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We report the results of an extensive molecular-dynamics study of diffusion in liquid Si and Ge (l -Si and
l -Ge! and of impurities inl -Ge, using empirical Stillinger-Weber~SW! potentials with several choices of
parameters. We use a numerical algorithm in which the three-body part of the SW potential is decomposed into
products of two-body potentials, thereby permitting the study of large systems. One choice of SW parameters
agrees very well with the observedl -Ge structure factors. The diffusion coefficientsD(T) at melting are
found to be approximately 6.431025 cm2/s for l -Si, in good agreement with previous calculations, and about
4.231025 and 4.631025 cm2/s for two models ofl -Ge. In all cases,D(T) can be fitted to an activated
temperature dependence, with activation energiesEd of about 0.42 eV forl -Si, and 0.32 or 0.26 eV for two
models ofl -Ge, as calculated from either the Einstein relation or from a Green-Kubo-type integration of the
velocity autocorrelation function.D(T) for Si impurities in l -Ge is found to be very similar to the self-
diffusion coefficient ofl -Ge. We briefly discuss possible reasons why the SW potentials giveD(T)’s sub-
stantially lower thanab initio predictions.@S0163-1829~96!03644-2#

I. INTRODUCTION

The thermophysical properties of liquid semiconductors
are of both practical and fundamental importance. On the
practical side, most modern crystal growth methods, such as
the Czochralski~CZ! process for growing single crystals of
Si (c-Si!, start from the liquid state. From the standpoint of
pure science, the elemental semiconductors Si and Ge are
actually metallic in the liquid state, yet they retain some
traces of covalent bonding. This is most noticeable in the
structure factorsS(k), which shows clear departures from
the close packing typical of simple liquid metals such as Al
and Na.

Among the thermophysical properties, the self-diffusion
coefficientsD(T) of liquid semiconductors are of particular
interest. These are needed as inputs to the fluid-dynamical
equations which describe the crystal growth from the melt.
Likewise, it is important to know the diffusion coefficients of
impurities in semiconductors, in order to develop methods of
purifying the resulting crystals. These diffusion coefficients
are difficult to measure in the earth’s gravitational field, be-
cause the resulting numbers are tainted by unavoidable con-
vective processes. In addition, direct measurements of any
thermophysical properties are quite difficult because of the
elevated melting temperature and the high reactivity of most
liquid semiconductors.1–6 Thus theoretical studies are par-
ticularly needed for understanding these coefficients.

Because of recent advances in computational speed, many
thermophysical properties of liquid semiconductors can now
be plausibly studied using large-scale computer simulations.
In general, these simulations fall into two categories:~i!
‘‘first-principles,’’ and ~ii ! ‘‘empirical potential’’ methods.
First-principles approaches, such as the Car-Parrinello type
quantum molecular-dynamics~CPMD!,7 treat both ionic and

electronic degrees of freedom in the liquid state in a com-
bined quantum molecular-dynamics calculation. By now,
such methods have been used by several groups to calculate
the thermophysical properties of liquid semiconductors.8–13

However, they have the disadvantage of being difficult to
apply to large systems — typically, the simulation cell size is
not more than several hundred atoms — because of the very
time-consuming electronic structure calculations that are re-
quired. A semiempirical tight-binding molecular-dynamics
~TBMD! method,14–16 which treats the electronic structure
more simply, typically allows a simulation cell as large as
several thousand atoms. By contrast, method~ii ! describes
interatomic interactions in the liquid state using frankly em-
pirical potentials which are fitted to various measured quan-
tities. This approach can usually treat much larger systems
and more complex geometries than method~i!, but obviously
has less grounding in the basics of the electronic structure.
The results of these two approaches are therefore comple-
mentary.

