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We develop a method to compute shakeup effects on photoluminescence from a strong-magnetic-field-
induced two-dimensional Wigner crystal. Only localized holes are considered. Our method treats the lattice
electrons and the tunneling electron on an equal footing, and uses a quantum-mechanical calculation of the
collective modes that does not depend in any way on a harmonic approximation. We find that shakeup
produces a series of sidebands that may be identified with maxima in the collective-mode density of states, and
definitively distinguishes the crystal state from a liquid state in the absence of electron-hole interaction. In the
presence of electron-hole interaction, sidebands also appear in the liquid state coming from short-range density
fluctuations around the hole. However, the sidebands in the liquid state and the crystal state have different
qualitative behaviors. We also find a shift in the main luminescence peak, that is associated with lattice
relaxation in the vicinity of a vacancy. The relationship of the shakeup spectrum with previous mean-field
calculations is discussed.@S0163-1829~96!05943-7#

I. INTRODUCTION

It was first pointed out by Wigner1 more than 60 years
ago that an electron gas will undergo a zero-temperature,
quantum phase transition into a crystalline phase as the den-
sity is lowered, since quantum fluctuation effects diminish
more rapidly than Coulomb correlation. Only two decades
ago, convincing evidence of an electron crystal was pre-
sented for a system of electrons on a He surface.2 The elec-
tron densities attainable in this fashion are extremely low,
however, making this an unattractive system for observing
the quantum phase transition. Semiconductors are much
more attractive systems in this sense, because one has great
control over the electron densities, through dopant concen-
trations. A particularly good candidate for observing the
Wigner crystal ~WC! is the two-dimensional electron gas
~2DEG!, as realized in modulation-doped semiconductors.
Samples of this type are now available with such high qual-
ity that the electron ground state is not necessarily dominated
by disorder. The possibility of observing the WC is further
enhanced by the application of a strong perpendicular mag-
netic field, which quenches the kinetic energy, and allows the
formation of a crystal state at higher densities~for which
disorder effects are less important! than would be possible
without it. Shown in Fig. 1 is a calculated electron density
profile for a strong-magnetic-field-induced Wigner crystal.3

Experimental evidence which may be associated with the
WC in 2DEG’s has accumulated over the last several years,4

including rf data, transport experiments, cyclotron resonance,
and photoluminescence~PL! experiments. The last of these
probes has produced much intriguing data in recent years.5–7

In general, such experiments are performed by creating holes

which may recombine with the electrons in the 2DEG, re-
leasing photons whose energy spectrum contains information
about the state of the electrons. The experiments are per-
formed for the most part in one of two ways, depending on
the nature of the holes used. One method5 is to excite elec-
trons out of the valence band, leaving holes behind which,

FIG. 1. The density profile for a strong-magnetic-field-induced
Wigner crystal~for n5

1
5 with three electrons per supercell in the

presence of electron-hole interaction!. The white region indicates
maximum density.
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due to the band structure of the system, may relax to posi-
tions close enough to the electron layer to allow radiative
recombination with the 2DEG electrons. In principle these
experiments have the advantage that the holes, if far enough
from the electron layer, may be itinerant, allowing them to
probe in some sense the global structure of the 2DEG. In
practice, however, not much is known about the initial state
of the holes, making a realistic analysis of these experiments
difficult.

A second class of PL experiments6,7 uses specially grown
samples in which dopants — typically Be acceptors — are
purposely grown into the sample at a well-defined distance
from the 2DEG. In their ground state, the acceptors are nega-
tively charged. By shining light of an appropriate frequency
on the sample, electrons are excited out of the core states of
the acceptors, leaving behind neutral, metastable objects with
tightly bound core holes. These holes, which by design have
a known initial state, may radiatively recombine with elec-
trons in the 2DEG. A mean-field analysis3 of this type of
experiment showed that the PL spectrum has, in principle,
characteristic signatures of the WC: a ‘‘Hofstadter butterfly’’
~Ref. 8! spectrum for the case of weak interactions between
the electrons and the hole, and a characteristic shift in the PL
spectrum upon melting of the crystal.

In this paper, we go beyond the mean-field approxima-
tion, to examine shakeup effects on the PL spectrum; i.e., we
will examine how the collective mode spectrum of the WC
~which, at long wavelengths, corresponds to the classical
phonon spectrum!, and the fact that some of these modes
may be excited in the electron-hole recombination process,
modify the results of the mean-field theory. We will consider
in detail only the case of a localized hole;6,7 however, we
will use a model that is simpler to analyze, in which the
impurity containing the core hole isinitially charged, and is
neutral in its final state9. Our method is purely quantum me-
chanical, and treats both the tunneling electron and the other
lattice electrons on the same footing. Furthermore, we em-
ploy a quantum treatment of the collective modes to account
realistically for contributions both from small and large
wave-vector collective excitations of the lattice. This ap-
proach has the further advantage of depending in no way
upon a harmonic approximation for the lattice.10 The method
allows in principle for a shakeup of arbitrary numbers of
these excitations, although in practice we will adopt an ap-
proximation scheme in which at most one is excited at a
time. Since we are working in the strong-magnetic-field
limit, we consider only excitations within the lowest Landau
level ~LLL !. Our main results are as follows:~1! Shake-up
effects shift the main PL peak to higher energies than found
in a mean-field treatment.3 ~2! The Hofstadter spectrum is
eliminated from the PL spectrum, even in the case of weak
electron-hole interactions7 ~although we will argue below
that it survives in the itinerant hole case3!. The sudden shift
of the PL spectrum upon melting, by contrast, survives even
when shakeup is included.~3! Phonon sidebands appear that
correspond to maxima in the phonon density of states~DOS!;
some~but not all! of these sidebands are results of van Hove
singularities in the DOS, and so are characteristic of an or-
dered WC state. For the case of weak electron-hole
interactions,7 we do not see these sidebands in the liquid
state, so that phonon satellites uniquely distinguish between

liquid and solid states. Interestingly, for stronger electron-
hole interactions, a shakeup satellite persists even above the
melting temperature. We expect this sideband to lose oscil-
lator strength relative to the main peak, either with increas-
ing temperature or decreasing electron-hole interaction
strength. The latter may be accomplished by examining PL
from several samples with different acceptor – 2DEG set-
back distances.7

