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Nonlinear theory of the current instability in a ballistic field-effect transistor
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We study the nonlinear evolution of the current instability in a ballistic field-effect transistor. We show that
in the case of small increments, instability results in the establishment of stationary nonlinear oscillations. The
amplitude of the oscillations is calculated. We predict peculiarities in the current-voltage characteristic of the
transistor. In particular, the differential resistance at zero frequency should show a large step at the instability
threshold [S0163-18286)02740-3

[. INTRODUCTION old. The differential resistance of the transistor at zero fre-
guency should have a large step at the threshold.
Recently, Dyakonov and Shudiscovered that a rela-
tively low dc current in a ballistic field-effect transistor may Il. BASIC EQUATIONS

be unstable. This instability is a result of plasma wave am- : L .
In the hydrodynamic approximation, the electron fluid

plification due to the reflection from the device boundaries. be d ibed by the followi i hich coincid
This effect provides a mechanism for the generation of tung\:i?g theosgsf((:)rrl siallc})/w v?/a'?er(')wmg equations, which coincide
able electromagnetic radiation in the terahertz region. They '

also showed that the electron fluid in the transistor may be U  a(VU)

described by equations that are analogous to the hydrody- s X , (1)
namics equations for shallow water, the plasma waves play-
ing the role of shallow water waves. oV N e oU VK 82V
In Ref. 1 the instability criterion was found in the linear —+V —=t=—=——+——. (2
ot X m X T, U X

approximation. Gelmoftconsidered the nonlinear evolution

of the instability in the special case when the electron fluidHere U(x,t)=Ugc(x,t)— Uy, Ugc is the gate-to-channel
velocity was close to the velocity of plasma waves. In addi-yoltage,U is the threshold voltagd/(x,t) is the local elec-
tion, his consideration was restricted to the idealized situatron velocity,m is the electron effective mass, is the mo-
tion when the viscosity of the electron fluid and the externaimentum relaxation time related to the external fricticiie
friction were absent. For this case, he showed that discontio electron scattering by phonons or impuritiendK is the
nuities of the distributions of electron concentration and ve-coefficient determining the viscosity related to electron-
locity may be formed in the transistor channel, which areelectron scattering. Equatidfi) is the continuity equation in
analogous to the hydraulic jumps or shock waves. Howevetvhich the gradual channel approximation equation
consequences of the instability remain unclear in the real

situation when the electron fluid velocity is much less than nszﬂ

the plasma waves velocity and the viscosity and the external €

friction are present. . , . is taken into account. Hel€ is the surface gate capacitance
_ The purpose of this paper is to study the nonlinear evoluy g is the electron surface concentration. Equatinis

tion of the instability in the ballistic field-effect transistor in analogous to the hydrodynamic Navier-Stocks equation, with
the case of relatively low electron fluid velocity with inclu- corresponding to the shallow water level axdcorre-
sion of the viscosity of the electron fluidaused by electron- sponding to the local velocity of the water flow.

electron scatteringand the external frictioifrelated to elec- Dyakonov and Shdrstudied these equations without tak-

tron scattering by phonons and impuritied/e show that, in  jng into account the viscositi =0) and the external friction
contrast to the case considered in Ref. 2, for small mcremen(,,pzoo). They have shown that, under the boundary condi-

the instability should lead to the establishment of small-jgng

amplitude stationary oscillations. This is the case when, in

the linear regime, only one mode of plasma oscillations is i

unstable while other modes are damped out by the viscosity U0 =Uo, ULDV(L,1)===UoVo, ()

and the external friction. The amplitude of stationary oscil-

lations is calculated. It is shown that the amplitude is proporthe stationary electron flow may be unstable. Equati@s

tional to the square root of the increment near the instabilityshow that the potentid) is fixed at the sourcé&=0) and the

threshold. The consequences of the instability for higher valeurrent densityj is fixed at the drainX=L). In the linear

ues of the increment are discussed. approximation and for\/o<s=(eU0/m)1’2, it was shown
We predict that the current-voltage characteristic of thethat the instability leads to excitation of plasma waves with

transistor should show a peculiarity at the instability threshthe frequencies
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/=2 S oo
n_E(zn_l)E, n=1,23... (4)

and the increment

)
Here

er 1/2
m

.