The present study describes the results of classical
molecular-dynamics~MD! simulations as applied to atomic
diffusion in liquid Si (l -Si! and liquid Ge (l -Ge! and their
alloys. The empirical interatomic potentials are taken as
sums of two- and three-body potentials of a form originally
suggested by Stillinger and Weber~SW!.17 The MD ap-
proach can accurately reproduce the trajectory of the system
in phase space, given the potential, and can be performed
with millions of atoms, even for SW-type potentials. Hence
the applicability of the classical MD method is mostly lim-
ited by the realism of the model potentials. Also, for this size
of simulation cell, one can study the behavior of even rela-
tively dilute alloys with quite a good statistical resolution.

Of the elemental semiconductors, Si and Ge are commer-
cially the most important. Both are semiconducting in the
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solid phase, but metallic in the liquid phase. Forl -Si, there
have already been a number of classical MD studies using
the SW potential.17–21 These yield a good agreement with
experimental measurements of the melting temperatureTm ,
liquid pair distribution functionsg(r ) and structure factors
S(k), liquid density, etc. The calculated velocity autocorre-
lation functions, however, do differ somewhat from theab
initio calculations.l -Ge has been less studied via classical
simulations, partly because of the absence of a reliable em-
pirical potential.22 Among the published work, Hafner and
co-workers calculated the liquid structure of Ge, Si, and
GaAs using a classical molecular-dynamics method com-
bined with pair potentials and volume-dependent energies
derived from pseudopotential theory.23–25Wang and Stroud
investigated the liquid-vapor interface of several semicon-
ductors, using Monte Carlo simulations and a modified SW
potential.26 The study of impurity diffusion in elemental liq-
uid semiconductors remains unexplored.

The remainder of this paper is organized as follows. Sec-
tion II describes our calculation model and numerical
method for applying it to liquid Si, Ge, and their alloys. Our
results are presented in Sec. III, followed by a brief discus-
sion and concluding remarks in Sec. IV.

II. MODEL HAMILTONIAN
AND CALCULATIONAL METHOD

A. Empirical interatomic potential

Of the many empirical model potentials which have been
developed for Si in various phases,27 that of Stillinger and
Weber17 has been among the most successful in that it repro-
duces many properties of both crystalline and liquid Si. It
takes the following form:

F5(
i, j

« f 2~r i j /s!1 (
i, j,k

l« f 3~rW i /s,rW j /s,rWk /s!. ~1!

Here f 2 is the pair interaction term,f 3 the three-body inter-
action term which stabilizes the tetrahedral structure of bulk
Si, « the potential well depth,s is a length parameter, and
l is a scaling factor which reflects the relative strength of the
two- and three-body interactions. The values of«, s, and
l for Si are shown in Table I. The functional forms and the
associated parameter values off 2 and f 3 can be found in
Ref. 17.

Ge has the same crystal structure and very similar ther-
mophysical properties to Si. A SW potential has been param-
etrized for both crystalline and amorphous Ge,28,29but, to our
knowledge, no single set of parameters has been found for
the SW potential which accurately fits both crystalline and
liquid Ge.

In the present calculations, we obtain the Ge parameters
by two different methods~to be labeled A and B!. In method
A, we simply scale the SW values ofs and« for Si by the
appropriate ratios of the Ge/Si lattice constants and cohesive
energies, as in Refs. 28 and 29. In addition, we adjust the
parameterl ~which measures the relative strengths of the
three- and two-body potentials! in such a way that the calcu-
lated and measured melting temperaturesTm’s are in reason-
able agreement. The resulting values of«, s, and l are
shown in Table I.

In method B, we scale the SW value ofs such thats3n
has the same value forliquid Si andliquid Ge (n being the
atomic number density in the liquid state!. This choice is
motivated by a scaling relation which is proven below. We
also reduce the value of the three-body parameterl slightly
from its value in Si, to reflect the somewhat weaker three-
body forces expected inl -Ge, and we adjust« so as to
reproduce the observed melting temperatureTm of l -Ge.
The resulting values of«, s, andl are also shown in Table
I. With this choice, we obtain a structure factor which is in
much better agreement with experiments than method A.

