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We describe a set of techniques for performing large sahl@itio calculations using multigrid accelera-
tions and a real-space grid as a basis. The multigrid methods provide effective convergence acceleration and
preconditioning on all length scales, thereby permitting efficient calculations for ill-conditioned systems with
long length scales or high energy cutoffs. We discuss specific implementations of multigrid and real-space
algorithms for electronic structure calculations, including an efficient multigrid-accelerated solver for Kohn-
Sham equations, compact yet accurate discretization schemes for the Kohn-Sham and Poisson equations,
optimized pseudopotentials for real-space calculations, efficacious computation of ionic forces, and a complex-
wave-function implementation for arbitrary sampling of the Brillouin zone. A particular strength of a real-
space multigrid approach is its ready adaptability to massively parallel computer architectures, and we present
an implementation for the Cray-T3D with essentially linear scaling of the execution time with the number of
processors. The method has been applied to a variety of periodic and nonperiodic systems, including disordered
Si, a N impurity in diamond, AIN in the wurtzite structure, and bulk Al. The high accuracy of the atomic forces
allows for large step molecular dynamics; e.g., in a 1-ps simulation of Si at 1100 K with an ionic step of 80
a.u., the total energy was conserved within28V per atom[S0163-18206)04443-§

[. INTRODUCTION guired long-range communications.
Real-space methods are inherently local, and therefore do

Over the last several decades algorithmic advancesiot lead to a large communication overhead. The scaling of
coupled with the development of high-speed supercomputseveral critical parts of large calculations is improved from
ers, have madab initio quantum-mechanical simulations O(N?log,N) in a plane-wave representation ©(N?),
possible for a wide range of physical systems. These mettwhereN is the number of atoms. Furthermore, precondition-
ods have been used to provide a theoretical framework foing and convergence acceleration are most effectively carried
interpreting experimental results and even to accurately presut in real spacésee Sec. ). A real-space formulation is
dict the material properties before experimental data weralso required for efficient implementations 6f(N) elec-
available. However, the calculations are currently restrictedronic structure methods, in which the computational work
to systems containing a few hundred aton¥his limitation ~ required scales linearly with the number of atoms. These
is set by the available computer power, and the scaling of thenethods impose a localization constraint on the electronic
computational work with the number of atoms. One of theorbitals? or the electron charge densitywhich eliminates
most successful of the recent techniques is the Car-Parrinellbie O(N®) orthogonalization step.
method? in which the electronic orbitals are expanded in  Orbital-based real-space approaches, e.g., atom-centered
plane-wave basis functions, and the resulting Hamiltonian ir floating Gaussians, are very well established. Recently,
iteratively diagonalized. however, there has been substantial interest in developing

The practical and efficient extension alf initio quantum  real-space orbital-independent methods, which permit sys-
methods to larger and more difficult systems may be accomtematic studies of convergence in the spirit of plane-wave
plished by the refinement and improvement of traditionalmethods. These methods include finite elemé&hggids >
methods or by the development of additional techniques. Aland wavelet$?23
though highly successful, traditional plane-wave methods en- The finite-element method was applied by White,
counter considerable difficulties when they are applied tdWilkins, and Tetel* to one-electron systems. They used both
physical systems with large length scales, or containing firsteonjugate-gradient and multigrid accelerafibto find the
row or transition-metal atoms. These difficulties may be parground-state wave function. Two of the present autfors
tially eliminated by the use of preconditioned conjugate-used a basis with a high density of grid points in the regions
gradient technique¥* optimized pseudopotentials®  where the ions are located, and a lower density of points in
augmented-wave methodspr plane waves in adaptive the vacuum regions, in conjunction with multigrid accelera-
coordinates®!! However, these methods are still con- tion, to calculate the electronic properties of atomic and di-
strained by the use of a plane-wave basis set, and the necedomic systems. The core electrons were explicitly included,
sity of performing fast Fourier transform&FT’s) between and nearly singular pseudopotentials were used. The nonuni-
the real and reciprocal spaces. While FFT’'s may be impleform grid led to order of magnitude savings in the basis size
mented in a highly efficient manner on traditional vectorand total computational effort. The multigrid iterations,
supercomputers, the current trend in supercomputer designighich provide automatic preconditioning on all length
massively parallel architectures. It is difficult to implement scales, reduced the number of iterations needed to converge
efficient FFT algorithms on such machines, due to the rethe electronic wave functions by an order of magnitude in
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these multi-length-scale systems. Bylas&gnall® used a This paper is organized as follows: In Sec. Il a method for
similar method to solve for the ground state of H Wavelet the accurate and efficient real-space discretization of the
base&?3were used to solve the local-density-approximationKohn-Sham equations for cubic, orthorhombic, and hexago-
(LDA) equations for atoms and the ,Omolecule. Che- nal symmetries is described. Section Il focuses on the mul-
likowsky et al® used high-order finite-difference methods tigrid algorithms, which greatly accelerate convergence of
and soft nonlocal pseudopotentials on uniform grids to calthe electronic wave functions and of the Hartree potential.
culate the electronic structure, geometry, and short-time dyTests of the convergence acceleration are described in Sec.
namics of small Si clusters and of an isolated Q@olecule. IV. The calculation of ionic forces that are sufficiently accu-
Beck, lyer, and Merrick® have used uniform grids and a rate for large step molecular dynamics requires special meth-
smeared nuclear potential to examine the energetics arRfls, Which are described in Sec. V. Section VI discusses
structures of atoms and small molecules. They employe@erformance issues for massively parallel supercomputers,
multigrid iteration techniques to improve the convergenceand describes a highly scalable and efficient implementation
rates of the Kohn-Sham functional. Real-space grids in curon the Cray-T3D, which has been tested on up to 512 pro-
vilinear coordinates were used by Gyg| and G’)gﬂo com- cessors. The summary in Sec. VIl is followed by several
pute the properties of atoms and gCind Zumbach, Mod- technical appendices.

ine, and Kaxivaset al?! independently tested a similar

approach on Q. Seitsonen, Puska, and NiemiRgmised a

uniform grid approach with pseudopotentials and a Il. GRID-BASED DISCRETIZATIONS
conjugate-gradient scheme to calculate the electronic struc- OF THE KOHN-SHAM EQUATIONS
ture of P, and to study a positron trapped by & Cd vacancy Electronic structure calculations that use a real-space

in CdTe. mesh to represent the wave functions, charge density, and

In a previous communicatidh the present authors out- . . . .
lined a multigrid-based approach suitable for large-scale cafonic pseudopotentials must address another set of technical

culations, together with a number of test applications. Thesg:gfgj&iﬁ/g&e%@%ﬂgﬁfﬂdtr\:\g t?oPrLag?:r/nv:\li?ngziit-:?isr’- Inoa_
included calculations for a vacancy in a 64-atom diamond’ P dy op

. . .. erator is obvious. In contrast, the representation of the
supercell, anisolated Cgo Molecule using nonperiodic kinetic-energy operator on a real-space grid is approximated
boundary conditions, a highly elongated diamond supercell dy op P 9 PP

and a 32-atom supercell of GaN that included the Ga 3 by some type of finite differencing, the accuracy of which

) : . . must be carefully tested. Below, we describe real-space dis-
electrons in valence. Uniformly spaced grids were used; in__.._ " : ; .

