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We performed intralayer-transport measurements on heavilyd-doped GaAsn-i-p-i superlattices in the tem-
perature range of 4–300 K. Then-layer electron density was varied by applying a bias voltage between the
selectively contactedn- and p-type layers. This tunability allowed the observation of the disorder-induced
metal-insulator transition in a doping superlattice. We compare the experimental electron-density dependence
of the mobility atT54 K with theoretical predictions. Good agreement is achieved in the metallic regime,
solving the multisubband Boltzmann equation in relaxation-time approximation and close to the metal-
insulator transition, applying a self-consistent current-relaxation theory. Furthermore, we analyze the electron
conductivity data of both the metallic and insulating phases as functions of temperature and magnetic field
oriented perpendicular to the doping layers. The magnetic field as well as the temperature dependence of the
conductivity give evidence for weak localization of the metallic phase. In the strongly localized insulating
regime our data show a transition from activated high temperature to weakly temperature-dependent low-
temperature behavior. A detailed model is elaborated which explains this observation as transition from ther-
mally activated transport over critical barriers of the disorder potential to phonon-assisted tunneling.
@S0163-1829~96!03144-X#

I. INTRODUCTION

Despite intensive study over many years, the metal-
insulator transition~MIT ! of disordered semiconductors con-
tinues to be a major field in solid-state physics. In principle,
two alternative methods to induce the MIT can be distin-
guished if we considern-type semiconductor material which
is sufficiently heavily doped to exhibit metallic transport
properties:

Impurity-density-and themagnetic-field-inducedMIT’s
result from a reduction of the overlap of the impurity wave
functions in an uncompensated semiconductor by reducing
the doping density or applying a magnetic field, respectively.
The electrons are localized on the impurity states. The char-
acteristic feature of this type of transition is that the electron
and donor densities are identical.

The disorder- or electron-density-inducedMIT results
from a variation of the random disorder potential and the
electron density by introducing compensating impurities.
The electrons are localized in the minima of the fluctuating
disorder potential. Typical of that type of transition is that
the electron density is smaller than the donor density.

Most of the experimental work on the MIT has been per-
formed onthree-dimensional~3D! bulk-semiconductor ma-
terial ~for a general review see Refs. 1–3!. Although consid-
erable progress was reported recently, in particular the
understanding of the impurity-density induced MIT remains
incomplete and a topic of controversial discussion.4

The disorder-induced MIT of Si/SiO2 metal-oxide-
semiconductor~MOS! structures was the first extensively in-
vestigated MIT in aquasi-two-dimensional~quasi-2D! sys-
tem. Instead of introducing compensating impurities as in 3D
bulk material, the electron density in the inversion layer of a
single sample was tuned by applying a gate voltage. Early
work on the MIT in MOS systems was reviewed in Ref. 5.
Later the magnetic-field-induced MIT was studied in the
weak doping regime both in modulation-doped GaAs/
Al xGa12xAs single- and multiple-quantum-well
structures,6,7 as well asn-type d-doped GaAs samples.8 An
impurity-density-induced MIT was observed inn-type
d-doped Si structures.9 Recently, the MIT in the integer and
fractional quantum Hall regime in GaAs/AlxGa12xAs het-
erostructures has attracted considerable interest.10

Little attention, however, has been paid to the appealing
perspectives of heavilyd-doped semiconductor structures
with respect to the disorder-induced MIT. To our knowledge
only two studies of this type have been reported.11,12 In both
cases the transport in gatedn-type d-doped GaAs structures
was investigated as a function of the electron density.

In the present work we report experimental and theoreti-
cal results which demonstrate thatd-doped n-i-p-i
superlattices13 provide an excellent model system to investi-
gate the disorder-induced MIT of a quasi-2D electron gas~as
proposed more than a decade ago14!. One of the major ad-
vantages of these structures is the tunability of the carrier
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density and, hence, the number of occupied subbands by an
external bias voltage applied through selective contacts.15

What makesd-dopedn-i-p-i samples different from conven-
tional MOS structures is that they contain not only quasi-2D
electron and hole systems but also 2D impurity systems. Fur-
thermore both the random disorder potential and the carrier
scattering at low temperature are exclusively due to the ion-
ized impurities. Thus, neither unknown, unspecifiable inter-
face roughness perturbations as in MOS structures nor alloy
scattering as in heterostructures influence the in-plane trans-
port in d-dopedn-i-p-i superlattices. Last but not least, the
wave functions have a well-defined parity with respect to the
impurity positions which imposes specific selection rules for
intersubband scattering absent in MOS systems.

The paper is organized as follows. In Sec. II we present
the sample design and experimental details. Section III is
devoted to a discussion of the electron-density dependence
of the low-temperature mobility. Special emphasis is put on
the density regime close to the disorder-induced MIT. In Sec.
IV we study the influence of low magnetic fields on the
conductivity of the quasi-2D electron gas with respect to
weak localization. Subsequently a comprehensive analysis of
the temperature dependence of the conductivity in both the
metallic and insulating regimes is given in Sec. V. We con-
clude with a brief summary of the results in Sec. VI.

II. SAMPLE AND EXPERIMENT

A. Sample design

The physical properties of ad-n-i-p-i superlattice are en-
tirely determined by its design parametersdonor concentra-
tion nD

(2), acceptor concentration nA
(2), and interlayer dis-

tance d. The sample for the present investigation was grown
by molecular-beam epitaxy using a shadow-mask
technique.15 Selective contacts to then- andp-type layers of
the centraln-i-p-i region itself are readily provided via the
lateraln-i-n-i andp-i-p-i regions by standard optical lithog-
raphy ~Fig. 1!. The application of an improved technique
with a thin epitaxially grown shadow mask16 permitted the
fabrication of micrometer-scale devices with typical lateral
sample dimensions of 20mm. The GaAsn-i-p-i superlattice
consists of 16d-doped p- and 15 d-dopedn-type layers
which were grown in an alternating sequence with an inter-
layer separation ofd575 nm. Experimentally determined
values of the concentrations of Be acceptors and Si donors

will be given in Sec. II B. The superlattice was grown on a 1-
mm-thick undoped Al0.4Ga0.6As buffer layer on a semi-
insulating GaAs substrate, and capped by 200 nm of un-
doped Al0.3Ga0.7As and 30 nm of undoped GaAs.

B. Experimental technique

In order to perform conductance measurements as a func-
tion of the electron density~and, hence, of the disorder! we
used a setup which allowed to measure then- and p-layer
conductances as a function of the biasUnp applied between
selectiven- and p-type contacts. As a consequence of the
indirect real-space energy gap ofd-n-i-p-i superlattices13 the
interlayer electron-hole recombination currents are lower by
orders of magnitude than the intralayer currents driven by
small voltagesUnn or Upp applied between twon- or
p-type contacts. Thus the carrier gas in then- andp-layers
can be described by quasi-Fermi levelsfn and fp . The
quasi-Fermi-level difference is determined by

Dfnp5fn2fp5eUnp . ~1!

Simultaneously a two-point measurement of then-layer con-
ductanceGnn was performed as a function of the biasUnp

Gnn~Unp!5
I nn
Unn

U
Unp

. ~2!

In order to minimize the influence the voltage drop between
the twon contacts on the electron density, the voltageUnn
was chosen as small as possible~not higher than 1 mV!.
Furthermore, the conductance data were averaged with re-
spect to the sign ofUnn . The p-layer conductance
Gpp(Unp) was measured analogously. A typical example of
the measuredn-layer conductance is shown in Fig. 2~a! for
temperatureT54 K.