We have carried out alloy simulations of liquid Ge con-
taining Si impurities, but only for model A Ge. In this case,
for the Ge-Si interactions, we used a SW potential together
with the approximations of Karimiet al.30 and of Roland
and Gilmer31—namely, «Si-Ge5(«Si«Ge)

1/2, sSi-Ge51/2(sSi
1sGe), andlSi-Ge5(lSilGe)

1/2.
In all cases, our actual calculations are greatly simplified

by decomposing the three-body potential part into products
of two-body potentials. With this procedure, direct calcula-
tion of the three-body interactions can be avoided, and New-
ton’s third law is applicable in the three-body interaction
calculations.32

B. Simulation procedure

We carry out our MD simulations within the so-called
(N,E,V) ensemble, i.e., the microcanonical ensemble, in
which the particle numberN, internal energyE, and total
volumeV are held constant. We use a simple cubic simula-
tion cell with periodic boundary conditions. To integrate the
Newtonian equations of motion, we use the velocity Verlet
algorithm,33 with a time step of 0.5 fs. With this approach,
E/N is conserved at least within a precision of 1025 eV even
at temperatures as high as 2000 K.

Typically, we initialized our simulations with the system
in the diamond structure but at the zero-pressure density of
the liquid state at melting, namely, 2.53 g/cm3 for Si and
5.53 g/cm3 for Ge. For Ge containing Si impurities, we ini-
tialized a pure Ge simulation cell as described above, then
replaced 1/32 of the Ge atoms by Si atom to obtain
Ge0.96875Si0.03125. For pure Si and Ge, our cell contained
4092 atoms, and, for Ge0.96875Si0.03125, 21 952 atoms, of
which 686 were Si atoms. The initial velocities were drawn
from a Maxwellian distribution at 500 K. The system total
energy was then increased sequentially by about 0.01 eV per
atom by velocity rescaling. After each velocity rescaling,
6000 MD steps~3 ps! were run in order to determine whether
the system has melted. The system was deemed to start melt-
ing when the diffusion coefficientD(T) became larger than
1025 cm2/s. After the system melted, we ran a total of

TABLE I. SW parameters for Si, model-A Ge, model-B Ge, and
‘‘scaled’’ Ge as discussed in the text.

« ~eV! s ~Å! l

Model Si 2.315 2.095 21.0
Model Ge~A! 1.925 2.181 19.5
Model Ge~B! 1.740 2.215 19.5
‘‘Scaled’’ Ge 1.662 2.215 21.0
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12 000 MD steps~6 ps! after each velocity rescaling. In each
simulation at a given total energyE, the first 2000 MD steps
~1 ps! were discarded for equilibration, and the remainder
were used to accumulate statistical averages.

Once the phase-space trajectory of the system has been
determined, the atomic pair distribution functiong(r ) can be
calculated using the recipe in Ref. 33. The structure factor
S(k), which is related tog(r ) by the equation

S~k!511
4pN

V E
0

`

@g~r !21#
sin~kr !

kr
r 2dr, ~2!

can also be calculated. Herek is the wave number.
In both pure liquid and liquid alloy, we have calculated

the atomic self-diffusion coefficientsDaa for atoms of spe-
cies a, using both the Einstein relation and an appropriate
Green-Kubo relation. In the Einstein relation,Daa is deter-
mined by

Daa5 lim
t→`

1

6t
^r 2~ t !&a . ~3!

The mean-square atomic displacement^r 2(t)&a for atoms of
speciesa is defined as

^r 2~ t !&a5
1

Na
K (
i51

Na UrW i~ t1t0!2rW i~ t0!U2L
t0

. ~4!

Heret0 is an arbitrary initial time,Na is the number of atoms
of speciesa, rW i(t) is the position of thei th atom of species
a at timet, and^ & t0 denotes an average over different start-
ing times t0. In the Green-Kubo approach,Daa is deter-
mined from

Daa5
1

3Na
(
i51

Na E
0

`

^vW i~ t0!•vW i~ t1t0!& t0dt, ~5!

wherevW i(t) is the velocity of thei th atom of speciesa at
time t.