) . ' o retizations for uniform cubic, orthorhombic, and hexagonal
this case an effective cutoff may be defined, which is equal

to that of the plane-wave calculation that uses the same rez?rlds, as well as nonuniform scaled cubic grids that increase

. . . he resolution locally. For uniform cubic grids we also de-
space grid for the FFT's. Whenever feasible, the correspond- i d test the extension to periodic svstems with an
ing calculations were also carried out using plane-wave tec pCroe an ; lon 1o p y
nigues, and the two sets of results were in excelIenf"rbItrary sampling of the Brillouin zone.
agreement with each other. This paper provides a compre-
hensive description of the real-space multigrid method, and
reports extensions to nonuniform grids, noncubic grids, and
to molecular-dynamics simulations with highly accurate Previously.’ we described a real-space approach that uses
forces. uniform cubic grids withl’-point k-space sampling. In direct

Several computational issues absent from plane-wavecomparisons with plane-wave calculations, we found nearly
and orbital-based methods arise when using a real-space gigrfect agreement between the two methods for several test
approach. In the plane-wave basis the action of the kineticsystems. We now provide further details of our method.
energy operator on the basis functions can be computed ex- In real space the wave functions, electron charge density,
actly, and the wave functions, potentials, and the electro@nd potentials are directly represented on a uniform three-
charge density can be trivially expanded in the basis. Everglimensional real-space grid dfq points with linear spac-
basis-set integral, except those involving the LDA exchangeind hgiq. The physical coordinates of each point are
correlation functional, can be computed exactly. The compu-
tational errors in the calculations are mainly due to the trun-
cation of the basis. In a real-space grid implementation, the r(i,j,k)=(ihgig,jNgria,KNgria),

Kohn-Sham equations must be discretized explicitly, which

presents important trade-offs between accuracy and compu-

tational efficiency. Furthermore, the quantum-mechanical i=1,... N, j=1,...N,, k=1,...N,. (2
operators are known only at a discrete set of grid points,

which can introduce a spurious systematic dependence of the

Kohn-Sham eigenvalues, the total energy, and the ionidhe ions are described by norm-conserving
forces on the relative position of the atoms and the grid. Wepseudopotentiaf§~2® in the Kleinman-Bylander nonlocal
have developed a set of techniques that overcome these dftrm.2° These potentials are interpolated onto the grid from
ficulties, which have been used to compute accurate statiheir radial representation. Exchange and correlation effects
and dynamical properties of large physical systems, whileare treated using the local density approximation of density-
taking advantage of the rapid convergence rates afforded biynctional theory, in which the total electronic energy of a
multigrid methods. system of electrons and ions may be expresséll as

A. Uniform cubic and orthorhombic grids
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Nstates TABLE |. Discretization weights for the fourth-order ortho-

Epa= z fnfn+f drp(r){exclp(r)]— uxclp(r)1} rhombic Mehrstellen operators for the central, nearest-neighbor,
n=1 and next nearest-neighbor grid points. See E44%) and (A2) for
the definitions ofa, b,, andc, ,. The cubic-grid operator corre-

1 _
- Ef drp(r)Viarred ") + Eion -ion- 2 sponds tah; = hgrid-
.. . . . . . . a bn Cn,m
The minimization of this functional requires the solution of
the Kohn-ShamKS) equations Avehr s 4 5 is 1 1
. W e e e 12
Hisl ¥n]l= =3V hn+ Verthn= €nthn - 3 B 1 1 0
Mehr E 1_2

The accurate discretization of these equations on the grid
structure described by E{l) requires appropriate humerical
representations of the integral and differential operators. AlWhere Ayep,, and Byg,, are the components of the Me-
integrations are performed using the three-dimensional tragirstellen discretizatiory; which is based on Hermite’s gen-
ezoidal rule eralization of Taylor's theorem. It uses a weighted sum of
the wave-function and potential values to improve the accu-
racy of the discretization of thentire differential equation,
f drf(r)=h3,> f(r(i,j.k). (49 not just the kinetic-energy operator. In contrast to the central
1k finite-differencing method, this discretization uses mimre

We have found that for high accuracy it is essential that th&al information (next-nearest neighbors, for examplé&he
integrandf(r) be band limited in the sense that its Fourier definition of the fourth-order Mehrstellen operator used in
transform should have minimal magnitude in the frequencyn€ pPresent work is specified by the weights listed in Table |,
range G> Gyna=m/hgiq. This is explicit in a plane-wave which pertain to bqth cubic ar_1d orthorhombic gridee be-
calculation since the basis is cut off at a specific plane-wavéW). A more detailed analysis of the Mehrstellen operator
energy. and Eq.(5) is given in Appendix A. o

The discrete real-space grid also provides a kinetic-energy ThiS representation of the Kohn-Sham Hamiltonian is
cutoff of approximatelﬁ%aJZ. Unlike the plane-wave basis, Short rapged in real space in the sense_that the op_erator can
high-frequency components above this cutoff can nonethe2€ @PPlied to any orbital i®(Nyq) operations. Specifically,
less manifest themselves on the grid. This high-frequenc{’® @pplication of theAye,, operator at a point involves a
behavior, which can introduce unphysical variation in theSUM over 19 orbital values, while the application of the
total energy or the electron charge density, is perhaps beSwvenr OPerator requires a sum over seven points. The local
seen when the ions, and hence their pseudopotentials, shfptential multiplies the orbital pointwise, and the short-
relative to the grid point&’ If the pseudopotentials contain f@nged nonlocal projectors require one integration over a
significant high-frequency components near or abByg,, f|x¢d volume around egch ion and a p_omtvwse mulnpllc:_:ltlon.
then, as the ions shift, the high-frequency components ar&his sparseness permits the use of iterative dlagonallzathn
aliased to lower-frequency components in an unpredictabl£chniques, and the short-ranged representation of the Hamil-
manner. tonian leads to an efficient implementation on massively par-

This effect can be decreased éyplicitly eliminating the ~ &/l€! computers. o _ _
high-frequency components in the pseudopotentials by Fou- The d|_scus_5|on up to this p0|_nt has been restricted to uni-
rier filtering. In the context of plane-wave calculations, form _cublc gnds, but the extension to a general orthorhomb!c
King-Smith Payne, and Litt recognized that the real-space grid is straightforward. There are now three separate _grld
integration of the nonlocal pseudopotentials could differ sig-SPacingshy, hy, andh, with the coordinates of each grid
nificantly from the exact result computed in momentumPOINt given by
space, unless the potentials were modified so that Fourier
components ned ., Were removed. Fourier filtering of the
pseudopotentials is thus required in real-space calculations
for accurate results. It is, of course, possible to use unfiltered
potentials on real-space grids provided the grid spacing i¥he orthorhombic Mehrstellen operator described in Table |
sufficiently small, but our experience shows that the totais used to discretize the Kohn-Sham equations and numerical
energy and the electron charge density are often sufficientlintegration is performed according to
well converged for significantly larger grid spacings—
provided that explicit pseudopotential filtering is used. We N .
use a somewhat different Fourier filtering method than that f drf(r)—hxhyhziJEk flr(i.p ko] @)
proposed by King-Smith, Payne, and Lin, but it produces
essentially the same effe(dee Appendix B

The differential operator in the Kohn-Sham equations is

r(i,j,k)=(ihy,jhy,kh,),

i=1,...N., j=1,...N,, k=1,...N,. (6

B. Extension to arbitrary Bloch wave vectors

approximated using generalizedeigenvalue form In Sec. Il A the wave functions were assumed to be real,
with the Brillouin-zone sampling restricted to theé point.
Huterd #n]= 3 Avend ¥n]+ Buend Veittn] = €nBuend ¥nl, When these restrictions are lifted the Kohn-Sham equations

(5) become
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= 3V2it ik Vit 3 K 2t Ver(K) k= €ntnk. where n; are the hexagonal Bravais-lattice vectStsThe
(8) cl/aratio can be chosen arbitrarily by varying the two inde-
pendent grid spacings,, andh,, and the number of grid

where are now the periodic parts of the Bloch functions. ™™, ;
Uik b P pointsN,=N, andN,. However, one should ugg,~h, in

They are complex valued, which presents no additional dif Wy ez . )
ficulties in discretization. The nonlocal projectorsvips(k) ~ °rder to maintain similar resolution both in thg plane and
have been multiplied by the phase facef". The gradient along thez axis. Because the indexing of this hexagonal grid

term V 4, is computed using a central finite-difference ex- is isomorphic to the cubic one, the computer representation
pression, which in one dimension has the form of potentials and wave functions does not change. The most

important difference is in the discretization of the Kohn-
d Sham equations. We have implemented a mixed sixth-order
&f(xi)=n;3 anf(X4n)+0O(h"), (9 kinetic-energy operator. This discretization is described in

Appendix C, as well as the modifications required in the

where a;=3/(4hgig), a,=—3/(20giq), az=1/(60y;q), multigrid restriction and interpolation procedurésee Sec.
and a_,=—a,. For a cubic grid structure the three- |II).
dimensional generalization of this is the sum of the indi- The above implementation has been tested on a 32-atom
vidual expressions for each coordinate axis. Denoting thisupercell of AIN in the wurtzite phase. The accuracy of the
finite-difference operator by, the discretization of the results was confirmed by comparison with plane-wave Car-

