22 for the explicit expression!, which
takes the place of the Thomson cross section in Eq.~4!,
multiplied by the Compton profile. How experimental results
can be influenced, when going beyond the impulse approxi-
mation, has been explicitly discussed in Ref. 23. As shown
by Holt and Ribberfors,23 corrections to the impulse approxi-
mation, first order with respect to 1/q, lead to asymmetries in
the Compton profile with respect topz , when these are ex-
tracted from the DDSCS according to Eqs.~4!–~6!. Issolah
et al.23 gave expressions for the deviation of the maximum
values of these Compton profiles compared with those cal-
culated on the basis of the impulse approximation. In what
follows, we will use expressions, given in Ref. 23, in order to
estimate the influence of these deviations from the impulse
approximation on our results.

The momentum densityr~p! of an inhomogeneous system
can be expressed in terms of electron field operatorsC~r ,t!,

r~p!5~2p!23E drE dr 8exp@ ip•~r2r 8!#

3^C1~r ,0!C~r 8,0!&, ~7!

where ^ & means the thermal average for the system ofN
electrons in the volumeV of the crystal. We expand the field
operators in Bloch waves,

C~r ,t !5(
k

(
n

ak,n~ t !fk,n~r !. ~8!
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ak,n annihilates an electron with wave vectork in the bandn.
The Bloch wave functionfk,n(r ) can be expanded in

plane waves according to

fk,n~r !5V21/2(
G

an~k1G!exp@ i ~k1G!•r #. ~9!

G is a reciprocal-lattice vector. The electron momentum den-
sity can then be written as follows:

r~p!5 (
n,n8

(
k

(
G

nnn8~k!an* ~k1G!an8~k1G!

3d~k1G2p/\!; ~10!

nnn8~k![^ak,n
1 ~0!ak,n8~0!& ~11!

can be interpreted as the mean occupation number density of
Bloch states, where the nondiagonal elements of the occupa-
tion number density are due to mixing between different
bands caused by electron-electron interaction. Moreover,
electron-electron interaction gives rise to deviations ofnnn~k!
from unity and zero, respectively.24 In what follows we will
consider cases where the nondiagonal terms of the occupa-
tion number density are neglected, which possibly could be
justified for alkali metals, as was shown by Lundquist and
Lyden.25

Equation ~10!, together with Eq.~5!, tells us that the
Compton profile of solid-state electrons is determined, on
one hand, by the occupation number density, and, whenever
one can neglect its nondiagonal elements, by the shape of the
Fermi surface in the case of metals. On the other hand, the
Bloch-wave functions, represented by their plane-wave ex-
pansion coefficientsan~k1G!, fix the shape of the Compton
profile. According to Eq.~10!, the contribution of theGth
plane-wave expansion coefficient tor~p! is centered atG in
momentum space, where theGÞ0 contributions are called
higher-momentum components~HMC’s!. Like the Fermi
surface aroundG50, the Fermi surfaces around theG’s ~so-
called secondary Fermi surfaces! will also produce disconti-
nuities ofr~p! in the case of metals, which should also pro-
duce discontinuities in the first derivative of the Compton
profiles according to Eq.~5!.

By evaluating Compton profiles obtained from single-
crystal samples for a larger number of different orientations
of q ~directional Compton profiles!, one can reconstruct both
r~p! in 3D momentum space~see, e.g., Ref. 10! and, neglect-
ing the nondiagonal elements of the occupation number den-
sity, the function

N~k![(
n

nnn~k! ~12!

in the repeated zone scheme.7,12,26 We will apply the so-
called Fourier-Bessel method10 for this purpose, which uti-
lizes the properties7 of the so-called reciprocal form factor8

B~r !, which is the Fourier transform ofr~p!,

B~r !5E dp r~p!exp~2 ip•r !, ~13!

so that, according to Eq.~5!, B(0,0,z) is obtained from the
1D Fourier transform of Compton profiles:

B~0,0,z!5E J~pz!exp~2 ipzz!dpz , ~14!

if the z axis in real space is assumed to be parallel toq. The
Fourier-Bessel method of reconstruction is based on the ex-
pansion ofB~r ! into lattice harmonicsFl~u,f!,27 via

B~r !5(
l
bl~r !Fl~u,f!. ~15!

u and f are the angular variables ofr . For reconstructing
r~r ! we need the coefficientsbl(r ) for as many lattice har-
monics as can be extracted from experiment. Let their num-
ber beN. If we have measured a finite set of directional
Compton profiles of dimensionM , N must obeyN<M ,
since thebl(r ) are obtained by solving the following system
of linear equations:

B~r i !5(
l
bl~r !Fl~u i ,f i !, i51,...,M , ~16!

where the sum is overN different values ofl , according to
the symmetry of the lattice under investigation. Because of
Eq. ~14!, ui andfi are the angular variables of theN differ-
ent q’s of the directional Compton profiles. If we write Eq.
~16! in the form of a matrix equation

B5Fb, ~17!

one obtains, forM.N,

b5~FtF!21FtB, ~18!

and, forM5N,

b5F21B. ~19!

Using this set ofbl(r ), we obtain r~p! reconstructed by
means of the inverse Fourier transform ofB~r ! according to

r~p!5~1/8p3!(
l
E dr bl~r !Fl~u r ,f r !exp~ ip•r !

5(
l

r l~p!Fl~up ,fp!,

r l~p!5~ i l /2p2!E
0

`

bl~r ! j l~pr !r
2dr, ~20!

where j l(pr) are spherical Bessel functions.
It was pointed out by Hansen10 that the quality of the

reconstruction depends not only on the number of contribut-
ing directional Compton profiles but also on the way how the
corresponding directions of the scattering vectorsq are dis-
tributed in the irreducible triangle of their stereographic pro-
jections. Both high-symmetry directions and a nearly equal
distribution of the remaining directions within that triangle
are crucial, as one can demonstrate by means of an error
propagation analysis, which is presented in Appendix A. The
3D reconstruction ofN~k![(nnnn~k! rests on the fact that, as
can be shown easily,7 the values of the reciprocal form factor
B~r ! at a lattice translational vectorR is given by

54 14 383ELECTRON MOMENTUM-SPACE DENSITIES OF Li . . .



B~R!5~8p3/V!(
n,n8

(
G

(
k
nnn8~k!an8* ~k1G!

3an~k1G!exp~ ik•R!, ~21!

where thek summation is over the whole Brillouin zone.
Neglecting the nondiagonal elements of the occupation num-
ber density and utilizing the normalization of the Bloch
waves, we obtain

B~R!5~8p3/V!(
k
N~k!exp~ ik•R!. ~22!