This paper is organized in the following way. In Sec. II,
we review the mean-field theory for the photoluminescence,
as well as the time-dependent Hartree-Fock approximation
for collective modes in strong magnetic fields, and show how
they may be combined to calculate the phonon shake-up ef-
fect on photoluminescence. We present and discuss our nu-
merical results in Sec. III, and make some concluding re-
marks in Sec. IV. A brief account of some of these results
has been published previously.11

II. THEORY

In this section, we first set up the theoretical framework
by reviewing the general expressions for the time-dependent
Hartree-Fock approximation~TDHFA! of the 2DEG in a
strong magnetic field and outlining the mean-field theory for
photoluminescence from the Wigner crystal. Then we intro-
duce the expressions for collective modes in Wigner crystal.
Finally we present the detailed formalism to calculate the
collective modes shake-up effects on the photoluminescence.

A. Single-particle properties

It is well known that noninteracting two-dimensional
electrons in a perpendicular magnetic field (B52Bẑ)
have an energy spectrum of discrete Landau levels:
EN5(N1 1

2)\vc , N50,1,2, . . . ,wherevc5eB/m* c is the
cyclotron resonance frequency. Working in the Landau
gauge (A52Bxŷ), and with periodic boundary conditions
in the ŷ direction, the single-particle eigenstates are given by

^r uNX&5
1

Ly
exp~ iXy/ l c

2!fN~x2X!. ~1!

Here l c5(\c/eB)1/2 is the magnetic length andfN is the
one-dimensional harmonic-oscillator eigenstate with oscilla-
tion centersX. The allowed values ofX are separated by
2p l c

2/Ly . The degeneracy of each Landau level is given by
g5S/2p l c

2 , with S the area of the 2DEG.
To address the problem of photoluminescence from a

strong-magnetic-field-induced two-dimensional WC, we now
consider a system with an interacting 2DEG and a layer with
a low density of holes~either localized or itinerant! separated
from the electron plane by a distanced, in the presence of a
strong perpendicular magnetic field. We assume the mag-
netic field is very strong; i.e.,\vc@e2/ea, and the electronic
filling factor n5nhc/eB!1 in the WC regime, so that we
can assume only the lowest Landau level is occupied by
electrons. The general many-body Hamiltonian can be ex-
pressed in terms of single-electron eigenstates~only N50
eigenstates are included! as follows:

H5Ho1Hee1Heh, ~2!

where
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Ho5(
X

1
2\vcaX

†aX1(
i
Ehci

†ci ,

Hee5
1

2S(qÞ0
(

X1X2X3X4
Vc~q!^X1uexp~ iq•r !uX4&

3^X2uexp~2 iq•r !uX3&aX1
† aX2

† aX3aX4,

~3!

Heh5
1

S(q (
X1X2

(
i j

Veh~q!

3^X1uexp~ iq•r !uX2&^ i uexp~2 iq•r !u j &aX1
† aX2ci

†cj .

Here Ho is the single-particle zero-point energy which is
constant.Hee is the electron-electron interaction, in which
Vc(q)52pe2/eq is the two-dimensional Fourier transform
of the Coulomb interaction.Heh is the electron-hole interac-
tion, in whichVeh(q) is the Fourier transform of the interac-
tion between one electron and one hole. For a system with a
small density of holes, it is a good approximation to also
ignore hole-hole interactions, which are extremely small in
comparison withHeh. In practice, we may also dropHo
because it is just a constant. The matrix elements in Eq.~3!
are given by

^X1uexp~ iq•r !uX2&5expS i2 qx~X11X2!2
q2l c

2

4 D
3dX1 ,X21qyl c

2 . ~4!

It is well known that the ground-state configuration for a
two-dimensional Wigner crystal is a triangular lattice.12 In
the presence of electron-hole interaction, the Wigner lattice
should deform around the position of the hole. In order to
take into account this effect, while still taking advantage of
the periodicity of the WC, we divide the WC system into
hexagon unit cells. Each supercell contains a finite number
of electrons, and one hole~in the center, for the localized
hole case!. The finite size of our unit cells will not be quan-
titatively significant for large enough supercells or for weak
~or vanishing! electron-hole interactions. In practice we have
computed spectra with up to 27 electrons per supercell3 for
the mean-field approximation described below, but for only a
maximum of three electrons per unit cell when shakeup ef-
fects are included in the calculation.17 Thus our results for
shakeup effects in the presence of strong electron-hole inter-
actions should be taken as only semiquantitative. Denoting
b as the distance between the centers of nearest-neighbor
supercells, then the basis vectors for the superlattice are
L15b(1,0,0) andL25b„(A3/2),12,0)…. Then the basis vec-
tors for the reciprocal lattice are given byG15G0(1,0,0) and
G25G0„2

1
2,(A3/2),0…, whereG05„(A3/2)b…21.

In a lattice system, all the expectation values for single-
particle properties in momentum space are nonzero only for
momenta equal to reciprocal-lattice vectors. We first define
the density operator

n~G!5E d2r exp~2 iG•r !n~r !5gr~G!expS 2
G2l c

2

4 D ,
~5!

where

r~G!5
1

g (
X1X2

e2~ i /2!Gx~X11X2!dX1 ,X22Gyl c
2aX1

† aX2. ~6!

One may easily show that̂r(G50)&5^N̂e&/g5n, where
N̂e is the electron number operator.

In terms of many-body operator decomposition, the
Hartree-Fock approximation can be expressed as

aX1
† aX2

† aX3aX45^aX1
† aX4&aX2

† aX32^aX1
† aX3&aX2

† aX4. ~7!