3

Kohn-Sham equation becomes Parrinello calculations on the same supercell. Generalized
. o s norm-conserving 28 Al and N pseudopotentials were used
Heioctl ¥kl = 2 Amend ¥ni] + Bumenl 1K+ V dhnict 2K 4k for both calculations wittk-space sampling restricted to the

+ Vert(K) ¥l = €nBrend ¥kl 10 T point. The cohesive energy from the real-space calculation

was 11.5 eV per AIN unit, which compares well with the
whereA e andByer, are again the components of the Me- value of 11.6 eV obtained in the Car-Parrinello calculations.
hrstellen operator. The eigenvalue degeneracies were identical in both calcula-
~ The accuracy of the discretization was tested by calculations and the maximum difference in any eigenvalue was
ing the lattice constant and bulk modulus for an eight-atony g4 ey, The extension of the real-space grid representation
Si supercell. A 26-Ry equivalent cutoff was used with to other Bravais lattices proceeds in a similar manner, the

k—slpalce zalmp_llng restricted io ;thBi\':lldgrﬁschg f'mhg | only requirement being the existence of an accurate finite-
calculated lattice constant was 5. » with a bulk modulus,itterance discretization.

of 0.922 Mbar. These are in good agreement with the corre-
sponding plane-wave calculation with a cutoff of 26 Ry: 5.39
A and 0.960 Mbar, respectivefy.

Bulk aluminum was selected as an additional test case. A
four-atom cell was used with a 23-Ry equivalent cutoff and a In real-space calculations it is possible to add resolution
k-space sampling of 35 special points in the irreducible partocally. This is especially valuable for systems with a wide
of the Brillouin zone. Since Al has partially occupied orbit- range of length scales such as surface or cluster calculations.
als, the bands near the Fermi level were occupied using A high density of grid points can be used near the ions, with
Fermi-Dirac broadening function of width 0.1 eV. The con- a low density in the vacuum regions. Other possible applica-
vergence of the total energy with respect to energy cutoff antions are simulations of impurities in bulk materials, where
the number ofk points was tested by increasing the cutoff the impurity ions may require higher resolutions to be accu-
from 23 to 49 Ry, which produced a change of only 10rately represented. By using locally enhanced regions the
meV/atom, and by increasing the numberkopoints to 56, required resolution may be added only where needed,
which changed the total energy by 3 meV/atom. The calcuthereby greatly reducing the total number of points required.
lated Iattic.e constant and bulk modglus of 4.02/3_\ and 0.734 | gcal enhancement of the grid resolution may be
Mbar are in excellent agreement W|th the ex.penmental Yalachieved by adding small high-resolution gitf¥ onto a
ues of 4.02 A and 0.722 Mbar, and with previous theoretica|,nitorm global grid, or by using a coordinate transform to
results of Lam and Cohéhof 4.01 A and 0.715 Mbar. warp the grid structure. Our focus here will be on the second

approach, which was proposed by GYdor plane-wave ba-
C. Uniform hexagonal grids sis sets, and recently extended to real space by several

Unlike plane-wave methods, where different symmetryworkers?> In the real-space approach, a continuous coor-
groups can be handled easily, efficientreal-space imple- dinate transform is applied to a uniform grid. In general the
mentation for periodic systems with nonorthogonal latticetransformation is nonseparable, but we prefer a separable
translation vectors requires considerable modifications to theoordinate transformation in order to avoid mixed deriva-

D. Scaled grids

orthorhombic-symmetry implementation. tives in the kinetic-energy operator. As a test of the utility
The hexagonal grid describing the unit cell or supercell isand accuracy of this scaled-grid approach, we examined an
generated by interstitial oxygen impurity in $¥ for two grid layouts: a
dense uniform grid with a 76-Ry cutoff and a scaled grid
r(i,j,K)=hing+h,jn+hkng, with a cutoff that varied from 18 to 76 Ry. The scaling

transformation that maps the fictitious computational grid
i=1,...Ny, j=1,... Ny, k=1,...N,, (11) to the physical warped griglsc,eqiS
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LB . [ 2m(X—Xo) The differential operator- V2 is represented by some form
Xscaled X) = (X—Xo) = > —sin C , (120 of finite differencing. This produces a set of linear algebraic
X equations

wherexg is thex coordinate of the oxygen atorh, is the Ax=b (13)

length of the supercell in the direction, andB is an adjust- '

able parameter between zero and 1 that controls the degreewhere x and b are the discretized forms 0¥ 4ee and

scaling. They andz coordinates are scaled analogously. Thedwp, respectively, and\ is the finite-difference representa-

scaled grid required four times fewer points than the uniformtion of — V2. If the system is small, direct matrix methods

grid to achieve the same convergence of the total energy. are an acceptable means of solving the equations; however,
Since the coordinate transforms are continuous functiondpr large systems the work required scales P&MF, which

the integration weights and the coefficients of the discretizeds prohibitive. An alternative approach is to useiterative

kinetic-energy operator may be generated from the uniformelaxation scheme such as the Jacobi meffidd.this tech-

grid values using the metric tensor of the transform in thenique, the solution is iteratively improved. First, definas

manner outlined by Gygi and co-workéf&® With these an approximate solution of Eq13), and the residuat, a

modifications, the calculations proceed as for the uniformmeasure of the solution error, as

grids, but a sixth-order central finite-difference operator is

used to discretize the first and second derivatives because we r=b—Ax. (14)

have not constructed a Mehrstellen operator for the scaled, : ; ;

grid. In each caséuniform and scaled gridsa 64-atom su- An improvedx is generated using

percell was used and the silicon atoms were fully relaxed. XMW=y + AtKr, (15)

The oxygen atom was held fixed in order to avoid Pulay ) ) ] )

correction&® to the ionic forces, which would have been re- WhereAt is a pseudo-time-step, ariis the inverse of the

quired if it and the scaled grid were free to move. The uni-diagonal component of. This approach will always con-

form and scaled-grid calculations are in very good agreeYerge to a solution for some value At if A is diagonally

ment: the maximum difference in Kohn-Sham eigenvalueglominant!? However, the number of iterations required to

was 40 meV, and the maximum difference in ionic coordi-reduce the magnitude of the residual to a specified accuracy

nates was 0.03 A. is proportional toNSﬁﬁ, so that the algorithmic cost to con-

verge,O(N33), is too greaf! While more sophisticated re-
laxation methods such as Gauss-Seidel, successive overre-
laxation, or the alternating direction implicit metfddave

To efficiently solve Eq.(5), we have used multigrid- improved convergence rates, they still scale g with
iteration techniques that accelerate convergence by emplog>1, and are too slow for the grid sizes required in elec-
ing a sequence of grids of varying resolutions. The solutiorironic structure calculations.
is obtained on a grid fine enough to represent accurately the The slow convergence of the Jacobi method can be quali-
pseudopotentials and the electronic wave functions. If thdatively understood by noting that becauseis a short-
solution error is expanded in a Fourier series, it may beanged operator, the updated approximate solution(Es),
shown that iterations on any given grid level will quickly is a linear combination of nearby values. If the error in the
reduce the components of the error with wavelengths comeurrent estimate ok is decomposed into Fourier compo-
parable to the grid spacing, but are ineffective in reducingnents, it can be shown that one Jacobi iteration considerably
the components with wavelengths large relative to the grideduces the high-frequency components of the error, but
spacing®®® The solution is to treat the lower-frequency many Jacobi iterations are needed to affect the longest wave-
components on a sequence of auxiliary grids with progrestength components of the error. The overall convergence rate
sively larger grid spacings, where the remaining errors apis then limited by that of the lowest-frequency components.
pear as high-frequency components. This procedure providess the problem becomes larger, the lowest frequency repre-
excellent preconditioning for all length scales present in asentable on the grid becomes smaller and the convergence
system and leads to very rapid convergence rates. The operate decreases.
tion count to converge one wave function with a fixed po- The essence of the multigrid approach is the observation
tential is O(Ngyg), compared taO(Ng;iglog,Ngig) for FFT-  that the individual frequency components of the error are
based approachéS. best reduced on a grid where the resolution is of the same