Thus we can calculateN~k! in the repeated zone scheme by
means of the following Fourier expansion:

N~k!5~V0/8p3!(
R

B~R!exp~2 ik•R!, ~23!

whereV0 is the volume of the elementary cell. This way we
can 3D reconstructN~k! by using in Eq.~23! the reciprocal
form factorB~r !, as reconstructed according to Eq.~16!. This
way, the reconstruction ofN~k! is on the same footing as the
reconstruction ofr~p!. The error propagation of theN~k!
reconstruction is shown in Appendix B. It should be men-
tioned that thisN~k!-reconstruction method is analogous to
the application of the so-called Lock-Crisp-West~LCW!
theorem,28 often used in angular correlation measurements of
2-g radiation from positron annihilation~ACAR! done in
order to obtain Fermi-surface information.

Even if we cannot neglect nondiagonal elementsnnn8~k!
of the occupation number density,B~R! contains very useful
information, as shown in Appendix C, namely,

B~R!58p3(
k

rk exp~ ik•R!, ~24!

whererk is the total contribution of all Bloch states, belong-
ing to the samek, to the spatially averaged electron density,
according to

r̄ [~1/V!E r~r !dr5(
k

rk, ~25!

so that

rk5~1/8p3N!(
R

B~R!exp~2 iR•k!. ~26!

III. EXPERIMENT AND DATA PROCESSING

The Compton measurements were performed at the
Compton beamline of HASYLAB~Hamburger, Synchro-
tronstrahlungs labor!, described in detail in Ref. 16. Synchro-
tron x-rays from the HARWI-Wiggler2 of the DORIS storage
ring are monochromatized by a Si~511! double crystal to 31
keV, and sagittally focused to a spot of 838 mm2 on the
sample. Radiation scattered byu5155° is energy analyzed
by means of a cylindrically bent Si~400! Cauchois-type crys-
tal, so that the complete spectrum can be recorded simulta-
neously by a position-sensitive Ge-200-strip detector29 ~strip
width 200 mm, strip distance 40mm!, where each strip is
connected with its own chain of preamplifier and amplifier.

In order to minimize scattering from the analyzer crystal,
which contributes to the background of the Compton spectra,
a slit is mounted at the position of the smallest diameter of
the beam trajectories between the analyzer crystal and detec-
tor.

The Li single crystal was a plate with an area of 838 mm2

and 6 mm thick, mounted on a goniometer in order to bring
it into different orientations with respect toq. Besides the
principal directions@100#, @110#, and @111#, another eight
directions were measured, equally distributed over the irre-
ducible orientation triangle~see Fig. 1!. The Li sample,
which was stored in water-free parafin oil, was cleaned from
parafin by heptan, then etched by highly pure methanol to a
metallic luster and again cleaned by means of xylol. After
this treatment the sample was mounted immediately in the
scattering chamber, which was evacuated to 1025 mbar. Af-
ter the measurement the sample had kept its metallic luster.

In each of the 11 directional Compton profiles 73106

counts were collected. A signal-to-background ratio of 40:1
could be achieved, where the main contribution to the back-
ground is due to scattering from the analyzer crystal, from
the air-path between analyzer and detector, and from the Al-
detector window.

The goal of the data processing is to extract the Compton
profile J(pz) from the measured intensity distributionI (x),
wherex is the linear position on the detector. IfU(x) is the
background, andM (pz) the multiple-scattering contribution,
the following relation holds:

J„pz~ i !…1M „pz~ i !…5CF„E~ i !…@ I „x~ i !…2U„x~ i !…#.
~27!

i stands for the channel number of the Ge-strip detector,C is
a normalization constant, andF(E) contains the following
energy-dependent corrections.

~i! The energy calibration of the detector. This is done by
replacing the scattering sample by samples whoseKa andKb
fluorescence lines are between the primary energy of the ex-
periment and the maximum Compton shift recorded.

~ii ! The correction with respect to the individual effi-
ciency of the each strip of the position sensitive Ge detector,
measured by illuminating the detector with BaKa radiation
from a source 1 m away from the detector.

FIG. 1. Irreducible orientation triangle of cubic symmetry; mea-
sured directions ofq are represented by points.
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~iii ! The absorption correction, where the energy-
dependent absorption of the sample,30 the Be window of the
scattering chamber, the air path, and the Al-detector window
were taken into account.

~iv! The scale correction (dE/dx)21 since one is measur-
ing the double-differential scattering cross section
d2s/dV dx and notd2s/dV dE. Only the latter one is di-
rectly related to the Compton profile according to Eq.~4!.

~v! The correction with respect to the energy dependence
of the relativistic scattering cross section.22

~vi! The correction because of the energy dependence of
the analyzer crystal reflectivity, which was approximated by
means of a layer model, as proposed in Ref. 16.

The multiple-scattering contributionM (pz) was calcu-
lated by means of a Monte Carlo simulation written by
Sakai:31 For each simulation the path of 107 photons was
followed. The relative portion of double scattering compared
to single scattering was 2.7%, in good agreement with cal-
culations of Paatero and Halonen.32 The contribution of
triple scattering could be neglected.

According to Eq.~23!, background subtraction had to pre-
cede the energy-dependent corrections. But this procedure is
only practicable if either the background is known from an
independent measurement, or the background can be as-
sumed to be linear and can thus be extrapolated usingI (x)
values at energies larger than the primary energy on one side
of the Compton profile and much smaller than the Compton
shift on the other side. Since the air path between the ana-
lyzer and detector and the detector window~3 mm apart

from the detector surface! produce a nonlinear background,
which cannot be measured independently, we have combined
background subtraction and Compton profile normalization
in the following iterative procedure, with the aim of obtain-
ing empirical values of the nonlinear background on both
sides of the valence Compton profile, which could then be
extrapolated into thepz range of the valence Compton pro-
file.

We use Eq.~27! to calculateU( i ) for that part of the
Compton profile~pz,2p0 or pz.p0!, where only the core
electrons are considerably contributing to the total profile,

U~ i !5I ~ i !2@CF„E~ i !…#21@Jcore„pz~ i !…1M „pz~ i !…#.
~28!

Here we use normalized core-electron Compton profiles,
Jcore(pz), as calculated for free atoms,33 assuming the influ-
ence of the solid state onJcore to be neglegible. The normal-
ization constantC can be obtained from the normalization
convention for Compton profiles,

E
2`

1`

J~pz!dpz5Z. ~29!

Z is the number of electrons per atom. Thus we obtain

E
2p0

1p0
J~pz!dpz5Zval1E

2p0

1p0
Jcore~pz!dpz . ~30!

From Eqs.~28! and ~30!, we obtain the normalization con-
stant

C5FZval1E
2p0

1p0
Jcore~pz!dpz1E

2p0

1p0
M ~pz!dpzG Y H E

2p0

1p0
F„E~ i !…@ I „pz~ i !…2U„pz~ i !…#dpzJ . ~31!