In this effective mean-field theory, a single electron moves as
if in an average external potential provided by other elec-
trons through both the direct~first term! and exchange~sec-
ond term! interactions. For localized holes which are very far
away from each other, we can also apply the approximation
that ^ci

†cj&5d i j . After some algebra, the Hartree-Fock
Hamiltonian for the 2DEG~with an electron-hole interaction
appropriate for a localized hole! in the lowest Landau level
can be written as

HHF5g(
G

@W~G!^r~G!&1nhVeh~G!e2G2l c
2/4#r~G!,

~8!

wherenh is the density of holes. Note that we ignore a nega-
tive sign in front ofG because of apparent symmetry in this
problem.W(G) is the effective Hartree-Fock interaction,

W~G!5
e2

e l c
2 F 1

Glc
e2G2l c

2/2~12dG,0!

2U p

2U
1/2

e2G2l c
2/4I 0S 2G2l c

2

4 D G , ~9!

where I 0(x) is the modified Bessel function of the first
kind.13

We define the single-electron Green’s function

G~X1 ,X2 ;t!52^TtaX1~t!aX2
† ~0!&. ~10!

It is convenient to define the Fourier transform

G~G,t!5
1

g (
X1X2

e2~ i /2!Gx~X11X2!dX1 ,X21Gyl c
2G~X1 ,X2 ;t!.

~11!

We will use this form of the Fourier transform throughout
this work. The TDHFA is derived by writing the equation of
motion for the Green’s function,

]

]t
G~X1 ,X2 ;t!52

]

]t
^TtaX1~t!aX2

† ~0!&52dX1X2d~t!

2^Tt@H2meNe ,aX1#~t!aX2
† ~0!&. ~12!

One can compute the commutators explicitly, and simplify
the result using a Hartree-Fock decomposition presented in
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Eq. ~7!. After Fourier transforming with respect to time, the
equation of motion forG(G,vn) can be written as13

~ ivn1me!G~G,ivn!2(
G8

B~G,G8!G~G8,ivn!5dG,0 ,

~13!

where

B~G1 ,G2!5@W~G12G2!^r~G12G2!&

1nhVeh~G12G2!e
2~G12G2!2l c

2/4#

3ei ~G13G2!l c
2/2. ~14!

We can directly diagonalize matrixB and obtain its eigen-
vectorsVj (G) and eigenvaluesv j

e , after which the Green’s
function can be written as

G~G,ivn!5(
j

Vj~G!Vj* ~G50!

ivn1me2v j
e

5(
j

We~G, j !

ivn1me2v j
e . ~15!

The density of states for electrons is then given by

D~E!52
1

p
Im„G~G50,E1 id!…S gSD

52
1

p
ImS (

j

We~G50,j !

E2v j
e1 id D S 1

2p l c
2D . ~16!

Finally, the density operator can be expressed as

^r~G!&5G~G,t502!

5(
j
Vj~G!Vj* ~G50! f FD~v j

e2me!. ~17!

Here f FD(x)5@11exp(bx)#21 is the Fermi-Dirac distribu-
tion. Sincê r(G50)&5n, we can self-consistently calculate
the chemical potentialme , the density of states, and the elec-
tron density inG space. By iteratively solving Eqs.~13!,
~15!, and ~17!, we can calculate the density configurations
for the Wigner crystal.

B. Mean-field theory for localized holes

We now present our theory for photoluminescence from
the WC in a strong magnetic field. The photoluminescence
intensity is given, for a single localized hole state, by

P~v!5
I 0
Z(

n
(
m

e2En /kBTz^m,0uL̂un,h& z2

3d~v2En1Em!, ~18!

whereZ5Sne
2En /kBT, un,h& is a many-body electron state

with energyEn andN electrons when there is a core hole
present;um,0& is a many-body electron state withN21 elec-
trons and energyEm ; v is the luminescence frequency; and
L̂5*d2r c(r )ch(r ) is the luminescence operator, with
c(x) the electron annihilation operator andch(x) the hole

annihilation operator. As written, the initial state is actually
higher in energy than the final state, and we find it conve-
nient to rework the problem in terms of absorption rather
than emission. To accomplish this, we add a term
H852E0c0

†c0 to the Hamiltonian, wherec0
† creates a local-

ized hole, and take the limitE0→`. It is not difficult to
show

P~v!5 lim
E0→`

P8~v2E0!

n0~E0!
, ~19!

whereP8 is the absorption spectrum of the Hamiltonian, and
n0 is the average occupation of the hole state, which just
becomes one in the limitE0→`. The absorption spectrum is
identical to Eq.~18!, except one needs to add the energy
E0 to all the quantitiesEn in the expression. After standard
manipulations,14 one can show that

P8~v!5
I 0
p

1

12ev/kBT
ImR~v1 id!. ~20!

The functionR(v1 id) is a response function, which con-
tinued to imaginary frequency has the form

R~ ivn!52E
0

b

^TtL~t!L†~0!&eivntdt. ~21!

To compute this quantity, we consider~for the case of a
localized hole state!, instead of a single hole, a periodic~hex-
agonal! lattice of them, with a unit cell that contains as many
electrons as can be handled numerically. We allow neither
interactions between holes nor tunneling between hole sites,
so that in the limit of large unit~super!cells, one should
expect the result to be the same as for the isolated hole case.
Expanding the electron and hole creation and annihilation
operators inL̂ in Eq. ~21! in terms of electronic states in the
lowest Landau level and localized hole states, one finds

R~v!5
nhS

2p l c
2(
G

R~G,v!e2G2l c
2/4, ~22!

whereR(G,v) is the Fourier transform of the quantity

Ri j ~X1 ,X2 ;t!52^TtaX1~t!ci~t!cj
†~0!aX2

† ~0!&, ~23!

and

Ri j ~G,t!5
1

g (
X1X2

e2
i
2 Gx~X11X2!dX1 ,X21Gyl c

2Ri , j~X1 ,X2 ;t!.

~24!

