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We study the nonlinear evolution of the current instability in a ballistic field-effect transistor. We show that
in the case of small increments, instability results in the establishment of stationary nonlinear oscillations. The
amplitude of the oscillations is calculated. We predict peculiarities in the current-voltage characteristic of the
transistor. In particular, the differential resistance at zero frequency should show a large step at the instability
threshold.@S0163-1829~96!02740-3#

I. INTRODUCTION

Recently, Dyakonov and Shur1 discovered that a rela-
tively low dc current in a ballistic field-effect transistor may
be unstable. This instability is a result of plasma wave am-
plification due to the reflection from the device boundaries.
This effect provides a mechanism for the generation of tun-
able electromagnetic radiation in the terahertz region. They
also showed that the electron fluid in the transistor may be
described by equations that are analogous to the hydrody-
namics equations for shallow water, the plasma waves play-
ing the role of shallow water waves.

In Ref. 1 the instability criterion was found in the linear
approximation. Gelmont2 considered the nonlinear evolution
of the instability in the special case when the electron fluid
velocity was close to the velocity of plasma waves. In addi-
tion, his consideration was restricted to the idealized situa-
tion when the viscosity of the electron fluid and the external
friction were absent. For this case, he showed that disconti-
nuities of the distributions of electron concentration and ve-
locity may be formed in the transistor channel, which are
analogous to the hydraulic jumps or shock waves. However,
consequences of the instability remain unclear in the real
situation when the electron fluid velocity is much less than
the plasma waves velocity and the viscosity and the external
friction are present.

The purpose of this paper is to study the nonlinear evolu-
tion of the instability in the ballistic field-effect transistor in
the case of relatively low electron fluid velocity with inclu-
sion of the viscosity of the electron fluid~caused by electron-
electron scattering! and the external friction~related to elec-
tron scattering by phonons and impurities!. We show that, in
contrast to the case considered in Ref. 2, for small increment,
the instability should lead to the establishment of small-
amplitude stationary oscillations. This is the case when, in
the linear regime, only one mode of plasma oscillations is
unstable while other modes are damped out by the viscosity
and the external friction. The amplitude of stationary oscil-
lations is calculated. It is shown that the amplitude is propor-
tional to the square root of the increment near the instability
threshold. The consequences of the instability for higher val-
ues of the increment are discussed.

We predict that the current-voltage characteristic of the
transistor should show a peculiarity at the instability thresh-

old. The differential resistance of the transistor at zero fre-
quency should have a large step at the threshold.

II. BASIC EQUATIONS

In the hydrodynamic approximation, the electron fluid
may be described by the following equations, which coincide
with those for shallow water:
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Here U(x,t)5UGC(x,t)2UT , UGC is the gate-to-channel
voltage,UT is the threshold voltage,V(x,t) is the local elec-
tron velocity,m is the electron effective mass,tp is the mo-
mentum relaxation time related to the external friction~due
to electron scattering by phonons or impurities!, andK is the
coefficient determining the viscosity related to electron-
electron scattering. Equation~1! is the continuity equation in
which the gradual channel approximation equation3
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is taken into account. HereC is the surface gate capacitance
andnS is the electron surface concentration. Equation~2! is
analogous to the hydrodynamic Navier-Stocks equation, with
U corresponding to the shallow water level andV corre-
sponding to the local velocity of the water flow.

Dyakonov and Shur1 studied these equations without tak-
ing into account the viscosity~K50! and the external friction
~tp5`!. They have shown that, under the boundary condi-
tions

U~0,t !5U0 , U~L,t !V~L,t !5
j

C
5U0V0 , ~3!

the stationary electron flow may be unstable. Equations~3!
show that the potentialU is fixed at the source~x50! and the
current densityj is fixed at the drain (x5L). In the linear
approximation and forV0!s5(eU0/m)

1/2, it was shown
that the instability leads to excitation of plasma waves with
the frequencies
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Here
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is the plasma wave velocity.
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one may rewrite Eqs.~1! and ~2! and the boundary condi-
tions ~3! in the form
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Note that the parametera corresponds to the Mach number
in hydrodynamics. From Eqs.~4! and ~5!, we obtain the ex-
pression for the dimensionless frequenciesvn8 and incre-
mentsvn9 ,
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III. INCREMENT OF PLASMA OSCILLATIONS
WITH CONSIDERATION FOR THE VISCOSITY

AND THE EXTERNAL FRICTION

Let us estimate the order of magnitude of the parameters
g andk, determining the external friction and viscosity. They
can be represented in the formsg5L/stp andk5leeVF/Ls.
HereVF is the Fermi electron velocity andlee is the mean
free path for electron-electron collisions. For the typical val-
uesU0;0.5 V,nS;1012 cm22, and the temperature 77 K, we
have1 tp;10211 s, s;108 cm/s, andleeVF;\/m. Then, for
L;0.2 mm, we find g'1022 and k'1022. Therefore we
shall assume below thatg,k!1. We shall also restrict our-
selves to the most realistic casea!1.

