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We develop a method to compute shakeup effects on photoluminescence from a strong-magnetic-field-
induced two-dimensional Wigner crystal. Only localized holes are considered. Our method treats the lattice
electrons and the tunneling electron on an equal footing, and uses a quantum-mechanical calculation of the
collective modes that does not depend in any way on a harmonic approximation. We find that shakeup
produces a series of sidebands that may be identified with maxima in the collective-mode density of states, and
definitively distinguishes the crystal state from a liquid state in the absence of electron-hole interaction. In the
presence of electron-hole interaction, sidebands also appear in the liquid state coming from short-range density
fluctuations around the hole. However, the sidebands in the liquid state and the crystal state have different
qualitative behaviors. We also find a shift in the main luminescence peak, that is associated with lattice
relaxation in the vicinity of a vacancy. The relationship of the shakeup spectrum with previous mean-field
calculations is discussefi50163-18206)05943-7

I. INTRODUCTION which may recombine with the electrons in the 2DEG, re-
leasing photons whose energy spectrum contains information
It was first pointed out by Wignémore than 60 years about the state of the electrons. The experiments are per-
ago that an electron gas will undergo a zero-temperaturdprmed for the most part in one of two ways, depending on
quantum phase transition into a crystalline phase as the dethe nature of the holes used. One mefhisdto excite elec-
sity is lowered, since quantum fluctuation effects diminishtrons out of the valence band, leaving holes behind which,
more rapidly than Coulomb correlation. Only two decades
ago, convincing evidence of an electron crystal was pre-
sented for a system of electrons on a He surfatke elec-
tron densities attainable in this fashion are extremely low,
however, making this an unattractive system for observing
the quantum phase transition. Semiconductors are much
more attractive systems in this sense, because one has grez &
control over the electron densities, through dopant concen-
trations. A particularly good candidate for observing the
Wigner crystal(WC) is the two-dimensional electron gas
(2DEG), as realized in modulation-doped semiconductors.
Samples of this type are now available with such high qual-
ity that the electron ground state is not necessarily dominated
by disorder. The possibility of observing the WC is further
enhanced by the application of a strong perpendicular mag-
netic field, which quenches the kinetic energy, and allows the
formation of a crystal state at higher densitigsr which
disorder effects are less importathan would be possible
without it. Shown in Fig. 1 is a calculated electron density
profile for a strong-magnetic-field-induced Wigner crystal.
Experimental evidence which may be associated with the
WC in 2DEG’s has accumulated over the last several ykars,
including rf data, transport experiments, cyclotron resonance, FIG. 1. The density profile for a strong-magnetic-field-induced
and photoluminescend®L) experiments. The last of these wigner crystal(for v=3 with three electrons per supercell in the
probes has produced much intriguing data in recent y&ars. presence of electron-hole interactioThe white region indicates
In general, such experiments are performed by creating holesaximum density.
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due to the band structure of the system, may relax to posiiquid and solid states. Interestingly, for stronger electron-
tions close enough to the electron layer to allow radiativehole interactions, a shakeup satellite persists even above the
recombination with the 2DEG electrons. In principle thesemelting temperature. We expect this sideband to lose oscil-
experiments have the advantage that the holes, if far enoudator strength relative to the main peak, either with increas-
from the electron layer, may be itinerant, allowing them toing temperature or decreasing electron-hole interaction
probe in some sense the global structure of the 2DEG. Itrength. The latter may be accomplished by examining PL
practice, however, not much is known about the initial statd’om several samples with different acceptor — 2DEG set-

of the holes, making a realistic analysis of these experiment3ack Qistanceé. o ,
difficult. This paper is organized in the following way. In Sec. I,

we review the mean-field theory for the photoluminescence,
as well as the time-dependent Hartree-Fock approximation
or collective modes in strong magnetic fields, and show how
hey may be combined to calculate the phonon shake-up ef-

tively charged. By shining light of an appropriate frequency ect.onl photcl)lummgscer}ﬁe. W; preksent and dlscTsz'our nu-
on the sample, electrons are excited out of the core states gyerical resu ts In ec. 1ll, and make some concluding re-
the acceptors, leaving behind neutral, metastable objects Wigqarks in Sec. .IV' A bnef_ acécount of some of these results
tightly bound core holes. These holes, which by design hav as been published previousty.

a known initial state, may radiatively recombine with elec-

trons in the 2DEG. A mean-field analy¥ief this type of IIl. THEORY

experiment showed that the PL spectrum has, in principle, | this section, we first set up the theoretical framework
characteristic signatures of the WC: a “Hofstadter butterfly” by reviewing the general expressions for the time-dependent
(Ref. 8 spectrum for the case of weak inte.ra_ction.s k?etwee'i-lartree-Fock approximatiofTDHFA) of the 2DEG in a

the electrons and th(_a hole, and a characteristic shift in the Pétrong magnetic field and outlining the mean-field theory for
spectrum upon melting of the crystal. , _ photoluminescence from the Wigner crystal. Then we intro-
_ In this paper, we go beyond the mean-field approximayce the expressions for collective modes in Wigner crystal.
tion, to examine shakeup effects on the PL spectrum; i.e., Weina|ly we present the detailed formalism to calculate the

will examine how the collective mode spectrum of the WC ¢y|jective modes shake-up effects on the photoluminescence.
(which, at long wavelengths, corresponds to the classical

phonon spectrupn and the fact that some of these modes
may be excited in the electron-hole recombination process,
modify the results of the mean-field theory. We will consider It is well known that noninteracting two-dimensional
in detail only the case of a localized hd¥é;however, we electrons in a perpendicular magnetic fiel8<—Bz)