We write down the equation of motion for
Ri j (X1 ,X2 ;t) in terms of its commutator with the Hamil-
tonian,
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]

]t
Ri j ~X1 ,X2 ;t![2

]

]t
^TtaX1~t!ci~t!cj

†~0!aX2
† ~0!&

52^@aX1ci ,cj
†aX2

† #&d~t!

2^Tt@Heff2m~Ne2Nh!,aX1ci #

3~t!cj
†aX2

† &, ~25!

whereHeff5H2E0( icici
†, andNe andNh are correspond-

ing electron and hole number operators. Following steps
closely analogous to those used to find the equation of mo-
tion for the Green’s function in Sec. III A above, the Hartree-
Fock approximation for Eq.~25! becomes3,13

2~v1 id!Ri j ~G,v!

5^r~G!&d i j1~E02
1
2\vc2Eh!Ri j ~G,v!

2(
G8

W~G8!^r~G8!&

3e2 i ~G3G8!l c
2/2Ri j ~G2G8,v!

2
1

2p l c
2(
G8

Veh~2G8!^r~G8!&e2G82l c
2/4Ri j ~G,v!

2nh(
G8

Veh~G8!e2G82l c
2/42 i ~G3G8!l c

2/2Ri j ~G2G8,v!.

~26!

It is apparent that the solution to this satisfies
Ri j (G,v)5R(G,v)d i j . This result may be expressed in the
form

(
G8

@~v1 id1E02v0!dG,G82B~G,G8!#R~G8,v!

52^r~G!&, ~27!

where

v05
1
2\vc1Eh1

1

2p ł c
2(
G

^r~G!&Veh~2G!e2G2l c
2/4,

~28!

andB is exactly given by Eq.~14!.
We see that the form ofR is essentially that of the elec-

tron Green’s function as in Eq.~13!. By inverting Eq.~27!,
we have

R~G,v!52(
G8

@~v1 id1E02v0!dG,G8

2B~G,G8!#21^r~G8!&

52(
jG8

Vj~G!Vj
21~G8!^r~G8!&

v1 id2v02v j
e

52(
j

We~G, j ! f FD~v j
e2me!

v1 id2v02v j
e . ~29!

Here we have already droppedE0 because it cancels out
when we calculate the final photoluminescence power using
Eqs.~19! and~20!. We can see thatR has poles at precisely
the same energies as the poles in the electron Green’s func-
tion for the system in the presence of the external interaction
Veh due to the hole,15 up to the constant energy shiftv0.
However, the residues of the poles are not the same as for the
Green’s function. The residues are determined by the over-
laps of the mean-field single-particle electron wave functions
with the hole wave function. It is thus appropriate to think of
R as a weighted Green’s function. SinceP8(v) involves the
imaginary part of R(v), the photoluminescence spectrum at
this mean-field level represents a weighted measure of the
single-particle density of states of the electron system with a
localized hole.

The results of this mean-field approach have been dis-
cussed previously,3 so we only briefly summarize them here.
The DOS for a perfect WC is a Hofstadter butterfly. For a
fractional filling factorn5p/q, this hasq subbands, and, at
zero temperature, the lowestp bands are filled. We should
expect to observe this structure; i.e.,p lines for n5p/q, in
the photoluminescence spectrum of an ideal Wigner crystal
if we turn off the electron-hole interaction. Presented in Fig.
2 are the density of states~a! and the photoluminescence

spectrum~b! for an undisturbed Wigner crystal atn5 2
7 with

no e-h interaction. We can clearly see that the DOS has
seven bands, with only the lowest two occupied at low tem-
perature. As expected, the photoluminescence has two peaks

FIG. 2. Electron density of states and PL spectrum for a perfect
WC with no electron-hole interaction forn5

2
7. ~a! Electron DOS

below chemical potential at zero temperature~inset: DOS above
chemical potential!, whereEe5

1
2vc . ~b! PL spectrum at different

temperatures: T50.0045Tmelt ~solid!, T50.45Tmelt ~dotted!,
T50.9Tmelt ~dashed!, andT51.12Tmelt ~inset: dash-dotted!.
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with a splitting identical to that of the DOS. An observation
of this behavior in experiments would directly confirm the
presence of a Wigner crystal in the system. Furthermore, as a
function of temperature, the PL spectrum shifts very sud-
denly as the crystal melts to higher frequencies. This energy
shift represents the latent heat of melting of the crystal. Once
again, observation of this behavior would directly confirm
the presence of a WC in the system.

While these effects are relatively simple to understand
within the mean-field approach, one needs to question
whether they can survive fluctuation effects. In particular, the
smallness of the Hofstadter gaps in Fig. 2 suggest that they
may not be robust enough to survive beyond the mean-field
level. We will see for localized holes that this is indeed the
case, and that this structure is replaced by a spectrum that
reflects the collective-mode density of states rather than the
mean-field single-particle spectrum. To show this, we pro-
ceed by reviewing how the collective modes are computed in
the TDHFA, and then show how they may be incorporated
into the PL spectrum.

C. Collective modes in Wigner crystal

We define the dielectric function as the density response
of a two-dimensional electron system to an external pertur-
bationU(p,t), i.e.,

d^r~2q,t8!&
dU~p,t!

[2x~p,q;t2t8!. ~30!

In the special circumstance of Wigner crystal, the density-
density correlation function has the following special form:

x~G11q,G21q;t!52g^Tr̃~G11q,t!r̃~2G22q;0!&,
~31!

where r̃5r2^r&. From now on, we denotex(G1
1q,G21q;t) asxG1G2

(q;t). The Fourier transform of this
response function contains poles at the collective-mode fre-
quencies of the system. This function can be numerically
computed using a generalized random-phase approximation
~GRPA! ~Ref. 13! which does not assume small displace-
ments of the lattice electrons~as is necessary in classical
approaches10!, and thus gives a realistic dispersion relation
for the collective modes across the entire Brillouin zone. In
this subsection, we present the formalism for this GRPA cal-
culation including the electron-hole interaction.@The mag-
netic lengthł c5(\c/eB)1/2 will be set to unity.#

In real space, the dielectric function is given by

x~X1 ,X2 ;X3 ,X4 ;t!52g^Ttr̃~X1 ,X2!~t!r̃~X3 ,X4!~0!&,
~32!

where r̃(X1 ,X2)5aX1
† aX22^aX1

† aX2&. The equation of mo-

tion for x can be written as

]x~X1 ,X2 ;X3 ,X4 ;t!