In most cases we have also fitted the calculated
temperature-dependent coefficientsDaa(T) to the Arrhenius
form

Daa~T!5D0expS 2
Ed

kBT
D , ~6!

using a least-squares method. HereEd is the diffusion acti-
vation energy,D0 is the preexponential factor, andT is the
temperature. We emphasize that there is no physical reason
to expect an activated behavior of the diffusion coefficient in
the liquid state; the fit is carried out purely because this form
has become customary. The fitting results are actually sur-
prisingly good.

Finally, we calculated the atomic velocity autocorrelation
functions

Zaa~ t !5(
i51

Na

^vW i~ t0!•vW i~ t1t0!& t0Y (
i51

Na

^vW i~ t0!•vW i~ t0!& t0 ,

~7!

as well as their power spectra

Zaa~v!5E
0

`

Zaa~ t !cos~vt !dt. ~8!

For notational simplicity, we henceforth drop the sub-
scripts onDaa(T), Zaa(t), Zaa(v), and ^r 2(t)&a for el-
emental systems.

C. Scaling of numerical results

Because of the special form of the potential~1!, both the
static and dynamical properties of the SW liquid satisfy cer-
tain simple scaling relations. Since most of these can be de-
rived straightforwardly, we write them down without proof.
First, the internal energyE is, in principle, a function of the
thermodynamic variablesT, V, andN, as well as the param-
eterss, «, andl. But because of the way in which these
parameters appear in the potential,E may be written in the
scaling form

E5N«US kBT« ,h,l D , ~9!

where

h5ns3 ~10!

is a measure of the effective volume fraction occupied by the
interacting atoms. Similarly, the correlation functionsg(r )
can be expressed as

g~r !5GS rs ,
kBT

«
,h,l D , ~11!

while the structure factorS(k) can be written

S~k!5SS ks,
kBT

«
,h,l D . ~12!

To scale the dynamical properties, we note that the natural
units of energy and mass for this potential are« and the
atomic massM , while the natural time unit is

t05SMs2

« D 1/2. ~13!

Hence the scaling form of the diffusion constantD, which
has units of@length# 2/@time#, is

D5sS e

M D 1/2DS kBT« ,h,l D . ~14!

Similarly, Z(t) ~for a one-component fluid! can be written

Z~ t !5ZS tt0 ,kBT« ,h,l D , ~15!

while

Z~v!5ZS vt0 ,
kBT

«
,h,l D . ~16!

Similar scaling forms also hold for the Lennard-Jones po-
tential, which is also described by a range parameters and
strength parameter«. The main difference is that the SW
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potential has an additional dimensionless parameterl, which
simply appears as an extra variable in the scaling functions.

III. NUMERICAL RESULTS

A. l -Si

Since l -Si has been extensively studied using the SW
potential, we present our own results mainly as a comparison
with previous work. Figure 1 shows the calculatedg(r ),
S(k), Z(t), andZ(v) for l -Si at two temperatures. The first
two peaks in the calculatedg(r ) appear at 2.50 and 3.80
Å, in good agreement with experimental values of 2.50
~Refs. 3 and 4! and 3.78 Å.3 Between these two peaks, our
calculatedg(r ) exhibits a weak peak at 3.23 Å which dimin-
ishes with increasing temperature.

The first two peaks of the calculatedS(k) @Fig. 1~b!# oc-
cur at 2.43 and 5.7 Å21, very close to the experimental
values of 2.78 and 5.35 Å21.3,4 In the experimentalS(k),
there is a shoulder on the high-k side of the first peak near
3.3 Å21. At the corresponding position in our calculated
S(k), the shoulder emerges as a weak secondary peak at
1759 K, which evolves into more of a plateau with increas-
ing temperature. It is thought that this peak is probably a
residue of angular~covalent bonding! interactions in liquid
Si. As the temperature increases, the covalency effects
should become weaker in comparison to two-body central
interactions. Such a picture seems to be consistent with the
peak-to-plateau transition in our simulations.