The inclusion of the external friction presents no difficul-
ties and leads to the reduction of the increment by the quan-
tity g/2:
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2
.

In contrast, allowance for the viscosity of the electron fluid
cannot be made in an easy way. ForkÞ0, the differential
equations~6! and ~7! are of higher order and, consequently,
require an additional boundary condition besides the condi-
tions given by Eq.~3!. This additional condition should be
determined by the properties of the source and drain con-
tacts, which have not been thoroughly studied.

We shall see below that, forkÞ0, a thin boundary layer
occurs in the transistor channel as is often the case in prob-
lems with a small parameter before the highest derivative.4

In our case, the boundary layer is located at the source and is
of the width;ak. Beyond the layer, the term accounting for
the viscous force in Eq.~7! is small and can be allowed for in
the terms of the perturbation theory using the expansion in
powers of small parameterk. Within the layer, the solution
cannot be represented as a series in powers ofk and essen-
tially depends on the additional boundary condition. The
boundary layer, however, is not important in calculations of
the increment for a large body of additional boundary con-
ditions. In particular, this is the case when an additional
boundary condition is given at the source contact and allows
uniform distributions ofu and v in the stationary regime.
This boundary condition may be written in the form
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whereF is a function determined by the properties of the
source contact. The uniformity of stationary solutions
U(x)5U0 andV(x)5V0 imposes the following restriction
on theF function:

F~0,0,U0 ,V0!ux5050 . ~11!

This equation is supposed to be valid for anyU0 andV0.
Linearizing Eq.~10! with respect to small deviations from

U0 andV0 and using Eq.~11!, we have
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whereC1 andC2 are functions ofU0 andV0. On the other
hand, it follows from Eqs.~6! and ~8! that
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in the linear approximation. Then we find from Eqs.~12! and
~13! that

]v
]zU
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atC2/C1Þa. The boundary condition~10! is thus reduced to
Eq. ~14! if Eq. ~10! allows uniform stationary solutions.

The linear solutions of Eqs.~6! and ~7! with boundary
conditions~8! and ~14! have the form

u5A ReH F ~12 iakvn8!exp~ ik1z!2~11 iakvn8!exp~ ik2z!

12iakvn8expS 2
z

ak D Gexp~2 ivn8t1vn9t !J , ~15!
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whereA is the amplitude of plasma oscillations,
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In the smooth terms of Eqs.~15! and ~16! containing
exp(ik1z) and exp(ik2z), we have kept the main corrections
with respect to powers ofa, g, and k. The terms with
exp~2z/ka!, decreasing drastically along the channel, de-
scribe the boundary layer. Equation~19! gives the increment
of plasma oscillations taking into account the viscosity-
related damping. It is seen that instability takes place when
a.ac , where

ac5
g
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8
. ~20!

It should be noted that Eq.~19! can also be obtained using
the perturbation theory with respect to small parameterk
without additional boundary condition, the solution of Eqs.
~6!–~8! with k50 being used as a first approximation. This is
due to the fact that, as can be seen from the analysis of Eqs.
~15! and~16!, the viscosity-related energy dissipation is dis-
tributed over the entire channel length. The dissipation in the
boundary layer is negligible and leads to the correction to the
increment of the order ofak2.

As another example let us consider the more general con-
dition when theF function in Eq.~10! depends also on the
drain currentj . Using reasoning similar to that used in the
derivation of Eq.~14!, we obtain the additional boundary
condition in the form
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wherea is a coefficient depending ona andU0. Using Eqs.
~6!–~8! and ~21!, one can show that there is a correction
2ak to the increment in Eq.~19! related to the dissipation in
the boundary layer. Fora!1, this dissipation is negligible.
Then the increment is given by Eq.~19! and can be found by
perturbation theory. This is, presumably, the case ifa is
small enough. Indeed, having solved Eqs.~6! and ~7! with
the boundary conditions~8! and ~21!, one can see that the
electric field at the source contact (]u/]z)uz50 in the linear
approximation is proportional toa/a. For low current
~a→0!, this field tends to infinity if the coefficienta remains
finite. This is apparently possible only for a special design of

