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Ground-state properties for the electron gas, in the deformable jellium, are obtained. Periodic expansions for
the state function, with fermion density centered around a cubic lattice, are introduced. The paramagnetic and
ferromagnetic ground-state energies are calculated and compared at each density to determine the magnetic
character of the deformable jellium. More than one transition point between different magnetic phases are
obtained and compared with those reported in the literature with different models. A paramagnetic region at
intermediate densities, in the self-consistent Hartree-Fock approach, is recovered. At these densities a symme-
try transitions from homogeneous to localized solutions is obtained for both magnetic phases, and at lower
densities the electrons are localized into a paramagnetic or ferromagneticWigner-like crystal, respectively.
@S0163-1829~96!03427-3#

I. INTRODUCTION

The electron gas in jellium is a simplified many-body sys-
tem consisting of electrons moving in a background of neu-
tralizing positive charge. This model provides a theoretical
approach to describe important electron gas properties in two
and three dimensions.1 In the ordinary or uniform jellium
model ~UJM! the essential approximation is to assume that
the electrons interact through Coulomb forces in a uniform,
nonresponsive, positive, neutralizing background.2,3 Calcula-
tions in UJM require only one input parameter, namely, the
average electron density in the bulk. The stabilized jellium
model4 ~SJM! is a model in which, in addition to the total
energy of the UJM, a structureless pseudopotential is intro-
duced. Applied to the metal-surface problem the SJM ad-
equately describes the basic features of the inhomogeneous
electron gas near the metal surface.5 In the SJM the proper-
ties depend upon the average electron density as a function
of the interparticle distance in units of Bohr radius (r s), and
upon the valenceZ and the crystal structure.

A different model is the deformable jellium~DJM! in
which the background is statically deformed in order tolo-
cally neutralize the electron gas charge density.6,7 This fact
implies a lower energy per particle and therefore a more
stable system, if a deviation of the homogeneous solution is
energetically favored. In this model the background shows
its response by deforming itself to preserve local charge neu-
trality, so that the long-range Coulomb interaction is dimin-
ished. The DJM retains the simplicity and universality of the
UJM; i.e., all the properties depend onr s only. A remarkable
achievement of the electron gas in the DJM is the description
of the symmetry transition from the homogeneous phase at
high densities into localized states at intermediate

densities.6,8 Then at intermediate and low electron density
regions, when the electronic part of the system develops
long-range order, e.g., charge-density waves or Wigner crys-
tallization, it is convenient to consider the DJM.

The DJM and the Hartree-Fock~HF! approximation have
been exploited by us in the study of the paramagnetic elec-
tron gas.6 Our approach has been to obtain self-consistency
with a set of modulating functions that contain the trivial
plane wave~PW! as a possible solution. This has turned into
a very powerful technique that has the capability of describ-
ing both the metallic and the low-density regions in a unified
nonperturbative fashion, which also includes the intermedi-
ate density region. At large densities the strong electrostatic
interaction among the ions will prevent the background from
accommodating into the required uniform or deformed struc-
ture. In this region the PW solution is the self-consistent HF
ground state in the DJM as well as in the UJM. At low
densities, on the other hand, the ions and the electrons are
approximately equivalent except for their masses. In this
sense the DJM is expected to give a better approximation to
the physical system. Accordingly it allows for a lower en-
ergy per particle. The long-range-order solutions obtained in
the DJM imply that the DJM introduce more correlations
than the spin correlations introduced by the HF method in
the UJM.

The magnetic character of the electron gas ground state is
also a matter of interest. Many powerful methods have been
developed to calculate the properties of the electron gas in
the paramagnetic and ferromagnetic phases. Several ap-
proaches can be found in the literature with different ap-
proximations. In 1929, Bloch9 considered paramagnetic and
ferromagnetic states in the electron gas described by a PW’s
determinant. Forr s,5.47 the paramagnetic PW solution is
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more stable than the ferromagnetic one, but forr s.5.47,
Bloch obtained a ferromagnetic fluid. In the HF approxima-
tion with PW solution this is the only magnetic transition.
Then it is relevant to improve the approach in discussing the
magnetic character of the electron gas ground state.

In the present work, the self-consistent HF ground-state
energy and the ground-state function for the normal and the
fully spin-polarized phases of the electron gas are obtained.
In Sec. II the DJM is introduced and a periodic expansion is
proposed for both magnetic phases. To determine the mag-
netic character of the ground state, in Sec. III we compare, at
each density, the energies obtained in both phases. Our re-
sults are compared with those reported in the literature with
different models. Atomic units are used throughout this work
with the energy in Rydbergs.