]t
52g^@ r̃~X1 ,X2!,r̃~X3 ,X4!#&d~t!

2g^Tt@H2mN̂,r̃~X1 ,X2!#

3~t!r̃~X3 ,X4!~0!&

52T12T2 , ~33!

where

T15g^@ r̃~X1 ,X2!,r̃~X3 ,X4!#&d~t!

5g@^aX1
† aX4&dX2X32^aX3

† aX2&dX1X4#d~t!. ~34!

We define the Fourier transform of this quantity as

T1~q,q8;t!5
1

g(
X1X2

e2 i /2 qx~X11X2!dX1 ,X22qy

3
1

g (
X3X4

e2 i /2 qx8~X31X4!dX3 ,X41q
y8

3T1~X1 ,X2 ;X3 ,X4 ;t!, ~35!

so that, in frequency and momentum space,

T̃1~G1q,G81q;v!5^r~G2G8!&@e2 i ~G1q!3~G81q!/2

2ei ~G1q!3~G81q!/2#. ~36!

The most important termT2 comes from the electron-
electron interaction and electron-hole interaction in the
Hamiltonian. Following the method of Ref. 13, a Hartree-
Fock decomposition is applied to this term, to obtain

T̃2~G1q,G81q;t!52i(
G9

@W~G2G9!^r~G2G9!&

1nhVeh~G2G9!e2~G2G9!2/4#

3sin@~G1q!3~G91q!/2#

3xG9G8~q;t!22i(
G9

W~q1G9!

3^r~G2G9!&sin@~G1q!

3~G91q!/2#xG9G8~q;t!. ~37!

Thus the equation of motion forxGG8(q) at a specific wave
vectorq in the Brillouin zone can be expressed in terms of
the following matrix equation:

@v1 id2A~q!2D~q!W̃~q!#x~q!5D~q!, ~38!

where

AGG8~q!52i @W~G2G8!^r~G2G8!&

1nhVeh~G2G8!e2~G2G8!2/4#

3sin@~G1q!3~G81q!/2#,

DGG8~q!522i ^r~G2G8!&sin@~G1q!3~G81q!/2#,
~39!

W̃GG8~q!5W~q1G!dGG8.

The collective modes are given by the eigenvalues of the
matrix A1DW̃. Note that generally this matrix is not Her-
mitian. However, we can still diagonalize this matrix nu-
merically and it turns out that all the eigenvalues are real
~and symmetric around zero! for this matrix.
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D. Phonon shake-up theory

We now incorporate the effect of collective modes into
the photoluminescence spectrum calculation. Recall that we
need to calculate the quantity

Ri j ~X1 ,X2 ; ivn!52E
0

b

^TtaX1~t!ci~t!cj
†aX2

† &eivntdt.

Working in the lowest Landau level, the equation of motion
for Ri j (X1 ,X2 ;t) is given exactly by Eq.~25!. In the deri-
vation of the terms for contribution from the electron-
electron interaction and the electron-hole interaction, by ap-
plying the many-body Hamiltonian given by Eq.~3!, we
encounter the following correlation function:

Ci j ~X1X2 ;X3X4 ;t8,t![2g^TtaX1
† ~t8!aX2~t8!aX3~t!

3ci~t!cj
†~0!aX4

† ~0!&. ~40!

In the momentum space, this correlation function can be
written as

Ci j ~q,q8;t8,t!5
1

g (
X1X2

e2 i /2 qx~X11X2!dX1 ,X22qy

3
1

g (
X3X4

e2 i /2 qx8~X31X4!dX3 ,X41q
y8

3Ci j ~X1 ,X2 ;X3 ,X4 ;t8,t!. ~41!

Then the equation of motion forRi j (G,v) may be written as

]

]t
Ri j ~G,t!5^r~G,t!&d i jd~t!2e0Ri j ~G,t!

2nh(
G8

Veh~G8!eiG83G/22G82/4Ri j ~G2G8,t!

2
1

S(qÞ0
Vc~q!Ci j ~2q,q1G!eiG3q/22q2/2

2
1

S(q Veh~q!Ci j ~2q,G!e2 iq•Ri2q2/4. ~42!

In Eq. ~42!, Vc(q) andVeh(q) are the Fourier transforms of
the electron-electron and electron-hole interactions, respec-
tively, e0 is the energy of the localized hole, and the sum
over G8 is only over reciprocal-lattice vectors, while the
sums overq are over all wave vectors.Ri specifies the
position of the hole in the i th unit cell, and

^r(G,t)&e2G2/4 is the expectation value of a Fourier compo-
nent of the electron density. While this quantity is indepen-
dent oft in the ground state, it will be convenient for later
purposes to leave it formally as an argument of the density.
The method for computing these Fourier components has
been described previously.3,13 Equation ~42! represents the
first in an infinite series of equations relating ann-particle
Green’s function to then11-particle Green’s function.16 In
the mean-field approximation, it was simplified by employ-
ing a Hartree-Fock~HF! decomposition of Eq.~40!, which
converts Eq.~42! into a self-consistent equation forRi j .

3

To include shake-up effects, we instead extend this hier-
archy to one more level, writing down a self-consistent form
for Ci j which explicitly contains the collective-mode excita-
tions. To carry out this program, it is convenient to implicitly
define a self-energy by writing the last two terms in Eq.~42!
as

2(
G8

E
0

b

dt8S~G,G8;t2t8!Ri j ~G8,t8!.

