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We describe a set of techniques for performing large scaleab initio calculations using multigrid accelera-
tions and a real-space grid as a basis. The multigrid methods provide effective convergence acceleration and
preconditioning on all length scales, thereby permitting efficient calculations for ill-conditioned systems with
long length scales or high energy cutoffs. We discuss specific implementations of multigrid and real-space
algorithms for electronic structure calculations, including an efficient multigrid-accelerated solver for Kohn-
Sham equations, compact yet accurate discretization schemes for the Kohn-Sham and Poisson equations,
optimized pseudopotentials for real-space calculations, efficacious computation of ionic forces, and a complex-
wave-function implementation for arbitrary sampling of the Brillouin zone. A particular strength of a real-
space multigrid approach is its ready adaptability to massively parallel computer architectures, and we present
an implementation for the Cray-T3D with essentially linear scaling of the execution time with the number of
processors. The method has been applied to a variety of periodic and nonperiodic systems, including disordered
Si, a N impurity in diamond, AlN in the wurtzite structure, and bulk Al. The high accuracy of the atomic forces
allows for large step molecular dynamics; e.g., in a 1-ps simulation of Si at 1100 K with an ionic step of 80
a.u., the total energy was conserved within 27meV per atom.@S0163-1829~96!04443-8#

I. INTRODUCTION

Over the last several decades algorithmic advances,
coupled with the development of high-speed supercomput-
ers, have madeab initio quantum-mechanical simulations
possible for a wide range of physical systems. These meth-
ods have been used to provide a theoretical framework for
interpreting experimental results and even to accurately pre-
dict the material properties before experimental data were
available. However, the calculations are currently restricted
to systems containing a few hundred atoms.1 This limitation
is set by the available computer power, and the scaling of the
computational work with the number of atoms. One of the
most successful of the recent techniques is the Car-Parrinello
method,2 in which the electronic orbitals are expanded in
plane-wave basis functions, and the resulting Hamiltonian is
iteratively diagonalized.

The practical and efficient extension ofab initio quantum
methods to larger and more difficult systems may be accom-
plished by the refinement and improvement of traditional
methods or by the development of additional techniques. Al-
though highly successful, traditional plane-wave methods en-
counter considerable difficulties when they are applied to
physical systems with large length scales, or containing first-
row or transition-metal atoms. These difficulties may be par-
tially eliminated by the use of preconditioned conjugate-
gradient techniques,3,4 optimized pseudopotentials,5–8

augmented-wave methods,9 or plane waves in adaptive
coordinates.10,11 However, these methods are still con-
strained by the use of a plane-wave basis set, and the neces-
sity of performing fast Fourier transforms~FFT’s! between
the real and reciprocal spaces. While FFT’s may be imple-
mented in a highly efficient manner on traditional vector
supercomputers, the current trend in supercomputer design is
massively parallel architectures. It is difficult to implement
efficient FFT algorithms on such machines, due to the re-

quired long-range communications.
Real-space methods are inherently local, and therefore do

not lead to a large communication overhead. The scaling of
several critical parts of large calculations is improved from
O(N2log2N) in a plane-wave representation toO(N2),
whereN is the number of atoms. Furthermore, precondition-
ing and convergence acceleration are most effectively carried
out in real space~see Sec. III!. A real-space formulation is
also required for efficient implementations ofO(N) elec-
tronic structure methods, in which the computational work
required scales linearly with the number of atoms. These
methods impose a localization constraint on the electronic
orbitals12 or the electron charge density,13 which eliminates
theO(N3) orthogonalization step.

Orbital-based real-space approaches, e.g., atom-centered
or floating Gaussians, are very well established. Recently,
however, there has been substantial interest in developing
real-space orbital-independent methods, which permit sys-
tematic studies of convergence in the spirit of plane-wave
methods. These methods include finite elements,14 grids,15–21

and wavelets.22,23

The finite-element method was applied by White,
Wilkins, and Teter14 to one-electron systems. They used both
conjugate-gradient and multigrid acceleration24 to find the
ground-state wave function. Two of the present authors15

used a basis with a high density of grid points in the regions
where the ions are located, and a lower density of points in
the vacuum regions, in conjunction with multigrid accelera-
tion, to calculate the electronic properties of atomic and di-
atomic systems. The core electrons were explicitly included,
and nearly singular pseudopotentials were used. The nonuni-
form grid led to order of magnitude savings in the basis size
and total computational effort. The multigrid iterations,
which provide automatic preconditioning on all length
scales, reduced the number of iterations needed to converge
the electronic wave functions by an order of magnitude in
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these multi-length-scale systems. Bylaskaet al.19 used a
similar method to solve for the ground state of H2

1. Wavelet
bases22,23were used to solve the local-density-approximation
~LDA ! equations for atoms and the O2 molecule. Che-
likowsky et al.16 used high-order finite-difference methods
and soft nonlocal pseudopotentials on uniform grids to cal-
culate the electronic structure, geometry, and short-time dy-
namics of small Si clusters and of an isolated CO2 molecule.
Beck, Iyer, and Merrick18 have used uniform grids and a
smeared nuclear potential to examine the energetics and
structures of atoms and small molecules. They employed
multigrid iteration techniques to improve the convergence
rates of the Kohn-Sham functional. Real-space grids in cur-
vilinear coordinates were used by Gygi and Galli20 to com-
pute the properties of atoms and CO2, and Zumbach, Mod-
ine, and Kaxivaset al.21 independently tested a similar
approach on O2. Seitsonen, Puska, and Nieminen25 used a
uniform grid approach with pseudopotentials and a
conjugate-gradient scheme to calculate the electronic struc-
ture of P2, and to study a positron trapped by a Cd vacancy
in CdTe.

In a previous communication17 the present authors out-
lined a multigrid-based approach suitable for large-scale cal-
culations, together with a number of test applications. These
included calculations for a vacancy in a 64-atom diamond
supercell, an isolated C60 molecule using nonperiodic
boundary conditions, a highly elongated diamond supercell,
and a 32-atom supercell of GaN that included the Ga 3d
electrons in valence. Uniformly spaced grids were used; in
this case an effective cutoff may be defined, which is equal
to that of the plane-wave calculation that uses the same real-
space grid for the FFT’s. Whenever feasible, the correspond-
ing calculations were also carried out using plane-wave tech-
niques, and the two sets of results were in excellent
agreement with each other. This paper provides a compre-
hensive description of the real-space multigrid method, and
reports extensions to nonuniform grids, noncubic grids, and
to molecular-dynamics simulations with highly accurate
forces.

Several computational issues absent from plane-wave-
and orbital-based methods arise when using a real-space grid
approach. In the plane-wave basis the action of the kinetic-
energy operator on the basis functions can be computed ex-
actly, and the wave functions, potentials, and the electron
charge density can be trivially expanded in the basis. Every
basis-set integral, except those involving the LDA exchange-
correlation functional, can be computed exactly. The compu-
tational errors in the calculations are mainly due to the trun-
cation of the basis. In a real-space grid implementation, the
Kohn-Sham equations must be discretized explicitly, which
presents important trade-offs between accuracy and compu-
tational efficiency. Furthermore, the quantum-mechanical
operators are known only at a discrete set of grid points,
which can introduce a spurious systematic dependence of the
Kohn-Sham eigenvalues, the total energy, and the ionic
forces on the relative position of the atoms and the grid. We
have developed a set of techniques that overcome these dif-
ficulties, which have been used to compute accurate static
and dynamical properties of large physical systems, while
taking advantage of the rapid convergence rates afforded by
multigrid methods.

This paper is organized as follows: In Sec. II a method for
the accurate and efficient real-space discretization of the
Kohn-Sham equations for cubic, orthorhombic, and hexago-
nal symmetries is described. Section III focuses on the mul-
tigrid algorithms, which greatly accelerate convergence of
the electronic wave functions and of the Hartree potential.
Tests of the convergence acceleration are described in Sec.
IV. The calculation of ionic forces that are sufficiently accu-
rate for large step molecular dynamics requires special meth-
ods, which are described in Sec. V. Section VI discusses
performance issues for massively parallel supercomputers,
and describes a highly scalable and efficient implementation
on the Cray-T3D, which has been tested on up to 512 pro-
cessors. The summary in Sec. VII is followed by several
technical appendices.