the source contact. We shall not consider here this special
case and shall assume thata→0 if a→0. Then the state of
affairs under the conditions given by Eq.~21! does not differ
essentially from the previous case when]v/]z50 at z50.
Thus, for both of the cases considered, the dissipation in the
boundary layer is negligible and the viscosity-related correc-
tions to the increment come from the entire channel length.
One can show that this is the case for a number of more
general additional boundary conditions. The physical mean-
ing of this fact can be understood from the following reason-
ing. For arbitrary additional boundary conditions, the dissi-
pation in the boundary layer may be estimated as
j v

n8
(0)Duv

n8
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n8
(0) andDuv

n8
(0) are the current

through the source contact and the voltage drop across the
boundary layer at the plasma oscillation frequencyvn8 , re-
spectively. ForDuv

n8
(0) we haveDuv

n8
(0);Ev

n8
(0)ka,

where ak is the boundary layer width andEv
n8
(0) is the

electric field at the source~z50!. The dissipation in the
boundary layer is thus proportional to the small parameter
ak under arbitrary additional boundary condition if the field
Ev

n8
(0) is finite.

In the subsequent calculations of the amplitude of station-
ary nonlinear oscillations we shall neglect the dissipation in
the boundary layer and use the perturbation theory assuming
the viscosity-related term in Eq.~7! to be small. As the first
approximation, we shall use the solution of Eqs.~6! and ~7!
at k5g5a50.

IV. PHENOMENOLOGY OF THE NONLINEAR PROBLEM

In this section we consider phenomenologically the evo-
lution of the instability for small enough values of the incre-
mentv195a2ac . We shall show that the instability leads to
an establishment of small-amplitude stationary oscillations.
We shall assume that the following condition is fulfilled:

g
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2
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. ~22!

In this case, only the first mode with the frequencyv18
5p/2 is amplified in linear regime, while other modes are
damped out. Then the first mode should also dominate in the
spectrum of stationary nonlinear oscillations. Using the line
of reasoning similar to that used in the theory of weak
turbulence,5 one can write the phenomenological equation

dA2

dt
52~a2ac!A

22bA4, ~23!

which describes the evolution of the dimensionless ampli-
tudeA of the first mode. It is assumed here thata slightly
exceeds the critical valueac : (a2ac)/ac!1. The param-
eterb entering Eq.~23! is a coefficient depending ona, k,
andg. For similar problems, this coefficient was calculated
in a number of papers~see, for example, Ref. 6!. We shall
calculateb in Sec. V.

It is easy to see thatb should be an odd function ofa, k,
and g. This follows from the fact that Eqs.~6!–~8! are in-
variant with respect to the time inversion and substitution
a→2a, g→2g, and k→2k. Then the first terms in the
expansion ofb in powers of small parametersa, g, andk
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should be linear ina, g, and k. Taking into account that
a'ac and using Eq.~20!, we can write

b5b1g1b2k, ~24!

whereb1 andb2 are unknown coefficients. Generally speak-
ing, the sign ofb can be arbitrary. However, as we shall see
in the next section,b is positive in our case. Then, in accor-
dance with Eq.~23!, the amplitude of oscillations tends to a
stationary value determined by the equation

2~a2ac!A
22bA450. ~25!

Hence the amplitude of stationary oscillations is proportional
to the square root ofa2ac .

V. CALCULATION OF THE AMPLITUDE
OF STATIONARY OSCILLATIONS

We shall consider the situation whena exceeds its thresh-
old valueac by a small margin and the amplitude of the
stationary oscillations

A5S 2~a2ac!

b D 1/2
is much less than unity. Therefore, we can regardA, along
with a, g, andk, as a small parameter. While in the nonlin-
ear problem the first mode generates oscillations of multiple
frequencies, their amplitudes are small in powers ofA. This
allows us to take into account only a limited number of mul-
tiple frequencies and write a closed system of equations for
their amplitudes. The amplitudeA of oscillations at the fun-
damental frequency can be found by solving this system with
the use of an expansion in powers ofA. This treatment re-
quires, however, cumbersome calculations. We show that it
can be considerably simplified by using the relationship
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4 ^u4~1,t!&#
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which is valid in the case of stationary oscillations and may
be derived from Eqs.~6!–~8! ~see the Appendix!. Here the
angular brackets denote averaging over the period of oscilla-
tions. In deriving this relationship we kept only the terms
linear in small parametersa, g, andk.