II. THEORY

The defining condition of the DJM is to preserve local
charge neutrality in the system. In order to locally neutralize
the electron gas charge density the background is statically
deformed. In the independent particle approximation, the
mathematical expression that defines the DJM is

^Vd&1^Ve-b&1^Vb-b&50, ~1!

where^Vd& is the energy contribution from the direct term of
the electron-electron interaction,^Ve-b& and ^Vb-b& are the
electron-background and the background-background inter-
actions, respectively. When a deviation of the homogeneous
solution is energetically favored the condition that defines
the DJM implies a lower energy per particle and therefore a
more stable system. Additionally, the divergences associated
with the long-range Coulomb potential in the calculation of
the ground-state energy cancel automatically for any solution
in this model. The consequences of the DJM and the condi-
tions under which it is satisfied have been discussed in pre-
vious works.6,8 The DJM together with the HF approxima-
tion provide a systematic method to describe the ground-
state properties of the electron gas at all densities.

For the state functions in the Slater determinant the usual
PW’s, multiplied by modulating functions are proposed.
Constrained by the orbitals orthogonality and to satisfy the
HF equations the modulating frequencyq0 must satisfy
q0>2kF . The minimum energy is obtained when
q052kF . The proposed functions are
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In this expression the vectorsk5 îkx1 ĵky1 k̂kz and
r5 îx1 ĵy1 k̂z. V is the volume in which periodic boundary
conditions are imposed. The single-particle state functions
are obtained when the coefficientsCnxnynz

are self-
consistently determined by solving the HF equations with the
orthonormality condition. The coefficientsCnxnynz

are con-

sidered independent ofk, the n5 înx1 ĵny1 k̂nz values de-
termine the crystalline structure, and the term with
nx5ny5nz50 is the PW solution. In this approach, it was

obtained that the simple cubic~sc! lattice is the energetically
more stable lattice,10 then this crystalline structure with
(N11)3 terms is proposed in this work.

Generalized Fermi surfaces have been successfully intro-
duced to describe the electron gas;11,12 the Fröhlich Fermi
sea is a relevant example that preserves spherical
symmetry.13 In this work spherical occupation is proposed
for both magnetic phases. The paramagnetic state is a Slater
determinant, with the state functions given by Eq.~2!, having
occupied all one-electron states with wave vectork lying
within a Fermi sphere of radiuskF , for both spin states.
Formally nk5u(kF2k), whereu is the step function and
N5(k,lnk,l . The ferromagnetic state is a Slater determinant
having all the electron states within a sphere of radius
21/3kF occupied, with single occupied spin states. This sys-
tem is an example of anomalous occupation in spin space,14

characterized bynk5u(21/3kF2k) andN5(knk,l1.
To calculate the ground-state energy per particle, using

the state function of Eq.~2!, it is necessary to evaluate for the
kinetic energy terms of the form
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and for the exchange energy
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The symbol(n
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. A052.21 and

A150.611. When the self-consistent solutions are PW the
r s

21 coefficient reduces to the usual value, 0.916.F is a sum
of terms that are products of Kroneckerd functions, and the
function I stems from the integrals of the Coulomb potential.

III. RESULTS AND CONCLUSIONS

The single-particle state functions and the ground-state
energy per particle for the electron gas were evaluated in
terms of r s . Calculations were done in the DJM, at high,
intermediate, and low densities. The coefficientsCn in Eq.
~2! were determined self-consistently with a precision of
1025 with respect to the previous iteration for both magnetic
phases. In order to obtain ground-state energy results inde-
pendent ofN, the upper limit in the expansion of Eq.~2! was
changed from 1 up to 5. The results are shown for the func-
tions withN55 ~this function has 216 terms!. With this state
function we get convergence for the energy results, i.e., in-
dependence inN for r s<50 in the paramagnetic phase,6 and
for r s<63 in the ferromagnetic one.

Within the HF approach with the single-particle state
functions of Eq.~2!, the electron gas behavior in both mag-
netic phases is qualitatively equivalent. In the high-density
region the PW’s are the self-consistent HF solutions for these
systems; at intermediate densities a symmetry instability is
found and long-range order solutions are obtained for both
phases. Atr s'26 a symmetry transition from the homoge-
neous to the corrugated state is obtained in the paramagnetic
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phase6 ~localized-P). In the polarized phase the change from
PW to the localized solution~localized-F) is obtained at
r s'32.8. At very low densities the electrons crystallize in a
Wigner-like crystalwith the sc symmetry of the state func-
tions proposed. In Table I ther s values for the symmetry
transitions previously reported are shown.

From the energies obtained, for the two phases the mag-
netic character of the electron gas ground state is determined
at eachr s value. The magnetic character of the ground state
is the same as the one obtained by Bloch9 until intermediate
densities. The self-consistent state function obtained here for
both magnetic phases at this region is the PW. In the high-
density region (1,r s,5.47) the ground state is paramag-
netic ~PW-P) and there is a transition to a polarized state
~PW-F) at r s55.47. For 5.47<r s,36 the ferromagnetic so-
lution is more stable than the paramagnetic one. In the inter-
val 5.47<r s,32.8 the ferromagnetic PW solution is the
ground state. After the symmetry transition in the polarized
phase, for 32.8<r s,36 the localized-F is energetically fa-
vored.