is the plasma wave velocity.
Using the dimensionless variables
X ts v L V-V,
L l L l u= UO ] v= s 1
one may rewrite Eqs(l) and (2) and the boundary condi-
tions (3) in the form

= T=

du v du  d(uv) 0 5
Tt T 7O ©)
av+ 8v+ dv  du o v .
TGt gt g T vt e ()
u=0 atz=0, v 170 at , (8)
where
Vo L K
T YT ST, K LsUy

Note that the parameter corresponds to the Mach number
in hydrodynamics. From Eq$4) and (5), we obtain the ex-
pression for the dimensionless frequencies and incre-
mentsw, ,

QL

' n ™ ”
wn=T=E(2n—1), o,= =a. (9)

I1l. INCREMENT OF PLASMA OSCILLATIONS
WITH CONSIDERATION FOR THE VISCOSITY
AND THE EXTERNAL FRICTION
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In contrast, allowance for the viscosity of the electron fluid
cannot be made in an easy way. Rot0, the differential
equationg6) and(7) are of higher order and, consequently,
require an additional boundary condition besides the condi-
tions given by Eq(3). This additional condition should be
determined by the properties of the source and drain con-
tacts, which have not been thoroughly studied.

We shall see below that, for#0, a thin boundary layer
occurs in the transistor channel as is often the case in prob-
lems with a small parameter before the highest derivdtive.
In our case, the boundary layer is located at the source and is
of the width~ax. Beyond the layer, the term accounting for
the viscous force in E(7) is small and can be allowed for in
the terms of the perturbation theory using the expansion in
powers of small parameter. Within the layer, the solution
cannot be represented as a series in powers afid essen-
tially depends on the additional boundary condition. The
boundary layer, however, is not important in calculations of
the increment for a large body of additional boundary con-
ditions. In particular, this is the case when an additional
boundary condition is given at the source contact and allows
uniform distributions ofu and v in the stationary regime.
This boundary condition may be written in the form

u,v =0,

Y
( (10

ax ' ox’

whereF is a function determined by the properties of the
source contact. The uniformity of stationary solutions
U(x)=Uq and V(x) =V, imposes the following restriction
on theF function:

F(O,O,Uo,VO)|X:0:0. (11)

This equation is supposed to be valid for doy and V.
Linearizing Eq.(10) with respect to small deviations from
U, andV, and using Eq(11), we have

au

Jv
ClE+CZE=O at z=0, (12

whereC, and C, are functions olU, andV,. On the other
hand, it follows from Eqgs(6) and(8) that

ou dv
—+4+a—=0 atz=0

gz oz 13

Let us estimate the order of magnitude of the parameteri the linear approximation. Then we find from E¢s2) and
yandk, determining the external friction and viscosity. They (13) that

can be represented in the formsL/st, and k=NgoVE/Ls.
Here V¢ is the Fermi electron velocity and,. is the mean

free path for electron-electron collisions. For the typical val-

uesU,~0.5 V, ng~10'2 cm 2, and the temperature 77 K, we
have 7,~10"''s, s~10° cm/s, andheoVe~#/m. Then, for
L~0.2 um, we find y=~10 2 and k~10 2 Therefore we
shall assume below thatx<1. We shall also restrict our-
selves to the most realistic caae<].

The inclusion of the external friction presents no difficul-
ties and leads to the reduction of the increment by the quan-

tity y/2:

n_
wn= .

v
0z

(14

z=0

at C,/C,#a. The boundary conditiofiL0) is thus reduced to
Eq. (14) if Eq. (10) allows uniform stationary solutions.