The electrical room-temperature characterization of the
sample allowed the experimental determination of the actual
densities of electrically active Si and Be dopants in then-
and p-type d-layers, respectively. Details are given in Ap-
pendix A. The obtained values arenA

(2)57.731012 cm22

andnD
(2)56.631012 cm22.

Temperature-dependent measurements have been per-
formed in a standard Oxford4He liquid-flow cryostate with
a Hewlett-Packard HP 4141B dc current/voltage source/
monitor unit which also recorded the sample temperature by
measuring the resistance of a calibrated Si diode. For mag-
netotransport experiments, we used an Oxford3He/4He cry-
ostate with a 16.5 T superconducting magnet in connection
with a Keithley 220 current source and a Keithley 199 volt-
meter.

C. Data preparation

In the present study, we investigate the transport proper-
ties as a function of the 2D electron densityn(2). From the
measured Gnn(Unp) data, we deduced the mobility
mn(n

(2)) and conductivitysn(n
(2)) by calculating the rela-

tion n(2)(Unp) with a semiclassical Thomas-Fermi method.
17

In this simplest local-density approximation of the inhomo-
genous carrier gas the electron-density equation

FIG. 1. Schematic diagram of thed-n-i-p-i mesa with selective
contacts and the external electrical circuit.
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n~3!~z!5E
2`

`

de Dc
~3!~e,z! f „e,fn2Vsc~z!… ~3!

and an analogous hole-density equation forp(3)(z) are
solved self-consistently with the Poisson equation within one
period of the superlattice

d2

dz2
Vsc~z!5

e2

ee0
@„nD

~2!d~z!2nA
~2!d~z2d!…

1„p~3!~z!2n~3!~z!…#. ~4!

Herez denotes the growth direction,

Dc
~3!~e,z!5

1

2p2 S 2mc

\2 D 3/2Ae Q„e2Vsc~z!… ~5!

the 3D density of states~DOS! for the electrons~subscript c
for conduction band!, f „e,fn2Vsc(z)… the Fermi-Dirac dis-
tribution,mc the effective electron mass andVsc(z) the self-
consistent superlattice potential. Integration ofn(3)(z) in the
z direction over the superlattice period yields the area density
n(2).

An improved version of the Thomas-Fermi method which
takes band tailing due to the random distribution of the ion-
ized impurities into account is described in Appendix B.

The results of both Thomas-Fermi algorithms are depicted
in Fig. 2~b!. Due to the high doping concentrations the ex-
aminedp-type sample is a so-called semimetal, i.e., both the
electron densityn(2) and, according to the macroscopic
charge-neutrality condition

p~2!2n~2!5nA
~2!2nD

~2!.0, ~6!

the hole densityp(2) are nonvanishing in the ground state of
the superlattice (Unp50 V!. With increasing negative bias
electrons~holes! are extracted from then layers (p layers!
until n(2) vanishes (p(2) assumes its minimum value
nA
(2)2nD

(2)) at the threshold voltageUnp
th '22.0 V. The sam-

ple’s p-type character provides the possibility to deplete the
n-layer electron gases completely, which is indispensable for
an investigation of the MIT of the electron layers. Under
forward bias additional electrons~holes! are injected. The
injection of free carriers is experimentally limited by the ex-
ponentially increasing interlayer leakage currentI np which
obscures theGnn(Unp) data. Figure 2~b! shows that the in-
fluence of the band tails is restricted to the threshold region.

By calculating n(2)(Unp) with the improved Thomas-
Fermi algorithm, we computed the mobilitymn(n

(2)) and
conductivity sn(n

(2)) as a function of the electron density
from the measuredGnn(Unp) data. The lengthy transforma-
tion formulas which require a detailed consideration of con-
tact resistances and sample dimensions are given in Appen-
dix C.

III. DENSITY DEPENDENCE OF THE MOBILITY

The purpose of this section is a detailed comparison of the
density dependence of the electron mobility with theoretical
predictions for the low-temperature case ofT54 K. The
measured electron mobilitymn(n

(2)) plotted in Fig. 3 de-
creases with decreasing electron density. At a density of
about n(2)51.031012 cm22 the mobility even vanishes.
This behavior will be interpreted below as a disorder-
induced MIT due to electron localization in the fluctuating
potential of the randomly distributed ionized donors.

FIG. 2. ~a! Measured electron conductivity and~b! calculated
electron density, both as a function of the bias voltage for tempera-
ture T54 K. The dashed vertical lines mark the ground state cor-
responding toUnp50 V.

FIG. 3. Electron mobility as a function of the electron density
for temperatureT54 K. The dashed vertical line marks the ground
state corresponding toUnp50 V.
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A. Self-consistent subband structure

The quantum-mechanical determination of the subband
structure of thed-n-i-p-i superlattice18 is the starting point
for the calculation of the low-temperature mobility. We con-
fine ourselves to the case ofT50 K, as the conductivity
calculations below will be performed in theT50-K limit as
well.

Within the effective-mass approximation we solved the
one-dimensional Schro¨dinger equation for the electrons in
the growth direction,

H 2
\2

2mc

d2

dz2
1Vsc~z!1Vx,c~z!J wc,n~z!5ec,nwc,n~z!,

~7!

self-consistently with the corresponding Schro¨dinger equa-
tion for the holes and the Poisson equation~4!. Above,
wc,n(z) and ec,n are the electron wave functions and
subband-edge energies for subband indexn. The exchange
potentialVx,c(z) for the electrons was chosen according to
Slater19 as

Vx,c~z!521.477c0„n
~3!~z!…1/3, ~8!

with c05e2/4pee0. A complete subband wave function with
wave vectorki,

cc,n,ki
~r !5

1

AS
eikir i wc,n~z! ~9!

is given by a plane wave parallel to the layers multiplied by
the wave function in growth directionwc,n(z). S is the
sample cross section. The corresponding eigenvalues

ec,n,ki
5

\2ki
2

2mc
1ec,n ~10!

are given as the sum of the parabolic dispersion parallel to
the layers and the subband-edge energies. The 3D electron
density was calculated according to

n~3!~z!5(
n

uwc,n~z!u2nn
~2! , ~11!

with the electron density of thenth subband,

nn
~2!5E

2`

1`

de Dc,n
~2!~e !Q~fn2e!, ~12!

and the 2D DOS

Dc,n
~2!~e !5

mc

p\2Q~e2ec,n!. ~13!

The total area density results from

n~2!5(
n

nn
~2! . ~14!

Analogous expressions were used for the holes.
The dependence of the electron density of the individual

subbands on the quasi-Fermi-level difference is depicted in
Fig. 4. With growingDfnp the population of the first sub-
band starts at the threshold value ofDfnp

th '22.0 eV. The

second and third subbands follow at20.3 and 0.8 eV, re-
spectively. Beyond a forward bias of 1.0 V the experimental
determination of the conductance is no longer reliable due to
the increasingI np current. Figure 5 shows the resulting su-
perlattice band structure for various excitation levels. The
energy spacing between different subband edges exceeds the
thermal broadening of the Fermi distribution atT54 K by
two orders of magnitude. Therefore theT50-K approxima-
tion is well justified for the band-structure calculation. Note
that miniband formation due to coupling of subbands of
neighboring superlattice-potential wells is irrelevant due to
the wide and high barriers of our superlattice.