will use a model that is simpler to analyze, in which thehave an energy spectrum of discrete Landau levels:
impurity containing the core hole isitially charged, and is En=(N+3)iw., N=0,1,2 ..., wherew.=eB/m*c is the
neutral in its final state Our method is purely quantum me- cyclotron resonance frequency. Working in the Landau
chanical, and treats both the tunneling electron and the othgauge A= —Bxy), and with periodic boundary conditions
lattice electrons on the same footing. Furthermore, we emin they direction, the single-particle eigenstates are given by
ploy a quantum treatment of the collective modes to account 1

realistically for contributions both from small and large _ - : 2 _

wave-vector collective excitations of the lattice. This ap- (rINX) Lyexp(|Xy/IC)qu(x X). @)
proach has the further advantage of depending in no wa

upon a harmonic approximation for the lattiteThe method one-dimensional harmonic-oscillator eigenstate with oscilla-

allows in principle for a shakeup of arbitrary numbers of .

M . . . tion centersX. The allowed values oK are separated by
these excitations, although in practice we will adopt an ap- 12/L. The deaeneracy of each Landau level is aiven b
proximation scheme in which at most one is excited at 5\277 ¢y 9 y 9 y

— 2 :
time. Since we are working in the strong-magnetic-fieldg_S/ZWIC' with S the area of the 2DEG. .
limit, we consider only excitations within the lowest Landau 10 address the problem of photoluminescence from a
level (LLL). Our main results are as followél) Shake-up strong-magnetic-field-induced two-dimensional WC, we now

effects shift the main PL peak to higher energies than foun§°nsider a system with an interacting 2DEG and a layer with
in a mean-field treatmerit(2) The Hofstadter spectrum is a low density of holeseither Ioc_allzed or itineranseparated
eliminated from the PL spectrum, even in the case of weal®m the electron plane by a distandgin the presence of a
electron-hole interactioAs(although we will argue below Stong perpendicular magnetic f|ezld. We assume the mag-
that it survives in the itinerant hole cdseThe sudden shift Netic field is very strong; i.ef,w.>€°/ ea, and the electronic

of the PL spectrum upon melting, by contrast, survives evefilling factor v=nhc/eB<1 in the WC regime, so that we
when shakeup is includedB) Phonon sidebands appear thatc@n assume only the lowest Landau level is occupied by
correspond to maxima in the phonon density of StéBE3S): electrons_. The genera_l many-body Hgmlltonlan can be ex-
some(but not al) of these sidebands are results of van HovePressed in terms of single-electron eigenstadtesy N=0
singularities in the DOS, and so are characteristic of an oréigenstates are includeds follows:

dered WC state. For the case of weak electron-hole

interactions, we do not see these sidebands in the liquid H=Hot Heet Hen, 2)
state, so that phonon satellites uniquely distinguish betweewhere

A second class of PL experimefifauses specially grown
samples in which dopants — typically Be acceptors — ar
purposely grown into the sample at a well-defined distanc
from the 2DEG. In their ground state, the acceptors are neg

A. Single-particle properties

Yiere | .= (fc/eB)¥2 is the magnetic length angy, is the
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where
H0=; %ﬁwca;r(ax+2i Enclci,
1 :
1 p(G)= §x§<2 e—(|/2>GX(x1+x2)5X1’Xz_Gylga;r(laxz_ (6)
Heem5g2 2 Vel@)(Xalexp(ia-n]Xs) i
1XeXe%4 One may easily show thatp(G=0))=(N¢)/g=v, where
X (X,lexp(—iq- r)|X3)aI(la>T<2aX3aX4, N, is the electron number operator.

3) In terms of many-body operator decomposition, the
Hartree-Fock approximation can be expressed as

eh SE E E Veh(Q)

] t ot —(at t t t
e ay, ax,ax,ax, = (ax, ax,)ax,ax, ~ (axax,)ax,ax, (7)

X(Xqexp(iq-r)|X)(ilexp(—ig-1)[j)a) ax,clc; . _ _ _ _
In this effective mean-field theory, a single electron moves as
Here H, is the single-particle zero-point energy which is if in an average external potential provided by other elec-
constant.He is the electron-electron interaction, in which trons through both the dire¢first term) and exchangésec-
V¢(q)=2me?/ eq is the two-dimensional Fourier transform ond term interactions. For localized holes which are very far
of the Coulomb interactiorf,, is the electron-hole interac- away from each other, we can also apply the approximation
tion, in whichV¢(q) is the Fourier transform of the interac- that <c c;)=4;;. After some algebra, the Hartree-Fock
tion between one electron and one hole. For a system with Hamiltonian for the 2DEGwith an electron-hole interaction
small density of holes, it is a good approximation to alsoappropriate for a localized hglén the lowest Landau level
ignore hole-hole interactions, which are extremely small incan be written as
comparison withHg,. In practice, we may also dropi,
because it is just a constant. The matrix elements in(8q.