The HF approximation for the PL is equivalent to replacing
S(G,G8;t2t8) by SHF(G,G8)d(t2t8), where

SHF~G,G8!5W~G2G8!^r~G2G8;t!&eiG3G8/2

1
1

2p(
q
Veh~q!^r~2q,t!& ~43!

3e2q2/42 iq•RidG,G8, ~44!

and W is the sum of the direct and exchange Coulomb
potentials.3,13 ~Note here that we keep the negative sign in
front of q because it is not necessarily a reciprocal-lattice
vector.! Thus we need to calculate the self-energy

S5SHFd~t2t8!1dS

beyond the mean-field approximation.
To generate a self-consistent equation forCi j , we take a

functional derivative16 of Eq. ~42! with respect to an external
potentialU which contributes an extra term in the Hamil-
tonian

Hext5 (
X1X2

U~X1 ,X2!aX1
† aX2.

In doing this, it must be noted that a term directly coupling
the Green’s functionRi j to the external potentialU,

2(
p
Ri j ~p,t!U~G2p,t!e~ i /2!G3p,

must be added to Eq.~42!, and the sums over reciprocal-
lattice vectors must be extended to all wave vectors, because
U is not in general commensurate with the lattice.

We introduce a generalized Green’s functionF satisfying

Ri j ~p,t![(
p8

F~p,p8,t!^r~p8!&. ~45!

The equation of motion for the generalized Green’s function
can be obtained following Eq.~42!,

]

]t
F~p,p1 ,t2t1!

5dpp1d~t2t1!2e0F~p,p1 ,t2t1!

2nh(
q
Veh~q!eiq3p/22q2/4F~p2q,p1 ,t2t1! ~46!
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2(
q
E
0

b

dt̃S~p,q,t2 t̃ !F~q,p1 ,t̃2t1!. ~47!

Under the Hartree-Fock approximation, the equation of mo-
tion can be simplified as

]

]t
FHF~p,p1 ,t2t1!

5dpp1d~t2t1!2e0F
HF~p,p1 ,t2t1!

2nh(
q
Veh~q!eiq3p/22q2/4FHF~p2q,p1 ,t2t1!

2(
q

SHF~p,q!FHF~q,p1 ,t2t1!. ~48!

Comparing Eq.~48! with the equation of motion for the
single-particle Green’s function@Eqs.~12! and~13!#, one can
derive the following relation:

FHF~p1 ,p2 ;t12t2!52e~E02v02me!~t12t2!1 ip13p2/2

3G~p12p2 ;t12t2!. ~49!

Herep12p2 has to be one of the reciprocal-lattice vectors.
Using these definitions, we find that Eqs.~42! and~47! may
be rewritten as

F~p1 ,p2 ;t12t2!5FHF~p1 ,p2 ;t12t2!

2 (
q1q2

E E dt̃1dt̃2F
HF~p1 ,q1 ;t12 t̃1!

3dS~q1 ,q2 ; t̃12 t̃2!F~q2 ,p2 ; t̃22t2!

~50!

and

Ri j ~G,t!5Ri j
HF~G,t!2 (

G1G2

E E dt̃1dt̃2F
HF~G,G1 ;t2 t̃1!

3dS~G1 ,G2 ; t̃12 t̃2!Ri j ~G2 ,t̃2!. ~51!

Finally, we define the zeroth-order Green’s functionsRi j
0 and

F0 which satisfy Eqs.~47! and ~45! with the self-energyS
~and external potential! set to zero. It is not difficult to show
that

Ri j ~q,t!5Ri j
0 ~q,t!2 (

q1q2
E E dt̃1dt̃2F

0~q,q1 ;t2 t̃1!

3S~q1 ,q2 ; t̃12 t̃2!Ri j ~q2 ,t̃2! ~52!

2 (
q1q2

E dt̃F0~q,q1 ;t2 t̃ !

3U~q12q2 ; t̃ !eiq13q2/2Ri j ~q2 ,t̃ !. ~53!

It is this form of the equation of motion forRi j that is most
convenient for taking a functional derivative. Using standard
methods,16 we find that the Green’s functionsRi j andCi j
satisfy the relation

dRi j ~p,t!

dU~p8,t8!
5Ci j ~p8,p;t8,t!2gRi j ~p,t!^r~p8!&t8

5dCi j ~p8,p;t8,t!. ~54!

Taking the functional derivative of Eq.~53!, and defining
Ci j
HF as the Hartree-Fock decomposition ofCi j that turns Eq.

~42! into Eq. ~26!, after much algebra we arrive at the rela-
tion

dCi j5dCi j
HF1Ci j

PH,

where

Ci j
PH~p8,p;t8,t!52 (

q1q2
E dt̃1dt̃ 2F

HF~p,q1 ;t2 t̃1!

3
dS~q1 ,q2! t̃ 12 t̃2

dU~p8,t8!
Ri j ~q2 ,t̃2!. ~55!

Ci j
PH is the correction toCi j beyond mean-field theory, and it

will contain the phonon~i.e., collective-mode! contribution
to Ci j .

To this point we have made no approximations. To obtain
a closed expression forCi j

PH, we need an approximate form
for S. The best choice available is the Hartree-Fock form,
Eq. ~44!, and so we make this substitution. Combining Eqs.
~30! and ~43!, we obtain

dSHF~q1 ,q2! t̃

dU~p8,t8!
52W~q12q2!e

iq13q2/2x~p8,q22q1 ;t82 t̃ !

2
1

2p(
q
Veh~q!e2q2/42 iq•Ridq1q2

3x~p8,q;t82 t̃ !. ~56!

Upon substituting the resultingCi j
PH into the equation@the

phonon mode contribution to Eq.~42!#

(
G2

E dt2dS~G1 ,G2 ;t12t2!Ri j ~G2 ,t2!

5
1

2g(q W~q!eiG13q/2Ci j
PH~2q,G11q;t1!

1
1

S(q Veh~q!e2q2/42 iq•RiCi j
PH~2q,G1 ;t1!, ~57!

one obtains the self-energy contributed by collective modes:
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dS~G1 ,G2 ,t12t2!