In principle, the electron density of individual subbands
may be determined from measurements of the longitudinal
magnetoresistance.20 Our experimental efforts in this direc-
tion failed as the observed Shubnikov–de Haas oscillation
periods exhibited, after Fourier transformation to resolve
contributions of different occupied subbands, no consistent
bias-voltage dependence. We attribute this problem to a mix-
ing of the oscillations of then-i-p-i region and those ofn-i-
n-i regions whose electron density is rather bias voltage in-
dependent.

B. Boltzmann equation

In order to calculate the electron mobility we solved the
multisubband Boltzmann equation in the relaxation-time
approximation.21,22A comprehensive review is given in Ref.
23. Charge transport parallel to the layers results from the
interplay between the accelerating electric fieldE and ham-
pering scattering processes which are described by the per-
turbation operatorH int . In theT50-K limit only elastic ion-
ized impurity scattering has to be taken into account. Hence
the perturbation operator is explicitly given by

H int5(
a

Vtot~Ri ,a!, ~15!

with Vtot(Ri ,a) being the potential of the ionized donora at
locationRi ,a .

The coupled multisubband Boltzmann equations which
consider both intrasubband and intersubband scattering read

FIG. 4. Electron density of the individual subbands depending
on the quasi-Fermi-level difference.
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2
e

mc
\ki•E

] f c,n,ki

]ec,n,ki

5 (
n8,ki8

@gc,n8,ki8→c,n,ki
• f c,n8,ki8

~12 f c,n,ki
!

2gc,n,ki→c,n8,ki8
• f c,n,ki

~12 f c,n8,ki8
!#. ~16!

f c,n,ki
is the value of the Fermi distribution at energy

ec,n,ki
, and ucc,n,ki

& denotes the corresponding subband

state. For the transition probabilitygc,n,ki→c,n8,ki8
between

ucc,n,ki
& anducc,n8,ki8

&, we obtain, in the first-order Born ap-

proximation,

gc,n,ki→c,n8,ki8

5
2p

\
u^cc,n,ki

uH intucc,n8,ki8
&u2•d~ec,n,ki

2ec,n8,ki8
!.

~17!

Linearization of Eq.~16! with respect to the electric field
allows the calculation of the mobilities of the different sub-
bands within a multisubband relaxation-time approximation.
The corresponding relaxation timestc,n of individual sub-
bands are implicitly determined by

fn2ec,m5(
n

Kmntc,n ~18!

through inversion of the matrix

Kmn5
2p2\3

mc
2S (

ki,ki8
Fdmn(

l
^u^cc,m,ki

uH intucc,l,ki8
&u2&average•d~ec,m,ki

2fn!d~ec,l,ki8
2fn!•ki

2

2^u^cc,m,ki
uH intucc,n,ki8

&u2&average•d~ec,m,ki
2fn!d~ec,n,ki8

2fn!•ki•ki8G . ~19!

The effective mobilitymn is calculated from the different
subband mobilitiesmn,n ,

mn5
1

n~2!(
n

mn,nnn
~2! , mn,n5

e

mc
tc,n . ~20!

The remaining task is the computation of the scattering ma-
trix element ^u^cc,n,ki

uH intucc,n8,ki8
&u2&average. Here ^&average

averages over all possible donor configurations assuming
their totally uncorrelated distribution. Screening of the impu-
rity potentials due to free electrons is assumed to be linear
which is justified for high electron density.

1. Screening in 3D local-density approximation

The standard linear-screening theory for the screening of
an external potential by a homogenous 3D electron gas is the
semiclassical Thomas-Fermi theory~see, e.g., Ref. 24! based
on the local-density approximation~3D LDA!. The screened
Coulomb potential has the Yukawa shape

Vtot~Ri!5
c0

ur2Riu
expS 2

ur2Riu
Ln

D , ~21!

with the screening lengthLn given by

Ln
225

3e2mc

ee0\
2 S 1

3p2D 2/3n~3!1/3. ~22!

In order to apply these formulas tod-n-i-p-i structures with
theirz-dependent electron-density we setn(3)5n(3)(z50) in
Eq. ~22!, i.e., we used the maximum value ofn(3)(z). This
overestimates the screening as the actualn(3)(z) is nonuni-
form and decays with increasing distance from the doping

layer ~Fig. 5!. Nevertheless, the approximation is good due
to the fact that the characteristic decay length ofn(3)(z) ex-
ceeds the screening lengthLn for typical electron densities.
From the computation of the scattering matrix element

^u^cc,n,ki
uH intucc,n8,ki85ki1qi

&u2&average

5nD
~2!E dRiu^cc,n,ki

uVtot~Ri!ucc,n8,ki1qi
&u2, ~23!

it follows that the intrasubband-scattering efficiency de-
creases with increasing wave vector. This explains why the
mobility mn,n of a given subband in Fig. 6 grows with in-
creasing Fermi wave vectorkF,n ~or electron densitynn

(2)) as
long as no intersubband scattering occurs. The effective mo-
bility mn(n

(2)) shows three different regimes corresponding
to the number of occupied subbands:

For n(2),3.131012 cm22 one subband is occupied. Thus
only 1→1 intrasubband scattering processes occur and
mn(n

(2)) grows monotonously.
For 3.131012 cm22,n(2),5.131012 cm22, two sub-

bands are occupied. 1→1 and 2→2 intrasubband processes
occur whereas 1→2 or 2→1 intersubband processes are for-
bidden since the screened Coulomb potentialVtot(Ri) is even
in z @Eq. ~21!# and the wave functionswc,1(z) andwc,2(z)
have different parity~Fig. 5!. Scattering in the second sub-
band is less efficient than in the first one becausen2(z) van-
ishes at the sites of the donor scattering centers, while
n1(z) attains its maximum~Fig. 5!. Nevertheless, the slope
of the averaged mobilitymn(n

(2)) drops by almost a factor of
2 when the occupation of the second subband starts as the
electron-density growth per subband is roughly halved.
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For n(2).5.131012 cm22 three subbands are occupied.
Additional 3→3 intrasubband as well as 1→3 and 3→1
intersubband scattering occurs. Note the discontinuous de-
crease ofmn(n

(2)) due to the instantaneous onset of intersub-
band scattering.

2. Screening in quasi-2D random-phase approximation

An improved screening theory is the quasi-2D random-
phase approximation~quasi-2D RPA! ~see, e.g., Ref. 23!. It
has been applied in several recent studies of transport in

d-doped semiconductors.25–27 We restrict ourselves to the
case of one or two occupied subbands. The scattering matrix
element is given by

^u^cc,n,ki
uH intucc,n8,ki85ki1qi

&u2&average5
nD

~2!

S
„Vnn8

tot
~qi!…

2.

~24!

Vnn8
tot (qi) is the 2D Fourier transform of the scattering matrix

element for the screened Coulomb potential averaged in the
growth direction over the considered electron wave func-
tions. For its evaluation we need the 2D Fourier transform of
the scattering matrix element for the bare Coulomb potential,

Vnn8
ext

~qi!5
2pc0
qi

Fnn8
e, imp

~qi!, ~25!

with the electron-impurity form factor

Fnn8
e, imp

~qi!5E wc,n~z!wc,n8~z!exp~2qiuzu!dz. ~26!

Vnn8
tot (qi) is given by

(
mm8

enn8,mm8~qi!Vmm8
tot

~qi!5Vnn8
ext

~qi!, ~27!

FIG. 5. Self-consistent superlattice potential~left side! and sub-
band edges of occupied electronic subbands with squared envelope
wave functions~right side! for various excitation levels (T50 K!:
~a! Almost completely depleted (Dfnp521.88 V!, ~b! ground state
(Dfnp50 V!, and~c! strongly excited (Dfnp51.29 V!.