_c2?
are given by Hir=92 [W(G)(p(G))+ Ve G)e™ ' ]p(G),
i q2|2 (8)
. _ _ _ Cc
(Xalexpliq-n)[Xz)= ex;{ 2 Ax(X1+X2) 4 wheren,, is the density of holes. Note that we ignore a nega-
tive sign in front of G because of apparent symmetry in this
X 5><1,><2+qu§ . (4) problem.W(G) is the effective Hartree-Fock interaction,
It is well known that the ground-state configuration for a g2
two-dimensional Wigner crystal is a triangular lattféeln W(G)= 2| G, e GAe2(1— 550

the presence of electron-hole interaction, the Wigner lattice

should deform around the position of the hole. In order to a2, G222
take into account this effect, while still taking advantage of —|=| e © Ic/4|0( °) , 9)
the periodicity of the WC, we divide the WC system into 2 4

hexagon unit cells. Each supercell contains a finite number
of electrons, and one holgn the center, for the localized
hole casg The finite size of our unit cells will not be quan-
titatively significant for large enough supercells or for weak
(or vanishing electron-hole interactions. In practice we have
computed spectra with up to 27 electrons per supérémil
the mean-field approximation described below, but for only a
maximum of three electrons per unit cell when shakeup eflt is convenient to define the Fourier transform
fects are included in the calculatidhThus our results for
shakeup effects in the presence of strong electron-hole inter- 1 i
actions should be taken as only semiquantitative. Denoting®(CG:7)= gxzx e ('/Z)GX(X1+X2>5x1,x2+ey|§G(X1,Xz;T)-
b as the distance between the centers of nearest-neighbor v (11)
supercells, then the basis vectors for the superlattice are
L,=b(1,0,0) andL,=b((+/3/2),1,0)). Then the basis vec- We will use this form of the Fourier transform throughout
tors for the reciprocal lattice are given B =Gy(1,0,0) and this work. The TDHFA is derived by writing the equation of
G,=Go(— 3,(1/3/2),0, whereG,y= ((1/3/2)b) L. motion for the Green’s function,

In a lattice system, all the expectation values for single-
particle properties in momentum space are nonzero only for ¢ d t
momenta equal to reciprocal-lattice vectors. We first define 5, G(X1,X2;7) == —~(T.ax,(7)ax,(0))= = 8x,x,6(7)
the density operator

herel o(X) is the modified Bessel function of the first
kind .13
We define the single-electron Green’s function

G(X1,Xz:7)=—(Ta,(r)ax,(0)). (10

a2 —(T[H= peNe,ax J(1)ay (0)). (12

_ 2 i, _ _ 2
n(G)—J dr exp(~iG-nn(r) gp(G)ex;{ 4 |’ One can compute the commutators explicitly, and simplify
(5)  the result using a Hartree-Fock decomposition presented in
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Eq. (7). After Fourier transforming with respect to time, the annihilation operator. As written, the initial state is actually

equation of motion foiG(G, w,) can be written as higher in energy than the final state, and we find it conve-
nient to rework the problem in terms of absorption rather

. . , , than emission. To accomplish this, we add a term
+ — =
(1ont e G(Gilwp) Gz B(G.GNG(G 1w =g, H'=—Eqcic, to the Hamiltonian, where]) creates a local-
(13 ized hole, and take the limiEy—<. It is not difficult to
where show
B(G1,G2) =[W(G1—Gp){p(G1—G3)) . P (w—Eyp)
) P(w)= lim ——— % (19)
NV Gy~ Gy)e (Ci-C2224) o Mo(Eo)
f 2
x gl(G1xC2)le2, (14 whereP’ is the absorption spectrum of the Hamiltonian, and

ny is the average occupation of the hole state, which just
becomes one in the limE,— . The absorption spectrum is
identical to Eq.(18), except one needs to add the energy
E, to all the quantitieE,, in the expression. After standard
V(G)V (G=0) manipulations;* one can show that

We can directly diagonalize matri8 and obtain its eigen-
vectorsV;(G) and eigenvalue&je, after which the Green's
function can be written as

S )= 2 et o
. )= -2 '
:Z We(G,]) (15) P (w)— p WkB—TImR(wﬂé) (20)
] iwn""“e_w?.

The density of states for electrons is then given by The functionR(w+i6) is a response function, which con-
tinued to imaginary frequency has the form

D(E)=—%Im(G(G=O,E+i5)) %) 5
R(iwn)=—f (T,L(7)LT(0))e'nd7. (21
B 1I 2we(G:o,j) 1 16 0
T 4 Earris)l2m2) (19

) ) To compute this quantity, we considéor the case of a
Finally, the density operator can be expressed as localized hole stajeinstead of a single hole, a periodivex-
_ agona) lattice of them, with a unit cell that contains as many
(p(G))=G(G,7=07) electrons as can be handled numerically. We allow neither
interactions between holes nor tunneling between hole sites,
=Z VJ-(G)VJ*(G=0)fFD(wf—,ue). a7 so that in the limit of large uni{supeicells, one should
! expect the result to be the same as for the isolated hole case.
Here fep(X)=[1+exp(Bx)] ! is the Fermi-Dirac distribu- EXxpanding the electron and hole creation and annihilation
tion. Since(p(G=0))=», we can self-consistently calculate operators irL in Eq.(21) in terms of electronic states in the
the chemical potentiak,, the density of states, and the elec- lowest Landau level and localized hole states, one finds
tron density inG space. By iteratively solving Eqg13),
(15), and (17), we can calculate the density configurations NS -
for the Wigner crystal. R(“’):ﬁ% R(G,w)e &71c/ (22)
Cc

B. Mean-field theory for localized holes

. whereR(G, w) is the Fourier transform of the quantity
We now present our theory for photoluminescence from

the WC in a strong magnetic field. The photoluminescence

intensity is given, for a single localized hole state, by Rij(Xy, X, 7) = —<TTaxl(T)Ci(T)C;r(O)aiz(O))' (23)

| A

P(o)= 2> X e =*T(moL|n,h)] and
Z n m
X 8(w—E,+E,), (18) 1 i
n m Rij(G,T):_ 2 e*ng(X1+X2)5X1'x2+G IzRi,j(leXZ;T)-

whereZ=3, e En/*8T |n h) is a many-body electron state 9%, Ve
with energyE, and N electrons when there is a core hole (24

present{m,0) is a many-body electron state with— 1 elec-

trons and energ¥,; o is the luminescence frequency; and  We write down the equation of motion for
L=/d?r 4(r)¢(r) is the luminescence operator, with Rij(X1,X2;7) in terms of its commutator with the Hamil-
¥(x) the electron annihilation operator amgi(x) the hole tonian,