Our results forZ(t) andZ(v) @Fig. 1~c!# are quite similar
to those obtained by TBMD,14 but differ significantly from
the CPMD results.8,9 In the latter,Z(t) is always positive, so
that Z(v) monotonically decreases with increasingv. By
contrast,Z(t) from both TBMD and the present calculations
oscillate around zero~though they differ somewhat in the
peak and trough positions!. Our calculatedZ(t) has an oscil-
lation period of about 0.064 ps. The correspondingZ(v) at
1759 K shows two peaks at\v511 and 57 meV. At 1970
K, the first peak weakens and shifts to 9 meV, while the
second changes little. The TBMDZ(v) exhibits only a
single peak, which appears at a frequency close to our cal-
culated second peak. Ishimaru, Yoshida, and Motooka21 also
calculatedZ(t), using the same empirical potential and inte-
gration method as ours. Their first peak, however, is dis-
tinctly negative, in contrast to ours. We tentatively attribute
these differences to the large MD time step~2 fs! in their
simulations, which may not be sufficiently small to allow for
accurate integration of the Newtonian equations.

Figure 2 displays the self-diffusion coefficientsD(T) of
liquid Si as obtained from the Einstein relation (h points!,
and from the Green-Kubo-type integration of the velocity
autocorrelation functions (1 points!. Evidently, lnD(T) be-
haves in a reasonably linear fashion with 1/T, suggesting an
activated Arrhenius-type behavior, as in Eq.~6!. Table II
shows the Arrhenius parameters as obtained from a least-
squares fit.E andK in the table denote thatDaa(T) is cal-
culated from the Einstein relation and from the Green-Kubo-
like integration ofZaa(t), respectively. The Einstein and
Green-Kubo activation energiesEd agree to within about
0.05 eV. There appears to be no reliable experimental num-
bers with which to compare these results. We emphasize,

however, that these Arrhenius fits are obtained over a rela-
tively limited range of temperatures and diffusion coeffi-
cients, and many other functional forms, such as
D(T)5aT1b, would have given fits of nearly equal quality
to the Arrhenius one.

Our calculated values ofEd are larger than the value 0.27
eV quoted by Kakimoto.20 His calculations, however, are
based on a modified SW potential29 with much smallerl

FIG. 1. Calculated~a! pair distribution functiong(r ), ~b! liquid
structure factorS(k), and ~c! velocity autocorrelation function
Z(t) and its power spectrumZ(v) ~inset!, for l -Si.
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than the original. The measured shear viscosityn(T) is also
sometimes fitted to Arrhenius form.34 The value ofEd based
on the measuredn(T) is about 0.37 eV, which agrees quite
well with our results.

Finally, we briefly compare our numerical results to other
studies. Our values forD(T) ~about 6.3931025 cm2/s at
1700 K! are close to previous SW simulations18 @carried out
in the (N,T,P) ensemble# but smaller than either theab
initio results of about 2.031024 cm2/s at 1800 K,8,9 or the
tight-binding values of 1.1 to 1.731024 cm2/s at 1780
K.14–16The reasons for these differences are not known.

B. ‘‘Scaled’’ l -Ge

There is a strong similarity between the structure factors
of liquid Si and Ge near their melting points. Both have a
principal peak which reaches a maximum of only about 1.7,

compared to the value of 2.5–2.8 more typical of close-
packed liquid metals near their melting point. More strik-
ingly, both have a conspicuous shoulder on the large-k side
of the first peak. While this shoulder is slightly more con-
spicuous inl -Si than in l -Ge, the structure factors, to a
good approximation, are simply scaled versions of one an-
other. This fact suggests the use of a scaled SW potential for
l -Ge. That is, we initially scale« by the ratio of the melting
temperatureTm , and s by a factor such thatnGesGe

3

5nSisSi
3 , where nGe and nSi are the number densities of

liquid Ge and Si at melting. In order to obtain a truly scaled
liquid, we retain the same value ofl, although one might
expect a slightly smaller value ofl for l -Ge than for
l -Si, in order to reproduce the slightly weaker shoulder. The
values of the parameters for ‘‘scaled’’l -Ge are shown in
Table I.