FIG. 6. ~a!: Calculated subband mobilities~dashed! and the total
mobility ~solid! as functions of the total electron density.~b!: Sub-
band mobilities~dashed! as function of the subband electron densi-
ties (T50 K!.
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with the static dielectric tensor

enn8,mm8~qi!5dnmdn8m81
e2

2ee0qi
Pmm8~qi!Fnn8,mm8

e,e
~qi!.

~28!

Pmm8(qi) is the ordinary static polarisation part,23 and

Fnn8,mm8
e,e

~qi!5E wc,n~z!wc,n8~z!wc,m~z8!wc,m8~z8!

3exp~2qiuz2z8u!dz dz8 ~29!

the electron-electron form factor.
The quasi-2D RPA summarized above and used in Refs.

25–27 is a mean-field theory which neglects both exchange
and Coulomb-correlation effects. We consider these short
range correlations as local-field corrections within the
quasi-2D RPA ~quasi-2D RPA1LFC!. In the Hubbard
approximation28,29 the dielectric tensor arises from Eq.~28!
by multiplying the polarization part Pmm8(qi) by
„12qi/2(kF,m

2 1qi
2)1/2….

3. Comparison of experiment and theory

Figure 7 shows a comparison of the measured electron-
density dependence of the mobility (T54 K! with the solu-
tion of the Boltzmann equation using 3D LDA, quasi-2D
RPA, and quasi-2D RPA1LFC screening for the impurity
potentials (T50 K!.

The quasi-2D RPA mobility is almost indistinguishable
from the 3D LDA result, which demonstrates that Thomas-
Fermi screening is a reasonable approximation for heavily
dopedd-n-i-p-i superlattices. The quasi-2D RPA1LFC mo-
bility is smaller than the quasi-2D RPA result because ex-
change and correlation effects reduce the screening effi-
ciency ~increase the scattering probability! of the quasi-2D
electron gas.

In the intermediate electron-density regime of 2.531012

cm22,n(2),4.031012 cm22, the quasi-2D RPA1LFC
mobility agrees well with the experimental mobility, in par-
ticular if one keeps in mind that our calculation started from
first principles, containing no fitting parameter but only the

design parametersnD
(2), nA

(2), and d of the investigated
sample. The deviation at higher electron density may be due
to the fact that thed-doped donor layers have a small but
finite width, whereas we assumed a disappearing layer width
for our calculations. The spreading of the donors in thez
direction increases the scattering efficiency and reduces the
mobility especially for the electrons of the second subband,
which have a wave-function node at the center of the doping
layer. Thus it seems reasonable that the experimental mobil-
ity is slightly smaller than the calculations predicted. The
agreement between theory and experiment is also poor at
lower electron density. This finding will be analyzed in terms
of a disorder-induced MIT in Sec. III C.

C. Metal-insulator transition

The fluctuating disorder potential due to the random dis-
tribution of the ionized impurities is responsible for a
disorder-induced MIT. This phase transition can be inter-
preted in a semiclassical or a quantum-mechanical picture—
either as percolation transition of the electron fluid in the
landscape of the disorder potential or in terms of quantum-
mechanical localization of electron wave functions due to
disorder.

In the present section, we use the quantum-mechanical
approach and apply the self-consistent current-relaxation
theory30 to calculate the mobility in the vicinity of the
disorder-induced MIT. In advance we will estimate the den-
sity range in which the Boltzmann transport theory is valid.
It is sufficient to consider the case of a single occupied sub-
band as the strong experimental deviations from the Boltz-
mann result occur in this density regime.

1. Ioffe-Regel rule

The Boltzmann transport theory is inadequate to describe
the disorder-induced MIT because it assumes plane waves
for electrons traveling parallel to the layers, completely ne-
glecting electron localization. Its application is only justified
if the mean free pathl f5vF,1tc,1 of the electrons exceeds
their Fermi wavelengthl52p/kF,1 ~Ioffe and Regel31! and
the typical impurity separation

l f.max~l,nD
~2!21/2

!. ~30!

HerevF,15\kF,1 /mc is the Fermi velocity. Figure 8 shows
that this condition is violated forn(2),2.231012 cm22. The
results of the Boltzmann equation are only valid for higher
electron density, i.e., exactly for the density regime with
good agreement between the quasi-2D RPA1LFC and the
experimental mobility in Fig. 7.

2. Self-consistent current-relaxation theory

Gold and Go¨tze introduced a quantum-mechanical mode-
coupling theory for the description of the disorder-induced
MIT.30 It is based on a self-consistent treatment of current
relaxation and density propagation. Using the continuity
equation they derived a system of equations connecting the
density propagator

FIG. 7. Comparison of the measured electron-density depen-
dence of the mobility (T54 K! with the solution of the Boltzmann
equation for 3D LDA, quasi-2D RPA, and quasi-2D RPA1LFC
screening (T50 K!.
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F~qi ,Z!5
F0~qi ,Z1M ~Z!!

11M ~Z!F0„qi ,Z1M ~Z!…„e11,11~qi!/P11~qi!…
~31!

of the electron gas in the random disorder potential with its
current relaxation kernel

M ~Z!5
nD

~2!

8p2mcn
~2!E dqi qi

2
„V11

ext~qi!…
2F~qi ,Z!.

~32!

Z denotes the complex frequency.

F0~qi ,Z!5
1

Z S P11~qi ,Z!

e11,11~qi ,Z!
2

P11~qi!

e11,11~qi!
D ~33!

is the density propagator of the free-electron gas. The dy-
namic dielectric tensore11,11(qi ,Z) is given by Eq.~28! if
the static polarisation partP11(qi) is replaced by the corre-
sponding dynamic term30 P11(qi ,Z) multiplied by
„12qi/2(kF,1

2 1qi
2)1/2… to include local-field corrections. Af-

ter self-consistently solving Eqs.~31! and ~32!, the electron
mobility in the static limit is obtained from

mn5
e

mc

1

M 9~v50!
, ~34!

whereM 9(v50) is the imaginary part of the current relax-
ation kernel.

3. Comparison of theory and experiment

The results of the Boltzmann equation and the selfconsis-
tent current-relaxation theory~SCCRT! for quasi-2D RPA
1LFC screening are compared in Fig. 9 with the experimen-
tal electron mobility. In contrast to the Boltzmann equation,
the SCCRT reproduces the disorder-induced MIT. The cal-
culated critical electron densitynMIT

(2) 51.231012 cm22 of
the MIT ~by definition atT50 K! exceeds the experimen-
tally observed value of 1.031012 cm22 only slightly. This
deviation may be in part due to the finite experimental tem-
peratureT54 K.

IV. POSITIVE MAGNETOCONDUCTIVITY

We focus now on the magnetoconductivity ofd-doped
n-i-p-i superlattices in low magnetic fields oriented perpen-
dicular to the doping layers. Detailed studies of gated
n-typed-doped GaAs samples have been reported by Asche
et al.32 All formulas in this section apply to the case of one
occupied subband.

According to the scaling theory of localization, 2D metal-
lic systems are weakly localized~for reviews see Refs. 33–
35!, i.e., the electron states of infinite-size systems are local-
ized even for arbitrary weak disorder. Coherent
backscattering reduces the conductivity of finite size 2D me-
tallic systems with lengthL and electron mean free pathl f in
comparison with the classical result of the Boltzmann trans-
port theory atT50 K by

Dsn~L !52
e2

p2\
lnS Ll f D . ~35!