5
1

4p (
G18G28

E
BZ
d2qeiq3~G12G2!/22 iG13G18/21 iG23G28/2

3W~G181q!W~G281q!

3FHF~G12G182q,G22G282q;t12t2!

3xG
18G28

~q;t12t2!

1
1

~2p!3 (
G18G28

E
BZ
d2qe2~G181q!2/42~G281q!2/4

3Veh~G181q!Veh~G281q!

3FHF~G1 ,G2 ;t12t2!xG
18G28

~q;t12t2!. ~58!

In Eq. ~58!, *BZd
2q represents an integral over wave vec-

tors in the first Brillouin zone of the superlattice. With this
expression, we are now able to compute the PL intensity. We
substituteS5SHFd(t2t8)1dS into Eq. ~42!, and Fourier
transform this with respect to imaginary time. This means
that a Fourier transform of Eq.~58! will be necessary, lead-
ing to frequency summations of the form~suppressing wave-
vector arguments! ( ivn

F( ivn)x(q; iv2 ivn). To accom-

plish this, we representx as a sum over its collective-mode
poles;13 the frequency sums may be then computed using
standard methods.16 The computation ofdS is clearly the
bottleneck in this computation, since it requires two
reciprocal-lattice sums and an approximate sum over the
continuous wave vectorq. We have accomplished this using
469 q points in the first Brillouin zone, for one and three
electrons per unit cell,17 which give very similar results. Fi-
nally, once we have computeddS, it is straightforward to
substitute this into the frequency version of Eq.~42!, obtain
R(G,v), and from there compute the PL spectrum.

Finally, we note that in Eq.~58! x may be interpreted as
a generalized phonon propagator, so that the form of this
equation is a self-energy in which a single virtual collective
excitation is created and absorbed. In principle, this approxi-
mation may be improved upon by using a form ofF in Eq.
~58! that includesdS as part of its self-energy correction,
rather thanFHF, so that one computes a self-consistent self-
energy. Such an improvement, however, considerably com-
plicates the numerics, and we keep only the lowest-order
self-energy correction in our calculations.

III. NUMERICAL RESULTS

Following the algorithm in Sec. II, one can calculate the
collective-mode distributions~density of states! and their ef-
fects on the photoluminescence spectrum beyond the mean-
field limit. In this section, we present our numerical results
for cases with different strength of electron-hole interaction
and different filling factors. We will also discuss the tem-
perature dependence of the phonon shake-up effect in pho-
toluminescence from strong-magnetic-field-induced Wigner
crystal.

A. General result

Shown in Fig. 3~b! is our calculated photoluminescence

spectrum for filling fractionn5 1
5 at T50 ~electron density

Ns5631010 cm22). Our hole is assumed to be strongly lo-
calized, and located 250 Å from the electron plane. We ig-
nore the electron-hole interaction in this case. A well-defined
shake-up peak may be seen approximately 1 meV below the
main PL peak; a second very weak satellite is observed ap-
proximately 1.5 meV below the main peak. The origins of
these peaks may be understood in terms of the phonon DOS,
which is illustrated in Fig. 3~a!. A van Hove singularity,
arising from zone-edge phonons, appears as a strong double
peak near 0.4 meV. Two other peaks may be seen near 1.2
and 1.9 meV. There are weak sidebands associated with each
of these peaks in the PL spectrum. The precise interpretation
of these peaks is unclear; however, it has been speculated
that these represent vacancy-interstitial excitations.13 We
point out that it iscrucial to use a fully quantum-mechanical
treatment of the collective excitations of the lattice to ob-
serve these higher-order satellites; classical treatments of the
phonons10,12 do not produce these unusual excitations.

It should also be noted that the splitting between the main
PL peak and the first sideband is actually larger than the
energy at which the van Hove singularity in the phonon DOS
appears. The reason for this is that there is a strong self-
energy renormalization due to the phonons in the main PL
peak. Physically, this arises because the final state of the
crystal contains a vacancy, which is lowered in energy by a
distortion of the lattice—i.e., by allowing the electrons sur-
rounding the vacancy to relax inward. The self-energy shift
accounts for this lowering in energy of the final state of the
WC, and leads to an upward shift of the main PL peak. Our
calculation shows that the final states in which phonons are
excited are not nearly so strongly renormalized by lattice

FIG. 3. Phonon density of states~a! and shake-up spectrum~b!
for a perfect WC with no electron-hole interaction forn5

1
5.
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relaxation effects, leading to the increased splitting between
the main PL peak and the sidebands.

B. Effect of electron-hole interaction

Presented in Fig. 4 are the corresponding phonon density
of states~a! and shake-up spectrum in the presence of strong
electron-hole interaction forn5 1

5 atT50. Since in this case,
we include a finite number of electrons in one supercell to
account for the lattice distortion due to the attraction between
the localized hole and electrons, there is more structure in the
phonon density states as shown in Fig. 4~a!.

We also notice that the oscillator strength of the shake-up
peak increases significantly from the case with no electron-
hole interaction. Since zone-edge phonons correspond to
short-range collective modes near the center of the supercell
where the hole is located, strong electron-hole interaction
does enhance their contribution to the shake-up spectrum.
Some of these local collective modes persist even above the
melting temperature because of the nonuniform electron-
density distribution near the hole.

C. Other filling factors

Figure 5 illustrates our results forn5 2
7 in the absence of

electron-hole interactions. We can see splittings in the pho-
non density of states in Figs. 5~a! which are related to the
splittings in the Hofstadter spectrum. However, zone-edge
phonon modes still dominate the shakeup spectrum, and as

can be seen in Fig. 5~b!, except for a change in energy scale
caused by changing the magnetic field, the photolumines-
cence line shape is essentially identical to the case ofn5 1

5.
This contrasts sharply with the results found in the mean-
field approximation,3 where without electron-hole interac-
tions, a fillingn5p/q generally yieldsp distinct lines for a
localized hole~see Fig. 2!. While the splittings are so small
in that situation that they are difficult in practice to resolve,
evidently shake-up effects wipe out this structure even in
principle.