The linear solutions of Eq96) and (7) with boundary
conditions(8) and (14) have the form

u=A Re{ {(l—ia’Kqu)eXF(iklz)—(l-FiaKwr’])EXF(iKZZ)

4
aK

(15

+2iakwéexy{ eX[i—iqut-l- wﬁt)],
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ikw, iy
A Re{ [ ( T 2
—2ia2;<w,’]ex;{ - i) exp—iw/t+ w;;t)], (16)  Thus, for both of the cases considered, the dissipation in the
K boundary layer is negligible and the viscosity-related correc-
whereA is the amplitude of plasma oscillations, tions to the increment come from the entire channel length.
One can show that this is the case for a number of more
general additional boundary conditions. The physical mean-
ing of this fact can be understood from the following reason-
(17) ing. For arbitrary additional boundary conditions, the dissi-
pation in the boundary layer may be estimated as

the source contact. We shall not consider here this special
[expikq,2) +expik,2)] case and shall assume tlat-0 if «—0. Then the state of

affairs under the conditions given by E@1) does not differ

essentially from the previous case whéw/ 9z=0 at z=0.

i
ki=w/,(1—a)+ > (y+ Kw,’f),

[
kp=—wp(1+a)— 2 (y+Kop?), jo(0)Au,(0), wherej,,(0) andAu,(0) are the current
thrnough the source contnact and the voltage drop across the
wr/}:f (2n—1), (18) boundary layer at the plasma oscillation frequengy, re-
2 spectively. ForAuwrr](O) we have AUwr'](O)NEwr'](O)Ka,
v Kka? where ax is the boundary layer width anEwé(O) is the
wﬁ=a—§—T (2n—1)2, (190 electric field at the sourcéz=0). The dissipation in the

boundary layer is thus proportional to the small parameter
In the smooth terms of Eqs(15 and (16) containing  ax under arbitrary additional boundary condition if the field
exp(ik,2z) and exp(k,z), we have kept the main corrections E_(0) is finite.

with respect to powers ofy, y, and . The terms with In the subsequent calculations of the amplitude of station-

exp(—z/ka), decreasing drastically along the channel, de-ry hopjinear oscillations we shall neglect the dissipation in
scribe the boundary layer. I_Equa_tl(nle) gives the increment o boundary layer and use the perturbation theory assuming
of plasma oscillations taking into account the ViSCOSItly-ihe yiscosity-related term in Eq7) to be small. As the first
related damping. It is seen that instability takes place Whe%pproximation we shall use the solution of E6. and (7)
a>a., Where at k=y=a=0. ,

y @

ac=§+ K g (20 IV. PHENOMENOLOGY OF THE NONLINEAR PROBLEM

, ) In this section we consider phenomenologically the evo-
It should be noted that EG19) can also be obtained using | ,tion of the instability for small enough values of the incre-

the perturbation theory with respect to small paramater mentw]=a— a.. We shall show that the instability leads to

without additional boundary condition, the solution of EdS- an establishment of small-amplitude stationary oscillations.

(6)—(8) with =0 being used as a first approximation. This iS\yo 2| assume that the following condition is fulfilled:
due to the fact that, as can be seen from the analysis of Egs.

(15 and(16), the viscosity-related energy dissipation is dis- y Kkl y 9k

tributed over the entire channel length. The dissipation in the 5 + B8 ac< a<§ + g (22
boundary layer is negligible and leads to the correction to the

increment of the order ofx’. In this case, only the first mode with the frequeney

As another example let us consider the more general con= /2 is amplified in linear regime, while other modes are
dition when theF function in Eq.(10) depends also on the damped out. Then the first mode should also dominate in the
drain currentj. Using reasoning similar to that used in the spectrum of stationary nonlinear oscillations. Using the line
derivation of Eq.(14), we obtain the additional boundary of reasoning similar to that used in the theory of weak

condition in the form turbulence’, one can write the phenomenological equation
% dA? 2 4
o, tav Z:0=0, (21) o0 = 2la—ag) A= A%, (23

wherea is a coefficient depending amandU,. Using Eqs. which describes the evolution of the dimensionless ampli-
(6)—(8) and (21), one can show that there is a correctiontude A of the first mode. It is assumed here thaslightly
—ax to the increment in Eq19) related to the dissipation in exceeds the critical value.: (a— a¢)/a.<1. The param-
the boundary layer. Foa<1, this dissipation is negligible. eter 8 entering Eq.(23) is a coefficient depending o, «,
Then the increment is given by E@.9) and can be found by and . For similar problems, this coefficient was calculated
perturbation theory. This is, presumably, the caserifs  in a number of papertsee, for example, Ref.)6We shall
small enough. Indeed, having solved E¢®. and (7) with  calculateB in Sec. V.