Equations~28! and ~31! were considered as a system of
coupled equations forU( i ), which were solved iteratively by
least-square fitting of a fourth-order polynomial toU( i )
within @2pmin ,2p0# and @p0 ,pmax#, respectively with
pmin5pmax57 a.u. andp052 a.u. The iterative process was
stopped, when self-consistency with respect of the constant
C with DC/C<1023 was achieved. Since the scattering
angleu of the experimental setup was not exactly known, we
let u be a free parameter. After having completed the above
iterative process, usingu5155°, we determined the peak po-
sition of the total Compton profile on the energy scale. From
this peak position we calculated another value of the scatter-
ing angleu, by using the relativistic counterpart22 of Eq. ~6!.
This value was used in a second round of the above iterative
process, and we proceeded until the shift of the Compton
peak position became smaller than one one-thousandth of the
momentum space resolution of the experiment.

We estimated the influence of deviations from the impulse
approximation, as discussed in Ref. 23, on the evaluation
procedure given above: According to relations of Holt and
Ribberfors,23 the asymmetry of the Li 1s core Compton pro-
file, defined as [J(pz)2J(2pz)]/J(0), has, under our ex-
perimental conditions, a maximum value of 0.9% around

pz51 a.u., and can be completely neglected forpz.2 a.u.
Therefore, the fitting of core profiles in the range 7
a.u.,upzu,2 a.u. is not influenced by the asymmetry. How-
ever, we defined the zero point of thepz scale as coinciding
with the peak position of the total profile. This is correct only
for symmetric profiles. Hence an asymmetric core profile
can, in principle, lead to an error in fixing of thepz scale.
Because of the rather small asymmetry of the 1s core Comp-
ton profile, this error turned out to be only60.003 a.u., and
could be neglected. Taking into account the smallness of this
error, the fictitious asymmetry of our valence Compton pro-
file, which is produced, since we have subtracted a symmet-
ric core profile from a total profile, which is, in reality, asym-
metric, will not influence further physical deduction, since
they all are based on averaging thepz,0 and thepz.0 con-
tributions to the valence Compton profile. Using the relations
of Issolahet al.,23 we estimated the difference of the Li 1s
Compton profile maximum between the impulse approxima-
tion ~hydrogenlike wave functions are used only to describe
the initial state!, and calculations, where hydrogenlike con-
tinuum wave functions are additionally utilized to account
for the final state. Under our experimental conditions, this
difference was calculated to be only 0.2%, so that it could be
neglected.
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The total momentum-space resolution of the experiment
was calculated toDpz50.14 a.u. by using a relation as given
in Ref. 16, where the total energy resolution of the spectrom-
eter is determined mainly by the lateral resolution of the
position-sensitive 200-strip Ge detector~54 eV! and by the
energy resolution of the monochromator~27 eV!, whereas
the reflection width of the analyzer and the influence of the
analyzer bending could be neglected. This calculated energy
resolution is, within the experimental error, in agreement
with the full width at half maximum~FWHM! of the elasti-
cally scattered line. The finite angular width of the incident
and of the scattered radiation is of negligible influence. All
theoretical Compton profiles shown in what follows are con-
voluted with a Gaussian whose FWHM is equal to 0.14 a.u.

IV. RESULTS

A. Total Compton profiles, difference profiles

Figure 2 shows the Li valence-electron Compton profile
of Li after subtraction of the core contribution forqi@110#,
where the data points are the result both of averaging the
pz,0 andpz.0 contributions and of interpolating on thepz
grid of the experiment. The relative error atpz50 is 0.27%,
and cannot be represented in form of an error bar. Together
with the experimental data, LDA theoretical calculations18

are plotted, which were correlation corrected20 and convo-
luted with the experimental resolution. The discrepancy be-
tween calculations and experiment is far from the experimen-
tal error, in spite of the fact that in the higher momentum
region, which represents the contribution of the core othogo-
nalization to the valence-electron Compton profile, the
agreement is quite satisfactory. In that region the experimen-
tal results of Ref. 18 disagree systematically with the LDA
calculations, possibly due to an incomplete allowance for a
nonlinear background. As a consequence, the overall dis-
crepancy between calculation and experiment is also larger
in Ref. 18 than in our results. In Sec. V we provide an ex-
planation for the remaining discrepancy in our experiment,
referring to a many-particle treatment of the Compton-
scattering process.

In Fig. 3, the difference between the experimental total
directional Compton profiles and the corresponding LDA

calculations@~a! without and~b! including correlation correc-
tion according to Ref. 20# are plotted for differentq direc-
tions. An orientation dependence outside the experimental
error is evident, and seems to be due to the fact that the
theory generally overestimates the contributions of the sec-
ondary Fermi surfaces@see Sec. II, Eq.~10!# to the direc-
tional profiles. This is demonstrated in Fig. 4, where, within
each secondary Fermi surface of the type 110, regions are
hatched which contribute strongly to the momentum density,
due to a large strength of the relevant umklapp processes:
The hatched regions of altogether six secondary Fermi sur-
faces contribute to the@111# directional Compton profile at
pz50 ~sectionAA8 through the momentum space, perpen-
dicular to the@111#-direction in Fig. 4!, whereas only two
contribute to the@110#-profile atpz50, so that the difference
between theory and experiment atpz50 in Fig. 3 is maxi-
mum for the@111# directional profile and minimum for the
@110# directional profile. Aroundpz50.4 a.u. the relations
invert. Now the hatched regions of four secondary Fermi
surfaces contribute to the@110# profile ~dashed sectionDD8
in Fig. 4!, whereas no hatched region is involved the@111#
profile ~dashed sectionBB8!, so that the difference between
theory and experiment atpz50.4 a.u. is maximum for the
@110# profile and minimum for the@111# profile. In Sec. V
we propose a scheme which may qualitatively explain the
reason for this overestimation of the contributions of the sec-
ondary Fermi surfaces in the theoretical calculation. As a
consequence of this general phenomenon the directional dif-
ferences, as shown in Fig. 5, also have larger amplitudes in
the LDA calculations than in the experiment, whereas the

FIG. 2. Total valence-electron Compton profiles of Li for
qi@110#. Experiment: Points connected by a solid line: LDA calcu-
lated. Correlation corrected~Ref. 20!: dashed line.

FIG. 3. Difference between LDA-calculated and measured
valence-electron Compton profiles:~------! qi @110#; ~—! qi @100#;
~–––! qi @111#. ~a! LDA without correlation correction.~b! LDA
with correlation correction according to Ref. 20.
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experimental zero passages and peak positions agree quite
well with the calculations, thus indicating a proportional re-
duction of the secondary Fermi surfaces’ contribution.