Since all the terms in Eq.~26! are proportional toa, g, or
k, one should put thereu andv found from Eqs.~6!–~8! at
a5g5k50. In so doing, findingu andv requires no addi-
tional boundary condition. Theseu and v are close to the
solutions obtained for small nonzerok, a, andg. At the same
time, in the boundary layer, the quantity]2v/]z2 entering in
Eq. ~26! is large and differs from its value found ata5k
5g50. It is, however, easy to show that the contribution of
this layer to Eq.~26! is negligible. Indeed, putting Eqs.~15!
and ~16! ~for n51! at the generation thresholdv1950
~a5ac! in Eq. ~26!, one can see that the contribution of the
boundary layer is of the order ofa2k. Allowance for the
nonlinear correction to Eqs.~15! and~16! leads to negligible

terms containing higher powers ofa, k, andg. In order to
find the amplitude of the stationary oscillation we have to
expand all the terms in Eq.~26! in powers ofA. Then we
obtain an equation forA that is equivalent to the phenom-
enological Eq.~25! and find the coefficientb.

In the linear approximation and fora5g5k50, we have
for the first mode

v5A cosS p

2
zD sin~vt!,

u52A sinS p

2
zD cos~vt!, ~27!

v5v185
p

2
.

Putting this solution in Eq.~26! and keeping only the terms
square in the amplitude, we obtain

~a2ac!A
250.

This means that, as expected, in the linear approximation, the
stationary oscillations are possible only ata5ac .

In the nonlinear case, we shall seek the solution of Eqs.
~6!–~8! at k5a5g50 in the form of the Fourier series

v5 1
2 @v0~z!1v1~z!eivt1v2~z!e2ivt1•••1c.c.#,

~28!
u5 1

2 @u0~z!1u1~z!eivt1u2~z!e2ivt1•••1c.c.#.

Putting Eq.~28! in Eqs. ~6!–~8!, one can easily obtain the
infinite system of equations for the unknown functionsv i(z),
ui(z), and the frequencyv. One should use the linear solu-
tion ~27! as a first approximation and expandv i(z), ui(z),
andv in powers of the amplitudeA. In so doing, only the
leading terms, proportional toA2, should be kept inv0(z),
u0(z), v2(z), u2(z), and in the frequency shiftv2v18 ,
while in v1(z) and u1(z) one should keep the cubic inA
corrections to Eq.~27!. Taking into account the higher-order
corrections and the higher terms of the Fourier series~28! is
not required since this would lead to terms containing the
sixth or higher powers ofA in Eq. ~25!. On this basis, it is
easy to obtain the closed system of equations, which allows
us to find functionsv0(z), u0(z), v1(z), u1(z), v2(z), and
u2(z) at a5g5k50:
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u1~0!5v1~1!50;
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u2~0!5v2~1!50.

Their solution can be found by the successive approxima-
tions using the expansion in powers ofA. In doing so, one
should hold only those terms which make contributions to
Eq. ~26! containingA in powers not higher than the fourth.
As a first approximation, one should use again the linear
solutions~27!. Then we find
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At the same time, we obtain the following expression for the
nonlinear frequency shift of the first mode:

v2v185A2 Im E
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dz8ei ~p/2!z8
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52

53p

512
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Inserting these expressions into Eq.~26!, after laborious cal-
culations, we obtain the following equation, analogous to the
phenomenological expression~25!:

2S a2
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64 F57g8 1
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4 S 9p2

4
1112D G50.

From this formula we find the amplitude of stationary non-
linear oscillations

A58F 2~a2ac!

57g

8
1F9p2

4
1112G p2k

4
G 1/2. ~34!

Note that the numerical factor beforek is much greater than
the one beforeg. Therefore, ifg andk have the same order
of magnitude, the amplitudeA at a given value ofa2ac is
predominantly determined by the viscosityk. At the same
time, the value ofac itself depends onk andg to the same
extent.

The presence of stationary oscillations above the instabil-
ity threshold should result in peculiarities of the voltage-
current characteristics of the transistor. Particularly, the dif-
ferential resistance at zero frequency

R05
dUsd

d j
, Usd5U0@u0~L !2u0~0!# ~35!

should have a step when the drain current densityj reaches
its threshold valuej c5CU0sac , following from the condi-
tion a5ac . HereUsd is the drain-to-source voltage at zero
frequency. One can see from Eqs.~32!, ~34!, and ~35! that
R050 when j, j c and

R05
1

Cs

32

57g

8
1

kp2

4 F9p2

4
1112G ~36!

when j. j c .
Note that zero values forUsd andR0 below the threshold

results from our neglecting the terms proportional toa, g,
and k in Eqs. ~32!. Actually, there is a finite differential
resistance atj, j c that is, however, negligibly small com-
pared to the differential resistance over threshold. As one can
easily show, the differential resistance under the threshold at
k50 is determined by

R05
g

Cs
.