the boundary condition§8) and (21), one can see that the It is easy to see thas should be an odd function @i, «,
electric field at the source contaciu/dz)|,—, in the linear andy. This follows from the fact that Eq$6)—(8) are in-
approximation is proportional taa/a. For low current variant with respect to the time inversion and substitution
(a—0), this field tends to infinity if the coefficier® remains a——«a, y——1v, and k——«. Then the first terms in the
finite. This is apparently possible only for a special design ofexpansion of in powers of small parameteks y, and «
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should be linear ine, v, and «. Taking into account that
a~a, and using Eq(20), we can write

B=B1y+ Bk, (24)

14 023

terms containing higher powers of «, andvy. In order to
find the amplitude of the stationary oscillation we have to
expand all the terms in Eq26) in powers ofA. Then we
obtain an equation foA that is equivalent to the phenom-

where; and 3, are unknown coefficients. Generally speak- €nological Eq.(25) and find the coefficieng.

ing, the sign ofB3 can be arbitrary. However, as we shall see

In the linear approximation and far=y=«=0, we have

in the next sectiong is positive in our case. Then, in accor- for the first mode

dance with Eq(23), the amplitude of oscillations tends to a

stationary value determined by the equation

2(a—a)A2— BA*=0. (25)

Hence the amplitude of stationary oscillations is proportional

to the square root of—a.

V. CALCULATION OF THE AMPLITUDE
OF STATIONARY OSCILLATIONS

We shall consider the situation wherexceeds its thresh-

T
v=A CO{E Z) sin(wT),

u=-A sin(gz)cos(wr), (27)

w=w=%.

2
Putting this solution in Eq(26) and keeping only the terms

old value «, by a small margin and the amplitude of the Square in the amplitude, we obtain

stationary oscillations

B 2(a—ac))1/2
A_( B

is much less than unity. Therefore, we can regardilong

with «, v, andk, as a small parameter. While in the nonlin-
ear problem the first mode generates oscillations of multiple

frequencies, their amplitudes are small in power@of his

allows us to take into account only a limited number of mul-
tiple frequencies and write a closed system of equations for

their amplitudes. The amplitud& of oscillations at the fun-

(a—a)A?=0.

This means that, as expected, in the linear approximation, the
stationary oscillations are possible only&t o .

In the nonlinear case, we shall seek the solution of Egs.
(6)—(8) at k=a=y=0 in the form of the Fourier series

v=3[vo(2)+v1(2)€"“ +vy(z)eH ™+ - +c.cl,

. . (28)
u=3[Ug(2) +Uy(2)e'"+uy(2)€” "+ +c.c].

Putting Eq.(28) in Egs. (6)—(8), one can easily obtain the

damental frequency can be found by solving this system witlinfinite system of equations for the unknown functien&z),

the use of an expansion in powers Af This treatment re-

u;(2), and the frequencw. One should use the linear solu-

quires, however, cumbersome calculations. We show that tion (27) as a first approximation and expang(z), u;(z),

can be considerably simplified by using the relationship

a[(v?(0,7)) —(ud(1,71))+ F(u*(1,7))]
1 1 92
- yfo dz(<vz>—2<uzu>)+,<fo dz( —<v a—;>

&v 2(921)
+3 Uuﬁ_Zz —3({vu 07? (26)

which is valid in the case of stationary oscillations and ma))J

be derived from Eqs(6)—(8) (see the Appendjx Here the

angular brackets denote averaging over the period of oscilla-
tions. In deriving this relationship we kept only the terms

linear in small parameters, v, and .