B. 3D reconstruction of the momentum density

By using 11 directional Compton profiles, we recon-
structed the 3D momentum densityr~p! according to Eqs.
~13!–~20!, where the profiles were interpolated on an equi-
distant pz scale ~Dpz50.025 a.u.!, and B(z) values up to
zmax530 a.u. were taken into account. The limiting value
zmax was chosen such thatuB~zmax!u>sB , wheresB is the
standard deviation ofB(z). In order to call special attention
to the physically interesting anisotropy of the momentum
density, in Fig. 6~a! we plot the anisotropic partDr~p! of
r~p! in the GNPH plane in the form of a level diagram by
subtracting thel50 contribution in Eq.~20!. Additionally,
the corresponding error map ofDr~p! is plotted in Fig. 6~b!,
calculated according to relations given in Appendix A. One
can easily verify that the only structures ofDr~p!, which are
clearly beyond experimental error, are the double peak
around the~110! Brillouin-zone boundary near theN point,
and the depression in theGH direction nearpF ~0.58 a.u.!.
The strong oscillatory behavior ofDr~p! between 0 and 0.4
a.u. alongGH seems to be an artefact of the reconstruction
procedure, since the oscillation amplitudes are of the same
order as the error in this region of momentum space. The

same applies to the peak midwayGP. The peak ofDr~p!
nearN within the first Brillouin zone can be attributed to the
bulge of the Fermi surface in the@110# direction, which will
be analyzed in more detail in connection with the reconstruc-
tion of the occupation number density in Sec. IV C. The
depression in theGH direction nearpF can be attributed to a
flattening of the free-electron Fermi sphere in the@100# di-
rection~see Sec. IV C!. The second peak nearN, outside the
first Brillouin zone, is a clear indication of a higher-
momentum component due to the secondary Fermi surface
centered atG110. As shown in Fig. 6~c!; the double-peak
structure ofDr~p! near theN point as well as the depression
in the GH direction nearpF are also found, when the 3D
reconstruction procedure is applied to 11 LDA-calculated di-
rectional Compton profiles~Ref. 18! ~convoluted with the
experimental resolution! with the sameq orientations as in
the experiment. Traces of these~110! higher-momentum
components were also found in 2D ACAR measurements of
Oberli et al.34

C. 3D reconstruction of the occupation number density
and of the Fermi surface

We also performed a 3D reconstruction of the occupation
number densityN~k! in the repeated zone scheme according
to Eq. ~23! by using the interpolated values ofB~r ! as ob-
tained in the course of ther~p! reconstruction. The result is
plotted in Fig. 7~a! for the GNPH plane in the form of a
level diagram. In Fig. 7~b!, the error map of the 3D recon-
struction of the occupation number density is plotted, as ob-
tained by means of relations given in Appendix B.

FIG. 4. Projection of the primary and the 12 110-type secondary
Fermi spheres of Li on the~110! plane. The hatched regions of the
secondary Fermi spheres are strongly occupied due to umklapp pro-
cesses at the 110-type Brillouin-zone boundaries. The solid lines are
traces of the planes of integration inp space corresponding to
pz50: the lineAA8 for qi@111#, the line parallel to the@110# axis
for qi@001#; and the line parallel to the@001# axis forqi@110#. The
dashed lines are traces of the planes of integration inp space cor-
responding topz50.4 a.u.:BB8 for qi@111#, CC8 for qi@001#, and
DD8 for qi@110#.

FIG. 5. Directional Compton profile differences of Li. Upper
panel:@110#-@111#. Lower panel:@110#-@100#. Points: experimental
data. Solid line: experimental data obtained by averaging thepz,0
and pz.0 parts of the Compton profiles. Dashed line: LDA-
calculated directional differences of Li Compton profiles.
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In the case of a monovalent metal like Li, the Fermi sur-
face can be deduced from the reconstructedN~k! by making
use of the fact that the surface

N~k!5const5c, ~32!

which defines the Fermi surface, has to enclose the volume
of the corresponding free-electron Fermi sphere with radius
kF0:

E
N~k!>c

dk5 4
3pkF0

3 , ~33!

where

FIG. 6. ~a! Level diagram of the anisotropic partDr~p! of the Li
momentum density in the~11̄0! plane, 3D reconstructed from the
experimental directional Compton profiles. Solid lines: positive val-
ues ofDr~p!; dotted lines: negative values ofDr~p!; level-line dis-
tance: 0.005 a.u.23; dashed line: Brillouin-zone boundary.~b! Error
map corresponding to~a!; the level-line distance as in~a!. ~c! Level
diagram of the anisotropic part,Dr~p!, of the Li momentum density
in the ~11̄0! plane, 3D reconstructed from the LDA-calculated di-
rectional Compton profiles; level-line distance: 0.02 a.u.23; all else,
see the legend~a!.

FIG. 7. ~a! Level diagram of the occupation number density
N~k! of the repeated zone scheme of Li in theGNPH plane, 3D
reconstructed from the experimental directional Compton profiles.
The level-line distance is 0.1 a.u.23. The trace of the Fermi surface,
as defined by Eq.~33!, is the dotted line. The dashed line is the
Brillouin-zone boundary.~b! Error map corresponding to~a!. The
level-line distance is 0.005 a.u.23.
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kF05~3p2ne!
1/3, ~34!

andne is the valence-electron density.
The trace of the Fermi surface in theGNPH plane, deter-

mined this way, is marked in Fig. 7~a! by a dotted line. This
way the Fermi radius can be determined for arbitrary direc-
tions in Bloch wave-vector space. We characterize the
Fermi-surface anisotropy by the following parameterh~k̂!:

h~ k̂!5100@~kF~ k̂!2kF0!/kF0#, ~35!

which is plotted in Fig. 8 as a function of the angleQ be-
tweenk̂ and the@110# direction in the~11̄0! plane. The long-
dashed curve is directly deduced from Eqs.~32!–~34! using
the reconstructed occupation number density. But this result
still contains a systematic error, since the 3D reconstruction

procedure of the occupation number density produces an ar-
tificial additional anisotropy ofN~k!, which can be estimated
the following way: We performed the 3D reconstruction pro-
cedure by using, instead of the 11 measured directional
Compton profiles, 11 identical profiles, namely, the orienta-
tion averages of the directional profiles. In spite of starting
with an isotropic distribution one ends up with a certain an-
isotropy ofN~k!, due to the fact that we have pressed the
anisotropic crystal symmetry of the bcc lattice upon the iso-
tropic momentum-space distribution. Since the whole recon-
struction procedure consists of linear operations, this artifi-
cial anisotropy can be subtracted from the long-dashed curve
in Fig. 8, ending up with the solid curve of Fig. 8, which
represents the Li Fermi-surface anisotropy. The error bars in
Fig. 8 are based on the error map ofN~k!, as shown in Fig.
7~b!. In Fig. 8, we have also included the 2D ACAR results
of Oberli et al.34 and the calculations of McDonald,35 which
used nonlocal exchange and correlation terms in their mass-
operator formalism. Both are in excellent agreement with our
measurements. But it must be stressed that our result has
been directly derived from the reconstructed occupation
number density distribution and, that we have not used any
parametrized model of the momentum distribution or the
Fermi surface in order to obtain the shape of the latter, con-
trary to the procedure for obtaining the 2D ACAR results,
where the Fermi radii were the result of comparing the first
derivative of the 2D ACAR curves, with corresponding
curves deduced from a parametrized model of the Li momen-
tum density. Moreover, these procedures are based on the
so-called LCW theorem,28 which has only a very limited
applicability for positron annihilation due to the influence of
the positron wave function, which is not taken into account
in the LCW theorem.