T Ry (g Xai )= — (T T(0)a}
S Rii (X1, X1 7)== —(T.ax (m)ci(7)cj(0)ay,(0))

([ax,ci.cax,1)(7)
—(T [ Her— u(Ne—Np),ax,ci]
x(m)clak,), (25

where Hqq=H—Eo=cic/, andN, and N, are correspond-

ing electron and hole number operators. Following steps
closely analogous to those used to find the equation of mo-

tion for the Green’s function in Sec. Ill A above, the Hartree-
Fock approximation for Eqi25) become$®®

—(0+i6)R;j(G,w)
=(p(G)) &+ (Eo~ 3hw—Ep) Ry (G, o)
—g W(G')(p(G"))
x e 1(GXCNIR (G~ G, w)

1 ,
522 Val ~G')(p(G"))e ™ 1R, (G,w)
cG’

S Veh(G’)8_6,2@/4_i<GXG/)I§/2Rij(G—G’,w).
GI

(26)

It is apparent that the solution to
Rij(G,w)=R(G,w) §;; . This result may be expressed in the
form

> [(0+i6+Eg—wg) 8.6 —B(G,G")IR(G’,w)
G!

—(p(G)), 27)

where

1
0o= ot Ent 53 (p(G))Ve —Ge e,
ZWIC G
29)

andB is exactly given by Eq(14).

We see that the form dR is essentially that of the elec-
tron Green’s function as in Eq13). By inverting Eq.(27),
we have

R(G,0)=—2, [(0+i8+Eq—wo) S ar
G!

~B(G,G")] Yp(G")
Vi(G)V] H(G"){p(G"))
w+id— wo—a)?

We(ij)fFD(w?_ He)

10— wn— wt
wtid—wo— w;

iG’

3

(29
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FIG. 2. Electron density of states and PL spectrum for a perfect
WC with no electron-hole interaction far= % (a) Electron DOS
below chemical potential at zero temperatyireset: DOS above
chemical potentia) whereE.= 3w, . (b) PL spectrum at different
temperatures: T=0.0049 ,o; (solid), T=0.45T; (dotted,

this satisfies T=0.9T,, (dashedl andT=1.12T ¢ (inset: dash-dotted

Here we have already droppdsfl, because it cancels out
when we calculate the final photoluminescence power using
Egs.(19) and(20). We can see th& has poles at precisely
the same energies as the poles in the electron Green’s func-
tion for the system in the presence of the external interaction
Ve, due to the holé® up to the constant energy shidi,.
However, the residues of the poles are not the same as for the
Green’s function. The residues are determined by the over-
laps of the mean-field single-particle electron wave functions
with the hole wave function. It is thus appropriate to think of

R as a weighted Green'’s function. Sineé(w) involves the
imaginary part of R@), the photoluminescence spectrum at
this mean-field level represents a weighted measure of the
single-particle density of states of the electron system with a
localized hole.

The results of this mean-field approach have been dis-
cussed previouslyso we only briefly summarize them here.
The DOS for a perfect WC is a Hofstadter butterfly. For a
fractional filling factorv=p/q, this hasq subbands, and, at
zero temperature, the loweptbands are filled. We should
expect to observe this structure; i.p.Jines for v=p/q, in
the photoluminescence spectrum of an ideal Wigner crystal
if we turn off the electron-hole interaction. Presented in Fig.
2 are the density of state®) and the photoluminescence
spectrum(b) for an undisturbed Wigner crystal at=% with
no e-h interaction. We can clearly see that the DOS has
seven bands, with only the lowest two occupied at low tem-
perature. As expected, the photoluminescence has two peaks
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with a splitting identical to that of the DOS. An observation where

of this behavior in experiments would directly confirm the _ _

presence of a Wigner crystal in the system. Furthermore, as a T1=0([p(X1,X2),p(X3,X4)]) (1)
function of temperature, the PL spectrum shifts very sud-

denly as the crystal melts to higher frequencies. This energy =g[(a;r<lax4> 5X2X3_<a;r<3axz>5xlx4] o(r). (34
shift represents the latent heat of melting of the crystal. Once\/e define the Fourier transform of this quantity as
again, observation of this behavior would directly confirm
the presence of a WC in the system. 1

While these effects are relatively simple to understand Tia,q 7)==, eiilqu(Xl+X2)5X1,X27q
within the mean-field approach, one needs to question X1Xz Y
whether they can survive fluctuation effects. In particular, the 1
smallness of the Hofstadter gaps in Fig. 2 suggest that they X=> e i/zq;<x3+x4>5x X+’
may not be robust enough to survive beyond the mean-field 9 X3X4 ey
level. We will see for localized holes that this is indeed the XT4(Xq, X1 Xg, Xa) 7, (35)

case, and that this structure is replaced by a spectrum that

reflects the collective-mode density of states rather than thso that, in frequency and momentum space,
mean-field single-particle spectrum. To show this, we pro-

ceed by reviewing how the collective modes are computed in "Fl(G+ q,G' +0q; o) :<p(G_G')>[e*i<G+Q>X<G’+Q>/2
the TDHFA, and then show how they may be incorporated

into the PL spectrum. —gl(G+ax(G'+q2) (36)

The most important terml', comes from the electron-
electron interaction and electron-hole interaction in the