There is no one multigrid algorithm but rather a collectionorder of magnitude as the wavelength of the error compo-
of algorithms that share certain common features. In order toent. This approach will maintain a high convergence rate
describe the implementation used in this work, we start witHor all frequency components of the error even when the
a description of a multigrid solver for Poisson’s equation.problem size(and the grigl becomes very large.
This will then be used as a building block for the more We first describe a multigrid algorithm to solve Poisson’s
sophisticated algorithms actually employed. equation that uses two grids; a fine grid of spadingnd a

A standard numerical problem that illustrates the multi-coarser auxiliary one of spacird. In this work, we use a
grid algorithm is the Poisson equationV?V,ee=4mp,  coarse-to-fine grid ratiti/h of 2, but other ratios are pos-
defined on a rectangular cell of dimensioths (L,,L,) with  sible. The solution is generated as follows: the high-
periodic boundary conditions. A standard method of solvingfrequency components of the solution error with wavelength
for Vyameeis to discretize the equation on a uniform three-~h are reduced by one or two Jacobi iterations. The residual
dimensional grid with spacingiyiq and N,y total points.  r,, which should be devoid of high-frequency variation, is

Ill. MULTIGRID ALGORITHMS
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computed and transferred to the coarse grid by restriction The extension of multigrid concepts to the solution of the
(see below. Next, Poisson’s equation on the coarse grid withKohn-Sham equations introduces several complications.
the residual as a source term is solved by using the sanferst, the equations are nonlinear since the eigenvalues and
iteration procedure as in E(L5), but with an initial estimate  the orbitals must be computed simultaneously. Second, when
of zero. The Jacobi iteration on this level removes error comthe Kleinman-Bylander form of the nonlocal pseudopoten-
ponents with wavelengti-H. Finally, the coarse grid solu- tials is used, the equations become a set of integrodifferential
tion is interpolated to the fine grid and added to the fine-grictigenvalue equations. Finally, the Hamiltonian depends upon
solution. This process is referred to as a coarse-gridthe density, and must be solved self-consistently.

correction scheméCGO). A few applications of the cGC _Brandt, McCormick, and Rudg gave a multigrid algo-

cycle are generally sufficient to solve Poisson’s equation t(fs'}:?irgefognthjt ::r?;t?\zdr:elgerzlrswilfmlain%gr?zlienm. ti(ealog szrfvzgﬁ-e
machine precision even for extremely large systems. 9 9

. L i . equations. The multigrid technique recommended in the lit-
An obvious question is how the solution is obtained on . 4 . ) . .
the coarse grid. If the total number of grid points in theerature_ for .nonI|near |ntegrod|fferen£|4al equations is the full
2 . . . . . _approximation storag€FAS) method<" In FAS the entire
coarse grid is small, a direct matrix method will be sufficient.

If thi ber i | h di hod is | _ Iproblem is discretized and solved afi grid levels. In con-
this number Is so large that a direct method Is Impractica trast, the CGC method outlined above generates the full so-

then a second, coarser grid level is introduced and the tWQygion only on the finest level. While the theoretical perfor-
gnd algonthm is repeated in a recursive manner. When muliance of FAS on  this problem is superior, its
tiple grid levels are used, the pattern of cycling through thgmplementation is significantly more complex. In addition, it
grids also needs to be considered. We use a simple progreg-difficult to obtain an accurate representation of the nonlo-
sion from the finest to the coarsest grid level and then backal pseudopotentials on the coarser grid levels. Furthermore,
to the finest level, which is referred to asvacycle. More  the Kohn-Sham equations need not be converged to maxi-
complicated cycling schemes exist, but we have found thatnum accuracy at every iteration because the electron charge
theV cycle works as well in electronic structure calculationsdensity (and therefore the Hamiltoniarchange after each
as the more sophisticated approaches. Another consequeneiltigrid step.
of the multigrid approach is the reduction in the size of the For these reasons, a modification of the double discretiza-
grid (and consequently in the work requijesh each level. tion approach described above was used. The discretized op-
For a uniform grid in three dimensions a doubling gf; erator on the finest gri_d is .the Mehrstellen approximation of
with each level leads to a factor of 8 reductionNgyg, so ~ the Kohn-Sham Hamiltonian, while a seven-point central
that the addition of extra coarse grid levels is computationfinite-difference representation ef V= alone is used for the
ally inexpensive. _DDC acceleration, W|th_ the pseudopoter_mal contribution be-
The simplest choice for the restriction operator is to copy"d 'epresented only via the error term in &), the gen-

every other point in the fine grid directly to the coarse grid.€ra/ization of Eq.(14) to the eigenvalue problem. This
tqhmce avoids the problems associated with the representa-

This so-called straight injection, while easy to implement, X . . .
does not always yield good convergence rates. A betteion of the potentials of the coarse grids, while allowing for

choice is a weighted restriction, in which each coarse-grinultigrid iterations that greatly accelerate convergence. The
value is the average of the 27 fine-grid values surrounding itppgrsg-gnd iterations and operators are only used for precon-
In our work, the weight assigned to each fine-grid point isqnlonlng and convergence accel_erauon, and do not affect the
proportional to the volume it occupies at a given coarse-gridin@l accuracy of the wave functions because they are gener-
point. A good choice for interpolating from the coarse grid to&t€d only on the fine grid, where every operator is accurately
the fine grid is the adjoint of the restriction operator, whichePresented. Different coarse grid approximations to the fine-
in this case becomes simple trilinear interpolatidn. grid solutions have been discussed by Hackbdetnd are
The final accuracy of the solution is determined by theused in the n4umer|cal analysis community for fluid dynamics
finite-difference representation of V2 on the finest grid applications?® In the present case, once the fine-grid residual
level. It is neither necessary nor desirable to use the safienerated by the Mehrstellen, E(QB), hazs been formed, we
representation of- V2 on all grid levels; i.e.A, may differ use th? seven-pomt represen.tatlon_—oV for the DDC ac-
from A in the form of the discretization as well as in the Clération, starting from the fine grid. Thus, the DDC equa-

grid spacing. The technique of changing discretization Ontion is in effect Poisson’s equation with the wave-function

different levels is referred to as deferred defect correctiof€Sidual as the source term. .
(DDC) or double discretizatiof"** It is especially valuable Our multigrid procedure begins with the selection of some

for problems where the operator used on the finest grid Ievéf“t"':1I wave func_:tlons .ar.“.j e_Iecf[ron charge densny. We post-

is numerically unstable on the coarser grids, or when it igPone a discussion of initialization techniques until later, and
inconvenient to apply. The accuracy of the fine-grid solution®SSUMe that an adequate start has been ggngrgted. The fol-
does not depend on the choice of this coarse-grid operato wing steps are then_ performed fOT each |nd|_V|duaI wave
which effects only the convergence rate. In solving Poisson’ unction: First, an estlm_ate of the elgenval_ue IS (_:alculated
equation, we use the Mehrstellen operator on the finest gri om fche Rayleigh quotient of the generalized eigenvalue
level for high accuracy. However, it is unsuitable for conver-€duation, Eq(5),

gence acceleration on the coarser grids because of stability

problems. Thus, on the coarser grids a seven-point central IH
finite-difference operator is used, which provides excellent en_w” mend n])

= 16
stability and rapid high-frequency attenuation. (¥n|Bwmenl ¥n]) (18
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In the case of complex orbitals, the eigenvalue is calculatedvheref; is the occupation of th&th state andr is a mixing
using the Rayleigh quotient of the re@r imaginary part of  parameter, generally set to a value between 0.5 and 0.9.

the generalized eigenvalue equation, Ed): Next, the Hartree potential is recomputed for the charge den-
sity using a Mehrstellen DDC cycle, and another exchange-

(Rl ¢l [RE Hpioe] #nic] 1) 1 correlation potential is generated.
€n= (RE i IR Byend ¥l 1) 17 Finally, a subspace diagonalization may be performed at

this point. This need only be done occasionglyery 10—20
Next, several Jacobi iterations are applied to the orbital or8CF steps is generally adequabe order to unmix eigen-
the finest grid using Eq¢14) and(15), where the residual is  states that may be close in energy. Because the Mehrstellen
computed as Hamiltonian leads to a non-Hermitian generalized eigen-
value equationsee Appendix A subspace diagonalization
"= €nBwmend ¥n] — Hvend #nl. (18)  requires a brief discussion: We look for a unitary transfor-
mation of the current wave functions that better represents