II. GRID-BASED DISCRETIZATIONS
OF THE KOHN-SHAM EQUATIONS

Electronic structure calculations that use a real-space
mesh to represent the wave functions, charge density, and
ionic pseudopotentials must address another set of technical
difficulties when compared with plane-wave methods. In a
plane-wave representation the form of the kinetic-energy op-
erator is obvious. In contrast, the representation of the
kinetic-energy operator on a real-space grid is approximated
by some type of finite differencing, the accuracy of which
must be carefully tested. Below, we describe real-space dis-
cretizations for uniform cubic, orthorhombic, and hexagonal
grids, as well as nonuniform scaled cubic grids that increase
the resolution locally. For uniform cubic grids we also de-
scribe and test the extension to periodic systems with an
arbitrary sampling of the Brillouin zone.

A. Uniform cubic and orthorhombic grids

Previously,17 we described a real-space approach that uses
uniform cubic grids withG-point k-space sampling. In direct
comparisons with plane-wave calculations, we found nearly
perfect agreement between the two methods for several test
systems. We now provide further details of our method.

In real space the wave functions, electron charge density,
and potentials are directly represented on a uniform three-
dimensional real-space grid ofNgrid points with linear spac-
ing hgrid . The physical coordinates of each point are

r ~ i , j ,k!5~ ihgrid , jhgrid ,khgrid!,

i51, . . . ,Nx , j51, . . . ,Ny , k51, . . . ,Nz . ~1!

The ions are described by norm-conserving
pseudopotentials26–28 in the Kleinman-Bylander nonlocal
form.29 These potentials are interpolated onto the grid from
their radial representation. Exchange and correlation effects
are treated using the local density approximation of density-
functional theory, in which the total electronic energy of a
system of electrons and ions may be expressed as30
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The minimization of this functional requires the solution of
the Kohn-Sham~KS! equations

HKS@cn#52 1
2¹2cn1Veffcn5encn . ~3!

The accurate discretization of these equations on the grid
structure described by Eq.~1! requires appropriate numerical
representations of the integral and differential operators. All
integrations are performed using the three-dimensional trap-
ezoidal rule

E dr f ~r !8hgrid
3 (

i jk
f „r ~ i , j ,k!…. ~4!

We have found that for high accuracy it is essential that the
integrandf (r ) be band limited in the sense that its Fourier
transform should have minimal magnitude in the frequency
rangeG.Gmax[p/hgrid . This is explicit in a plane-wave
calculation since the basis is cut off at a specific plane-wave
energy.

The discrete real-space grid also provides a kinetic-energy
cutoff of approximatelyGmax

2 /2. Unlike the plane-wave basis,
high-frequency components above this cutoff can nonethe-
less manifest themselves on the grid. This high-frequency
behavior, which can introduce unphysical variation in the
total energy or the electron charge density, is perhaps best
seen when the ions, and hence their pseudopotentials, shift
relative to the grid points.17 If the pseudopotentials contain
significant high-frequency components near or aboveGmax,
then, as the ions shift, the high-frequency components are
aliased to lower-frequency components in an unpredictable
manner.

This effect can be decreased byexplicitly eliminating the
high-frequency components in the pseudopotentials by Fou-
rier filtering. In the context of plane-wave calculations,
King-Smith Payne, and Lin31 recognized that the real-space
integration of the nonlocal pseudopotentials could differ sig-
nificantly from the exact result computed in momentum
space, unless the potentials were modified so that Fourier
components nearGmaxwere removed. Fourier filtering of the
pseudopotentials is thus required in real-space calculations
for accurate results. It is, of course, possible to use unfiltered
potentials on real-space grids provided the grid spacing is
sufficiently small, but our experience shows that the total
energy and the electron charge density are often sufficiently
well converged for significantly larger grid spacings—
provided that explicit pseudopotential filtering is used. We
use a somewhat different Fourier filtering method than that
proposed by King-Smith, Payne, and Lin, but it produces
essentially the same effect~see Appendix B!.

The differential operator in the Kohn-Sham equations is
approximated using ageneralizedeigenvalue form

HMehr@cn#5 1
2 AMehr@cn#1BMehr@Veffcn#5enBMehr@cn#,

~5!

where AMehr and BMehr are the components of the Me-
hrstellen discretization,32 which is based on Hermite’s gen-
eralization of Taylor’s theorem. It uses a weighted sum of
the wave-function and potential values to improve the accu-
racy of the discretization of theentire differential equation,
not just the kinetic-energy operator. In contrast to the central
finite-differencing method, this discretization uses morelo-
cal information ~next-nearest neighbors, for example!. The
definition of the fourth-order Mehrstellen operator used in
the present work is specified by the weights listed in Table I,
which pertain to both cubic and orthorhombic grids~see be-
low!. A more detailed analysis of the Mehrstellen operator
and Eq.~5! is given in Appendix A.

This representation of the Kohn-Sham Hamiltonian is
short ranged in real space in the sense that the operator can
be applied to any orbital inO(Ngrid) operations. Specifically,
the application of theAMehr operator at a point involves a
sum over 19 orbital values, while the application of the
BMehr operator requires a sum over seven points. The local
potential multiplies the orbital pointwise, and the short-
ranged nonlocal projectors require one integration over a
fixed volume around each ion and a pointwise multiplication.
This sparseness permits the use of iterative diagonalization
techniques, and the short-ranged representation of the Hamil-
tonian leads to an efficient implementation on massively par-
allel computers.

The discussion up to this point has been restricted to uni-
form cubic grids, but the extension to a general orthorhombic
grid is straightforward. There are now three separate grid
spacingshx , hy , andhz with the coordinates of each grid
point given by

r ~ i , j ,k!5~ ihx , jhy ,khz!,

i51, . . . ,Nx , j51, . . . ,Ny , k51, . . . ,Nz . ~6!

The orthorhombic Mehrstellen operator described in Table I
is used to discretize the Kohn-Sham equations and numerical
integration is performed according to

E dr f ~r !8hxhyhz(
i jk

f @r ~ i , j ,k!#. ~7!

B. Extension to arbitrary Bloch wave vectors

In Sec. II A the wave functions were assumed to be real,
with the Brillouin-zone sampling restricted to theG point.
When these restrictions are lifted the Kohn-Sham equations
become

TABLE I. Discretization weights for the fourth-order ortho-
rhombic Mehrstellen operators for the central, nearest-neighbor,
and next nearest-neighbor grid points. See Eqs.~A1! and ~A2! for
the definitions ofa, bn , andcn,m . The cubic-grid operator corre-
sponds tohi5hgrid .

a bn cn,m

AMehr
( i

4

3hi
2 2

5

6hn
21( i

1

6hi
2 2

1

12hn
22

1

12hm
2

BMehr
1
2

1
12

0
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2 1
2¹2cnk1 ik•“cnk1

1
2 uku2cnk1Veff~k!cnk5encnk ,

~8!

wherecnk are now the periodic parts of the Bloch functions.
They are complex valued, which presents no additional dif-
ficulties in discretization. The nonlocal projectors inVeff(k)
have been multiplied by the phase factoreik•r. The gradient
term“cnk is computed using a central finite-difference ex-
pression, which in one dimension has the form

d

dx
f ~xi !5 (

n523

3

anf ~xi1n!1O~h7!, ~9!

where a153/(4hgrid), a2523/(20hgrid), a351/(60hgrid),
and a2n52an . For a cubic grid structure the three-
dimensional generalization of this is the sum of the indi-
vidual expressions for each coordinate axis. Denoting this
finite-difference operator by“̃, the discretization of the
Kohn-Sham equation becomes

HBloch@cnk#5 1
2AMehr@cnk#1BMehr@ ik•“̃cnk1

1
2k

2cnk

1Veff~k!cnk#5enBMehr@cnk#, ~10!

whereAMehr andBMehr are again the components of the Me-
hrstellen operator.