We define the dielectric function as the density respons¢{amiltonian. Following the method of Ref. 13, a Hartree-
of a two-dimensional electron system to an external perturFock decomposition is applied to this term, to obtain
bationU(p,7), i.e.,

p(—a,7)) o To(G+0,6'+a;) =213 [W(G-G"){p(G~G")
5U(p,7’) :_X(paqu_T ) (30) G
+NpVer(G—G")e (68"

C. Collective modes in Wigner crystal

In the special circumstance of Wigner crystal, the density-

density correlation function has the following special form: X sin (G+q) X (G"+0)/2]
x(G1+09,G,+ ;1) =—g(Th(G1+09,7)p(—G2—q0)), , y
(31) X Xorer(0;7)—2i 2 W(Q+G")
GH
where p=p—{(p). From now on, we denotex(G; s
+9,G,+0;7) as xg,c,(0: 7). The Fourier transform of this X{p(G=G"))sin(G+q)
response function contains poles at the collective-mode fre- X(G"+q)/2)xgra:(0; 7). (37)

guencies of the system. This function can be numerically i ] -~

computed using a generalized random-phase approximatiofus the equation of motion fofge/(q) at a specific wave

(GRPA) (Ref. 13 which does not assume small displace-Vectorq in the Br|I.Ioum zone can be expressed in terms of

ments of the lattice electron@s is necessary in classical the following matrix equation:

approaché¥), and thus gives a realistic dispersion relation ) ~

for the collective modes across the entire Brillouin zone. In [w+i6—A(q)—D(q)W(aQ)Ix(a)=D(a), (39

this subsection, we present the formalism for this GRPA cal

culation including the electron-hole interactidihe mag-

netic lengtht.= (fic/eB)* will be set to unity] Acc (@) =2I[W(G—G'){p(G—G'))
In real space, the dielectric function is given by

x(X1,X2;X3,X4;7)=—g(T,p(X1,X2)(7)p(X3,X4)(0)),

where

+NpVer( G— G')e(6-C"4]

(32 Xsin(G+q) X (G'+q)/2],
~ _ At _/at ; )
vyherep(xl,xz) axllax2 <axlax2>- The equation of mo Dea(a) = — 2i{p(G— G (G+q) X (G’ +q)/2],
tion for y can be written as (39)
Ix(X1,X5;X3,Xy; _ - W
X ZT X = —g([p(X1,X2),p(X3,X4)])8(7) Wee(9)=W(q+G)dge-
N The collective modes are given by the eigenvalues of the
—O(TLH—uN,p(X1,X2)] matrix A+ DW. Note that generally this matrix is not Her-
X(7)p(X3,X4)(0)) mitian. However, we can still diagonalize this matrix nu-

merically and it turns out that all the eigenvalues are real
=—T,—T,, (33)  (and symmetric around zerdor this matrix.



D. Phonon shake-up theory

We now incorporate the effect of collective modes into
the photoluminescence spectrum calculation. Recall that
need to calculate the quantity

_ B .
Rij(Xy, Xasiwp)=— fo (TTaxl(r)ci(T)c;‘a;‘(z)e'“’nfdf.

Working in the lowest Landau level, the equation of motion
for Rjj(X1,X2;7) is given exactly by Eq(25). In the deri-
vation of the terms for contribution from the electron-

electron interaction and the electron-hole interaction, by apz(

plying the many-body Hamiltonian given by E@3), we
encounter the following correlation function:

Cij(X1X2:XaXq; 7, 1) = —g(T,a) (1")ax,(7')ax,(7)

Xci(nc](0)ay(0)). (40

In the momentum space, this correlation function can be

written as

1 :
, It — — 12 gy(X1+X5)
Clj(qiq T vT) gX§<2 € T2 5X1,X2*Qy

1

X= > e

9 X3X4

X Cij(X1,X2;X3,X4;7", 7).

—i12q)(X3+Xy4)
X 5X3,X4+q;

(41)

Then the equation of motion fd;; (G, w) may be written as

E_Rij(GyT):<P(GaT)>5ij5(7)_60Rij(Ga7')

_n“EG, Ve G')el®'<62-6"%4R (GG, 7)
1 ' )

i E Ve(q)Cij(—a,9+ G)eiCxa2-a’12
Sq#o

_%é VeH(Q)Cij(_q,G)e_iq'R‘_qZM- (42

In Eq. (42), V.(q) andV.{(q) are the Fourier transforms of
the electron-electron and electron-hole interactions, respe
tively, € is the energy of the localized hole, and the sum
over G’ is only over reciprocal-lattice vectors, while the
sums overg are over all wave vectorsR; specifies the
position of the hole in theith unit cell, and
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To include shake-up effects, we instead extend this hier-
archy to one more level, writing down a self-consistent form

wior Ci; which explicitly contains the collective-mode excita-

tions. To carry out this program, it is convenient to implicitly
define a self-energy by writing the last two terms in E&R)
as

B
- L d73(G,G = 7Ry (G, 7).
G!

The HF approximation for the PL is equivalent to replacing
G,G';7—17') by 3"N(G,G")8(7— '), where

EHF(G,G')IW(G—G’)<p(G_G';7.)>etiG’/2

1
+ g2 Vel @{p(~a.7) (43)

x e CMiaRi s (44)

and W is the sum of the direct and exchange Coulomb
potentials>!® (Note here that we keep the negative sign in
front of g because it is not necessarily a reciprocal-lattice
vector) Thus we need to calculate the self-energy

S=3HFs(r—7")+ 63

beyond the mean-field approximation.