The fictitious time stepAt used in the Jacobi iteration is : o
; the eigenvectors of the Hamiltonian, and are led to the fol-
typically chosen between 0.8 and 1.4 a.u. In the case of corr](—)Wing eigenvalue equation for the subspace:

plex orbitals, the real and imaginary components of the or-

bital are updated separately, using the appropriate generali-

zation of Eq.(18). > H¥bd, =6 B, |, (21)
Next, the residual is restricted to the first coarse grid. A n "

DDC coarse-grid cycle begins using the seven-point centrglhere

finite-difference representation of V2 instead of H e,

Several auxiliary coarse grids can be used. When the coarse- HSY = (ol Hyend ¥n 1), (22
grid correction is interpolated onto the finest grid, only a ’
fraction Bcgc Of it is added to the orbital, for reasons of Bﬁi{ﬁ=<¢m| Buvend ¥nl). (23

stability. A value of Bcgc=0.5 has been found to work for

almost all Systemsﬂ_arger values may produce much h|gher and dn‘| is the matrix of CoefﬁCientE of the Unitary transfor-

convergence rates on some systems while being unstable foration for thelth state. BecausBy; is invertible (see Ap-

others, so some experimentation is necesgary. pendix A), the subspace equations are equivalent to
Before transferring the residual to the coarse grid, it is

essential that enough Jacobi iterations be performed to elimi- 2 csuby = ed (24)

nate the high-frequency components from the residual. Since o man S

the residual is used as the right-hand side of a CGC correc- SUb._ s osub — 1y 1sub b N
tion cycle, any high-frequency components will eventuallyWhereC>"=(B 97 - The matrixC>*®is not Hermitian
be transferred to a coarser grid where they cannot be repr&XCept when the subspace is a_subsebt of the space of eigen-
sented correctly, greatly reducing the effectiveness of th¥ectors. Thus, we doot diagonalizeC**” because its eigen-
multigrid cycle. In some cases they may even make the pro?€Ctors are not necessarily o_rthogqnal, which would spon the
cess numerically unstable. In the above approach, the diffierthogonality of the electronic orbitals. Instead, we discard
culties of discretizing the nonlocal pseudopotentials on thdhe anti-Hermitian part OESZv which is smaller than the
coarse-grid levels are avoided because the potential term ermitian part ofc***by O(hg,q), and diagonalize the Her-
computed on the finest grid and frozen thereafter. mitian part. This approximation works well in practice, and
The steps outlined above in the DDC apply only to alS €xact at convergence.
single wave function. The full solution process also requires The Hermitian approximation does not affect the final ac-
the application of the orthonormality constraints and an up£uracy of the solution because the multigrid-assisted Jacobi
date of the electron charge density. The full solution proces§erations ultimately converge the orbitals. Nonetheless, ac-
[one self-consistent fiel(SCH step consists of the follow- ~curate subspace rotations are essential for good convergence:
ing cycle. compare the convergence rates in Figs. 1 and 2. As a test, we
First, the DDC is applied to all of the wave functions. compared subspace diagonalizations with Mehrstellen

Next, the Orthonorma"ty constraints are app“ed using th@.nd Hermitian sixth-order discretizations, and found that the
Gram-Schmidt procedure convergence is significantly improved with the former.

The cycle described above is repeated until the electronic
system converges to the desired tolerance, which may be

h=h—2 YN ), monitored by computing the rms value of the residual vector
J=! for each wave functiofisee Eq.18)]. When this reaches a
new. "~ value of 10°° a.u. for all wave functions in the occupied
=g N ), subspace, the convergence is sufficient for the computation

of forces that are accurate enough for large-step molecular
i=1,... Nstates (199 dynamics with excellent energy conservation.
As was mentioned previously, the convergence rates de-
pend on the choice of the initial wave functions and electron
Negates charge density. A poor choice can lead to slow convergence
—1_ 2 rates or in some cases the system will not converge at all.
Prew= (1= a)poata 2’1 fi 20 Apart from random initial wave functions or an approximate

The electron charge density is generated by linear mixing,
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50 : : , IV. TESTS OF MULTIGRID CONVERGENCE
ACCELERATION
— MG-SD
------------ $D-SD

The theoretical convergence rates of multigrid methods
may, in principle, be calculated exactly for certain types of
problems. For well-behaved partial differential equations
such as Poisson’s equation discretized Ngq points,
O(Ngiig) total operations are required to obtain a solu-
. 1 tion accurate to the the grid-truncation error. This com-

""" . pares well with FFT based methods which require
O[Ngiglog)x(Ngrig)] operations. For the Kohn-Sham equa-
tions, an exact theoretical bound on multigrid convergence
rates is difficult to obtain due to self-consistency effects, and
to the best of our knowledge this analysis does not yet exist.
We have therefore elected to study convergence properties in

FIG. 1. Convergence rates for a disordered 64-atom Si cell at gn empirical fashion by performing tests on physical systems
12-Ry equivalent cutoff. The convergence ratef0B—Eo) i  typical of the problems normally examined with density-
plotted against the number of self-consistent id@H steps. Ran- ¢ ,hxtional theory.

dom _|n_|t_|a| wave fun_c_nons were useo_l with a constant |_n_|t|al density. In previous work’ the present authors examined conver-
The initial ionic positions were obtained from an equilibrated mo-

lecular dynamics simulation at 1000 K. SD represents convergencgence rates for elght_-atom sqpercells of perfect dlamond asa
rates for the steepest descents algorithm, MG is for multigrid,unCtlon of the effective kinetic-energy cutoff determined by

SD-SD is steepest descents with subspace diagonalizations, atfd€ 9rid resolution, for a 32-atom supercell of GaN that in-
MG-SD is multigrid with subspace diagonalizations. cluded the Ga 8 electrons in valence, and for a highly elon-
gated 96-atom diamond supercell. It was found that multigrid
) ) ) i L convergence rates were largely independent of energy cut-off
solution that is generated using a linear combination ofn§ cell geometries. While promising, these results were ob-
atomic orbitals basis set, one can also use a double-grighined for perfect crystal configurations of semiconductor
scheme. In the latter method the initial solutions are genercompounds, which are generally fairly easy to converge. In
ated on a grid with a spacing twice as large as that used fahjs paper we present the results of a more systematic study
the final grid. The computational work on this coarse grid isthat includes disordered systems.
eight times smaller than what is needed on the fine grid. The The first system selected was a 64-atom supercell of bulk
approximate coarse-grids wave functions are then interpasilicon. The ions were represented by a generalized norm-
lated to the fine grid and used as the initial guess. This proeonserving pseudopotenfi&i?® and the grid spacing used
cess can reduce the number of SCF cycles needed on tleerresponded to an energy cutoff of 12 Ry. The ionic posi-
finest grid level by a factor of 2—3, thereby achieving sig-tions were generated by a molecular dynamics simulation at
nificant savings in the computational effort. a temperature of 1000 K. Because the work required to con-
verge to the ground state depends on the quality of the initial
wave functions and charge density, we used random initial
wave functions and a constant initial electron charge density
to minimize any possible bias from the choice of a starting
5.0 . . . configuration. A small numbegl0% of the total of conduc-
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tion band states was included in the calculations. Figure 1
shows the convergence rate defined as thgq(&g-E,),
plotted as a function of iteration number, where each itera-
tion represents a single SCF step. Results are shown for cal-
culations performed with and without multigrid acceleration,
where the latter used a steepest-descents algorithm. In addi-
tion, the two calculations were repeated with, and without
subspace diagonalizations of the orbitals. For the calcula-
tions that included subspace diagonalizations, the procedure
was applied every eight SCF steps, which led to small dis-
continuities in the smooth evolution of the total energy. The
results show that maximum convergence rates are obtained
when multigrid iterations are combined with subspace diago-
nalization. The slowest convergence occurs for steepest de-

FIG. 2. Convergence rates for a 64-atom diamond cell with aSC€nts with no subspace diagonalization. For the two runs

substitutionaN impurity at a 63-Ry equivalent cutoff. The conver- Where subspace diagonalizations were performed, the multi-
gence rate log(E—E,) is plotted against the number of self- grid run converged at roughly 2.5 times the rate of the steep-
consistent-field SCP steps. Random initial wave functions were €st descents approach.