The accuracy of the discretization was tested by calculat-
ing the lattice constant and bulk modulus for an eight-atom
Si supercell. A 26-Ry equivalent cutoff was used with
k-space sampling restricted to the Baldereschi point.33 The
calculated lattice constant was 5.38 Å, with a bulk modulus
of 0.922 Mbar. These are in good agreement with the corre-
sponding plane-wave calculation with a cutoff of 26 Ry: 5.39
Å and 0.960 Mbar, respectively.34

Bulk aluminum was selected as an additional test case. A
four-atom cell was used with a 23-Ry equivalent cutoff and a
k-space sampling of 35 special points in the irreducible part
of the Brillouin zone. Since Al has partially occupied orbit-
als, the bands near the Fermi level were occupied using a
Fermi-Dirac broadening function of width 0.1 eV. The con-
vergence of the total energy with respect to energy cutoff and
the number ofk points was tested by increasing the cutoff
from 23 to 49 Ry, which produced a change of only 10
meV/atom, and by increasing the number ofk points to 56,
which changed the total energy by 3 meV/atom. The calcu-
lated lattice constant and bulk modulus of 4.02 Å and 0.734
Mbar are in excellent agreement with the experimental val-
ues of 4.02 Å and 0.722 Mbar, and with previous theoretical
results of Lam and Cohen35 of 4.01 Å and 0.715 Mbar.

C. Uniform hexagonal grids

Unlike plane-wave methods, where different symmetry
groups can be handled easily, anefficientreal-space imple-
mentation for periodic systems with nonorthogonal lattice
translation vectors requires considerable modifications to the
orthorhombic-symmetry implementation.

The hexagonal grid describing the unit cell or supercell is
generated by

r ~ i , j ,k!5hxyin11hxyjn21hzkn3 ,

i51, . . . ,Nx , j51, . . . ,Ny , k51, . . . ,Nz , ~11!

where ni are the hexagonal Bravais-lattice vectors.36 The
c/a ratio can be chosen arbitrarily by varying the two inde-
pendent grid spacingshxy and hz , and the number of grid
pointsNx5Ny andNz . However, one should usehxy;hz in
order to maintain similar resolution both in thexy plane and
along thez axis. Because the indexing of this hexagonal grid
is isomorphic to the cubic one, the computer representation
of potentials and wave functions does not change. The most
important difference is in the discretization of the Kohn-
Sham equations. We have implemented a mixed sixth-order
kinetic-energy operator. This discretization is described in
Appendix C, as well as the modifications required in the
multigrid restriction and interpolation procedures~see Sec.
III !.

The above implementation has been tested on a 32-atom
supercell of AlN in the wurtzite phase. The accuracy of the
results was confirmed by comparison with plane-wave Car-
Parrinello calculations on the same supercell. Generalized
norm-conserving26–28 Al and N pseudopotentials were used
for both calculations withk-space sampling restricted to the
G point. The cohesive energy from the real-space calculation
was 11.5 eV per AlN unit, which compares well with the
value of 11.6 eV obtained in the Car-Parrinello calculations.
The eigenvalue degeneracies were identical in both calcula-
tions and the maximum difference in any eigenvalue was
0.04 eV. The extension of the real-space grid representation
to other Bravais lattices proceeds in a similar manner, the
only requirement being the existence of an accurate finite-
difference discretization.

D. Scaled grids

In real-space calculations it is possible to add resolution
locally. This is especially valuable for systems with a wide
range of length scales such as surface or cluster calculations.
A high density of grid points can be used near the ions, with
a low density in the vacuum regions. Other possible applica-
tions are simulations of impurities in bulk materials, where
the impurity ions may require higher resolutions to be accu-
rately represented. By using locally enhanced regions the
required resolution may be added only where needed,
thereby greatly reducing the total number of points required.

Local enhancement of the grid resolution may be
achieved by adding small high-resolution grids15,19 onto a
uniform global grid, or by using a coordinate transform to
warp the grid structure. Our focus here will be on the second
approach, which was proposed by Gygi10 for plane-wave ba-
sis sets, and recently extended to real space by several
workers.20,21 In the real-space approach, a continuous coor-
dinate transform is applied to a uniform grid. In general the
transformation is nonseparable, but we prefer a separable
coordinate transformation in order to avoid mixed deriva-
tives in the kinetic-energy operator. As a test of the utility
and accuracy of this scaled-grid approach, we examined an
interstitial oxygen impurity in Si37 for two grid layouts: a
dense uniform grid with a 76-Ry cutoff and a scaled grid
with a cutoff that varied from 18 to 76 Ry. The scaling
transformation that maps the fictitious computational gridx
to the physical warped gridxscaledis
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xscaled~x!5~x2x0!2
Lxb

2p
sinS 2p~x2x0!

Lx
D , ~12!

wherex0 is thex coordinate of the oxygen atom,Lx is the
length of the supercell in thex direction, andb is an adjust-
able parameter between zero and 1 that controls the degree of
scaling. They andz coordinates are scaled analogously. The
scaled grid required four times fewer points than the uniform
grid to achieve the same convergence of the total energy.

Since the coordinate transforms are continuous functions,
the integration weights and the coefficients of the discretized
kinetic-energy operator may be generated from the uniform
grid values using the metric tensor of the transform in the
manner outlined by Gygi and co-workers.10,20 With these
modifications, the calculations proceed as for the uniform
grids, but a sixth-order central finite-difference operator is
used to discretize the first and second derivatives because we
have not constructed a Mehrstellen operator for the scaled
grid. In each case~uniform and scaled grids!, a 64-atom su-
percell was used and the silicon atoms were fully relaxed.
The oxygen atom was held fixed in order to avoid Pulay
corrections38 to the ionic forces, which would have been re-
quired if it and the scaled grid were free to move. The uni-
form and scaled-grid calculations are in very good agree-
ment: the maximum difference in Kohn-Sham eigenvalues
was 40 meV, and the maximum difference in ionic coordi-
nates was 0.03 Å.

III. MULTIGRID ALGORITHMS

To efficiently solve Eq.~5!, we have used multigrid-
iteration techniques that accelerate convergence by employ-
ing a sequence of grids of varying resolutions. The solution
is obtained on a grid fine enough to represent accurately the
pseudopotentials and the electronic wave functions. If the
solution error is expanded in a Fourier series, it may be
shown that iterations on any given grid level will quickly
reduce the components of the error with wavelengths com-
parable to the grid spacing, but are ineffective in reducing
the components with wavelengths large relative to the grid
spacing.24,39 The solution is to treat the lower-frequency
components on a sequence of auxiliary grids with progres-
sively larger grid spacings, where the remaining errors ap-
pear as high-frequency components. This procedure provides
excellent preconditioning for all length scales present in a
system and leads to very rapid convergence rates. The opera-
tion count to converge one wave function with a fixed po-
tential isO(Ngrid), compared toO(Ngridlog2Ngrid) for FFT-
based approaches.40

There is no one multigrid algorithm but rather a collection
of algorithms that share certain common features. In order to
describe the implementation used in this work, we start with
a description of a multigrid solver for Poisson’s equation.
This will then be used as a building block for the more
sophisticated algorithms actually employed.

A standard numerical problem that illustrates the multi-
grid algorithm is the Poisson equation2¹2VHartree54pr,
defined on a rectangular cell of dimensions (Lx ,Ly ,Lz) with
periodic boundary conditions. A standard method of solving
for VHartree is to discretize the equation on a uniform three-
dimensional grid with spacinghgrid and Ngrid total points.

The differential operator2¹2 is represented by some form
of finite differencing. This produces a set of linear algebraic
equations

Ax5b, ~13!

where x and b are the discretized forms ofVHartree and
4pr, respectively, andA is the finite-difference representa-
tion of 2¹2. If the system is small, direct matrix methods
are an acceptable means of solving the equations; however,
for large systems the work required scales as (Ngrid)

3, which
is prohibitive. An alternative approach is to use aniterative
relaxation scheme such as the Jacobi method.41 In this tech-
nique, the solution is iteratively improved. First, definex as
an approximate solution of Eq.~13!, and the residualr , a
measure of the solution error, as

r5b2Ax. ~14!

An improvedx is generated using

xnew5x1DtKr , ~15!

whereDt is a pseudo-time-step, andK is the inverse of the
diagonal component ofA. This approach will always con-
verge to a solution for some value ofDt if A is diagonally
dominant.42 However, the number of iterations required to
reduce the magnitude of the residual to a specified accuracy
is proportional toNgrid

2/3 so that the algorithmic cost to con-
verge,O(Ngrid

5/3 ), is too great.41 While more sophisticated re-
laxation methods such as Gauss-Seidel, successive overre-
laxation, or the alternating direction implicit method41 have
improved convergence rates, they still scale as (Ngrid)

a with
a.1, and are too slow for the grid sizes required in elec-
tronic structure calculations.