The application of a magnetic fieldB introduces the mag-
netic lengthLB5A\/eB as cutoff for quantum-interference
effects. Hence,L has to be replaced byLB in Eq. ~35!, which
yields a positive logarithmic magnetoconductivity for 2D
metallic systems,

Dsn~B!5
e2

2p2\
lnS BB0

D . ~36!

Electron-electron interaction effects can be introduced in Eq.
~36! by multiplication with a prefactorCB<1.

Figure 10 shows the measured conductivity as a function
of the logarithm of the magnetic field for various electron
densities (T54 K!. In the metallic density regime the ob-
served magnetoconductivity is both positive and proportional
to the logarithm of the magnetic field for 0.05 T,B,0.5 T.
This provides strong evidence of weak localization of the 2D
electron gas in ourd-n-i-p-i superlattice. The slope corre-
sponds toCB'0.6, which is compatible with theory. For
electron densities close to the MIT, the positive magnetocon-
ductivity is strongly reduced, which we attribute to the in-
creasing strength of the disorder potential.

FIG. 8. Electron mean free path, de Broglie wavelength, and
typical impurity separation depending on the electron density
(T50 K!.

FIG. 9. Comparison of the measured electron-density depen-
dence of the mobility (T54 K! with the results of the Boltzmann
equation and the self-consistent current-relaxation theory~SC-CRT!
for quasi-2D RPA1LFC screening (T50 K!.
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V. TEMPERATURE DEPENDENCE
OF THE CONDUCTIVITY

This section is devoted to a detailed discussion of the
temperature dependence of the electron conductivitysn .
Figure 11 showssn as a function of inverse temperature for
various electron densities. Forn(2).2.031012 cm22 the
conductivity shows almost no temperature dependence, i.e.,
the transport in the heavily dopedn layers is of metallic
nature with temperature-independent ionized impurity scat-
tering as conductivity-limiting process. Phonon scattering
appears to be negligible. On the insulating side of the
disorder-induced MIT forn(2)<1.031012 cm22 activated
transport with temperature-independent activation energy is
observed atT>100 K. At lower temperature, however, the
activation energy decreases.

These experimental observations can be explained by in-
troducing a simple semiclassical percolation model:36,37 The
random distribution of the ionized impurities in the doping
layers leads to large potential fluctuations which modulate
the band edges parallel to the layers. For high electron den-
sities the electronic quasi-Fermi levelfn lies far above the
spatially fluctuating band edge@‘‘electron sea with no is-
lands’’; Fig. 12~a!#. The electrons travel more or less uni-
formly through the system only affected by scattering from
the fluctuating potential; the transport ismetallic. If the elec-
tron density is gradually reduced the Fermi level decreases
and islands with zero~local! electron density appear above
the Fermi level. It should be pointed out that the potential
fluctuations increase with decreasing electron density due to
the less and less efficient screening. The percolation thresh-
old Uperc is defined as the energy which marks the Fermi-
level position at which the~infinite! electron sea transforms
into ~finite! ‘‘electron lakes.’’ Forfn,Uperc, electrons have
to pass potential barriers in order to get from one lake to
another@Fig. 12~b!#. This, however, is impossible atT50 K;
the system isinsulating. Nevertheless, atT.0 K electron
transport is still possible forfn,Uperc due to the following
two processes. Electrons may either perform thermally acti-
vated transitionsover critical potential barriers or hopping
~phonon-assisted tunneling! transitionsthrough these barri-
ers, the latter requiring less activation energy. The former
mechanism, which is dominating at high temperatures, re-
sults in an electron-density dependent but temperature inde-
pendent activation energyEact5Uperc2fn . For lower tem-
peratures hopping transport dominates as the phonon-
assisted tunneling probability exceeds the probability for
pure activation.

In the following we give a comprehensive analysis of the
temperature dependence of the conductivity, starting with the
metallic phase. All formulas apply to the case of one occu-
pied subband.

FIG. 10. Experimental positive logarithmic magnetoconductiv-
ity (T54 K! for n(2)51.2, 1.8, 2.7, 3.6, and 4.631012 cm22, cor-
responding to zero-field conductivitiessn51.43101, 8.93101,
3.93102, 6.63102, and 9.63102 mS.

FIG. 11. Temperature dependence of the electron conductivity
for various electron densities (n(2)50.2,0.3,0.4,0.5,0.6,0.7,0.8,
0.9,1.0,1.2,1.5,2.0,3.0,4.0, and 5.031012 cm22). Tc defines the
transition temperature between activated and hopping transport.

FIG. 12. Influence of the random potential fluctuations on the
transport properties of the metallic~a! and insulating regimes~b!.
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A. Metallic phase–weak localization

At finite temperatureT.0 K the phase coherence of elec-
tron wave functions is destroyed by inelastic scattering pro-
cesses with a phase-relaxation timetw . For tw@tc,1 the
electrons diffuse over a mean distanceLT5(Dtw)

1/2 be-
tween two dephasing inelastic processes~experiencing only
elastic electron-impurity scattering processes!, with D being
the diffusion constant. At sufficiently low temperatures
where electron-electron scattering is the relevant dephasing
process, the temperature dependenceLT}T

21/2 holds; cf.
Ref. 34.LT acts as a cutoff for quantum-interference phe-
nomena and replacesL in Eq. ~35!, yielding

Dsn~T!5
e2

2p2\
lnS TT0D . ~37!

Electron-electron interaction effects can be included in Eq.
~37! by multiplication with a prefactorCT;1; see, e.g., Ref.
33.

A rough estimate for the phase-relaxation time atT54 K
may be obtained from the the magnetic-field dependence de-
picted in Fig. 10. Deviations from the logarithmic behavior
in the metallic density regime occur atB'0.05 T as the
thermal cutoff length becomes smaller than the magnetic
length. FromLB'LT we deduceLT'100 nm, which corre-
sponds to a phase-relaxation time

tw5LT
2/D'1310212 s@5310214 s'tc,1 , ~38!

~estimating the diffusion constant according to

D5 1
2vF,1

2 tc,1).
Figure 13 shows the temperature dependence of the con-

ductivity for three different electron densities in the metallic
regime in comparison with the result of Eq.~37!. The experi-
mental data comply with the assumption that the conductiv-
ity increases due to suppression of weak localization by
dephasing electron-electron-scattering processes.

B. Insulating phase–activated transport

1. Activated transport

The conductivity in the thermally activated regime obeys

sn5s0,actexp~2Eact/kBT!, ~39!

with prefactors0,actand activation energyEact. Figure 15~a!
shows the temperature dependence ofsn in the high-
temperature and low-density regime. It clearly follows Eq.
~39!, with boths0,act andEact being electron density depen-
dent. From the limitT→`, we deduce that the prefactor

FIG. 13. Low-temperature conductivity in the metallic regime
for n(2)52.0 (s), 3.0 (h), and 4.031012 cm22 (n), correspond-
ing to zero-field conductivitiessn51.53102, 4.83102, and
8.73102 mS. The solid line was calculated according to Eq.~37!.

FIG. 14. Sketch of the semiclassical Kane model for band tails.

FIG. 15. ~a! Activated transport for various electron densities in
the insulating phase (n(2)50.3, 0.4, 0.5, 0.6, 0.7, and 0.831012

cm22). The horizontal line corresponds to Mott’s minimum metal-
lic conductivity. ~b! Dependence of the activation energy on the
electron density.