To generate a self-consistent equationdgr, we take a
functional derivativ&® of Eq. (42) with respect to an external
potential U which contributes an extra term in the Hamil-
tonian

Hex= 2, U(X1,X2)a) ax.,.
XX 1

172

In doing this, it must be noted that a term directly coupling
the Green’s functiorR;; to the external potentidl,

—2 Rj(p,)U(G—p,r)e!PC*,
p

must be added to Eq42), and the sums over reciprocal-
lattice vectors must be extended to all wave vectors, because
U is not in general commensurate with the lattice.

We introduce a generalized Green’s functirsatisfying

Rij(p.7)=2 F(p.p".7){p(P"))- (45)
p

762/4 . . -
{p(G,7)e is the expectation value of a Fourier Compo- 1 equation of motion for the generalized Green’s function
nent of the electron density. While this quantity is indepen-

. o - can be obtained following Eq42),
dent of 7 in the ground state, it will be convenient for later
purposes to leave it formally as an argument of the density.,
The method for computing these Fourier components has—F(p,p;,7— 7)
been described previously? Equation(42) represents the °7
first in an infinite series of equations relating arparticle
Green'’s function to the+ 1-particle Green’s functioff In
the mean-field approximation, it was simplified by employ-
ing a Hartree-FockKHF) decomposition of Eq(40), which
converts Eq(42) into a self-consistent equation f&X; 2

= 5pp15( 7—171) — €F(P,P1,7— 71)

—NpY, Ve @€' *P2-a4E (g —q,p, 7~ 1)) (46)
q
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B - _ It is this form of the equation of motion fd®;; that is most
- f dr(p,q,7—7)F(Q,p1,7— 71). (47)  convenient for taking a functional derivative. Using standard
a0 methods;® we find that the Green’s functior;; and C;;
Under the Hartree-Fock approximation, the equation of mosatisfy the relation
tion can be simplified as

6Ri-(p'7—) ! ! !
- W:C”(p P77 —gR; (P, 7){p(P"))
50 (PP1, T T) =5Ci(p',p; 7

5C”(p,p,r,7) (54

=8y, 8(7— 71) — €oF T (p,p1, 7—
o, (7 1) =GP (PuPy, 7 ) Taking the functional derivative of Eq53), and defining

o/ CiiF as the Hartree-Fock decomposition®f that turns Eq.
_nh% Ver(Q) eV P E T (p—q,py, 7— 71) (42) into Eq. (26), after much algebra we arrive at the rela-
tion

-2 " (p.aF"(qpr 7). (48 T
q 50”250” +C|] y

Comparing Eq.(48) with the equation of motion for the

single-particle Green’s functidiEgs.(12) and(13)], one can  where

derive the following relation:

PH/ At A 1 _ HF i —~
FHF(pl,pz;Tl_7'2):—e(EO_wO_lLe)(Tl_72)+ip1><p2/2 C'J (p T ,T)__%Z f d;ld; 2F (p’ql’T_ Tl)
XG(p1—P2; 71— T2). (49 6%(01,02)7, 7, _
; - X—— 5 Rij(d2,72). (59
Here p,—p, has to be one of the reciprocal-lattice vectors. ou(p’,7") )

Using these definitions, we find that Eq42) and(47) may

be rewritten as CMis the correction t&;; beyond mean-field theory, and it

will contain the phonori.e., collective-modg contribution
to C;; .
ch) this point we have made no approximations. To obtain
s P L a closed expression fdZ{", we need an approximate form
& f f T1d 7R (P15 T ) for 3. The best choice available is the Hartree-Fock form,
Eq. (44), and so we make this substitution. Combining Egs.
X 62(01,02; 71— T2)F(Qp, P2, 72— 72) (30) and (43), we obtain

F(p1,po; 71— 7o) =F"F(py,p2; 71— 72)

(50)
and %= —W(d;— 0p) €' %22y (', g — a7 =)
1 2
Rij(G'T):RHF(G'T)_G%Z J fd?ld?zFHF(G,Gl;r—Fl) _Ezq Verl@ye™ TR0 q,
X 6%(G1,G2; 11— T2)Rij(G2,72). (51 XX(P' g7’ 7). (56

Finally, we define the zeroth-order Green’s functi@ﬁ’jsand
F° which satisfy Eqs(47) and (45) with the self-energys,
(and external potentipket to zero. It is not difficult to show
that

Upon substituting the resultingf;" into the equatior{the
phonon mode contribution to E¢42)]

; fd7'252(Gl-GZ;7'1_TZ)Rij(GZaTZ)

2

Ri;(q,r)=Rﬂ(q,T)—Z ffd';ld';ZFO(q:ql;T_;l) 1 ‘

e =502 W(Q)e S ¥*CiH(—q,G,+q;m)

X3(Gy 0o 71— T2)Rij (02, 72) (52 99
1 2

+ 2>, Ve{q)e 9747 1aRcP(—q,Gy;7y), (5

I T, 52 Vel @ 7 (=a.Giimy), (57)

q192

XU(g1— 02 ;7)eiq1XqZ’2Rij(q2,?). (53 one obtains the self-energy contributed by collective modes:
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02(Gy,Gy, 11— 72) spectrum for filling fractionv=¢ at T=0 (electron density
N,=6x10' cm™2). Our hole is assumed to be strongly lo-
_ i d2qeiq><(GlfGZ)/27i61XG£/2+iG2><Gé/2 calized, and located 250 A from the electron plane. We ig-
Am s Jez nore the electron-hole interaction in this case. A well-defined
12 shake-up peak may be seen approximately 1 meV below the
XW(G]+q)W(G5+0q) main PL peak; a second very weak satellite is observed ap-
proximately 1.5 meV below the main peak. The origins of
XFHF(G,—G1—0q,G,—G,— ;71— 72) these peaks may be understood in terms of the phonon DOS,
which is illustrated in Fig. @&). A van Hove singularity,
XXGiGé(q;Tl_ 72) arising from zone-edge phonons, appears as a strong double