The temperature-dependent diffusion coefficient of scaled
Ge,DGe(T), can immediately be written down in terms of
DSi(T), the diffusion coefficient of Si, using Eq.~14!. The
result is

DGe~T!5
sGe

sSi
S «Ge

«Si
D 1/2S MSi

MGe
D 1/2DSi~T8!, ~17!

where

T

Tm
Ge5

T8

Tm
Si , ~18!

Tm
Ge51211 K andTm

Si51687 K being the melting tempera-
tures of Ge and Si at ordinary pressure.35 If we substitute the
parameter values given in Table I andDSi(Tm

Si) from our
simulations, we obtain

DGe~Tm
Ge!'0.56DSi~Tm

Si!'3.631025 cm2 /s. ~19!

From Eq.~17!, the Arrhenius coefficients of scaled Ge are

D0
Ge5

sGe

sSi
S «Ge

«Si
D 1/2S MSi

MGe
D 1/2D0

Si'0.56D0
Si ~20!

and

Ed
Ge5

Tm
Ge

Tm
Si Ed

Si'0.72Ed
Si . ~21!

C. l -Ge: Model A

Figure 3 shows the calculated mean potential energy per
atom ^F(T)/N& for Ge, as obtained from (N,E,V) MD
simulations and the model-A SW potential for Ge param-
etrized in Table I. As in Si,17 theS-shaped curve character-
izes a first-order solid-liquid phase transition. As is well
known, it is difficult to obtain a reliable thermodynamical
potential melting temperature from (N,E,V) MD simula-
tions, especially when the system exhibits a first-order phase
transition at melting. As energy is added to the crystalline
system, there is first a ‘‘superheated’’ region, just as in real
superheated crystals. At the end of this superheating region,
the system enters a thermodynamically unstable ‘‘retro-
grade’’ regime, where the system starts to melt and the tem-
perature actually decreases during melting even thoughE

FIG. 2. Calculated self-diffusion coefficientD(T) for l -Si,
plotted semilogarithmically vs inverse temperature 1/T. h, results
from the Einstein relation;1, from an integration ofZ(t). Full and
dashed straight lines are the results of least-squares fits of the simu-
lation data to the Arrhenius expressionD(T)5D0exp(2Ed /kBT);
the fittedD0 andEd are shown in Table II.

TABLE II. Self-diffusion activation energiesEd and preexpo-
nential factorsD0 obtained by least-squares fits of the simulation
results to the Arrhenius form. In the calculation method,E andK
denote thatD(T)aa is calculated from the Einstein relation and
from the Green-Kubo-like integration ofZaa(t), respectively.

System Atom type Calc.
method

D0

(31024 cm2/s!
Ed ~eV!

l -Si E 13.53 0.447
K 9.82 0.399

l -Ge ~A! Ge E 6.69 0.332
K 5.30 0.295

Ge E 7.91 0.358
l -Ge ~A! with K 5.63 0.311
Si Impurity Si E 9.80 0.385

K 6.95 0.339
l -Ge ~B! Ge E 4.98 0.262

K 4.54 0.253
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increases. The functional form of^F(T)/N& in this retro-
grade region, as well as the limits of this region, both depend
on the length and heating rate of the MD simulations. If the
heating rate is slow enough and the MD simulations run long
enough, the low-temperature end of the retrograde region can
usually give a good approximation of the potential thermo-
dynamical melting point. In our Si simulations, the retro-
grade region ends at;1700 K, which is just 7 K higher than
the potential melting temperature calculated by Broughton
and Li.18 For our model-A Ge, the retrograde region ends at
;1382 K, about 160 K above the experimentally observed
Ge melting temperatureTm

Ge. Following the retrograde re-
gion, the system enters the normal liquid state, whereT in-
creases with increasingE. Such behavior is similar to expec-
tations in real supercooling and superheating experiments.
All our calculatedl -Ge properties are obtained in the nor-
mal liquid region.