The slow convergence of the Jacobi method can be quali-
tatively understood by noting that becauseA is a short-
ranged operator, the updated approximate solution, Eq.~15!,
is a linear combination of nearby values. If the error in the
current estimate ofx̃ is decomposed into Fourier compo-
nents, it can be shown that one Jacobi iteration considerably
reduces the high-frequency components of the error, but
many Jacobi iterations are needed to affect the longest wave-
length components of the error. The overall convergence rate
is then limited by that of the lowest-frequency components.
As the problem becomes larger, the lowest frequency repre-
sentable on the grid becomes smaller and the convergence
rate decreases.

The essence of the multigrid approach is the observation
that the individual frequency components of the error are
best reduced on a grid where the resolution is of the same
order of magnitude as the wavelength of the error compo-
nent. This approach will maintain a high convergence rate
for all frequency components of the error even when the
problem size~and the grid! becomes very large.

We first describe a multigrid algorithm to solve Poisson’s
equation that uses two grids; a fine grid of spacingh and a
coarser auxiliary one of spacingH. In this work, we use a
coarse-to-fine grid ratioH/h of 2, but other ratios are pos-
sible. The solution is generated as follows: the high-
frequency components of the solution error with wavelength
'h are reduced by one or two Jacobi iterations. The residual
rh , which should be devoid of high-frequency variation, is
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computed and transferred to the coarse grid by restriction
~see below!. Next, Poisson’s equation on the coarse grid with
the residual as a source term is solved by using the same
iteration procedure as in Eq.~15!, but with an initial estimate
of zero. The Jacobi iteration on this level removes error com-
ponents with wavelength'H. Finally, the coarse grid solu-
tion is interpolated to the fine grid and added to the fine-grid
solution. This process is referred to as a coarse-grid-
correction scheme~CGC!. A few applications of the CGC
cycle are generally sufficient to solve Poisson’s equation to
machine precision even for extremely large systems.

An obvious question is how the solution is obtained on
the coarse grid. If the total number of grid points in the
coarse grid is small, a direct matrix method will be sufficient.
If this number is so large that a direct method is impractical,
then a second, coarser grid level is introduced and the two-
grid algorithm is repeated in a recursive manner. When mul-
tiple grid levels are used, the pattern of cycling through the
grids also needs to be considered. We use a simple progres-
sion from the finest to the coarsest grid level and then back
to the finest level, which is referred to as aV cycle. More
complicated cycling schemes exist, but we have found that
theV cycle works as well in electronic structure calculations
as the more sophisticated approaches. Another consequence
of the multigrid approach is the reduction in the size of the
grid ~and consequently in the work required! on each level.
For a uniform grid in three dimensions a doubling ofhgrid
with each level leads to a factor of 8 reduction inNgrid , so
that the addition of extra coarse grid levels is computation-
ally inexpensive.

The simplest choice for the restriction operator is to copy
every other point in the fine grid directly to the coarse grid.
This so-called straight injection, while easy to implement,
does not always yield good convergence rates. A better
choice is a weighted restriction, in which each coarse-grid
value is the average of the 27 fine-grid values surrounding it.
In our work, the weight assigned to each fine-grid point is
proportional to the volume it occupies at a given coarse-grid
point. A good choice for interpolating from the coarse grid to
the fine grid is the adjoint of the restriction operator, which
in this case becomes simple trilinear interpolation.43

The final accuracy of the solution is determined by the
finite-difference representation of2¹2 on the finest grid
level. It is neither necessary nor desirable to use the same
representation of2¹2 on all grid levels; i.e.,Ah may differ
from AH in the form of the discretization as well as in the
grid spacing. The technique of changing discretization on
different levels is referred to as deferred defect correction
~DDC! or double discretization.24,44 It is especially valuable
for problems where the operator used on the finest grid level
is numerically unstable on the coarser grids, or when it is
inconvenient to apply. The accuracy of the fine-grid solution
does not depend on the choice of this coarse-grid operator,
which effects only the convergence rate. In solving Poisson’s
equation, we use the Mehrstellen operator on the finest grid
level for high accuracy. However, it is unsuitable for conver-
gence acceleration on the coarser grids because of stability
problems. Thus, on the coarser grids a seven-point central
finite-difference operator is used, which provides excellent
stability and rapid high-frequency attenuation.

The extension of multigrid concepts to the solution of the
Kohn-Sham equations introduces several complications.
First, the equations are nonlinear since the eigenvalues and
the orbitals must be computed simultaneously. Second, when
the Kleinman-Bylander form of the nonlocal pseudopoten-
tials is used, the equations become a set of integrodifferential
eigenvalue equations. Finally, the Hamiltonian depends upon
the density, and must be solved self-consistently.

Brandt, McCormick, and Ruge45 gave a multigrid algo-
rithm for the standard eigenvalue problem. Below we de-
scribe an alternative means of linearizing the eigenvalue
equations. The multigrid technique recommended in the lit-
erature for nonlinear integrodifferential equations is the full
approximation storage~FAS! method.24 In FAS the entire
problem is discretized and solved onall grid levels. In con-
trast, the CGC method outlined above generates the full so-
lution only on the finest level. While the theoretical perfor-
mance of FAS on this problem is superior, its
implementation is significantly more complex. In addition, it
is difficult to obtain an accurate representation of the nonlo-
cal pseudopotentials on the coarser grid levels. Furthermore,
the Kohn-Sham equations need not be converged to maxi-
mum accuracy at every iteration because the electron charge
density ~and therefore the Hamiltonian! change after each
multigrid step.

For these reasons, a modification of the double discretiza-
tion approach described above was used. The discretized op-
erator on the finest grid is the Mehrstellen approximation of
the Kohn-Sham Hamiltonian, while a seven-point central
finite-difference representation of2¹2 alone is used for the
DDC acceleration, with the pseudopotential contribution be-
ing represented only via the error term in Eq.~18!, the gen-
eralization of Eq. ~14! to the eigenvalue problem. This
choice avoids the problems associated with the representa-
tion of the potentials of the coarse grids, while allowing for
multigrid iterations that greatly accelerate convergence. The
coarse-grid iterations and operators are only used for precon-
ditioning and convergence acceleration, and do not affect the
final accuracy of the wave functions because they are gener-
ated only on the fine grid, where every operator is accurately
represented. Different coarse grid approximations to the fine-
grid solutions have been discussed by Hackbusch,46 and are
used in the numerical analysis community for fluid dynamics
applications.24 In the present case, once the fine-grid residual
generated by the Mehrstellen, Eq.~18!, has been formed, we
use the seven-point representation of2¹2 for the DDC ac-
celeration, starting from the fine grid. Thus, the DDC equa-
tion is in effect Poisson’s equation with the wave-function
residual as the source term.

Our multigrid procedure begins with the selection of some
initial wave functions and electron charge density. We post-
pone a discussion of initialization techniques until later, and
assume that an adequate start has been generated. The fol-
lowing steps are then performed for each individual wave
function: First, an estimate of the eigenvalue is calculated
from the Rayleigh quotient of the generalized eigenvalue
equation, Eq.~5!,

en5
^cnuHMehr@cn#&

^cnuBMehr@cn#&
. ~16!
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In the case of complex orbitals, the eigenvalue is calculated
using the Rayleigh quotient of the real~or imaginary! part of
the generalized eigenvalue equation, Eq.~10!:

en5
^Re@cnk#uRe@HBloch@cnk##&

^Re@cnk#uRe@BMehr@cnk##&
. ~17!

Next, several Jacobi iterations are applied to the orbital on
the finest grid using Eqs.~14! and~15!, where the residual is
computed as

rh5enBMehr@cn#2HMehr@cn#. ~18!

The fictitious time stepDt used in the Jacobi iteration is
typically chosen between 0.8 and 1.4 a.u. In the case of com-
plex orbitals, the real and imaginary components of the or-
bital are updated separately, using the appropriate generali-
zation of Eq.~18!.