peak near 0.4 meV. Two other peaks may be seen near 1.2

1 and 1.9 meV. There are weak sidebands associated with each

2 (G +q)%/4—(G)+q)?/4
* (277)§G,EG, Bzd qe (TG of these peaks in the PL spectrum. The precise interpretation
12 of these peaks is unclear; however, it has been speculated
X V(G +q) Ve G+ Q) that these represent vacancy-interstitial excitatidnsve
point out that it iscrucial to use a fully quantum-mechanical
XFHF(GliGZ;Tl_TZ)XGiGé(q;Tl_TZ)- (58 treatment of the collective excitations of the lattice to ob-

c- serve these higher-order satellites; classical treatments of the

0,12 . .
tors in the first Brillouin zone of the superlattice. With this phonon3>*do not produce these unusual excitations.

expression, we are now able to compute the PL intensity. We It should also be noted that the splitting between the main
substitute = 3" 5(7— ')+ &3 into Eq. (42), and Fourier PL peak and the first sideband is actually larger than the

transform this with respect to imaginary time. This meansEN€rgy at which the van Hove singularity in the phonon DOS

that a Fourier transform of EG58) will be necessary, lead- aPPears. The reason for this is that there is a strong self-

ing to frequency summations of the forsuppressing wave- €N€rgy renqrmalizat?on d_ue to the phonons_in the main PL
vector argumenis 3., F(iw,)x(qiw—iw,). To accom- peak. Phy5|c_ally, this arises b.eca.use the fm_al state of the
lish thi n " llecti q crystal contains a vacancy, which is lowered in energy by a
P 'T 13'3’] W? represeng as a sum cE)vertr: S coliec |v$-310 € distortion of the lattice—i.e., by allowing the electrons sur-
o eZ’ d € rﬁqgjgn_% sums may be f(sgn'corlnpule hus'n%unding the vacancy to relax inward. The self-energy shift
Standard methods. The computation o2 Is clearly the ..o nts for this lowering in energy of the final state of the
botfcleneck n this computation, since it requires tWOWC, and leads to an upward shift of the main PL peak. Our
reciprocal-lattice sums and an approximate sum over theyqation shows that the final states in which phonons are

continuous wave vecta. We have accomplished this using gy citeq are not nearly so strongly renormalized by lattice
469 q points in the first Brillouin zone, for one and three

electrons per unit celi’ which give very similar results. Fi- (a) v=1/5
nally, once we have computesd,, it is straightforward to 100 ' '
substitute this into the frequency version of E42), obtain
R(G,w), and from there compute the PL spectrum.

Finally, we note that in Eq(58) x may be interpreted as
a generalized phonon propagator, so that the form of this
equation is a self-energy in which a single virtual collective
excitation is created and absorbed. In principle, this approxi-
mation may be improved upon by using a formfoin Eq.
(58) that includess?, as part of its self-energy correction,
rather thanFHF, so that one computes a self-consistent self-
energy. Such an improvement, however, considerably com-
plicates the numerics, and we keep only the lowest-order
self-energy correction in our calculations. (b) v=1/5

600 '

In Eq. (58), [g7d%q represents an integral over wave ve

D(E)(arbitrary)

0 AN
0.0 1.0 2.0 3.0
Ephonon(mev)

Ill. NUMERICAL RESULTS

Following the algorithm in Sec. Il, one can calculate the
collective-mode distribution&ensity of statgsand their ef-
fects on the photoluminescence spectrum beyond the mean-
field limit. In this section, we present our numerical results
for cases with different strength of electron-hole interaction
and different filling factors. We will also discuss the tem-
perature dependence of the phonon shake-up effect in pho-
toluminescence from strong-magnetic-field-induced Wigner oo 7:3 ) o

crystal.
y E-E,—E,(meV)

100} 1

200 b

P(arbitrary)

A. General result FIG. 3. Phonon density of statés) and shake-up spectruth)
Shown in Fig. 8b) is our calculated photoluminescence for a perfect WC with no electron-hole interaction for 3
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0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0
Ephzmon(me V) Ephonon(me V)
(b) v=1/5 (b) v=2/7
400 ' 600 '
o ~
2 D 400f 4
3 3
£ <
S z200f 1 3
3 S
200 b
T |
0 0 L
—-716.0 -14.0 -12.0 -15.0 -713.0 -11.0

E—-E —E,(meV) E-E,—FE,(meV)
FIG. 5. Phonon density of statés) and shake-up spectruth)

FIG. 4. Phonon density of statés) and shake-up spectruth)
for a perfect WC with no electron-hole interaction fo+ 3.

for a WC in the presence of electron-hole interaction fGF%
There are three electrons per unit cell.

can be seen in Fig.(B), except for a change in energy scale
relaxation effects, leading to the increased splitting betwee aused. by chang!ng the rr_lagngt|c f.'eld’ the photolumines-
cence line shape is essentially identical to the case=-of.

the main PL peak and the sidebands. . . .
This contrasts sharply with the results found in the mean-
B, Eff ol hole | . field approximatior?, where without electron-hole interac-
- Effect of electron-hole interaction tions, a filling »=p/q generally yieldsp distinct lines for a