54 13 989IN-PLANE TRANSPORT PROPERTIES OF HEAVILYd - . . .



s0,act grows with increasing electron density. Although
Mott’s concept38 of a minimum metallic conductivitys0,min
was disproved by the scaling theory of localization~see, e.g.,
Ref. 33! it is interesting to note, that our sample’s prefactor
has the same order of magnitude ass0,min'3.031025 S.39 A
qualitatively similar behavior has been reported by several
groups for MOS samples.5

For a quantitative description of the electron-density de-
pendence of the activation energy, we use the semiclassical
percolation model. First we have to evaluate the distribution
function P(U) of the potential fluctuations~Appendix D!.
We assume a Gaussian distribution

P~U !5
1

A2pQ
exp~2U2/2Q2!. ~40!

Using the linear quasi-2D RPA for screening the widthQ is
obtained from Eq.~D3! by applying the Parseval formula
calculatingV11

tot(qi) according to Eq.~27! as

Q5S „nD~2!/~2p!2…E dqi„V11
tot~qi!…

2D 1/2. ~41!

Q grows with decreasing electron density because the
screening efficiency is reduced. Equation~41! holds in the
metallic regime in which the linear-screening approximation
is valid. In the insulating regime, however, this expression is
inaccurate because the typical fluctuation width exceeds the
Fermi energy. Hence we develop a simple, yet reasonable
nonlinear model similar to an approach followed in Ref. 1
for 3D heavily doped, heavily compensated bulk material.
We start again with Eq.~D3!, valid for randomly distributed
impurities. In real semiconductor materials, however, the im-
purities are never completely random distributed as the lat-
tice constant of the host material defines a minimum distance
a between neighboring impurities. The width of the potential
fluctuations in a circle of radiusr large enough to contain
many impurities is therefore estimated by

Q~r !5S nD~2!E
a

r

2pr 8dr8„V~r 8!…2D 1/2
5c0~2pnD

~2!!1/2 ln~r /a!1/2 ~42!

if unscreened Coulomb impurity potentialsV(r )5c0 /r are
used. The resulting expression diverges with increasing ra-
dius. The minimum impurity separationa.0 avoids an ad-
ditional short-range divergence, while the long-range diver-
gence is overcome by screening. In order to understand the
screening mechanism, let us consider the standard deviation

DnD
~2!~r !5

~nD
~2!pr 2!1/2

pr 2
5
nD

~2!1/2

Apr
~43!

of the donor density in the circle.DnD
(2)(r ) vanishes with

increasing circle size. Therefore long-range donor-
concentration fluctuations will be neutralized, no matter how
small the electron density is. The screening cutoff radiusr s
of the long-range potential fluctuations can be estimated
from DnD

(2)(r s)5n(2) as

r s5
nD

~2!1/2

Apn~2!
. ~44!

Within this nonlinear-screening approximation the resulting
width of the potential fluctuations is given by Eq.~42! as

Q~r s!5c0~2pnD
~2!!1/2 ln~nD

~2!1/2/Apn~2!a!1/2. ~45!

Q grows only slightly with decreasing electron density. For
our d-n-i-p-i superlattice the prelogarithmic factor is 72
meV. This enormously large value results from the high do-
nor concentration. Surprisingly, the fluctuations are even
stronger than in the linear quasi-2D RPA theory, which we
attribute to the simplicity of the nonlinear-screening model.

Random potential fluctuations generate band tails which
modify the density of states. Applying the Kane model40

~Fig. 14!, we evaluate the modified DOS as a convolution of
the undisturbed DOSDc,1

(2)(e) of the first subband@Eq. ~13!#
and the distribution functionP(U) of the potential fluctua-
tions

Dc,1,tail
~2! ~e !5E

2`

e

dUP~U !Dc,1
~2!~e2U !. ~46!

In the insulating phase defined byUperc2fn@0 only elec-
trons above the percolation levelUperc contribute to trans-
port. Therefore the conductivity is given by

sn'em0E
Uperc

`

de Dc,1,tail
~2! ~e !exp„2~e2fn!/kBT…

'em0kBTDc,1,tail
~2! ~Uperc!exp„2~Uperc2fn!/kBT…,

~47!

wherem0 denotes a mobility prefactor for the conducting
electrons. Thus we obtain

Eact5Uperc2fn ~48!

for the activation energy. The percolation level of our 2D
continuum problem is given byUperc50 because of the sym-
metry of the applied Gaussian potential distributionP(U)
~cf. Ref. 1!. In the limit of kBT!Q the quasi-Fermi level
fn is implicitly determined through

n~2!~fn!5E
2`

1`

de Dc,1,tail
~2! ~e !Q~fn2e!. ~49!

Figure 15~b! shows the theoretical activation energy calcu-
lated from the simple nonlinear as well as quasi-2D RPA
screening as well as the experimental result. The activation
energy obtained with the simple nonlinear-screening esti-
mate exceeds the linear-screening result. This represents the
fact that, as already mentioned, the fluctuations predicted by
the nonlinear model are stronger than those of the quasi-2D
RPA theory. The experimental values lie between the theo-
retical curves. In general, the activation energy is extraordi-
nary large due to the large potential fluctuations. It decreases
with increasing electron density because the quasi-Fermi
level approaches the percolation level. Within the percola-
tion model the critical electron density of the MIT is defined
as the density at whichEact vanishes.
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Quantitative agreement between experiment and percola-
tion model could not be expected due to the following rea-
sons. Instead of performing a self-consistent nonlinear simu-
lation of the potential fluctuations~similar to the
semiclassical analysis provided for heterostructure devices
by Nixon and Davies41!, we used simple screening approxi-
mations and assumed a symmetric Gaussian distribution
function, while the exact distribution function is asymmetric,
which implies a nontrivial percolation level~Appendix D!.
Even more important, the quantization of the electron states
parallel to the doping layers in short-range wells of the long-
range potential valleys of the fluctuating band edge was ne-
glected completely. A quantitative consideration of these ef-
fects is beyond the scope of this paper.

2. Hopping transport

The conductivity in Fig. 11 exhibits a transition from ex-
ponentially to weakly temperature-dependent behavior at
T;100 K. This has been attributed to a transition from ther-
mally activated transport to phonon-assisted tunneling. In or-
der to study the temperature dependence of this hopping
transport, we develop a more quantitative model of the po-
tential fluctuations. For ourd-layer case, we proceed in anal-
ogy to Ref. 42, where the 3D bulk case has been treated.

Figure 16 shows the band-edge profile of a heavily
d-dopedn layer. The potential fluctuates strongly on the
length scale

l bar'2r s'
nD

~2!1/2

n~2! ~50!

due to long-range variations of the impurity concentration
@with r s taken from Eq.~44!#. These fluctuations are accom-
panied by short-range variations. Thus a small number of
potential wells is formed in every long-range potential val-
ley. Because of their low density all electrons condensate in
these wells to droplets. In order to determine the temperature
dependence of the hopping transport, we have to estimate the
typical energy separation between the quantized states in the
droplets. Prefactors of the order of unity will be neglected in
the estimates given below.

The number of electrons in a short-range well is limited
by the number of donors, because otherwise the attractive
well would become a repulsive hump. The maximum num-

ber of electrons in a well of diameterl is thus given by the
standard deviation of the donor number in this area,

Ndrop
~2! ~ l !'DND

~2!~ l !5~nD
~2!l 2!1/2. ~51!

A rough estimate of the depth of typical wells is obtained
from Eq. ~45!, neglecting the logarithmic factor

Q'c0nD
~2!1/2. ~52!

The number of electrons in a well of sizel and depthQ is
not only limited by the Coulomb interaction but also by the
Pauli principle to

Ndrop
~2! ~ l !5 l 2

mc

\2Q5 l 2
mc

\2 c0nD
~2!1/2. ~53!