Next, the residual is restricted to the first coarse grid. A
DDC coarse-grid cycle begins using the seven-point central
finite-difference representation of2¹2 instead ofHMehr.
Several auxiliary coarse grids can be used. When the coarse-
grid correction is interpolated onto the finest grid, only a
fraction bCGC of it is added to the orbital, for reasons of
stability. A value ofbCGC50.5 has been found to work for
almost all systems.~Larger values may produce much higher
convergence rates on some systems while being unstable for
others, so some experimentation is necessary.!

Before transferring the residual to the coarse grid, it is
essential that enough Jacobi iterations be performed to elimi-
nate the high-frequency components from the residual. Since
the residual is used as the right-hand side of a CGC correc-
tion cycle, any high-frequency components will eventually
be transferred to a coarser grid where they cannot be repre-
sented correctly, greatly reducing the effectiveness of the
multigrid cycle. In some cases they may even make the pro-
cess numerically unstable. In the above approach, the diffi-
culties of discretizing the nonlocal pseudopotentials on the
coarse-grid levels are avoided because the potential term is
computed on the finest grid and frozen thereafter.

The steps outlined above in the DDC apply only to a
single wave function. The full solution process also requires
the application of the orthonormality constraints and an up-
date of the electron charge density. The full solution process
@one self-consistent field~SCF! step# consists of the follow-
ing cycle.

First, the DDC is applied to all of the wave functions.
Next, the orthonormality constraints are applied using the
Gram-Schmidt procedure

c̃ i5c i2(
j, i

c j
new^c j

newuc i&,

c i
new5c̃ i /A^c̃ i uc̃ i&,

i51, . . . ,Nstates. ~19!

The electron charge density is generated by linear mixing,

rnew5~12a!rold1a (
i51

Nstates

f ic i
2 , ~20!

where f i is the occupation of thei th state anda is a mixing
parameter, generally set to a value between 0.5 and 0.9.
Next, the Hartree potential is recomputed for the charge den-
sity using a Mehrstellen DDC cycle, and another exchange-
correlation potential is generated.

Finally, a subspace diagonalization may be performed at
this point. This need only be done occasionally~every 10–20
SCF steps is generally adequate! in order to unmix eigen-
states that may be close in energy. Because the Mehrstellen
Hamiltonian leads to a non-Hermitian generalized eigen-
value equation~see Appendix A!, subspace diagonalization
requires a brief discussion: We look for a unitary transfor-
mation of the current wave functions that better represents
the eigenvectors of the Hamiltonian, and are led to the fol-
lowing eigenvalue equation for the subspace:

(
n

Hm,n
subdn,l5e l(

n
Bm,n
subdn,l , ~21!

where

Hm,n
sub5^cmuHMehr@cn#&, ~22!

Bm,n
sub5^cmuBMehr@cn#&, ~23!

anddn,l is the matrix of coefficients of the unitary transfor-
mation for thel th state. BecauseBm,n

sub is invertible ~see Ap-
pendix A!, the subspace equations are equivalent to

(
n

Cm,n
subdn,l5e ldm,l , ~24!

whereCsub5(Bsub)21Hsub. The matrixCsub is not Hermitian
except when the subspace is a subset of the space of eigen-
vectors. Thus, we donot diagonalizeCsub because its eigen-
vectors are not necessarily orthogonal, which would spoil the
orthogonality of the electronic orbitals. Instead, we discard
the anti-Hermitian part ofCsub, which is smaller than the
Hermitian part ofCsub by O(hgrid

2 ), and diagonalize the Her-
mitian part. This approximation works well in practice, and
is exact at convergence.

The Hermitian approximation does not affect the final ac-
curacy of the solution because the multigrid-assisted Jacobi
iterations ultimately converge the orbitals. Nonetheless, ac-
curate subspace rotations are essential for good convergence:
compare the convergence rates in Figs. 1 and 2. As a test, we
compared subspace diagonalizations with theMehrstellen
and Hermitian sixth-order discretizations, and found that the
convergence is significantly improved with the former.

The cycle described above is repeated until the electronic
system converges to the desired tolerance, which may be
monitored by computing the rms value of the residual vector
for each wave function@see Eq.~18!#. When this reaches a
value of 1029 a.u. for all wave functions in the occupied
subspace, the convergence is sufficient for the computation
of forces that are accurate enough for large-step molecular
dynamics with excellent energy conservation.

As was mentioned previously, the convergence rates de-
pend on the choice of the initial wave functions and electron
charge density. A poor choice can lead to slow convergence
rates or in some cases the system will not converge at all.
Apart from random initial wave functions or an approximate
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solution that is generated using a linear combination of
atomic orbitals basis set, one can also use a double-grid
scheme. In the latter method the initial solutions are gener-
ated on a grid with a spacing twice as large as that used for
the final grid. The computational work on this coarse grid is
eight times smaller than what is needed on the fine grid. The
approximate coarse-grids wave functions are then interpo-
lated to the fine grid and used as the initial guess. This pro-
cess can reduce the number of SCF cycles needed on the
finest grid level by a factor of 2–3, thereby achieving sig-
nificant savings in the computational effort.

IV. TESTS OF MULTIGRID CONVERGENCE
ACCELERATION

The theoretical convergence rates of multigrid methods
may, in principle, be calculated exactly for certain types of
problems. For well-behaved partial differential equations
such as Poisson’s equation discretized onNgrid points,
O(Ngrid) total operations are required to obtain a solu-
tion accurate to the the grid-truncation error. This com-
pares well with FFT based methods which require
O@Ngridlog)2(Ngrid)] operations. For the Kohn-Sham equa-
tions, an exact theoretical bound on multigrid convergence
rates is difficult to obtain due to self-consistency effects, and
to the best of our knowledge this analysis does not yet exist.
We have therefore elected to study convergence properties in
an empirical fashion by performing tests on physical systems
typical of the problems normally examined with density-
functional theory.

In previous work17 the present authors examined conver-
gence rates for eight-atom supercells of perfect diamond as a
function of the effective kinetic-energy cutoff determined by
the grid resolution, for a 32-atom supercell of GaN that in-
cluded the Ga 3d electrons in valence, and for a highly elon-
gated 96-atom diamond supercell. It was found that multigrid
convergence rates were largely independent of energy cut-off
and cell geometries. While promising, these results were ob-
tained for perfect crystal configurations of semiconductor
compounds, which are generally fairly easy to converge. In
this paper we present the results of a more systematic study
that includes disordered systems.

The first system selected was a 64-atom supercell of bulk
silicon. The ions were represented by a generalized norm-
conserving pseudopotential26–28 and the grid spacing used
corresponded to an energy cutoff of 12 Ry. The ionic posi-
tions were generated by a molecular dynamics simulation at
a temperature of 1000 K. Because the work required to con-
verge to the ground state depends on the quality of the initial
wave functions and charge density, we used random initial
wave functions and a constant initial electron charge density
to minimize any possible bias from the choice of a starting
configuration. A small number~10% of the total! of conduc-
tion band states was included in the calculations. Figure 1
shows the convergence rate defined as the log10(E2E0),
plotted as a function of iteration number, where each itera-
tion represents a single SCF step. Results are shown for cal-
culations performed with and without multigrid acceleration,
where the latter used a steepest-descents algorithm. In addi-
tion, the two calculations were repeated with, and without
subspace diagonalizations of the orbitals. For the calcula-
tions that included subspace diagonalizations, the procedure
was applied every eight SCF steps, which led to small dis-
continuities in the smooth evolution of the total energy. The
results show that maximum convergence rates are obtained
when multigrid iterations are combined with subspace diago-
nalization. The slowest convergence occurs for steepest de-
scents with no subspace diagonalization. For the two runs
where subspace diagonalizations were performed, the multi-
grid run converged at roughly 2.5 times the rate of the steep-
est descents approach.

While these results are encouraging, bulk silicon is a rela-
tively straightforward test, and is well handled by standard

FIG. 1. Convergence rates for a disordered 64-atom Si cell at a
12-Ry equivalent cutoff. The convergence rate log10(E2E0) is
plotted against the number of self-consistent field~SCF! steps. Ran-
dom initial wave functions were used with a constant initial density.
The initial ionic positions were obtained from an equilibrated mo-
lecular dynamics simulation at 1000 K. SD represents convergence
rates for the steepest descents algorithm, MG is for multigrid,
SD-SD is steepest descents with subspace diagonalizations, and
MG-SD is multigrid with subspace diagonalizations.