used with a constant initial density. The notation is the same as in While these results are encouraging, bulk silicon is a rela-
Fig. 1. tively straightforward test, and is well handled by standard
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plane-wave methods. As an example of a more diffi-held fixed. The potential energy is calculated for each dis-
cult system we have considered a 64-atom diamond supeplacement and finite differenced to form the derivative. The
cell with a substitutional nitrogen impurity. Standard forces computed by the two methods agree well. Most of the
pseudopotentiaf§ 28 were used for both C and N. The forces we have calculated to date have been computed using
strong Np potential required an energy cutoff of 63 Ry. The virtual displacements.

presence of a localized nitrogen donor level together with the A stringent test of the accuracy of the ionic forces is a
63-Ry cutoff makes the system more difficult to converge.constant-energy molecular-dynamics simulation. Over the
Random initial wave functions were used, and Fig. 2 showsourse of the simulation any systematic errors in the forces
the observed convergence rates. The convergence rates faill manifest themselves as poor energy conservation. A dis-
the two runs that use subspace diagonalization are a factor tifiction has to be made between small random errors that
4 better for multigrid than for steepest descents. This relativeppear as bounded oscillations in the total energy and errors
improvement is considerably greater than that observed fahat increase in magnitude with simulation time. The small
the silicon cell and is the consequence of the automatic preandom errors are expected in the real-space approach be-
conditioning provided by multigrid techniques for all of the cause the energy of an ion varies by a small amount as its
length and energy scales present in the problem. The multposition changes relative to the grid poihfsThis is of no

grid convergence rates are largely independent of the grigarticular concern as long as the magnitude of the variation
spacing, which roughly corresponds to the kinetic-energys small and oscillatory in nature. Of greater concern are
cutoff in plane-wave approaches. This is not true of theerrors that are unbounded. These could arise from errors in
steepest-descents algorithm, where the maximum stable tinibe forces, errors in integrating the equations of motion of
step that may be used decreases as the energy cutoff ithe ions, and lack of self-consistency due to inadequate con-
creases. vergence of the electronic wave functions. The first source of

When comparing the convergence rates of the multigricerror was minimized by Fourier filtering of the ionic pseudo-
and steepest-descents approaches, the computational wogetentials. The second is generally not a problem unless the
load involved in each technique must also be considered. Aonic time step is too large. For small time steps even a
particular advantage of multigrid methods, when comparedgimple integrator such as the Verlet algorithm is sufficient,
to other convergence acceleration schemes, is their low conand larger time steps may be handled by using higher-order
putational cost. This is due to the factor of 8 reduction in theintegrators, such as the Beeman-Verlet metiiodihe last
number of grid points on each successive multigrid levelsource of error is the most significant because Hellmann-
The computational time per SCF step in the silicon and diaFeynman forces are only accurate to first order in the error of
mond runs described above increased by less than 10% whéme wave functions. A high degree of self-consistency is thus
multigrid was used instead of steepest descents. For biggeecessary to obtain good energy conservation.
systems, where the costs of orthogonalizing the orbitals and A 64-atom silicon supercell was selected to test energy
applying the nonlocal pseudopotentials begin to dominate theonservation on a typical system. The ions were given ran-
total computational time, the extra work needed for the mul-dom initial displacements from the perfect crystal configura-
tigrid accelerations becomes negligible. In terms of compution, and several velocity rescaling steps were performed in
tational time, the 64-atom Si supercell described above resrder to attain an average ionic temperature of 1100 K. A
quired 1.6 s per SCF step on 64 processors of a Cray-T3Dconstant-energy molecular-dynamics simulation over 1 ps

was then carried out, using 80-a.u. time steps and third-order
Beeman-Verléf integration of the ionic equations of mo-

V. IONIC FORCES AND MOLECULAR DYNAMICS tion. The potential, kinetic, and total energies of the system
vs. simulation time are plotted in Fig. 3. We observed good
gnergy conservation: the maximum variation in the total en-
ergy was 1.75 meV, which corresponds to2&V per atom.

Efficient structure optimizations and the calculation of dy-
namical quantities such as phonon frequencies and therm
dynamic properties require accurate ionic forces. In plane
wave methods the ionic forces are computed by applying the
Hellmann-Feynman theorefh?® Since the derivative of the V1. MASSIVELY PARALLEL IMPLEMENTATION
pseudopotentials may be expressed exactly within the plane-
wave basis, the accuracy of the ionic forces is limited only The performance of a given algorithm when solving com-
by machine precision and the degree of convergence to thglicated problems depends not only on the theoretical effi-
Born-Oppenheimer surface. ciency, which may be quite high, but also on how adaptable

For the grid-based approach the accuracy of Hellmannthe algorithm is to modern computer architectures. One ex-
Feynman forces is limited by the numerical error in comput-ample are certain classical molecular dynamics algorithms,
ing the integrals of the derivatives of the pseudopotentialswhich perform only slightly better on vector supercomputers
This error decreases with grid spacing. The differentiation othan on low cost engineering workstations, even though the
the radial potentials and projectors must be performed witlsupercomputer’s theoretical peak performance may be an or-
care to include the effects of the Fourier filtering. Alterna-der of magnitude larger. A particular strength of the Car-
tively, a derivative-free implementation of the Hellmann- Parrinello method has been its efficient implementation on
Feynman forces can be used, which we term virtual displacerector supercomputers, such as the Cray-YMP. However,
ments. In this scheme, the ionic pseudopotentials argector performance, while improving steadily, is unlikely to
numerically differentiated directly on the real-space grid.increase by several orders of magnitude per decade as has
The ions are moved through a set of small displacement®iccurred in the past. At the same time, the development of
while the electron charge density and the wave functions arpowerful, low cost microprocessors and memory has led to
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. . . . cific region of space. The electron charge density, Hartree
1291 inetic energy potential, and each wave function are distributed by regions
/\/\\/\J\/\/\/\/\\/\J\/\\/\/‘\/\/\/ over the processors. With this approach interprocessor com-
[ ] munication is restricted to two areas: the computation of in-
tegrals on the real-space gfisee Eq.4)], and the applica-
tion of the finite-differencing operators.

For integration, the ideal optimization strategy is to orga-
nize the calculation so that as many integrals as possible are
30} | computed at once. This can be understood by considering the

time required for interprocessor communication, which con-
sists of a latency period and a transfer phase. The latency

7.0

20 | (Total energy)x100

Energy (eV)

-80 period is significant, and is the same whether one or 1000
Potential energy words of data are transferred. Our integration procedure is as
-13.0 . . ; . follows: First, calculate the intraprocessor contributions to
0.0 0.2 0.4 0.6 0.8 1.0

the integral(i.e., integrate over the subdomain&econd,
store as many of these local integrals as possible; Finally,
o . transfer them between processors in blocks and complete the
FIG. 3. The potential, kinetic, and total energies of a m0|eCUIar'ntegration by summing the local integrals.

dynamics S|mulat|on of a 64-atom S|I|gon ceII. at a Femperature og It was straightforward to implement the above procedure
1100 K. Third-order Beeman-Verlet integration with an 80-a.u..n most cases. but the orthogonalization step required sianifi-
time step was used for the integration of the ionic equations 01! ’ 9 P req 9

motion. The total-energy curve is multiplied by a factor of 100. TheCant modifications. In a standard implementation of the

potential and total energies have been shifted by 251.171 a.u. s%ram'SChmidt orthogonalization algorithm, _Wave'funCtion_
that they could appear together. overlaps and updates are computed sequentially, and the in-

tegrals cannot be computed in parallel. To reduce the number

massively parallel architectures consisting of a large numbe f dat_a transfers, the followmg |mplement§1t|on of Gram-
of microprocessors, linked by a high-speed communication chr_mdt orthogona_lllzatlon was adopted. First, the overlap
network. Although efficient implementations of plane-wave-rztg)\(/ji:<il’/rl]‘t|é[/iz allsé (;Org]?:létrid ﬁi;t;?]\ée‘sttgfego?'}: 22:;? O];o—
based methods on massively parallel architectures exist, thQ P g P P

FFT-based algorithms do not scale well with the number ofnesslggktgetémﬁgag%l'rs t?ggeizrggetggCbgntéar;ifrg;]%rgin
processors because the FFT is a global operation. P ' ' y

i At B0 o .
Below, we will describe a massively parallel implementa-fa_ciorg?goﬁ Tﬁf Ctrr:el (l)(vefrlai) Crina;[rllx v If\t bcomputei(ttl.
tion of the multigrid method. Although some of the code- S =( )ij - The Cholesky factoC is relevant because its

optimization issues are architecture specific, most are generi:componem.S are the over_la_ps between the new orthogonal
wave functions and the original on&sFinally, the diagonal

?Eg :gfgseta %ﬂggﬁfi?ﬂ? (: )ég;?%VDe %vﬁﬁ:rr? ILeS[ e(;OS;)p;J Jaztg);gomponents of the Cholesky factor are used to normalize the

DEC-Alpha microprocessors, each with a peak performancl@""“’e functions, and. the_ off—d|agonal ones are used to com-
of 150 MFlops. Each processor has 8 KB direct-mapped datthate the orthogonalization:

and instruction caches and 8 MW of local memory. The pro-

cessors are linked together in a three-dimensional torus ar- new._ new

rangement for data communication. Three issues have to be Ui "G ‘/’i_j<i i G|

addressed in order to write an efficient code for this type of

machine: minimizing communication costs between proces- )

sors, balancing the workload on each processor, and code =1, ... Nstates (25
optimization on the individual processors.