Presented in Fig. 4 are the corresponding phonon densitycalized hole(see Fig. 2. While the splittings are so small
of states(a) and shake-up spectrum in the presence of strongn that situation that they are difficult in practice to resolve,
electron-hole interaction far= at T=0. Since in this case, evidently shake-up effects wipe out this structure even in
we include a finite number of electrons in one supercell toprinciple.
account for the lattice distortion due to the attraction between e note that, for the case of an itinerant hole, we expect
the localized hole and electrons, there is more structure in thihese characteristic splittings to survive shake-up effects. The
phonon density states as shown in Fig)4 reason is thatneglecting excitonic effectsthe PL spectrum
We also notice that the oscillator strength of the shake-URs re|ated to the product of Green’s functions for the hole and
peak increases significantly from the case with no electrong,q g|ectron. For localized holes, only the latter has poles in
hole interaction. Since zone-edge phonons correspond e form of a Hofstadter spectr;Jm at the mean-field level
short-range collective modes near the center of the superc hich are wiped out by shake-up effects. However, for itin-’
where the hole is located, strong electron-hole interaction , . ' f
does enhance their contribution to the shake-up spectrun?rant holes, the holg Green'’s function also has poles of the
Some of these local collective modes persist even above tHéofstadFer form, which are unaﬁectgd by shake-up. Physi-
melting temperature because of the nonuniform electronc@lly, this may be understood by noting that the holes ther-
mally occupy different single-particle states in the initial

density distribution near the hole. ) ; i o
configuration of the system, giving a spectrum of initial en-

C. Other filling ergies of the system with the characteristic Hofstadter struc-

- Other filling factors ture. Shake-up effects enter only through the energies of the

Figure 5 illustrates our results for=2 in the absence of final states, which may include different numbers of collec-
electron-hole interactions. We can see splittings in the photive excitations. Thus one should in principle be able to iden-
non density of states in Figs(& which are related to the tify this characteristic spectrum of bands and gaps that is
splittings in the Hofstadter spectrum. However, zone-edgeinique to a WC in a magnetic field in itinerant hole experi-

phonon modes still dominate the shakeup spectrum, and asents.
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v=1/5 v=1/5
4000 T T ] 2000 T :
Liquid - e Liquid
< 3000¢ Fod 3
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= 2000t . =
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oL — | N .
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FIG. 6. Temperature dependence of the PL shakeup spectrum FIG. 7. Temperature dependence of the PL shake-up spectrum
for a perfect WC with no electron-hole interaction for . Start-  for a WC in the presence of electron-hole interaction for :.
ing from the lowest curve, the corresponding temperatures compastarting from the lowest curve, the corresponding temperatures
ing to the melting temperature am®/'T,=0.004, 0.112, 0.224, comparing to the melting temperature &FéT,o=0.004, 0.045,
0.336, 0.448, 0.561, 0.673, 0.785, 0.897, 1.009, 1.121, 1.233, ar@ 090, 0.134, 0.224, 0.448, 0.673, 0.897, and 1.121.
1.345.

proximation, in which only the contribution from particle-
D. Temperature dependence hole pair excitations is included, and thermally excited col-

Figure 6 illustrates the evolution of the photolumines-lective modes are neglected. The calculated melting
cence spectrum with increasing temperature in the absence &fmperature is thus significantly higher than the experimen-
electron-hole interaction. As shown in the figure, in the solidtally observed transition temperatufabout 1.5 K. How-
phase, the main peak slightly shifts to higher energy withever, our results should be more reliable at low temperatures,
increasing temperature like in the mean-field case. It undersince the collective-mode contribution is expected to be in-
goes a sudden shift upon melting, and stays at higher energygnificant there.
in the liquid phase. In contrast, the shake-up sidebands
slightly_ shift to Iower energy with increasing temperature in IV. CONCLUSIONS
the solid phase, widening the gap between the main peak and
the sidebands. However, the sidebands also shift rapidly In summary, we developed a method by which shake-up
back to higher energy upon melting, and disappear in the€ffects in the PL spectrum of a WC from localized holes may
liquid phase. This is necessarily so, because, in the meltde computed, that treats the tunneling electron and the lattice
phase, the density is uniform without electron-hole interacelectrons on an equal footing, and uses a fully quantum treat-
tion, and there are no collective modes in the lowest Landatnent of the collective modes that is realistic over the entire
level’® In this situation, phonon satellites uniquely distin- Brillouin zone. Our method is quite general, and should be
guish between a liquid and a solid state. applicable to other shake-up problems where quantum fluc-

Figure 7 illustrates the temperature dependence of th&iations are important. We find that the Hofstadter spectrum
photoluminescence spectrum in the presence of stronfpund in a mean-field analysis of this experiment is kagt
electron-hole interaction. In the solid phase, one can see th#tough we expect it to survive in itinerant hole experimgnts
the qualitative behavior of the main peak and the sideband@nd is replaced by a series of sidebands due to creation of
are the same as in the absence of electron-hole interactiophonons and other collective excitations of the WC. These
However, upon transition, the phonon shake-up sidebandsidebands are a unique signature of the WC which are asso-
undergo a sudden shift to higher energy and still persist ir¢iated with zone-edge phonons, and can in principle be used
the liquid state. In this case, there is a nonuniform electroio distinguish between liquid and crystal states of the elec-
density near the hole, allowing some local collective modedrons. We find that there is a sudden shift in the PL spectrum
to persist even above the melting temperature. Except for thepon melting of the crystal, and a disappearance of the side-
sudden shifts of the phonon sidebands upon melting, thebands in the liquid state in the case with weak electron-hole
could not provide definitive evidence of a Wigner crystal.interaction. However, in the presence of strong electron-hole
However, with a further increase in temperature, or increasethteraction, sidebands persist above the melting temperature.
setback between the hole and the 2DEfeakening the

_electro_n-h_ole interac_ti()n_thg _oscillator strength of sidebands ACKNOWLEDGMENTS
in the liquid phase will significantly decrease. Observation of
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