Combining Eqs.~51! and ~53! for Ndrop
(2) ( l ), we find that the

typical diameter of filled droplets

l q5
\2

c0mc
'10 nm! l bar5

nD
~2!1/2

n~2! ~54!

is identical with the Bohr radius, but much shorter than the
size of the long-range potential valleys.43 Hence several elec-
tron droplets exist in each long-range potential valley. The
level spacing of the quantized energy states in such a droplet
is approximated through division of its depth by its electron
number

De5
Q

Ndrop
~2! ~ l q!

5
c0
2mc

\2 '10 meV!Eact. ~55!

The numerical values for droplet size and level separation
were calculated for GaAs. We want to point out that these
values are independent of both the donor and the electron
density within our model. On the basis of this investigation
of the potential fluctuations, we now analyze the temperature
dependence of the hopping transport.

At not too low temperatures hopping processes at the
Fermi level between neighboring potential valleys dominate
@Fig. 16, case~a!#. Due to their exponential distance depen-
dence, the critical hops which limit the conductivity occur
between the nearest electron droplets. The required phonon
energy is of the order ofDe. This ‘‘nearest-droplet’’ hopping
dominates forkBT'De corresponding toT;100 K, and
leads to

sn's0,hopexp„2AmcEact~ l bar/\!2De/kBT…, ~56!

with activation energyDe!Eact. The first term in the expo-
nent accounts for the involved tunneling process in the WKB
approximation.

For kBT,De it is more favorable to minimize the hop-
ping energy at cost of an increased hopping length. The criti-
cal hops occur still between neighboring potential valleys but
not necassarily between electron droplets of minimum dis-
tance@Fig. 16, case~b!#. The hopping length is now approxi-
mately l bar1d l . Therefore,DND

(2)(d l )5(nD
(2)d l 2)1/2 energy

states of all the electron droplets in the aread l 2 are within
reach. Hence one finds for the level spacing of the energy
states of all available droplets,

FIG. 16. Band-edge profile of a heavily-dopedn-layer with dif-
ferent hopping processes: Nearest-droplet hopping~a!, variable-
droplet hopping~b!, and variable-valley hopping~c!.
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De~d l !5
Q

DND
~2!~d l !

5
Q

~nD
~2!d l 2!1/2

. ~57!

The conductivity is given by

sn's0,hopexp„2AmcEact~ l bar/\!

2~AmcQ~d l /\!1De~d l !/kBT!…. ~58!

The two last competing terms.in the exponent reflect the
additional tunneling process in the WKB approximation and
the remaining activation energy. The conductivity grows for
small d l due to the shorter tunneling path and for larged l
due to the smaller activation energy. The optimum additional
hopping length is obtained by maximization ofsn with re-
spect tod l as

d l opt5S c0\

AmcQkBT
D 1/2. ~59!

Usingd l5d l opt in Eq. ~58!, we obtain an expression similar
to Mott’s law,44

sn5s0,hopexp„2~T0 /T!p…, ~60!

with

T0'
c0

~\/AmcQ!kB
, p5 1

2 , ~61!

the ‘‘variable-droplet’’ hopping law for heavily doped 2D
systems. Its range of validity is determined byl q
,d l opt, l bar. For our sample, close to the MIT at
n(2)51.031012 cm22, we estimate ‘‘variable-droplet’’ hop-
ping to dominate for 10 K,T,80 K.

At still lower temperature critical hops occur between dis-
tant potential valleys. The hopping distance is far longer than
l bar, and the discrete energy states in the large number of
accessible droplets can be replaced by a continuum@Fig. 16,
case~c!#. This ‘‘variable-valley’’ hopping obeys Eq.~60!
with

T0'
1

Dc
~2!~fn!~\/AmcQ!2kB

, p5 1
3 ~62!

if the DOSDc
(2)(fn) at the quasi-Fermi level is energy in-

dependent ~derivation in analogy to Ref. 45, using
\/AmcQ as localization radius of the droplet electrons!. If
the DOS exhibits a linear Coulomb gap at the quasi-Fermi
level „Dc

(2)(fn6e)'e/c0
2
…, Eq. ~60! again holds, but with

Eq. ~61! being exactly reproduced instead of Eq.~62! ~the
derivation runs in analogy to Ref. 46!.

Thus a continuous transition occurs in the hopping regime
with decreasing temperature from ‘‘nearest-droplet’’ hop-
ping to ‘‘variable-droplet’’ hopping, and finally to full
‘‘variable-valley’’ hopping. The temperature dependence al-
ters from activated behavior to Mott’s law. The characteristic
exponent changes gradually fromp5 1

2 to p5 1
3 if the DOS at

the Fermi level is constant. If a Coulomb gap exists,p5 1
2

applies for both ‘‘variable-droplet’’ and ‘‘variable-valley’’
hopping.

At present, a quantitative comparison with experiment is
impossible because not enough data are available for the
hopping regime. Instead we study the transition region be-
tween thermally activated transport and ‘‘nearest-droplet’’
hopping.

3. Transition between activated and hopping transport

Using linear fits for both the activated and hopping re-
gimes, we define an experimental transition temperatureTc
~see Fig. 11!. At the transition temperature, the thermally
activated conductivity@Eq. ~39!# and the ‘‘nearest-droplet’’
hopping conductivity@Eq. ~56!# are identical by definition.
Neglecting preexponential factors, we obtain

2Eact/kBTc'2AmcEact~ l bar/\!2De/kBTc , ~63!

from which we evaluate

Tc5
AEact\

Amcl barkB
5

AEact\

AmckB

n~2!

nD
~2!1/2

. ~64!

in combination with Eqs.~50! and~55!. Figure 17 shows that
the result of Eq.~64! ~using the measured activation energy!
and the experimentally observed transition temperature are in
reasonable agreement. The high values of 40 K<Tc<80 K
reflect the large magnitude of the potential fluctuations in the
heavily d-dopedn layers.

VI. SUMMARY

In conclusion, we performed a comprehensive experimen-
tal and theoretical study of the transport properties of heavily
d-dopedn-i-p-i superlattices in dependence of magnetic field
and temperature in the range of 4–300 K. Our results dem-
onstrate that such structures represent a unique quasi-2D
model system for the investigation of the disorder-induced
metal-insulator transition.

The electron density in the donor layers doped to
6.631012 cm22 was varied between 0 and 5.531012 cm22

by applying a bias voltage between the selectively contacted
n- and p-type layers. Special emphasis was put on the
electron-density dependence of the low-temperature mobility
recorded at 4 K. In the truly metallic regime, mobilities of

FIG. 17. Dependence of the transition temperature between ac-
tivated and hopping transport on the electron density.
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about 1000 cm2/V s were measured in agreement with the
multisubband Boltzmann transport theory. Near the metal-
insulator transition observed at an electron density of
1.031012 cm22, we calculated the mobility with the self-
consistent current-relaxation theory, which even gives an ac-
curate estimate for the electron density at the transition. Con-
cerning the impurity-scattering efficiency and, hence, the
screening of ionized donors ind-doped electron layers, we
found that the 3D local-density approximation works surpris-
ingly well compared with the quasi-2D random-phase ap-
proximation. Evidence of weak localization is provided by
the observation of both positive logarithmic magnetic-field
and temperature dependences of the conductivity in the me-
tallic regime. In the insulating phase, at temperatures above
100 K, we observed activated transport with a huge density-
dependent activation energy of up to 100 meV, in reasonable
agreement with a model based on semiclassical percolation.
At lower temperature the activation energy decreases, which
we attribute to phonon-assisted tunneling through the barri-
ers of the disorder potential. In this hopping regime, we stud-
ied the temperature-dependence of the conductivity based on
the detailed properties of the fluctuating potential in
d-doped layers. The predicted transition temperature be-
tween activated and hopping transport is in agreement with
experiment.
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APPENDIX A