Simulation time (ps)

For simplicity, the Cholesky factorization &; is currently
performed on each processor. The computational time to fac-
torize scales asl\{a,f), but has not yet become a bottleneck.
The majority of the data storage in the multigrid methodHowever, for very large systemigreater than 800 orbitals
consists of the wave-function values on the real-space grich parallelized Cholesky factorization will save significant
We will consider the case where the points are distributed ogomputer time and memory.
a uniform three-dimensional rectangular grid.Nf is the The second area where interprocessor communication is
total number of wave functions, théy,sN,,; total storage is  required is the finite differencing of the wave functions and
required. The simplest possible decomposition of data is télartree potential, since finite differencing is nonlocal. How-
store complete wave functions on each processing elemenver, in the Mehrstellen discretization, the nonlocality is re-
(PE), where each PE storé§,;/Npg orbitals. While concep- stricted to points within one grid unit in each Cartesian di-
tually simple, this approach will perform poorly for large rection. Interprocessor communication is thus always limited
systems with many wave functions, because orthogonalizintp nearest neighbor PE’s regardless of the size of the system.
wave functions residing on different PE’s requires sendinglrhis low communication cost is a particular advantage of a
large amounts of data between processors. An alternatividlehrstellen type approach as opposed to a central finite-
approach, and the one adopted by us, is to use real-space ddifference approach, which requires a higher degree of non-
decomposition. In this method, each PE is mapped to a spéocality to achieve the same level of accuracy.

A. Data decomposition and load balancing



14 372 E. L. BRIGGS, D. J. SULLIVAN, AND J. BERNHOLC 54

20.0 . . and (i) the development of multilevel algorithms for the
iterative solution of Kohn-Sham and Poisson equations. The
accuracy of the discretizations was tested by direct compari-
son with plane-wave calculations when possible, and were
found to be in excellent agreement in all cases. These algo-
rithms are very suitable for use on massively parallel com-
puters and irO(N) methods. We described an implementa-
100 b | tion on the Cray-T3D massively parallel computer that led to
a linear speedup in the calculations with the humber of pro-
cessors.

The above methodology was tested on a large number of
sor ® ] systems. A prior Communication described tests gpr@ol-
ecule, and diamond and GaN supercells. The present article

examined convergence properties in detail for a supercell of
0.0 . . disordered Si and the N impurity in diamond. The multigrid
00 umber of PE's | ° techniques increased the convergence rates by factors of 2
and 4, respectively, when compared to the steepest-descents

FIG. 4. Speedup in execution time is plotted vs number of br algorithm. An extension to nonuniform grids that uses a
- 4. Speedup ecution ! S plotted vs number of p o'separable coordinate transform to change grid resolution lo-
cessors for a massively parallel implementation of the code on

a . .
Cray-T3D. The test system is a 64 atom cell of GaN at a fixed, 7¢ al(ljyt, e'tg'('j at t?ﬁ sgrfatc € ct).rt.n?a_ar g_n _mp urlt¥, was devell?p_ed
Ry equivalent cutoff. The solid line is a guide to the eye. and tested on the L nterstiial In Si. This extension results in

only minor changes in methodology and coding, while the
Jeduction in basis set size and thus in computational effort
can be significant. A complex version of the multigrid code,

concern for any parallel algorithm. With the method de- anable of an arbitrary samoling of the Brillouin zone. was
scribed above, the load balancing is essentially perfect for affaP lrary piing fiouin zone, w
also developed and tested on bulk Al.

parts of the calculation except for the application of the non- Large time-step molecular-dvnamics simulations require
local pseudopotentials. These are applied to the wave func- 9 P ; y ! e
tions in localized volumes around each ion. If the distribu-"c" accurate forces, which can potentially lead to difficul-

tion of ions in space is nonuniform, then some of the PE'StIeS in real-space methods as the atoms move relative to the

will be idle for a fraction of each SCF step. However, actualgrid points. We have described a set of technigues based on

calculations on many systems have shown that the appIic{-ourier filtering of pseudopotentials that eliminate these dif-
tion of the nonlocal potentials typically requires less than iculties for grid spacings of sizes S'”?"af tq those useq n
10% of the total computational time on any PE, so that proplane-wave calculations. A 1-ps test simulation of bulk Si at
cessor utilization will always exceed 90%. 1100 K conserved the total energy to within &V per

The efficiency of the massively parallel implementationatom’ and illustrated the high quality of these forces. Further
applications of this methodology are in progress, including a

described here is illustrated in Fig. 4, which shows the imulation of surface melting of $,structural properties of
in ex ion tim r for a given problem h . S
speedup in execution time per step for a given problem as t arge biomolecules that contain over 400 atothand elec-

number of PE’s is increased. The graph indicates a superlii; . d_structural " 16 N i
ear relationship, which is an artifact due to single processo 0n|c54an structural properties o 163 quantum
ells>* The multigrid methodology is also very suitable for

cache effects. There are two competing factors here. The fir . .
is the increased communication cost as the number of pro= (N) |mplementat|on_s, and tests results for a 216-atom cell
bulk Si were described recenty.

cessors increases, which tends to reduce the speedup. Tﬂfe
second is the reduction in the amount of data stored on each
processor and a consequent increase in the number of cache ACKNOWLEDGMENTS

hits. As was discussed earlier, the communication costs are
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methodology in the context of density-functional theory wasspace methods include the application of the higher-order
described and illustrated with several applications. The safinite difference method of Chelikowskst al. to the deter-
lient points of our implementation includé€i) the develop- mination of the atomic and electronic structure of germa-
ment of compact discretization schemes in real space fanium clusters at finite temperatifeand to the vibrational
systems with cubic, orthorhombic, and hexagonal symmetrymodes of small Si cluster§. Gygi®® has used a real-space



54 REAL-SPACE MULTIGRID-BASED APPROACH TO ... 14 373

approach with nonlocal pseudopotentials and adaptive curvigenvalue equation. Nonetheless, we prove that the right
linear coordinates to examine dynamical properties of oreigenvectors of the discretized operator, i.e., the electronic
ganic compounds. Modine, Zumbach, and Kafitdsave orbitals, are orthogonal because they are also eigenvectors of
used adaptive coordinates to perform both all electron an@ Hermitian Hamiltonian. The generalized eigenvalue equa-
pseudopotential calculations on atoms and small molecule§on can be recast into a more familiar form by multiplication
Sullivan, Briggs, and Bernhdit described applications of by Byeh, (the invertibility of Byen, is discussed below

the real-space multigrid method to several solid state and

-1 — —
organic systems. %( BumehAmenr) ¥nt Vesithn= %C¢n+ Vefithn= €ntbn A7)
. . . . 2
APPENDIX A: ANALYSIS OF THE MEHRSTELLEN whereC is a noncompact_dlscrenza_Uon er_ of the same
OPERATOR order asAyenr- The solutions of this equation, thg, and