In Fig. 1 the ground-state energy per particle in terms of
r s is plotted at intermediate and low densities. The continu-
ous line shows the paramagnetic energy and the dashed line
the ferromagnetic energy. As can be seen in Fig. 1, at
r s'36 amagnetictransition is obtained, because the para-
magnetic solution is more stable than the ferromagnetic one.
Then a more stable paramagnetic region at intermediate den-
sities is recovered in the HF approach. At lower densities, for
r s'47.5, the lastmagnetic transition is obtained and the

localized-F state is energetically more stable forr s>47.5.
Finally at very low densities the electrons crystallize and the
ground state is a ferromagneticWigner-like crystal.

In Table II the r s values for the ground-state transitions
are shown. The last results can be compared with others
reported in the literature, for the electron gas in the UJM,
which include explicitly a two-body correlation function. We
compare our results with Monte Carlo calculations by Cep-
erley and Alder.15 They have obtained a paramagnetic fluid
in the intermediate region, and a paramagnetic to ferromag-
netic transition atr s57565. In Ref. 16, using Pade´ approxi-
mants a paramagnetic system in the intermediate density re-
gion is obtained and one parameter was taken so as to
reproduce the magnetic transition point obtained in Ref. 15
at r s575. The behavior of the electron gas in this work is
qualitatively similar, nevertheless the last magnetic transition
is obtained atr s547.5. In Ref. 17 a different expansion
scheme is introduced, where the symmetry effect has been
neglected, nevertheless they use the results obtained in Ref.
15.

In Fig. 2 the ground-state energy per particle in terms of
r s is plotted. The energy scale allows us to introduce the
energy values obtained in Refs. 15, 16, and 17. The continu-
ous line shows the paramagnetic energy and the dashed line
the ferromagnetic one. At the range shown, the best results in

FIG. 1. Ground-state energy per particle of terms ofr s . The
continuous line shows the paramagnetic energy and the dashed line
the ferromagnetic one. From 5.47,r s,36 the ground state is fer-
romagnetic. Atr s'36 up tor s547.5 the self-consistent solution is
paramagnetic, and finally forr s.47.5 the ground state is ferromag-
netic.

FIG. 2. Ground-state energy per particle of terms ofr s . The
continuous line shows the paramagnetic energy and the dashed line
the ferromagnetic one. At this range, the best results in Refs. 15, 16,
and 17 are the Monte Carlo calculations of Ceperley and Alder’s.
At r s550 the dot corresponds to a paramagnetic fluid. The * at
r s575 points the paramagnetic-ferromagnetic transition. Finally the
1 at r s5100 corresponds to a ferromagnetic phase.

TABLE I. Symmetry transitions from homogeneous paramag-
netic~PW-P) and homogeneous ferromagnetic solutions~PW-F) to
localized solutions (L-P) and (L-F), respectively.

r s Symmetry transitions

26.0 PW-P to L-P
32.8 PW-F to L-F

TABLE II. Ground-state transitions. Atr s55.47 the Bloch mag-
netic transition is obtained from PW-P to PW-F solution. A sym-
metry transition atr s532.8 changes the ground state from PW-F to
L-F. At r s536 a magnetic transition changes the ground state from
L-F to L-P solution. Finally atr s547.5 the last magnetic transition
is obtained, fromL-P to L-F ground state.

r s Ground-state transitions

5.47 PW-P to PW-F
32.8 PW-F to L-F
36 L-F to L-P
47.5 L-P to L-F
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the last references are those in Ref. 15. Atr s550 ~the dot in
Fig. 2! they obtain a paramagnetic fluid. Atr s575 ~the as-
terisk! a paramagnetic-ferromagnetic transition is reported.
Finally at r s5100 ~the plus! they report a ferromagnetic
fluid. The other results obtained in Refs. 15, 16, and 17 at
these densities are very near the points shown in the figure,
but in this scale, it is impossible to distinguish among them.

A very powerful nonperturbative technique, which allows
a direct evaluation of the ground-state properties of the elec-
tron gas, has been developed. In a unified approach the low-,
intermediate-, and high-density regions are considered. The
self-consistent energies obtained in both phases are com-
pared at eachr s , and the magnetic character of the DJM was
determined. Within this approach, several magnetic regions
were obtained, a paramagnetic region at intermediate densi-
ties is recovered and a last magnetic transition is obtained in
the low-density region. The symmetry transition to the cor-

rugated state is localized atr s'32.8 and at very low densi-
ties the electrons crystallize into theWigner-like crystalas
was to be expected. It is well known that in the UJM the
ground-state structure of the Wigner crystal is bcc. Here the
state functions proposed in the DJM have sc symmetry, as a
consequence a Wigner-like crystal is obtained with sc struc-
ture. Nevertheless the background deformations in the DJM
with the HF approach produce lower energy than the one
obtained with bcc symmetry in the UJM including explicit
two-body correlations. On the other hand, the DJM self-
consistent calculation in the HF approach reproduces similar
magnetic behavior of the electron gas at intermediate and
low densities, as compared to the one obtained when explicit
two-body correlations are introduced into the UJM.
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