In order to determine the actual doping concentrations,
the p-layer conductance versus bias-voltage characteristics
Gpp(Unp) was measured atT5300 K and subsequently ana-
lyzed. From this result we deducedUnp

th and Gpp(0 V!
/Gpp(Unp

th ) which was transformed into the corresponding
conductance quotientGpp

nipi(0 V)/Gpp
nipi(Unp

th ) of the n-i-p-i
region @eliminating the contact resistances in analogy to Eq.
~C4!#. Remember that only then layers are depleted at
Unp
th , whereas thep-layer conductivity remains finite.
Then we postulated that the actual doping concentrations

are found if the result of a Thomas-Fermi calculation~Sec.
II ! fulfills both

Unp,TF
th 'Unp

th ~A1!

and

p~2!~0V!/p~2!~Unp,TF
th !'Gpp

nipi~0V!/Gpp
nipi~Unp

th ! . ~A2!

The second condition implies that the hole mobility
mp(Unp) is constant in the intervalUnp

th <Unp<0 V at

T5300 K. In order to verify this assumption, we measure
dGpp

nipi/dUnp as well asdp(2)/dUnp by capacitance-voltage
profiling to evaluate dGpp

nipi(Unp)/dp
(2)(Unp)}mp(Unp).

The hole mobility turned out to be almost independent of
Unp at room temperature in the considered range. This result
is not surprising as the hole density is even at the threshold
with p(2)5nA

(2)2nD
(2)51.131012 cm22 still quite high.

Thus we have two linear independent conditions~A1! and
~A2! for the determination of two doping concentrations
nA
(2) and nD

(2) . To find the corresponding values we per-
formed a numerical fit in the two-dimensional parameter
space spanned by the impurity densities, taking advantage of
both the high accuracy and high speed of the Thomas-Fermi
method.

APPENDIX B

The consideration of band tails within the Thomas-Fermi
method~Sec. II! imposes no fundamental problems. Apply-
ing the Kane model,40 we replace the DOS in the density
equation~3! for n(3)(z) by the corresponding DOS including
band tailsDc,tail

(3) (e,z) which is obtained as a convolution of
the distribution function of the potential fluctuations
P(U,z) with the original DOSDc

(3)(e,z) given by Eq.~5!,

Dc,tail
~3! ~e,z!5E

2`

e

dUP~U,z!Dc
~3!~e2U,z!. ~B1!

The numerical effort is, however, considerably increased as
the calculation involves an additional self-consistence loop:
The electron-density profilen(3)(z) depends onP(U,z),
which in turn depends on the screening properties of the
electron gas, i.e., onn(3)(z).

How to calculateP(U,z) is not obvious because a closed
expression for the screening of the impurity potentials valid
for both the nonlinear insulating and the linear metallic
screening regime is not available. We use the semiclassical
3D LDA screening, i.e., a Yukawa-shaped donor potential
@Eq. ~21!#, and apply an approximation with exponential
band tails47 for P(U,z). The fluctuation width is calculated
according to Eq.~D3!.

APPENDIX C

The evaluation of the electron mobilitymn(n
(2)) and con-

ductivity sn(n
(2)) requires knowledge of the geometric

sample dimensions and the contact resistances. Figure 18
shows a typicaln layer of ourd-n-i-p-i sample. The total
layer resistance along the current path consists of the resis-
tanceRb,n

nipi
„n(2)(Unp),mn(n

(2))… of then-i-p-i bar region, the
resistancesRc,n

nipi
„n(2)(Unp),mn(n

(2))… of the twon-i-p-i con-
tact regions, the resistancesRc,n

nini of the twon-i-n-i regions,
and the two contact resistancesRc,n . The measured resis-
tance is thus given by

1

Gnn~Unp!
5

1

Nper
~Rb,n

nipi~n~2!,mn!12Rc,n
nipi~n~2!,mn!

12Rc,n
nini12Rc,n!
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5
1

en~2!mn

Lb,n,i

NperL̄b,n,'
1

1

en~2!mn
Kn
contact

1Rn
contact. ~C1!

Lb,n,i andL̄b,n,' are the length and average width of the bar,
andNper the number ofn layers. These three parameters are
known while the unspecifiable current path in then-i-p-i con-
tact region is hidden in the constantKn

contactand then-i-n-i as
well as contact resistances inRn

contact. Both constants were
determined from Eq.~C1! using a linear fit after the measure-
ment of Gnn(Unp) for several samples with different bar
lengthLb,n,i .

According to Eq.~C1! the transformation formulas from
the measured bias-voltage-dependent conductance into the
electron-density dependent conductivity and mobility run

sn~n
~2!!5S Lb,n,i

NperL̄b,n,'
1Kn

contactDGnn
nipi~Unp! ~C2!

and

mn~n
~2!!5S Lb,n,i

NperL̄b,n,'
1Kn

contactDGnn
nipi~Unp!

en~2!~Unp!
, ~C3!

respectively.n(2)(Unp) was calculated with the improved
Thomas-Fermi method~Sec. II, Appendix B!. Here

Gnn
nipi~Unp!5

1

S 1

Gnn~Unp!
2Rn

contactD ~C4!

denotes the conductance of then-i-p-i region obtained from
the measuredGnn(Unp) data by eliminating the contact re-
sistances.

APPENDIX D

The basis for the calculation of the distribution function
of the potential fluctuations is the linear superposition prin-
ciple for the ionized impurity potentials. This assumption is
justified both for bare unscreened Coulomb potentials and
the linear-screening regime at high electron density if the
quasi-Fermi level is far exceeding the width of the potential
fluctuations. Our results do not apply to the nonlinear-
screening regime for low electron density. For a review on
the 3D bulk case, see Ref. 48.

If we consider onen layer, neglecting all remote doping
layers, the distribution function due toND

(2) positive donors
j with electrostatic potentialV(r i , j ) in a sheet of areaS is
obtained from the following ensemble average over all pos-
sible impurity configurations

P~U !5K dS U2(
j51

ND
~2!

V~r i , j !D L ,
^•••&5S2ND

~2!

)
j51

ND
~2!

E
S
•••dr i , j . ~D1!

A couple of rather tedious transformations finally yields in
the limit S→` for fixed impurity densitynD

(2)

P~U !5
1

pE0
`

ds expS nD~2!E @cos„sV~r i!…21#dr i D
3cosS sU2nD

~2!E sin~sV~r i!!dr i D . ~D2!

The second moment of the generally asymmetric distribution
functionP(U), i.e., the width of the potential fluctuations, is
given by

Q5S nD~2!E dr i„V~r i!…
2D 1/2. ~D3!

The extension of these results from onen-layer tod-n-i-p-i
superlattices with a large but finite number ofn andp layers
is cumbersome but straightforward. However, for the
d-n-i-p-i sample considered in this work, the influence of
remote doping layers is negligible due to the large interlayer
distance compared to the screening length of thep-layer hole
gases. The result of Eq.~D2! is approximated either by a
Gaussian distribution or a distribution with exponential band
tails proposed by Unger.47 Both are exact up to the second
moment, having in particular the correct fluctuation width.
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13 994 54SCHMIDT, MÜLLER, GULDEN, METZNER, AND DÖHLER
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