The comparison of our experimental Fermi-surface an-
isotropy with additional experiments and calculations of
other authors is presented in Table I, where we used the
parameterd, defined by

d5100@„kF~110!2kF~001!…/kF0#, ~36!

FIG. 8. Anisotropy of the Li Fermi surface as defined by Eq.
~35!. Long-dashed line: uncorrected data taken from the 3D recon-
struction of the occupation number density using the experimental
directional Compton profiles. Solid line: data from the 3D recon-
struction, but corrected with respect to a systematic error~see text!.
Open triangles: 2D ACAR measurements of Oberliet al. ~Ref. 34!;
short-dashed line: nonlocal calculations of MacDonald~Ref. 35!.

TABLE I. Maximum Fermi-surface anisotropy of Li in experiment and theory.

Reference Method d~%!

This work Compton scattering 3.661.1
Oberli et al. ~Ref. 34! 2D ACAR 2.860.6
Hunt, Reinders, and Springford~Ref. 36! dHvA 4.860.3
Randles and Springford~Ref. 37! dHvA 2.660.9
Sakuraiet al. ~Ref. 18! Compton scattering 4.161.0
Rajputet al. ~Ref. 40! 2D ACAR 4.760.2
Donaghy and Stewart~Ref. 38! 1D ACAR ~long slit! 5.0
Paciga and Williams~Ref. 39! 2D ACAR ~rotating specimen! 2.9
Rasolt, Nickerson, and Vosko~Ref. 41! orthogonalized plane wave~OPW! LDA ~local!

theory
5.5

OPW ~nonlocal mass operator! 1.4
MacDonald~Ref. 35! linear augmented plane-wave~LAPW! LDA ~local!

theory
6.0

LAPW ~nonlocal mass operator! 3.7
Sakuraiet al. ~Ref. 18! Korringa-Kohn-Rostoker~KKR! LDA ~local! theory 5.6
Rajputet al. ~Ref. 40! KKR LDA ~local! theory 5.6
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in order to describe the maximum deviation of the Li Fermi
surface from sphericity. Our results on the asphericity of the
Li Fermi surface agree, within the experimental errors, with
other Compton measurements,18 with the 2D ACAR results
of Oberli et al.,34 and also with the de Haas–van Alphen
measurements,36,37 where the latter were performed in a
polycrystalline state on small clusters in order to supress the
Martensitic transition, so that the Fermi-surface anisotropy
could not be obtained directly. The early long-slit~1D!
ACAR measurement38 does not contain error bars, and may
suffer from the double integration in momentum space.
Moreover, the evaluation of this experiment did not include
corrections for the anisotropy of the higher-momentum com-
ponents. Those corrections were performed in the rotating-
specimen ACAR experiment of Paciga and Williams39 which
reduced the Fermi-surface anisotropy by a factor of 1.6. Only
the 2D ACAR results of Rajputet al.40 seem to deviate sig-
nificantly from all the other experimental results. Neverthe-
less, details of the procedure used by the latter authors to
obtain the Fermi-surface asphericity are missing, so that it is
difficult to come to a final judgment. Concerning the calcu-
lations of the Li Fermi-surface anisotropy, one can find a
general trend: When compared with the average experimen-
tal results, all calculations using a local approach, when han-
dling exchange and correlation within a density-functional
scheme, seem to overestimate the Fermi-surface asphericity,
whereas the nonlocal approaches fit the experiment much
better. This fact was first stated by Rasolt, Nickerson, and
Vosko,41 and were confirmed by MacDonald.35 Therefore,
the rather high values ofd, found in the most recent calcu-
lations of Raijputet al.40 and Sakuraiet al.18 may also suffer
from local treatment of exchange and correlation.

The direct access to the occupation number densityN~k!
by the 3D reconstruction method applied to directional
Compton profiles offers a unique possibility to test the theo-
retical treatment of exchange and correlation in calculations
of N~k!. Those calculations have so far been done only for
homogeneous systems, by Daniel and Vosko24 within the
limits of the random-phase approximation~RPA!, by Lam42

including some of the exchange terms, by Overhauser43 us-
ing his plasmon-pole model together with a local-field cor-
rection of the static dielectric function, by Lantto44 making a
Fermi hypernetted-chain calculation, and by Takada and
Yasuhara45 applying an effective potential expansion to-
gether with a self-consistency relation betweenN(k) and the
correlation energy per electronec known very accurately
from Monte Carlo calculations.46 All these calculations have
held in common a valueN~0!,1, a discontinuityz,1 ~z is
the renormalization factor! at the Fermi momentumkF and a
tail for k.kF which behaves like (k/kF)

28. But the param-
eters which characterize these common features took very
different values in the various theoretical treatments. The
physical reason for the reduction of the discontinuity at the
Fermi momentum and for the appearance of a tail fork.kF
was clarified by Lundquist:47 The spectral functionA(k,v)
exhibit a coupled mode of a hole and a plasmon~the so-
called plasmaron! of appreciable spectral weight, whose
width on thev scale is not zero atk5kF . The spectral
weight of this mode is thus directly coupled to the value ofz.
To what extent the presence of the lattice potential may
change the characteristics ofN~k! for simple metals@besides

the appearance of nondiagonal termsnnn8~k!, as mentioned
in Sec. II# has not yet been proved by corresponding calcu-
lations of the spectral density functions. Therefore, in order
to confront the occupation number densities of the various
theoretical treatments with the experiment, we were left to
the jellium results ofN(k). For that reason we constructed
the following modelN(k), which containsz as a single pa-
rameter:

N~k!5H ~12a!2 1
2 ~12a2z!~k/kF!8

1
2 ~12a2z!~kF /k!8

for k,kF
for k.kF ,

~37!

wherea is determined by the normalization condition

4pE
0

`

N~k!k2dk5~4p/3!kF
3 ~38!

to a5 9
64 (12z). How well this model fits most recent calcu-

lations, is shown in Fig. 9: Our model is plotted against the
N(k) of Takada and Yasuhara45 for r s53, wherez50.713
~see Fig. 4 of Ref. 45!.