Since all the terms in Eq26) are proportional ta, vy, or
x, one should put thera andv found from Eqgs.(6)—(8) at
a=vy=k=0. In so doing, findingu andv requires no addi-
tional boundary condition. These andv are close to the
solutions obtained for small nonzekp«, andvy. At the same
time, in the boundary layer, the quantitfv/Jz? entering in
Eq. (26) is large and differs from its value found at=«

=v=0. It is, however, easy to show that the contribution of

this layer to Eq(26) is negligible. Indeed, putting Eq&l5)
and (16) (for n=1) at the generation threshold]=0

(a=a.) in Eq. (26), one can see that the contribution of the

boundary layer is of the order af’«. Allowance for the
nonlinear correction to Eq$15) and(16) leads to negligible

and w in powers of the amplitudé. In so doing, only the
leading terms, proportional t42 should be kept i y(z),
Ug(2), v2(2), Uy(2), and in the frequency shifto—wy,
while in v1(z) andu;(z) one should keep the cubic A
corrections to Eq(27). Taking into account the higher-order
corrections and the higher terms of the Fourier sei28 is

not required since this would lead to terms containing the
sixth or higher powers of in Eqg. (25). On this basis, it is
easy to obtain the closed system of equations, which allows
s to find functions(2), ug(2), v1(2), ui(2), vs(z), and
U,(z) at a=y=«=0:

&Uo 190

(vqul +ovTuy),

9z 40z
dug 19 .
7 797 Ui (29)
Uo(0)=v(1)=0;
(?u1+. 9 +vgv’1‘
9z lwv 1= 97 UoU1 2 y
&vl i J U2UI+U2UI
E-kul:—& UoU1+Uovl+T ,
(30)
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u1(0)=vl(1)=0,

du, i _ 10 ,

Tz TAevem T g W

0"1)2 3 190

E+2| wUy,= — Z 5 (l)lul), (31)

U2(0)=U2(1)=0.

Their solution can be found by the successive approxima-
tions using the expansion in powers Af In doing so, one

should hold only those terms which make contributions t
Eq. (26) containingA in powers not higher than the fourth.
As a first approximation, one should use again the linea

solutions(27). Then we find

2
vo(2)=0, ug(2)= AZ sinz(%z) :

2
vo(2)=—i % [sin(7z)—37(1—z)cog 7z)],

2

37A ]
uy(z)= 16 (1-2)sin(7z);

(32
Tz
v1(2)=— iA CO{ 7)

Tz N
zsin(7)lm f el(m'2) _ dq7

+iA8
0 0z’

Tz ) i
co§ —|Im | €2 — d7
{ 2 ) JO 0z’

—Im jzei(ﬂ/Z)(Z'—Z) &_f dz' |
0 0z’ ’

—Re J’Zei(ﬂ'IZ)(Z'fz) (?_f, dz'
0 0z

7z
Uy (z)=—A sm( 7) - A3

1(3n AT, mz
fzg T(1—z) sm(7)+| cog mz)co 7)
1 ] A . Tz
— 7 Sin(72) 3S|r<7>—| cos(7> }

At the same time, we obtain the following expression for th

nonlinear frequency shift of the first mode:

1 . of 537
_ 1 _p2 rai(m2z - TTT a2
w—w;=AIm Jo dz'e o7 512 A<. (33

Inserting these expressions into EQ6), after laborious cal-

()

€
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A=8 2a”ad " 34
U 57y [97? 112 K| (39
s

Note that the numerical factor befokeis much greater than
the one beforey. Therefore, ify and k have the same order
of magnitude, the amplitudA at a given value otx— ¢ is
predominantly determined by the viscosiky At the same
time, the value ofx, itself depends onc and y to the same
extent.

The presence of stationary oscillations above the instabil-
ity threshold should result in peculiarities of the voltage-
current characteristics of the transistor. Particularly, the dif-
ferential resistance at zero frequency

r
_dUsd
= qj

should have a step when the drain current derjsityaches
its threshold valug .= CUgse«., following from the condi-
tion a=a,. HereUg, is the drain-to-source voltage at zero
frequency. One can see from E@82), (34), and(35) that
R,=0 whenj<j. and
R_ 1 32
°"Cs 57y «km |97

Ro

Usg=Uo[Uo(L) —Ug(0)] (35

(36)

whenj>j..