The corresponding liquidg(r ) and S(k) are shown in
Figs. 4~a! and 4~b!. The principal peak ing(r ) occurs near
r52.65 Å, in good agreement with the values of 2.82 Å at
1253 K by x-ray diffraction,3 and of 2.63 Å ~1233 K! and
2.67 Å ~1573 K! by neutron diffraction.4 The second peak
occurs at 4.10 Å, in good agreement with the observed 4.21
Å.3 The calculatedS(k) agrees well with experiments except
in the first peak, which in experiments has a weak high-k
shoulder. In our model-A calculations, this ‘‘shoulder’’ is
actually slightly stronger than the first peak, although both
fall in the correct positions. With increasingT, in our calcu-
lations, the shoulder and peak merge into a single stronger
principal peak. The model-B calculations below give a value
of S(k) in better agreement with experiments.

The calculated model-AZ(t) and Z(v) for l -Ge @Fig.
4~c!# closely resemble those ofl -Si, but differ from theab
initio results for bothl -Ge ~Refs. 10 and 11! and l -Si.8,9

For l -Ge, our calculatedZ(t) has an oscillation period of
about 0.12 ps, about twice that ofl -Si.

In Fig. 5, we plotD(T) for model A l -Ge, as obtained
both from the Einstein relation method (h points! and from
an integration ofZ(t) (1 points!. The linear dependence of

lnD(T) on 1/T suggests an Arrhenius relation, Eq.~6!. The
diffusion activation energyEd and preexponential factor
D0, as obtained from a least-squares fit, are shown in Table
II; both agree to within 0.04 eV.

Our calculatedD(T) is substantially smaller thanab initio
values of 1.031024 cm2/s at 1230,10,11 and 1.43 1024

cm2/s at 1400 K.13 They are also smaller than quoted experi-
mental values,1 which may be influenced by convective
forces.

FIG. 3. Average potential energy per atom,^F/N&, plotted vs
T for model-A Ge, as obtained from (N,E,V) MD simulations. The
line is a guide to the eye.

FIG. 4. Same as Fig. 1, but for model-Al -Ge.
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D. Model-A l -Ge containing Si impurities

Figure 6 shows the calculatedDaa(T) for Ge and Si at-
oms in liquid Ge0.96875Si0.03125, as calculated from the Ein-
stein relation, and fromZaa(t), using model-A potentials for
l -Ge. The calculated Arrhenius parameters are shown in
Table II. Evidently, both diffusion coefficients are quite
similar; presumably, the larger masses of the Ge atoms is
compensated for by the slightly weaker interionic forces, so
that the resulting diffusion coefficients are not very different.

Figure 7 shows the correspondingZaa(t) andZaa(v), as
well as the mean-square atomic displacements^r 2(t)&a for
the same alloy. The linear dependency of^r 2(t)&a of both
species on timet characterizes clear diffusive atomic mo-
tions, as is expected in liquid state. The oscillation frequen-
cies of the Zaa(t)’s are different, presumably reflecting
mainly the differences in atomic masses.

E. l -Ge: Model B

We also carried out simulations on a slight modification
of ‘‘scaled’’ l -Ge. Specifically, we reducel from 21.0 to

19.5 to reflect the expected slightly weaker three-body
forces; and we increase« slightly to give a more accurate
Tm
Ge. The resultingg(r ) andS(k) are shown in Fig. 8. As

expected, the high-k shoulder on the first peak ofS(k) is
weakened by reducingl. This agrees with experiments on
l -Ge,3,4 which show a weaker shoulder than forl -Si. In-
deed, with these parameters, the entire structure factor of
l -Ge agrees well with experiments, in both the first and
higher peaks. We also calculatedZ(t) and Z(v) for these
potentials; they are very similar to that of model A.

Figure 9 showsD(T) for these parameters. It behaves
very similarly to that of model A. Once again, it is substan-
tially smaller than theab initio results and available experi-
ments. The fitted ArrheniusEd andD0 for the model-B po-
tential are also shown in Table II.