By using this modelN(k), we calculated the correspond-
ing model Compton profile on the sampling distance of the
experiment, and convoluted it with the experimental resolu-
tion. Then we performed theN~k! reconstruction, by using,
instead of the experimental directional profiles, 11 identical
model profiles, to whom we attributed theq directions of the
experimental ones. Finally, the constantc was determined
according to Eq.~33!. In Fig. 10 the model-reconstructed
N~k!/c in the @100# direction for different values of the
renormalization factorz are compared with the experimental
ones aroundkF0, with the rather surprising result that the
experiment fits the model calculations best forz50.160.1,
which is by far smaller then all theoretical jellium results for
r s53.3 obtained so far, ranging fromz50.5 ~RPA, Ref. 24!
to z50.75~Ref. 44!. This result is a very strong indication of
a considerable deviation ofN~k! in crystalline Li from its
jellium counterpart, whereas the ‘‘experimental’’ value ofz,
obtained above, must not be considered that serious, since

FIG. 9. Squares: model occupation number densityN(k) ac-
cording to Eqs.~37! and ~38! with z50.713. Solid line:N(k) cal-
culated by Takada and Yasuhara~Ref. 45! for r s53.0.
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we fitted a simple one-parameter modelN(k) to the experi-
ment, so that deviations from the jellium model can also be
the result of a behavior of the crystalN~k!, which is different
from the jellium model in other respects besides different
values ofz.

Nevertheless, one may speculate that it is the opening of
additional channels for collective excitations in the crystal-
line solid, the so-called zone-boundary collective states48,49

observed in Li~Ref. 50! and Be,51 which may enhance the
contribution of the above-mentioned coupled modes of holes
and collective excitations, thus diminishingz accordingly.
On the other hand, the whole reconstruction procedure for
N~k! is based on the assumption that the nondiagonal ele-
ments ofnnn8~k! can be neglected in the case of Li, as esti-
mated by Lundquist and Lyden.25 If this was not the case, the
above comparison between model calculated and experimen-
tal values ofN~k! would lose its foundation. In that case it is
not N~k! that is plotted in Figs. 7 and 10, but, according to
Eq. ~26!, the quantityr̄k , thekth contribution to the spatially
averaged electron density. Of course, the determination of
the Fermi-surface anisotropy is also based on the neglection
of the nondiagonal elements ofnnn8~k!, though the contribu-
tion of these nondiagonal elements seem to be much more
isotropic due to the interband mixing. So it is time to find
appropriate theoretical treatments to clarify this unsatisfying
situation.

V. SELF-ENERGY EFFECTS
IN THE COMPTON-SCATTERING PROCESS

Two prominent discrepancies between our Li Compton
results and corresponding LDA calculations need explana-
tion, at least a qualitative one, that is, the lower experimental
values of the total Compton profile for smallpz compared
with the calculated ones~see Fig. 2!, and the smaller contri-
butions of the secondary Fermi surfaces to the directional
profiles in the experiment in comparison with the calcula-

tions ~see Fig. 3!. In what follows, we will show that a criti-
cal investigation of self-energy effects connected with the
Compton-scattering process may offer a unique explanation
of these discrepancies.

For that reason we go back to Eq.~2!, where the double-
differential scattering cross section of the Compton process
was connected with the dynamic structure factorS~q,v!. It
was shown by Ng and Dabrowski52 that, as far as electron-
hole-pair excitations dominateS~q,v!, self-energy effects on
S~q,v!, including of-shell contributions, can be obtained via
the spectral density functionA~p,E!,

S~q,v!5~1/rp!E
2\v

0

~dE/2p!E ~dp/8p3!A~p,E!A~p

1q,E1\v!, ~39!

wherer is the electron density.
In a Compton-scattering process the momentum and en-

ergy transfer are so large that the self-energy effects onA~p
1q,E1\v! consist mainly of a finite width of the order of
half the free-electron plasmon energyEp , due to the imagi-
nary part of the self-energy, as has been shown for jellium by
Lundquist,53 within the limits of the RPA. Thus this self-
energy effect is adequately described by an additional con-
volution of LDA-calculated Compton profiles by a Lorentz-
ian with a FWHM of 0.53Ep , which is 4 eV in the case of
Li. Since in our case the experimental energy resolution is of
the order of 50 eV, this effect is of minor significance. But it
may play a role, whenever a much higher-energy resolution,
of the order of 1 eV, is aspired to,54 in order to obtain a
corresponding high-momentum-space resolution. In these
cases this self-energy effect sets natural limits to what a mo-
mentum space resolution can be achieved. The self-energy
effect on the spectral density functionA~p,E! in Eq. ~39! is
more important, sinceA~p,E! has a characteristic structure
for E,0 andp,pF , as shown for jellium by Lundquist.47

This structure consists of a quasiparticle peak, whose disper-
sion follows the free-particle one, and a second peak shifted
by roughly 1.53Ep to lower energies. The second peak is
attributed to a bound hole-plasmon state, the so-called plas-
maron, and contains up to 30% of the total spectral density.
The double-peak structure leads to a doubling of the mea-
sured Compton profile with two components shifted by
1.53Ep . We have calculated the effect of the self-energy on
the shape of a Compton profile within the limits of the
random-phase approximation for a free-electron system of
the density of Li under the conditions of our Li Compton
experiment (q5323kF) by using Eq.~39!. In Figs. 11~a!–
11~c! three spectral density functions forp50, 0.5kF , and
0.7kF , respectively, are shown, which are contributing to
A~p,E! in Eq. ~39!. In Fig. 11~d! a representative spectral
density function forup1qu5323kF is plotted, which stands
for A~p1q,E1\v! in Eq. ~39!. In Fig. 12 the self-energy
effect onS(q,v), which according to Eq.~2! is proportional
to the Compton profile, is presented. The contributions of the
quasiparticle peak~;70%! and of the plasmaron peak
~;30%!, respectively, are specified. Additionally a Compton
profile @~in terms ofS(q,v)!# is plotted, which is correlation
corrected according to Ref. 20, and where this correction has
been calculated on the same footing as the self-energy cor-
rection. The self-energy correction according to Eq.~39!

FIG. 10. The assignment of the different line styles; see the
inset. Normalized occupation number densityN(k)/c is in the@100#
direction, as reconstructed from model jellium~r s53.3!. Compton
profiles for different values of the renormalization factorz. Tri-
angles with error bars: normalized occupation number densityN(k)
reconstructed from the experimental directional Compton profiles
of Li.
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leads to a reduction of the valence-electron Compton peak by
4%, when compared with the correlation-corrected one. This
reduction is just what we have found for the@110# Li profiles
~see Fig. 2!. Certainly the reduction for the other two princi-
pal directions, as found in the experiment, is somewhat
larger, see Fig. 3. Nevertheless, we feel we are on the right
track as far as the reason for these discrepancies is con-
cerned.