FIG. 2. Convergence rates for a 64-atom diamond cell with a
substitutionalN impurity at a 63-Ry equivalent cutoff. The conver-
gence rate log10(E2E0) is plotted against the number of self-
consistent-field~SCF! steps. Random initial wave functions were
used with a constant initial density. The notation is the same as in
Fig. 1.
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plane-wave methods. As an example of a more diffi-
cult system we have considered a 64-atom diamond super-
cell with a substitutional nitrogen impurity. Standard
pseudopotentials26–28 were used for both C and N. The
strong Np potential required an energy cutoff of 63 Ry. The
presence of a localized nitrogen donor level together with the
63-Ry cutoff makes the system more difficult to converge.
Random initial wave functions were used, and Fig. 2 shows
the observed convergence rates. The convergence rates for
the two runs that use subspace diagonalization are a factor of
4 better for multigrid than for steepest descents. This relative
improvement is considerably greater than that observed for
the silicon cell and is the consequence of the automatic pre-
conditioning provided by multigrid techniques for all of the
length and energy scales present in the problem. The multi-
grid convergence rates are largely independent of the grid
spacing, which roughly corresponds to the kinetic-energy
cutoff in plane-wave approaches. This is not true of the
steepest-descents algorithm, where the maximum stable time
step that may be used decreases as the energy cutoff in-
creases.

When comparing the convergence rates of the multigrid
and steepest-descents approaches, the computational work-
load involved in each technique must also be considered. A
particular advantage of multigrid methods, when compared
to other convergence acceleration schemes, is their low com-
putational cost. This is due to the factor of 8 reduction in the
number of grid points on each successive multigrid level.
The computational time per SCF step in the silicon and dia-
mond runs described above increased by less than 10% when
multigrid was used instead of steepest descents. For bigger
systems, where the costs of orthogonalizing the orbitals and
applying the nonlocal pseudopotentials begin to dominate the
total computational time, the extra work needed for the mul-
tigrid accelerations becomes negligible. In terms of compu-
tational time, the 64-atom Si supercell described above re-
quired 1.6 s per SCF step on 64 processors of a Cray-T3D.

V. IONIC FORCES AND MOLECULAR DYNAMICS

Efficient structure optimizations and the calculation of dy-
namical quantities such as phonon frequencies and thermo-
dynamic properties require accurate ionic forces. In plane-
wave methods the ionic forces are computed by applying the
Hellmann-Feynman theorem.47,48 Since the derivative of the
pseudopotentials may be expressed exactly within the plane-
wave basis, the accuracy of the ionic forces is limited only
by machine precision and the degree of convergence to the
Born-Oppenheimer surface.

For the grid-based approach the accuracy of Hellmann-
Feynman forces is limited by the numerical error in comput-
ing the integrals of the derivatives of the pseudopotentials.
This error decreases with grid spacing. The differentiation of
the radial potentials and projectors must be performed with
care to include the effects of the Fourier filtering. Alterna-
tively, a derivative-free implementation of the Hellmann-
Feynman forces can be used, which we term virtual displace-
ments. In this scheme, the ionic pseudopotentials are
numerically differentiated directly on the real-space grid.
The ions are moved through a set of small displacements,
while the electron charge density and the wave functions are

held fixed. The potential energy is calculated for each dis-
placement and finite differenced to form the derivative. The
forces computed by the two methods agree well. Most of the
forces we have calculated to date have been computed using
virtual displacements.

A stringent test of the accuracy of the ionic forces is a
constant-energy molecular-dynamics simulation. Over the
course of the simulation any systematic errors in the forces
will manifest themselves as poor energy conservation. A dis-
tinction has to be made between small random errors that
appear as bounded oscillations in the total energy and errors
that increase in magnitude with simulation time. The small
random errors are expected in the real-space approach be-
cause the energy of an ion varies by a small amount as its
position changes relative to the grid points.17 This is of no
particular concern as long as the magnitude of the variation
is small and oscillatory in nature. Of greater concern are
errors that are unbounded. These could arise from errors in
the forces, errors in integrating the equations of motion of
the ions, and lack of self-consistency due to inadequate con-
vergence of the electronic wave functions. The first source of
error was minimized by Fourier filtering of the ionic pseudo-
potentials. The second is generally not a problem unless the
ionic time step is too large. For small time steps even a
simple integrator such as the Verlet algorithm is sufficient,
and larger time steps may be handled by using higher-order
integrators, such as the Beeman-Verlet method.49 The last
source of error is the most significant because Hellmann-
Feynman forces are only accurate to first order in the error of
the wave functions. A high degree of self-consistency is thus
necessary to obtain good energy conservation.

A 64-atom silicon supercell was selected to test energy
conservation on a typical system. The ions were given ran-
dom initial displacements from the perfect crystal configura-
tion, and several velocity rescaling steps were performed in
order to attain an average ionic temperature of 1100 K. A
constant-energy molecular-dynamics simulation over 1 ps
was then carried out, using 80-a.u. time steps and third-order
Beeman-Verlet49 integration of the ionic equations of mo-
tion. The potential, kinetic, and total energies of the system
vs. simulation time are plotted in Fig. 3. We observed good
energy conservation: the maximum variation in the total en-
ergy was 1.75 meV, which corresponds to 27meV per atom.

VI. MASSIVELY PARALLEL IMPLEMENTATION

The performance of a given algorithm when solving com-
plicated problems depends not only on the theoretical effi-
ciency, which may be quite high, but also on how adaptable
the algorithm is to modern computer architectures. One ex-
ample are certain classical molecular dynamics algorithms,
which perform only slightly better on vector supercomputers
than on low cost engineering workstations, even though the
supercomputer’s theoretical peak performance may be an or-
der of magnitude larger. A particular strength of the Car-
Parrinello method has been its efficient implementation on
vector supercomputers, such as the Cray-YMP. However,
vector performance, while improving steadily, is unlikely to
increase by several orders of magnitude per decade as has
occurred in the past. At the same time, the development of
powerful, low cost microprocessors and memory has led to

14 370 54E. L. BRIGGS, D. J. SULLIVAN, AND J. BERNHOLC



massively parallel architectures consisting of a large number
of microprocessors, linked by a high-speed communication
network. Although efficient implementations of plane-wave-
based methods on massively parallel architectures exist, the
FFT-based algorithms do not scale well with the number of
processors because the FFT is a global operation.

Below, we will describe a massively parallel implementa-
tion of the multigrid method. Although some of the code-
optimization issues are architecture specific, most are generic
and thus applicable to any massively parallel computation.
The target machine is the Cray-T3D, which uses up to 2048
DEC-Alpha microprocessors, each with a peak performance
of 150 MFlops. Each processor has 8 KB direct-mapped data
and instruction caches and 8 MW of local memory. The pro-
cessors are linked together in a three-dimensional torus ar-
rangement for data communication. Three issues have to be
addressed in order to write an efficient code for this type of
machine: minimizing communication costs between proces-
sors, balancing the workload on each processor, and code
optimization on the individual processors.

A. Data decomposition and load balancing

The majority of the data storage in the multigrid method
consists of the wave-function values on the real-space grid.
We will consider the case where the points are distributed on
a uniform three-dimensional rectangular grid. IfNwf is the
total number of wave functions, thenNgridNwf total storage is
required. The simplest possible decomposition of data is to
store complete wave functions on each processing element
~PE!, where each PE storesNwf /NPE orbitals. While concep-
tually simple, this approach will perform poorly for large
systems with many wave functions, because orthogonalizing
wave functions residing on different PE’s requires sending
large amounts of data between processors. An alternative
approach, and the one adopted by us, is to use real-space data
decomposition. In this method, each PE is mapped to a spe-

cific region of space. The electron charge density, Hartree
potential, and each wave function are distributed by regions
over the processors. With this approach interprocessor com-
munication is restricted to two areas: the computation of in-
tegrals on the real-space grid@see Eq.~4!#, and the applica-
tion of the finite-differencing operators.