We note that, for the case of an itinerant hole, we expect
these characteristic splittings to survive shake-up effects. The
reason is that~neglecting excitonic effects!, the PL spectrum
is related to the product of Green’s functions for the hole and
the electron. For localized holes, only the latter has poles in
the form of a Hofstadter spectrum at the mean-field level,
which are wiped out by shake-up effects. However, for itin-
erant holes, the hole Green’s function also has poles of the
Hofstadter form, which are unaffected by shake-up. Physi-
cally, this may be understood by noting that the holes ther-
mally occupy different single-particle states in the initial
configuration of the system, giving a spectrum of initial en-
ergies of the system with the characteristic Hofstadter struc-
ture. Shake-up effects enter only through the energies of the
final states, which may include different numbers of collec-
tive excitations. Thus one should in principle be able to iden-
tify this characteristic spectrum of bands and gaps that is
unique to a WC in a magnetic field in itinerant hole experi-
ments.

FIG. 4. Phonon density of states~a! and shake-up spectrum~b!
for a WC in the presence of electron-hole interaction forn5

1
5.

There are three electrons per unit cell.

FIG. 5. Phonon density of states~a! and shake-up spectrum~b!
for a perfect WC with no electron-hole interaction forn5

2
7.
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D. Temperature dependence

Figure 6 illustrates the evolution of the photolumines-
cence spectrum with increasing temperature in the absence of
electron-hole interaction. As shown in the figure, in the solid
phase, the main peak slightly shifts to higher energy with
increasing temperature like in the mean-field case. It under-
goes a sudden shift upon melting, and stays at higher energy
in the liquid phase. In contrast, the shake-up sidebands
slightly shift to lower energy with increasing temperature in
the solid phase, widening the gap between the main peak and
the sidebands. However, the sidebands also shift rapidly
back to higher energy upon melting, and disappear in the
liquid phase. This is necessarily so, because, in the melted
phase, the density is uniform without electron-hole interac-
tion, and there are no collective modes in the lowest Landau
level.13 In this situation, phonon satellites uniquely distin-
guish between a liquid and a solid state.

Figure 7 illustrates the temperature dependence of the
photoluminescence spectrum in the presence of strong
electron-hole interaction. In the solid phase, one can see that
the qualitative behavior of the main peak and the sidebands
are the same as in the absence of electron-hole interaction.
However, upon transition, the phonon shake-up sidebands
undergo a sudden shift to higher energy and still persist in
the liquid state. In this case, there is a nonuniform electron
density near the hole, allowing some local collective modes
to persist even above the melting temperature. Except for the
sudden shifts of the phonon sidebands upon melting, they
could not provide definitive evidence of a Wigner crystal.
However, with a further increase in temperature, or increased
setback between the hole and the 2DEG~weakening the
electron-hole interaction!, the oscillator strength of sidebands
in the liquid phase will significantly decrease. Observation of
this behaviorwoulddistinguish liquid from solid phases.

Our results near the melting temperature should be
viewed with caution, and taken as a qualitative rather than a
quantitative picture. This is because the melting temperature
is still calculated within the mean-field Hartree-Fock ap-

proximation, in which only the contribution from particle-
hole pair excitations is included, and thermally excited col-
lective modes are neglected. The calculated melting
temperature is thus significantly higher than the experimen-
tally observed transition temperature~about 1.5 K!. How-
ever, our results should be more reliable at low temperatures,
since the collective-mode contribution is expected to be in-
significant there.

IV. CONCLUSIONS

In summary, we developed a method by which shake-up
effects in the PL spectrum of a WC from localized holes may
be computed, that treats the tunneling electron and the lattice
electrons on an equal footing, and uses a fully quantum treat-
ment of the collective modes that is realistic over the entire
Brillouin zone. Our method is quite general, and should be
applicable to other shake-up problems where quantum fluc-
tuations are important. We find that the Hofstadter spectrum
found in a mean-field analysis of this experiment is lost~al-
though we expect it to survive in itinerant hole experiments!,
and is replaced by a series of sidebands due to creation of
phonons and other collective excitations of the WC. These
sidebands are a unique signature of the WC which are asso-
ciated with zone-edge phonons, and can in principle be used
to distinguish between liquid and crystal states of the elec-
trons. We find that there is a sudden shift in the PL spectrum
upon melting of the crystal, and a disappearance of the side-
bands in the liquid state in the case with weak electron-hole
interaction. However, in the presence of strong electron-hole
interaction, sidebands persist above the melting temperature.
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FIG. 7. Temperature dependence of the PL shake-up spectrum
for a WC in the presence of electron-hole interaction forn5

1
5.

Starting from the lowest curve, the corresponding temperatures
comparing to the melting temperature areT/Tmelt50.004, 0.045,
0.090, 0.134, 0.224, 0.448, 0.673, 0.897, and 1.121.

FIG. 6. Temperature dependence of the PL shakeup spectrum
for a perfect WC with no electron-hole interaction forn5

1
5. Start-

ing from the lowest curve, the corresponding temperatures compar-
ing to the melting temperature areT/Tmelt50.004, 0.112, 0.224,
0.336, 0.448, 0.561, 0.673, 0.785, 0.897, 1.009, 1.121, 1.233, and
1.345.
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15H. A. Fertig, R. Coˆté, A. H. MacDonald, and S. Das Sarma, Phys.

Rev. Lett.69, 816 ~1992!.
16L. P. Kadanoff and G. Baym,Quantum Statistical Mechanics

~Benjamin, Reading, MA, 1981!.
17It is numerically challenging to include more electrons in a su-

percell in phonon shake-up effect. However, we believe our cal-
culations qualitatively capture the most important shake-up ef-
fects on the PL spectrum.

13 926 54D. Z. LIU, H. A. FERTIG, AND S. DAS SARMA