This resistance is less than the resistance above the threshold
by a factorg2;1024.

Let us discuss the condition of the validity of our results.
Usually equations like Eq.~23! hold whenA!1. However,
in our case, the criterion is stronger. Indeed, the nonlinearity
caused third harmonic of the first mode is in resonance with
the second mode@n52 in Eq. ~18!#, which is neglected in
our calculations. Actually, the amplitude of the second mode,
containing the resonant denominator, is of orderA3/k. Its
feedback impact on the fundamental first mode leads to ad-
ditional terms of orderA5/k2. These terms were neglected
compared toA3 terms in Eq.~32!. Therefore, our results
@Eqs.~34! and ~36!# are valid under the condition

A!k. ~37!

What happens whenA.k is rather complicated. Let us
discuss this problem qualitatively. The amplitude of the sec-
ond mode is small compared to the amplitude of the first
mode when

A!k1/2.

This means that there exists an interval of amplitude values

14 024 54A. P. DMITRIEV, A. S. FURMAN, AND V. YU. KACHOROVSKII



k!A!k1/2 ~38!

in which the first mode predominates in the oscillation spec-
trum but the resonant influence of the second mode on the
first mode is not small. This influence can be phenomeno-
logically taken into account as follows. The right-hand side
of Eq. ~23! presents an expansion in powers ofA2. The next
term in this expansion should be proportional toA6/k. The
factork21 accounts for the resonant nature of the interaction
between modes. Then we have

dA2

dt
52~a2ac!A

22bA42h
A6

k
, ~39!

whereh is an unknown numerical coefficient.
A rigorous treatment of the influence of the second mode

requires keeping the termsv3(z)e
3ivt andu3(z)e

3ivt in the
series~28!, which were neglected in our calculations. How-
ever, as one can show, the terms oscillating at higher fre-
quencies~the third, fourth, and higher modes! still are neg-
ligible atA!k1/2. The coefficienth can be found by solving
the system of equations that are similar to Eqs.~29!–~31! and
contain the functionsv3(z),u3(z). This calculation is, how-
ever, extremely cumbersome and is beyond the scope of this
paper. Assuming thath is positive, we obtain the following
expression for the amplitude of stationary oscillations:

A5F2~a2ac!k

h G1/4. ~40!

This expression is valid in the interval given by inequalities
~38!. Using Eq.~40!, these inequalities may be rewritten in
the form

k3!a2ac!k. ~41!

Thus the increase of the amplitudeA with the current slows
down because of the energy dissipation in the second mode.

VI. CONCLUSION

We have studied the consequences of the current instabil-
ity in a ballistic field-effect transistor. We have shown that,
when the current exceeds its threshold value by a small
enough margin~whena2ac,k!, the instability leads to the
establishment of stationary nonlinear oscillations. The ampli-
tude of oscillations has been calculated. Fora2ac,k3, the
amplitude is proportional to the square root of the increment:
A;(a2ac)

1/2 @see Eq.~34!#. In the intervalk3!a2ac!k,
the dependence of the amplitude on the current slows down:
A;(a2ac)

1/4 @see Eq. ~40!#. For higher current values
~a2ac@k!, the instability may lead to the formation of

shock waves with steplike distributions of the electron con-
centration and velocity.

We have predicted that the instability should result in pe-
culiarities in the current-voltage characteristic of the transis-
tor. Particularly, the differential resistance at zero frequency
should have a large step at the instability threshold. The re-
sistance value above the threshold is larger than its value
under the threshold by a factor ofg22;104.
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APPENDIX

Adding Eq. ~6! multiplied by 3 ln(11u)1v222u1av
and Eq.~7! multiplied byv22uv1au and neglecting terms
containinga, g and k in powers higher than the first, we
obtain

]

]t Fv22 23u13~11u!ln~11u!2uv22u21auvG
1

]

]z F23au2uv322uv2
au2

2
22u2v1av2

13~a1v !~11u!ln~11u!G
5k

~122u!v
11u

]2v
]x2

1gv2~2u21!. ~A1!

After averaging this equation over the time of the oscillation
period, the first term~with ]/]t! vanishes. Then we integrate
this expression over the transistor channel length~from z50
to 1! using boundary conditions~8! and expanding ln~11u!
and ~11u!21 in powers ofu. Keeping there the terms pro-
portional toA in powers not higher than the fourth and ne-
glecting terms, containinga, g, andk in powers higher than
the first, we obtain Eq.~26!.
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