IV. DISCUSSION AND SUMMARY

We have presented extensive numerical studies of both
the static and dynamical properties ofl -Si andl -Ge, using
the SW model potential in conjunction with classical MD in
the (N,E,V) ensemble. We use a very efficient numerical
algorithm in which the three-body part of the SW potential is

FIG. 5. Same as Fig. 2, but for model-Al -Ge.

FIG. 6. Calculated Daa(T)’s for model-A liquid
Ge0.96875Si0.03125. In the legend, Si and Ge refer to the atom types,
E andK denote thatD(T)aa is calculated from the Einstein relation
and from the Green-Kubo-like integration ofZaa(t), respectively.

FIG. 7. Calculated ~a! velocity autocorrelation functions
Zaa(t) and its power spectraZaa(v) ~inset!, and ~b! atomic
mean-square displacement̂ r 2(t)&a , for liquid model-A
Ge0.96875Si0.03125, at two temperatures.
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split into products of two-body potentials. To optimize the
agreement of the calculatedS(k)’s with experiments, we
considered two different ways of choosing the SW param-
eters forl -Ge. Both yieldS(k)’s for both l -Si andl -Ge in
generally good agreement with experiments, including a con-
spicuous shoulder on the first peak. But one choice, in which

the SW parameters is scaled by the cubic root of the liquid
atom density, agrees better for thestrengthof that shoulder,
which is weaker than the corresponding shoulder inl -Si.
We find that the calculatedS(k) is consistent with the intui-
tive expectation that three-body forces inl -Ge are slightly
weaker than inl -Si, based on the fact that Ge is a heavier
atom and has a smaller band gap in the solid phase. The
values of the parameters seem to be somewhat different than
those which fit the behavior ofamorphousGe.28

We find that, in all cases, our calculated diffusion coeffi-
cients can be fitted reasonably well to an Arrhenius form.
Although this is a useful analytical form, other analytical
forms@such as a simple straight-line temperature dependence
D(T)5a1bT# would probably fit the data equally well; in
any event there is no underlying physical reason to expect an
activated form for the diffusion coefficient of a classical liq-
uid. Thus we do not ascribe a great physical significance to
this fit.

The calculated self-diffusion coefficients for bothl -Si
and l -Ge are at least a factor of 2 smaller than reportedab
initio results, as well as quoted experimental values. This
should probably not be given great significance at present,
because the experimental results are all obtained in ambient
gravity. They are therefore likely to be strongly affected by
convection, which should give a spuriously large value of the
diffusion coefficient. Nevertheless, there are several possible
reasons why the present calculations may give low values of
D(T) for l -Si andl -Ge. Most importantly, the present cal-
culations describe the entire potential energy of~metallic!
l -Si and l -Ge as a sum of two and three-body potentials.
Since simple metals are known to have a large volume-
dependent, structure-independent term in their energy, this
description is clearly oversimplified. It is not obvious, how-
ever, just how this simplification would affect the calculated
diffusion coefficients; thus the error made in the SW decom-
position remains unknown.

We also carried out a limited number of diffusion calcu-
lations for a model of the alloy system Ge0.96875Si0.03125.
The results indicate that the self-diffusion coefficients of
each component are similar, the influence of the smaller
ionic mass of the impurity being counterbalanced by the
stronger interatomic interactions it experiences. We believe
that this qualitative result may be robust; that is, it may be
valid beyond the empirical potential approach we use to de-
rive it.

In conclusion, our results show that the SW potential is a
useful model forl -Ge as well asl -Si. While its predictions
may not be quantitatively accurate for all properties, this
potential can be used on a very large scale. This fact may
make it applicable to many problems of practical importance
involving liquid Ge and Si, including atomic transport prop-
erties of mixtures, behavior of liquids in narrow channels,
and the properties of liquid-vapor and liquid-solid interfaces.
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FIG. 8. Calculated~a! g(r ) and ~b! S(k) for model-B l -Ge at
two temperatures.

FIG. 9. Same as Fig. 2, but for model-Bl -Ge.
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