Likewise the smaller contribution of the secondary Fermi
surfaces to the directional Compton profiles in the experi-

ment compared with the calculation finds its explanation, if
one separately considers the contribution of the quasiparticle
states to the higher-momentum components, on one hand,
and the corresponding contribution of the plasmaron states
on the other hand. For this reason we utilize Lundquist’s47

lowest-order representation of the perturbed hole state, con-
nected with the spectral weight functionA~k,E! in Eq. ~39!,
where the unperturbed hole statecku0& is coupled to the prod-
uct stateck2Qb2Q

1 u0&, involving one hole and one plasmon,
the plasmaron state. Letu0& be the filled Fermi sea, and
ck

1 , ck, andbQ
1 ,bQ creation and annihilation operators for

fermions and bosons~plasmons!, respectively. Then we can
write the perturbed hole state in the Bloch representation as
follows:

uck,n&5~1/Nk,n!H ck,n1~\/V!1/2

3 (
Q,uk2Qu,kF

PgQ@ck2Q,nb2Q
1 /„E2En~k2Q!

1\vQ…#J u0&, ~40!

whereNk is a normalization factor,P means that the princi-
pal value should be taken,gQ is the electron-plasmon cou-
pling strength,En~k! is the single-particle eigenvalue spec-
trum, and\vQ is the energy of a plasmon with wave vector
Q.

Assume that in a Compton scattering process the first
term on the right-hand side of Eq.~40!, ck,nu0&, might give
rise to higher-momentum components~HMC’s! due to um-
klapp processes atk, so that these HMC’s strongly contrib-
ute to directional differences of Compton profiles. Then the
second term on the right side of Eq.~40! ~plasmaron states!

FIG. 11. Spectral density functionsA(p,E) of
jellium ~r s53.3!. ~a! p50. ~b! p50.53kF . ~c!
p50.7kF . ~d! p532.03kF .

FIG. 12. JelliumS(q,v) ~r s53.3, corresponding to Li!. For the
assignment of the different line styles, see the inset. The upper three
curves are as follows. Solid line: Self-energy corrected. Long-
dashed line: correlation corrected according to Ref. 20. Short-
dashed line: free-electron inverted parabola, noninteracting. The
lower two curves are as follows. Long-dashed line: contribution of
the quasiparticle peak to the self-energy-corrected Compton profile.
Short-dashed line: plasmaron-peak contribution to the self-energy-
corrected Compton profile.
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will diminish the amplitude of the directional differences,
since theQ summation makes the contributions of HMC’s,
due to umklapp processes atk2Q, isotropically distributed.
LDA does not take into account the self-energy-induced
plasmaron states. Therefore, the LDA-calculated directional
Compton profile differences must be reduced, when self-
energy effects are properly allowed for. According to the
jellium calculations, presented in Fig. 12, the contribution of
the second~isotropic! term of Eq. ~40! to the momentum
density is roughly 30%. Therefore this isotropic contribution
can, at least partly, account for the discrepancy between
measured and LDA-calculated Compton profile anisotropies.
As already discussed in Sec. IV C, this contribution could
even be larger in a real metallic solid due to additional col-
lective states~so-called zone-boundary collective states!.

VI. CONCLUSIONS

~1! All measured total directional valence-electron Comp-
ton profiles of Li exhibit smaller values atpz50, and larger
values atpz'kF than the corresponding LDA-calculated
ones, where the latter are convoluted with the experimental
resolution, and correlation corrected according to Lam and
Platzman.20 The q-orientation dependence of this discrep-
ancy is consistent with a contribution of the secondary Fermi
surfaces to the momentum density, which is smaller than
predicted by the LDA calculations. This leads to oscillations
of the measured directional differences with amplitudes
smaller than the LDA-calculated ones.

~2! The above-mentioned discrepancies can be interpreted
as being due to self-energy effects connected with the
Compton-scattering process. The double-peak structure of
the spectral density function, which describes the creation of
the hole during the scattering process, leads to two Compton
profiles separated on an energy scale by 1.5 times the plas-
mon energy, where the second peak of the spectral density
function is attributed to the so-called plasmaron, a bound
plasmon-hole state. This doubling of the Compton profiles
can account, even quantitatively, for the lower maximum
value of the resulting profile, when compared with a theo-
retical one, calculated within the limits of the LDA, on the
basis of the impulse approximation. Moreover, it could be
shown that the formation of the plasmaron state during the
Compton-scattering process diminishes the contribution of
higher-momentum components, or will lead to their smear-
ing over momentum space, which can account for the re-
duced oscillations of the measured orientation difference
profiles when compared with the LDA-calculated ones.

~3! The reconstructed 3D momentum density exhibits
higher-momentum components due to the umklapp processes
near the 110 zone boundary, visible in the anisotropic part of
the reconstructed momentum density

~4! The reconstructed 3D occupation number density en-
ables a determination of the Fermi-surface anisotropy, after
subtraction of a systematic error. The maximum Fermi-
surface anisotropy~relative difference between the diameter
of the Fermi surface in@110# and@100# directions! was found
to be 3.661.1%, where this value is closer to the result of
theories with a nonlocal treatment of electron correlation
than to findings of ‘‘local’’ theories.

~5! The shape of the occupation number density function

of Li near the Fermi momentum in the@100# direction, as
found by means of a 3D reconstruction method, fits a jellium
model, subjected to the same reconstruction procedure, for
z50.160.1, wherez is the renormalization factor. This find-
ing can be interpreted either as being due to a drastic reduc-
tion of z in a real metallic solid, as being brought about by
additional channels for collective excitations, which lets us
increase the plasmaron contribution, or as a hint that the
nondiagonal elements of the occupation number density,
mixing between different bands, cannot be neglected.
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APPENDIX A

Let I i be the distribution of the number of scattered pho-
tons in a Compton experiment, measured on an equidistant
pz scale~distanceDpz!. We assume the measurement at dif-
ferent points to be uncorrelated, and to be subjected to Pois-
son statistics. Then

cov~ I i ,I j !5I id i j . ~A1!

The following relation betweenI i and the Compton profile
J(pzi) holds:

J~pzi!5~Z/NDpz!I i , ~A2!

where we assume the Compton profile to be normalized to
the numberZ of electrons per atom, andN5( i I i . For the
covariance55 of J(pz) we obtain

cov„J~pzi!,J~pz j!…5(
n

(
m

„]J~pzi!/]I n…„]J~pz j!/]I m…

3cov~ I n ,I m!

5~Z/NDpz!J~pzi!d i j2J~pzi!J~pz j!.

~A3!

According to Eq.~11!, and taking into account the symmetry
of the Compton profile, we can write the reciprocal form
factor as a discrete cosinus transform:

B~z!5(
i
J~pzi!cos~pziz!Dpz . ~A4!

Using Eq.~A3!, we can write the covariance ofB(z) in the
following way:
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cov„B~zi !,B~zj !…5~Z2/2N!$@B~zi1zj !/Z#1@B~zi2zj !/Z#

22@B~zi !B~zj !/Z
2#%

' H0 for zi50 or zj50
~Z/2N!B~zi2zj ! else, ~A5!

where the approximation uses the fact thatB(z) is a rapidly
decreasing function ofz.