€,, are the solutions of the original equation. Because
The Mehrstellen discretization differs from central finite Ayenr @nd Byen, are finite-differencing operators with con-
differencing in two important respects: first, higher accuracystant coefficients, they are translationally invariant and thus
in the discretization is achieved by using more local infor-commute. They are also Hermitian. ThOs- (BydnAwen) iS
mation, but this accuracy is fully realized only at conver-Hermitian, and the wave functions of E¢) are orthogonal.
gence; and second, the discretized Kohn-Sham eigenvalue Equation(5) is the preferred discretization for computa-
equation Eq.(5) is non-Hermitian because the operatortion, and the equivalent Eq32) is of formal interest only
Buen dO€S not commute with the potential operator. In thisPecause the operatdBge,, and hence are long ranged and
appendix, we examine the accuracy of the Mehrstellen distherefore computationally expensive to apply.
cretization, and prove that the non-Hermitian nature of Finally, we consider the invertibility of thBy., operator.
Hyenr dOES Not change the nature of the wave functions: theyVe Show that under reasonable conditi@g, has nozero
remain orthogonal. For simplicity, we analyze only the Me-€igenvaluedin fact, it is a positive definite operafoby ar-
hrstellen discretization of the orthorhombic lattice. guing that its null space is empty. It is straightforward to
The fourth-order Mehrstellen discretizatiéeee Table) \?Vr;?/v(\a/;hat;?e n#}';;‘?g; ﬁMek?;]'estigomperr']sggy?my t?]fa[talan;'-zs
samples the Hamiltonian andsthe wave function at 19 pomtsiﬂnull(t))(’?liz):ﬁ_iW(zhl+y/;2+Z/h3) (g y——y, etc): iee Eq.
~ 34) below. Thus the null space is empty whenever
AMehr[f(X)]:af(XHzl bnf(x=hpXn) 'Ehe)se plane waves cannotpbe repl;/lr?éentedpoﬁ the real-space
mesh.
. . This condition can be realized in two ways: choice of grid
+n2m Camf(XEh Xy EheXy),  (Al)  size, or explicit projection. For periodic boundary conditions,
when one or more of the linear dimensiddg, Ny, orN, is
R odd, the maximumg vector along that dimension is
Buend f(X)]=a'f(x)+ X bif(xxhX)).  (A2)  m/h,(N,—1)/N.<m/h,. Second, if the grid discretization
n=1 cannot be chosen to meet the formal invertibility condition,
The accuracy of the Mehrstellen discretization is one ordethe pseudoinverSof By, exists and can be used; that is,
higher than the corresponding central finite-differencing onethe few vectors in the null space 84, are projected out
but this accuracy is achieved only at convergetic€he from the wave functions. On physical grounds any orbital of
small h expansions of thé\,,, and By, demonstrate this such rapid variation should be excluded from the calculation

3

principle: because it is marginally representable on the mesh. The
3 pseudoinverse dByenr IS
Apen=— V2= V2>, h2v2+0(h%), A3 .
Mehr 12 nzl n'n ( ) ( ) Bn]elhr(x): 2 eilx‘g/BMehr(g): (A8)
3 9% Gnull
Buen=1+ 5 > h2V2+0(h?). (A4)  Where the discrete Fourier transform By, is
n=1 3
— 2
Note that, by constructionAyen=Byen{ — V2) to O(h?). B(g)= Nagria ,21 coghig)*/3. (A9)
Thus, theMehrstellendiscretization of the Kohn-Sham equa-
tions is equivalent to APPENDIX B: FOURIER FILTERING OF
Hwuenl ¥n] — Buend €ntn] = Bumend Hkstn— €ntbn] + O(h(4)- ) PSEUDOPOTENTIALS
A5

The pseudopotentials are short ranged: the Coulomb tail

The O(h?) terms, implicit in the right-hand side, vanish at of the local potential is explicitly canceled and added to the
convergence, whefdysy,= e i,. A similar analysis ap- Madelung summation of the electrostatic energy, and by con-
plies to the discretization of the Poisson equation: struction the nonlocal projectors have no Coulomb tail. The
Avenl Vit ] = Buend 47 1= Byenf — V2V — 47p]+O(h?). nonlocal projectors and short-ranged local pseudopotentials
(AB) are Fourier filtered only once, when the appropriate poten-

tials and grid spacing are selected. The filtering procedure

Unlike a plane-wave or central finite-differencing repre- attenuates the high-frequency components, while maintain-

sentation of the Kohn-Sham equations, the Mehrstellen dising the localization of the projectors and potentials.

cretization Eq.5) leads to anonHermitian,generalizedei- The unfiltered potentials or projectors are defined on a
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real-space radial grid, and are transformed to momentum TABLE Il. Discretization weights, listed by distance along basis
space in order to filter the high-frequency components: set axes, for the sixth- and second-order kinetic-energy operators

for the hexagonal grid. See also E¢€2)—(C5).
VI,fiIterec(G):Ffilter(G/cht)f V,(r)j,(Gr)err, (B1)

Operator Order 0 1 2 3
where the cutoff functioff s, (G/Gy) smoothly attenuates —v2 p2 2 nd 2 -1 0 0
the radial Fourier transform beyon@>G.,. The cutoff 6" 49/18 -3/2 3/20 -1/90
wave vector is determined by the grid spacing: 02 12 5 nd a3 o/ 0 o
Geu= am/hgiq. The cutoff function is unity folG<G.;and  ~ )
eur™ @71 Mgrid v cut v 6" 4927 1 110  -1/135

equalse #1(%/GeV? for G>G,,,. The parameters: and
B1 depend on the atomic species and are carefully adjusted

to achieve the best results. Along the z direction, a sixth-order central finite-difference
After the momentum-space filtering, the backtransformedPperator was selected

potentials and projectors will extend beyond the original core 3

radius. For computatior_lal efficiency, it is important that the —Vﬁf(i,j k)= 2 anf(ij ,k+n)+O(hf), (C2)

nonlocal pseudopotentials be short-ranged. Accordingly, a n=—

second filtering in real space is applied to reduce the large- h _ d th . in Table II. For th
radius oscillations beyond an empirically determined radiug’ orc ®-n=an an heay are given in Table Il For the

o o : Xy plane the the lattice translational vectors are not orthogo-
feur- The second filtering f“QCt'O” Is unity below the cutoff nal, and a central finite-difference expression is not appli-
radius and equals™#2""e V" above it. Example values for caple Instead a composite form was selected

a carbon generalized norm-conserving pseudopotential with

s andp nonlocalities arex=3 and 8,;=18, ro,=2.5 bohr, 3

and 8,=0.4. “ViAGLk= 2Bl ti+n k) + (k)
Since the filtering procedure modifies the pseudopoten- "
tials, it is necessary to determine whether the modified po- +f(i+n,] —n,k)]+O(h§y), (C3)

tentials affect the system’s physical properties. Because the ) )

degree of filtering is set by the real-space grid spacing'h€r€B-n=pB, and theg, are given in Table II.

hgra» the effect is similar to performing an underconverged In the multigrid solution process ;hese sixth-order opera-
plane-wave calculation. The last effects are well understoofP’s &re only used on the finest grid level to compute the
and can be measured quantitatively by progressively increa&inetic energy and the residual. On coarser grid levels, a
ing the plane-wave cutoff. In particular, the main results ofS€cond-order operator is used to represefit’; viz.,
plane-wave calculations remain valid, even if they are sig- oo ! o )

nificantly underconverged. This is due to the uniform con- —V2(i,i.K= > apf(i,jk+n)+0(h) (CH
vergence properties of plane waves, which form a transla- =t

tionally invariant basis set. Similarly, the convergenceand

effects may be monitored for a real-space calculation by de- 1

creasing the grid spacing. In our tests we found that the total —V)Z(yf(i J.K) = E Bilf(i+n,j,ky+f(,j+n,k)

energy of the system converges to an asymptotic value in a n=-1

manner similar to that observed with plane waves. +E(i+n,] —n,k)]+O(h§y), (C5)
APPENDIX C: HEXAGONAL DISCRETIZATION where the discretization weights are listed in Table II.
OF THE KOHN-SHAM EQUATIONS The multigrid restriction operator uses a volume weight-

ing scheme with the weights adjusted for the hexagonal grid,

The hexagonal grid structure described in Etl) is a  and similarly, the hexagonal generalization of trilinear inter-
simple hexagonal lattice. Because thaxis is orthogonal to  polation is used to transfer the coarse-grid correction to the
the xy plane, the— V2 operator may be written in separable fine grid. The wave functions and Hartree potential are gen-

form erated using multigrid iterations in exactly the same manner
5 ) ) as was described in Sec. Il except for the modifications
—Vi=-Viy—Vs. (C)  described here.
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