For integration, the ideal optimization strategy is to orga-
nize the calculation so that as many integrals as possible are
computed at once. This can be understood by considering the
time required for interprocessor communication, which con-
sists of a latency period and a transfer phase. The latency
period is significant, and is the same whether one or 1000
words of data are transferred. Our integration procedure is as
follows: First, calculate the intraprocessor contributions to
the integral~i.e., integrate over the subdomains!; Second,
store as many of these local integrals as possible; Finally,
transfer them between processors in blocks and complete the
integration by summing the local integrals.

It was straightforward to implement the above procedure
in most cases, but the orthogonalization step required signifi-
cant modifications. In a standard implementation of the
Gram-Schmidt orthogonalization algorithm, wave-function
overlaps and updates are computed sequentially, and the in-
tegrals cannot be computed in parallel. To reduce the number
of data transfers, the following implementation of Gram-
Schmidt orthogonalization was adopted. First, the overlap
matrix Si j5^c i uc j& is computed as above: the local parts of
the overlap integrals are computed and stored on each pro-
cessor; the integration is then completed by transferring them
in blocks to the other processors. Second, the Cholesky
factorization50 of the overlap matrix is computed:
Si j5(C†C) i j . The Cholesky factorC is relevant because its
components are the overlaps between the new orthogonal
wave functions and the original ones.51 Finally, the diagonal
components of the Cholesky factor are used to normalize the
wave functions, and the off-diagonal ones are used to com-
plete the orthogonalization:

c i
new5

1

Ci ,i
S c i2(

j, i
c j
newCj ,i D ,

i51, . . . ,Nstates. ~25!

For simplicity, the Cholesky factorization ofSi j is currently
performed on each processor. The computational time to fac-
torize scales as (Nwf

3 ), but has not yet become a bottleneck.
However, for very large systems~greater than 800 orbitals!,
a parallelized Cholesky factorization will save significant
computer time and memory.

The second area where interprocessor communication is
required is the finite differencing of the wave functions and
Hartree potential, since finite differencing is nonlocal. How-
ever, in the Mehrstellen discretization, the nonlocality is re-
stricted to points within one grid unit in each Cartesian di-
rection. Interprocessor communication is thus always limited
to nearest neighbor PE’s regardless of the size of the system.
This low communication cost is a particular advantage of a
Mehrstellen type approach as opposed to a central finite-
difference approach, which requires a higher degree of non-
locality to achieve the same level of accuracy.

FIG. 3. The potential, kinetic, and total energies of a molecular
dynamics simulation of a 64-atom silicon cell at a temperature of
1100 K. Third-order Beeman-Verlet integration with an 80-a.u.
time step was used for the integration of the ionic equations of
motion. The total-energy curve is multiplied by a factor of 100. The
potential and total energies have been shifted by 251.171 a.u. so
that they could appear together.
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Load balancing and the efficient use of all PE’s is a major
concern for any parallel algorithm. With the method de-
scribed above, the load balancing is essentially perfect for all
parts of the calculation except for the application of the non-
local pseudopotentials. These are applied to the wave func-
tions in localized volumes around each ion. If the distribu-
tion of ions in space is nonuniform, then some of the PE’s
will be idle for a fraction of each SCF step. However, actual
calculations on many systems have shown that the applica-
tion of the nonlocal potentials typically requires less than
10% of the total computational time on any PE, so that pro-
cessor utilization will always exceed 90%.

The efficiency of the massively parallel implementation
described here is illustrated in Fig. 4, which shows the
speedup in execution time per step for a given problem as the
number of PE’s is increased. The graph indicates a superlin-
ear relationship, which is an artifact due to single processor
cache effects. There are two competing factors here. The first
is the increased communication cost as the number of pro-
cessors increases, which tends to reduce the speedup. The
second is the reduction in the amount of data stored on each
processor and a consequent increase in the number of cache
hits. As was discussed earlier, the communication costs are
relatively small with the data model being used; since the
cache is relatively small, cache hit effects outweigh these.
An apparent superlinear speedup is observed.

VII. SUMMARY

We have described the development of a multigrid-based
method that uses a real-space grid as a basis. The multigrid
techniques provide preconditioning and convergence accel-
eration at all length scales, and therefore lead to particularly
efficient algorithms. A specific implementation of multigrid
methodology in the context of density-functional theory was
described and illustrated with several applications. The sa-
lient points of our implementation include:~i! the develop-
ment of compact discretization schemes in real space for
systems with cubic, orthorhombic, and hexagonal symmetry,

and ~ii ! the development of multilevel algorithms for the
iterative solution of Kohn-Sham and Poisson equations. The
accuracy of the discretizations was tested by direct compari-
son with plane-wave calculations when possible, and were
found to be in excellent agreement in all cases. These algo-
rithms are very suitable for use on massively parallel com-
puters and inO(N) methods. We described an implementa-
tion on the Cray-T3D massively parallel computer that led to
a linear speedup in the calculations with the number of pro-
cessors.

The above methodology was tested on a large number of
systems. A prior Communication described tests on C60mol-
ecule, and diamond and GaN supercells. The present article
examined convergence properties in detail for a supercell of
disordered Si and the N impurity in diamond. The multigrid
techniques increased the convergence rates by factors of 2
and 4, respectively, when compared to the steepest-descents
algorithm. An extension to nonuniform grids that uses a
separable coordinate transform to change grid resolution lo-
cally, e.g., at the surface or near an impurity, was developed
and tested on the O interstitial in Si. This extension results in
only minor changes in methodology and coding, while the
reduction in basis set size and thus in computational effort
can be significant. A complex version of the multigrid code,
capable of an arbitrary sampling of the Brillouin zone, was
also developed and tested on bulk Al.

Large time-step molecular-dynamics simulations require
very accurate forces, which can potentially lead to difficul-
ties in real-space methods as the atoms move relative to the
grid points. We have described a set of techniques based on
Fourier filtering of pseudopotentials that eliminate these dif-
ficulties for grid spacings of sizes similar to those used in
plane-wave calculations. A 1-ps test simulation of bulk Si at
1100 K conserved the total energy to within 27meV per
atom, and illustrated the high quality of these forces. Further
applications of this methodology are in progress, including a
simulation of surface melting of Si,52 structural properties of
large biomolecules that contain over 400 atoms,53 and elec-
tronic and structural properties of InxGa12xN quantum
wells.54 The multigrid methodology is also very suitable for
O(N) implementations, and tests results for a 216-atom cell
of bulk Si were described recently.55
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Note added in proof. Some recent developments in real-
space methods include the application of the higher-order
finite difference method of Chelikowskyet al. to the deter-
mination of the atomic and electronic structure of germa-
nium clusters at finite temperature57 and to the vibrational
modes of small Si clusters.58 Gygi59 has used a real-space

FIG. 4. Speedup in execution time is plotted vs number of pro-
cessors for a massively parallel implementation of the code on a
Cray-T3D. The test system is a 64 atom cell of GaN at a fixed, 70
Ry equivalent cutoff. The solid line is a guide to the eye.
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approach with nonlocal pseudopotentials and adaptive curvi-
linear coordinates to examine dynamical properties of or-
ganic compounds. Modine, Zumbach, and Kaxiras60 have
used adaptive coordinates to perform both all electron and
pseudopotential calculations on atoms and small molecules.
Sullivan, Briggs, and Bernholc61 described applications of
the real-space multigrid method to several solid state and
organic systems.

APPENDIX A: ANALYSIS OF THE MEHRSTELLEN
OPERATOR

The Mehrstellen discretization differs from central finite
differencing in two important respects: first, higher accuracy
in the discretization is achieved by using more local infor-
mation, but this accuracy is fully realized only at conver-
gence; and second, the discretized Kohn-Sham eigenvalue
equation Eq.~5! is non-Hermitian because the operator
BMehr does not commute with the potential operator. In this
appendix, we examine the accuracy of the Mehrstellen dis-
cretization, and prove that the non-Hermitian nature of
HMehr does not change the nature of the wave functions: they
remain orthogonal. For simplicity, we analyze only the Me-
hrstellen discretization of the orthorhombic lattice.

The fourth-order Mehrstellen discretization~see Table I!
samples the Hamiltonian and the wave function at 19 points:

AMehr@ f ~x!#5a f~x!1 (
n51

3

bnf ~x6hnx̂n!

1 (
n,m

cn,mf ~x6hnx̂n6hmx̂m!, ~A1!