Relations~A3! and~A5! apply not only to the total Comp-
ton profile and itsB function but also to the valence part,
since the subtracted core profile can be assumed to be free of
error. According to Eq.~15!, the expansion coefficientsbl
are obtained by solving a system ofM linear equations,
where M is the number of different crystal orientations.
Since the anisotropy ofB(z) is small compared toB~0!, we
can approximate the covariance ofB(z) to be independent of
the crystal orientation. If we additionally assume that the
measurements of the Compton profiles with different orien-
tation of the momentum transfer are performed indepen-
dently, we can write

cov„Br~r i !,Bs~r j !…5d rs cov„Br~r i !,Br~r j !…, ~A6!

wherer ands refer to different crystal orientations. For prac-
tical calculations we can insert the orientation averagedB(r )
functions into Eq.~A6!. By taking into account that there
exists a twofold correlation for the expansion coefficientsbl ,
one ends up with

cov„bk~r i !,bl~r j !…5(
r

(
s

@]bk~r i !/]Br~r i !#

3@]bl~r j !/]Bs~r j !#cov„Br~r i !,Bs~r j !…

5~FtF!kl
21 cov„B~r i !,B~r j !…. ~A7!

We can approximate the integral of Eq.~17! by a discrete
summation

r l~p!5 i l~1/2p2!(
i
bl~r i ! j l~pri !r i

2Dr , ~A8!

so that the covariance of the expansion coefficients of the
momentum density,r l(p), can be written~taking again into
account that they also are twofold correlated!

cov„rk~pi !,r l~pj !…

5(
m

(
n

@]rk~pi !/]bk~rm!#@]r l~pj !/]bl~r n!#

3cov„bk~rm!,bl~r n!…

5 i k1 l~1/4p4!~FtF!kl
21(

m
(
n

j k~pirm!rm
2Dr

3 j l~pjr n!rm
2Dr cov„B~rm!,B~r n!…. ~A9!

Thus by using Eq.~A9! together with Eq.~A5! the variance
of the 3D-reconstructed momentum densityr~p! can be cal-
culated:

sr
2~p!5(

k
(
l
Fk~Vp!Fl~Vp!cov„rk~p!,r l~p!….

~A10!

APPENDIX B

Equation ~12! enables us to obtain the reciprocal form
factor B~r ! for any r , provided the expansion coefficients
bl(r ) are known. Using Eq.~12! together with Eq.~A7!, we
can calculate the covariance ofB~R!, whereR is a lattice
translational vector:

cov„B~R!,B~R8!…5cov„B~R!,B~R8!…

3(
k

(
l
Fk~VR!Fl~VR8!~F

tF!kl
21.

~B1!

By means of Eq.~20! and using Eq.~B1!, we end up with the
following expression for the variance of the occupation num-
ber densityN~k!:

sN
2 ~k!5(

R
(
R8

exp@ ik•~R1R8!#cov„B~R!,B~R8!…

3(
k

(
l
Fk~VR!Fl~VR8!~F

tF!kl
21. ~B2!

APPENDIX C

The electron density in position space,r~r !, is expressed
in terms of field operators

r~r !5^C1~r ,0!C~r ,0!&. ~C1!

By inserting both the expansion of the field operators in
Bloch waves, according to Eq.~8!, and the expansion of the
Bloch waves in plane waves@Eq. ~9!#, one ends up with

r~r !5V21(
nn8

(
kk8

^ak8,n8
1

~0!ak,n~0!& (
GG8

an8
* ~k81G8!an~k

1G!3exp@ i ~k81G82k2G!•r #. ~C2!

The spatial average

r̄[V21E r~r !dr ~C3!

of the electron density is then given by
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r̄5V21(
nn8

(
kk8

^ak8,n8
1

~0!ak,n~0!& (
GG8

an8
* ~k81G8!an~k

1G!d~k2k8!d~G2G8!

5V21(
k

(
nn8

nnn8~k!(
G

an8
* ~k1G!an~k1G![(

k
rk.

~C4!

Now we can easily expressB~R! of Eq. ~21! in terms of the
kth contribution rk to the spatial average of the electron
density, namely,

B~R!58p3(
k

rk exp~ ik•R!, ~C5!

which is just the relation of Eq.~24!.
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mäläinen, and P. Suortti, Phys. Rev. Lett.75, 1984~1995!.

20L. Lam and P. M. Platzman, Phys. Rev. B9, 5122~1974!.
21P. Nozieres and D. Pines, Phys. Rev.113, 1254~1959!.
22R. Ribberfors, Phys. Rev. B12, 3136~1975!.
23P. Holm and R. Ribberfors, Phys. Rev. A40, 6251 ~1989!; A.

Issolah, B. Levy, A. Beswick, and G. Loupias, ibid.38, 4509
~1988!.

24E. Daniel and S. H. Vosko, Phys. Rev.120, 2041~1960!.
25B. I. Lundquist and C. Lyden, Phys. Rev. B4, 3360~1971!.

26Since we will use only the diagonal terms ofnnn8~k! in Eq. ~8!,
we will skip the double summationn,n8 in what follows.

27F. M. Müller and M. G. Priestley, Phys. Rev.148, 638 ~1966!.
28D. G. Lock, V. H. C. Crisp, and R. N. West, J. Phys. F3, 561

~1973!.
29A. Berthold, J. Degenhardt, S. Mourikis, J. R. Schmitz, W.

Schülke, H. Schulte-Schrepping, F. Wohlert, A. Hamacher, D.
Protic, and G. Riepe, Nucl. Instrum. Methods Phys. Res. Sect. A
320, 375 ~1992!.

30W. Schülke, inHandbook on Synchrotron Radiation, edited by G.
Brown and D. E. Moncton~North-Holland, Amsterdam, 1991!,
Vol. 3, p. 609.

31N. Sakai, J. Phys. Soc. Jpn.56, 2477~1987!.
32P. Paatero and V. Halonen, Nucl. Instrum. Methods135, 537

~1976!.
33F. Biggs, L. B. Mendelsohn, and J. B. Mann, At. Data Nucl. Data

Tables16, 201 ~1975!.
34L. Oberli, A. A. Manuel, R. Sachot, P. Descouts, and M. Peter,

Phys. Rev. B31, 6104~1985!.
35A. H. MacDonald, J. Phys. F10, 1737~1980!.
36M. B. Hunt, P. H. Reinders, and M. Springford, J. Phys. Condens.

Matter1, 6589~1989!.
37D. L. Randles and M. Springford, J. Phys. F6, 1827~1976!.
38J. J. Donaghy and A. T. Stewart, Phys. Rev.164, 391 ~1967!.
39J. J. Paciga and D. Williams, Can. J. Phys.49, 3227~1971!.
40S. S. Rajput, P. Prasad, R. M. Singru, W. Triftsha¨user, A. Eckert,
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