Note that zero values fdd4 andR, below the threshold
results from our neglecting the terms proportionalatoy,
and « in Egs. (32). Actually, there is a finite differential
resistance aj <j. that is, however, negligibly small com-
pared to the differential resistance over threshold. As one can
easily show, the differential resistance under the threshold at
x=0 is determined by

Y
RO:C_S.

This resistance is less than the resistance above the threshold
by a factory’~10 %,

Let us discuss the condition of the validity of our results.
Usually equations like Eq23) hold whenA<1. However,
in our case, the criterion is stronger. Indeed, the nonlinearity
caused third harmonic of the first mode is in resonance with
the second modgn=2 in Eg. (18)], which is neglected in
our calculations. Actually, the amplitude of the second mode,
containing the resonant denominator, is of ordéfx. Its
feedback impact on the fundamental first mode leads to ad-
ditional terms of orderA%«?. These terms were neglected
compared toA® terms in Eq.(32). Therefore, our results
[Egs.(34) and(36)] are valid under the condition

A<k. (37)

culations, we obtain the following equation, analogous to the \yhat happens wheA> « is rather complicated. Let us

phenomenological expressidab):

) A% [57y K772<9772

8 + 2 T+112

2
KT
2( 4 =0.

From this formula we find the amplitude of stationary non-

linear oscillations

discuss this problem qualitatively. The amplitude of the sec-
ond mode is small compared to the amplitude of the first
mode when

A< k2

This means that there exists an interval of amplitude values
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K< A< L2 (39 shock waves with steplike distributions of the electron con-
. . i . . . centration and velocity.

in which the first mode predominates in the oscillation spec- \ye have predicted that the instability should result in pe-
trum but the resonant influence of the second mode on thejiarities in the current-voltage characteristic of the transis-
first mode is not small. This influence can be phenomenog, particularly, the differential resistance at zero frequency

logically taken into account as follpws. The right-hand sidegpq.,1d have a large step at the instability threshold. The re-
of Eq. (23) presents an expansion in powersidt The next  gjstance value above the threshold is larger than its value

term in this expansion should be proportionalAf/x. The under the threshold by a factor of 2~10".
factor « accounts for the resonant nature of the interaction
between modes. Then we have
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expression for the amplitude of stationary oscillations: . o )

Adding Eq. (6) multiplied by 3 In(1+u)+v°—2u+av
2(a—ag)k and Eq.(7) multiplied byv —2uv + au and neglecting terms

- (40) containingea, y and « in powers higher than the first, we

7 -
) o o ) ) ) __ Obtain
This expression is valid in the interval given by inequalities

(38). Using Eq.(40), these inequalities may be rewritten in 9 [02

1/4

the form o §—3u+3(1+u)ln(1+u)—uvz—u2+auv
K3<a— a<k. 47 P , au? , ,
Thus the increase of the amplitudewith the current slows T 5z | T3auTuwTm2u0 = == 2uTu Fav

down because of the energy dissipation in the second mode.

+3(a+v)(1+u)in(1+u)
VI. CONCLUSION

We have studied the consequences of the current instabil- (1—2u)v ¢%v )
ity in a ballistic field-effect transistor. We have shown that, =K Ta a2 twi2u-l). (A1)
when the current exceeds its threshold value by a small
enough margiwhen a—a.<«), the instability leads to the After averaging this equation over the time of the oscillation
establishment of stationary nonlinear oscillations. The ampliperiod, the first ternfwith d/97) vanishes. Then we integrate
tude of oscillations has been calculated. EefaC<K3, the this expression over the transistor channel lerfgttm z=0
amplitude is Proportional to the square root of the incrementto 1) using boundary condition§) and expanding Ifi+u)
A~(a—ay)Y?[see Eq(34)]. In the intervalk®<a—a.<k, and(1+u) ' in powers ofu. Keeping there the terms pro-
the dependence of the amplitude on the current slows dowrportional toA in powers not higher than the fourth and ne-
A~(a—a)Y* [see Eq.(40)]. For higher current values glecting terms, containing, y, andx in powers higher than
(a—a.>«), the instability may lead to the formation of the first, we obtain Eq(26).
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