BMehr@ f ~x!#5a8 f ~x!1 (
n51

3

bn8 f ~x6hnx̂n!. ~A2!

The accuracy of the Mehrstellen discretization is one order
higher than the corresponding central finite-differencing one,
but this accuracy is achieved only at convergence.32 The
small h expansions of theAMehr andBMehr demonstrate this
principle:

AMehr52¹22 1
12¹2(

n51

3

hn
2¹n

21O~h4!, ~A3!

BMehr5I1 1
12 (

n51

3

hn
2¹n

21O~h4!. ~A4!

Note that, by construction,AMehr5BMehr(2¹2) to O(h4).
Thus, theMehrstellendiscretization of the Kohn-Sham equa-
tions is equivalent to

HMehr@cn#2BMehr@encn#5BMehr@HKScn2encn#1O~h4!.
~A5!

TheO(h2) terms, implicit in the right-hand side, vanish at
convergence, whenHKScn5encn . A similar analysis ap-
plies to the discretization of the Poisson equation:

AMehr@VH#2BMehr@4pr#5BMehr@2¹2VH24pr#1O~h4!.
~A6!

Unlike a plane-wave or central finite-differencing repre-
sentation of the Kohn-Sham equations, the Mehrstellen dis-
cretization Eq.~5! leads to anon-Hermitian,generalizedei-

genvalue equation. Nonetheless, we prove that the right
eigenvectors of the discretized operator, i.e., the electronic
orbitals, are orthogonal because they are also eigenvectors of
a HermitianHamiltonian. The generalized eigenvalue equa-
tion can be recast into a more familiar form by multiplication
by BMehr

21 ~the invertibility of BMehr is discussed below!:

1
2 ~BMehr

21 AMehr!cn1Veffcn5
1
2Ccn1Veffcn5encn ,

~A7!

whereC is a noncompact discretization of2¹2 of the same
order asAMehr. The solutions of this equation, thecn and
en , are the solutions of the original equation. Because
AMehr andBMehr are finite-differencing operators with con-
stant coefficients, they are translationally invariant and thus
commute. They are also Hermitian. ThusC5(BMehr

21 AMehr) is
Hermitian, and the wave functions of Eq.~5! are orthogonal.

Equation~5! is the preferred discretization for computa-
tion, and the equivalent Eq.~32! is of formal interest only
because the operatorsBMehr

21 and henceC are long ranged and
therefore computationally expensive to apply.

Finally, we consider the invertibility of theBMehr operator.
We show that under reasonable conditionsBMehr has nozero
eigenvalues~in fact, it is a positive definite operator! by ar-
guing that its null space is empty. It is straightforward to
show that the null space ofBMehr is comprised only of plane
waves of maximum kinetic energy; that is,
cnull(x,y,z)5e2 ip(x/h11y/h21z/h3) ~or y→2y, etc.!; see Eq.
~34! below. Thus the null space ofBMehr is empty whenever
these plane waves cannot be represented on the real-space
mesh.

This condition can be realized in two ways: choice of grid
size, or explicit projection. For periodic boundary conditions,
when one or more of the linear dimensionsNx , Ny , orNz is
odd, the maximumg vector along that dimension is
p/h1(Nx21)/Nx,p/h1. Second, if the grid discretization
cannot be chosen to meet the formal invertibility condition,
the pseudoinverse56 of BMehr exists and can be used; that is,
the few vectors in the null space ofBMehr are projected out
from the wave functions. On physical grounds any orbital of
such rapid variation should be excluded from the calculation
because it is marginally representable on the mesh. The
pseudoinverse ofBMehr is

BMehr
21 ~x!5 (

gÞgnull
e2 ix•g/BMehr~g!, ~A8!

where the discrete Fourier transform ofBMehr is

B~g!5
1

Ngrid
(
i51

3

cos~higi !
2/3. ~A9!

APPENDIX B: FOURIER FILTERING OF
PSEUDOPOTENTIALS

The pseudopotentials are short ranged: the Coulomb tail
of the local potential is explicitly canceled and added to the
Madelung summation of the electrostatic energy, and by con-
struction the nonlocal projectors have no Coulomb tail. The
nonlocal projectors and short-ranged local pseudopotentials
are Fourier filtered only once, when the appropriate poten-
tials and grid spacing are selected. The filtering procedure
attenuates the high-frequency components, while maintain-
ing the localization of the projectors and potentials.

The unfiltered potentials or projectors are defined on a
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real-space radial grid, and are transformed to momentum
space in order to filter the high-frequency components:

Vl ,filtered~G!5Ffilter~G/Gcut!E Vl~r ! j l~Gr !r
2dr, ~B1!

where the cutoff functionFfilter(G/Gcut) smoothly attenuates
the radial Fourier transform beyondG.Gcut. The cutoff
wave vector is determined by the grid spacing:
Gcut5ap/hgrid . The cutoff function is unity forG,Gcut and
equalse2b1(G/Gcut21)2 for G.Gcut. The parametersa and
b1 depend on the atomic species and are carefully adjusted
to achieve the best results.

After the momentum-space filtering, the backtransformed
potentials and projectors will extend beyond the original core
radius. For computational efficiency, it is important that the
nonlocal pseudopotentials be short-ranged. Accordingly, a
second filtering in real space is applied to reduce the large-
radius oscillations beyond an empirically determined radius
r cut. The second filtering function is unity below the cutoff
radius and equalse2b2(r /r cut21)2 above it. Example values for
a carbon generalized norm-conserving pseudopotential with
s and p nonlocalities area5 4

7 andb1518, r cut52.5 bohr,
andb250.4.

Since the filtering procedure modifies the pseudopoten-
tials, it is necessary to determine whether the modified po-
tentials affect the system’s physical properties. Because the
degree of filtering is set by the real-space grid spacing
hgrid , the effect is similar to performing an underconverged
plane-wave calculation. The last effects are well understood
and can be measured quantitatively by progressively increas-
ing the plane-wave cutoff. In particular, the main results of
plane-wave calculations remain valid, even if they are sig-
nificantly underconverged. This is due to the uniform con-
vergence properties of plane waves, which form a transla-
tionally invariant basis set. Similarly, the convergence
effects may be monitored for a real-space calculation by de-
creasing the grid spacing. In our tests we found that the total
energy of the system converges to an asymptotic value in a
manner similar to that observed with plane waves.

APPENDIX C: HEXAGONAL DISCRETIZATION
OF THE KOHN-SHAM EQUATIONS

The hexagonal grid structure described in Eq.~11! is a
simple hexagonal lattice. Because thez axis is orthogonal to
the xy plane, the2¹2 operator may be written in separable
form

2¹252¹xy
2 2¹z

2 . ~C1!

Along thez direction, a sixth-order central finite-difference
operator was selected

2¹z
2f ~ i , j ,k!5 (

n523

3

anf ~ i , j ,k1n!1O~hz
6!, ~C2!

wherea2n5an and thean are given in Table II. For the
xy plane the the lattice translational vectors are not orthogo-
nal, and a central finite-difference expression is not appli-
cable. Instead a composite form was selected,

2¹xy
2 f ~ i , j ,k!5 (

n523

3

bn@ f ~ i1n, j ,k!1 f ~ i , j1n,k!

1 f ~ i1n, j2n,k!#1O~hxy
6 !, ~C3!

whereb2n5bn and thebn are given in Table II.
In the multigrid solution process these sixth-order opera-

tors are only used on the finest grid level to compute the
kinetic energy and the residual. On coarser grid levels, a
second-order operator is used to represent2¹2; viz.,

2¹z
2f ~ i , j ,k!5 (

n521

1

an8 f ~ i , j ,k1n!1O~hz
2! ~C4!

and

2¹xy
2 f ~ i , j ,k!5 (

n521

1

bn8@ f ~ i1n, j ,k!1 f ~ i , j1n,k!

1 f ~ i1n, j2n,k!#1O~hxy
2 !, ~C5!

where the discretization weights are listed in Table II.
The multigrid restriction operator uses a volume weight-

ing scheme with the weights adjusted for the hexagonal grid,
and similarly, the hexagonal generalization of trilinear inter-
polation is used to transfer the coarse-grid correction to the
fine grid. The wave functions and Hartree potential are gen-
erated using multigrid iterations in exactly the same manner
as was described in Sec. III except for the modifications
described here.
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