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Acoustoconductivity of quantum wires
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The change in conductivity of quantum wires under the influence of nonequilibrium phonons is considered
theoretically. The particular mechanism of this acoustoconduct{¥ity) depends on the wire length. For
long wires withL exceeding the localization length, the main effect involves the phonon-induced partial
delocalization of carriers. In this case AC will be positive. The electron-phonon scattering rate and, hence, the
amplitude of AC, oscillates with the electron density in a wire, having maxima when the Fermi level coincides
with the edge of some one-dimensional subband. All these regularities are in agreement with the recent
experimental data. In the case of short, ballistic wires, nonequilibrium phonons cause additional backscattering
of carriers and AC must be negatij&0163-18206)00943-3

I. INTRODUCTION fining potentialU(x) in a two-dimensional electron system
occupying the plang=0. The energy spectrum and wave
Nonequilibrium ballistic phonon pulses have been suc{functions of the wire are
cessfully used to probe the properties of low-dimensional
electron systems, providing information on, for example, the 72K2
electron spectrum and scattering procesgses, e.g., Ref.)1 E=En+ m D
Among the various phonon pulse techniques, an important m
place belongs to acoustoconductiviyC), the change in the
conductivity under the influence of nonequilibrium phonons. W =exp(iky) yo(Z)un(X), 2
Scanning AC, or “phonon imaging;’has been used so far

to investigate the electron-phonon interaction in a two-yhere k is the wave vector along the wirey (axis), Ey

dimensional electron gas, particularly under the quantumin=0,1,2 ...) are theenergy levels in the confining poten-

Hall effect conditions. _ tial U(x) corresponding to the wave functions,(x), and
Recently, the first results of AC measurements in strucy, (z) is the ground state wave function for the two-

tures with a quasi-one-dimensional electron gasantum  gimensional electron gas formed by strong confinement in
wires) have appearetiThey demonstrated that for quasibal- the z direction.
listic wires where the equilibrium conductivity, vs Fermi For electrons with isotropic effective mass the interaction
energyEr dependence exhibited steps which were not veryyith acoustic phonons with wave vectqris described by
well pronounced, AC had a positive sign and strong oscillape potential\/q=(CqV/Q)l’Zeprq- r), whereQ is the nor-
tions.as a.function OEf . In the present paper, we present 8 malizing volume, y=+1 for deformation coupling and
physical picture of AC which provides, in particular, a pos- _1 for piezoelectric coupling. Interaction constasgtsfor
S|ble. explanation of the ex'p.erlmental results of Ref. 4 and,qip types of interaction may be found, for example, in Ref.
predicts some new regularities. 12. The corresponding matrix elements can be easily calcu-
lated:

II. ELECTRON-PHONON INTERACTION

1\ — y 12
In order to describe the properties of AC, we must first of (N.KIVgIM.K")=(Cq/Q2) Ok a, 2 (Az) Quin( ) - (3)

all consider the electron-acoustic phonon interaction in quan-
tum wires. The analogous problem for equilibrium phonons )
has already been considered by several aufhdrin the Here  Z(q) = dz y5(2)expla,z)  and  Qun(dx)
papers devoted to the energy relaxation probi®fwhere =/ dx uy(x)un(x)exp(q,x) are the form-factors suppress-
processes of phonon emission dominate over those of aliAg the electron-phonon interaction for largg andq, ex-
sorption, similar calculations have been made for a nonequiceeding the inverse wire width and thicknes® in x and
librium distribution of hot electrons. In our case, the situationz directions, respectively. We are considering the typical
is in some sense the opposite: we have an equilibrium elegsituation for quantum wires wheee>b and the lateral quan-
tron distribution at a low temperature and a nonequilibriumtization inx direction is weaker than that in tieedirection.
phonon system so that the phonon emission can be neglected As a characteristic of electron-phonon scattering in the
compared to the absorption. wire, we consider the scattering probabiliyy(k) for an
We consider a quantum wire formed by some lateral conelectron with quantum numbeb$ andk given by
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FIG. 2. Schematic picture of experiments on AC in quantum
wires. 1—hot spot; 2—substrate; 3—quantum wire.

Cm | [2k+2mes dg g”*F(q)
Wy (k =—f ———
(b) k/v/mw/h NK)= 573 max(0;2ms -2k \kZ+ 2msq

FIG. 1. Phonon scattering probabil#y,(k) (arbitrary unitg for " d v+1E(q)
the ground subband of a quantum wire with parabolic confining +2f u ) (5)
potentialU (x) = mw?x2/2 and deformation couplingy= +1). The 2k+2mssi\k?+2msdh

dimensionless temperatuflg, /ms is equal to 18 (a) and 10(b). This expression acquires its maximum valuekatO (near

The wave vectok is given in units ofyma/h=a"", so that the  the subband edg@nd decreases monotonically with increas-
electron energy coincides with th#Mth subband edge when

ing k.
k=2M. The wire width parametes\m/%w=msad# is equal to gAt higher T, the Wy vs k dependence becomes
0.05(curve 1), 0.1 (curve 23, and 0.3(curve 3. nonmonotonic, having maxima near Kk
c =[vV2m(Ey, —Ep\) + m?’s’—ms]/A#, where an additional
Wy (k)= scattering channel into théth subband becomes available.

- (2m)°h i is gi i
The Wy vs k dependence at differefit, anda is given in

Fig. 1 for the case of deformation coupling=€1). For pi-
X D f f fd3q q"F(9)|Z2(a,)]2Qun(a|?8 ezoelectric coupling y=—1), Eq. (4) with isotropic Bose
M function diverges atg—0, so that the Debye screening
%12kq #2q2 and/or disorder broadening must additionally be taken into
Y Y ipsql, (4)  account. We are more interested in deformation coupling
m 2m since it is connected with larger and, hence, with larger
wheres is the sound velocity. As has already been men-£nergy transfer and is more effective in phase relaxation pro-

tioned, we neglect phonon emission processes. cesses responsible for AGee Sec. Y
To obtain the explicit formula forwy(k), we must
specify the phonon distribution functidn(q). We consider B. Narrow-angle Bose distribution

two different models foF(q). In experiments on phonon imagidgnonequilibrium

phonons are generated locally at some point on the opposite
side of the substrate by a focused laser beam or a small

As our first model, we assumig(q) to be an isotropic resistive heateffFig. 2. If the dimensions of this hot spot as
Bose function with some effective heater temperaftige = well as of the quantum wire are much less than the substrate
F(q)=N(q)=[expfsqT,)—1] L. For T,<#s/a, wherea thicknessd, we may assume that all phonons reaching the
is the wire width, the dominant wavelength phonons cannowire have almost the same momentum direction which can
cause interlevel transitions and we may make the approximde varied by scanning the hot spot. This means that
tion Qun=Jun- Sinceb<a, for such phonong|,b<1 so F(q,6,¢)~ (60— 0y) 6(d— $o)N(d), where N(q) is the
thatZ(q,)=1. The expression fowy (k) then becomes very Bose function(see Sec. Il A and the angle®,, ¢, are de-
simple: termined by the hot spot positigsee Fig. 2

A. Isotropic Bose distribution
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For an electron with quantum numbeéxsk, the various
possible transitions can be found in Fig. 3, where
a=arctanfs/é) and £= sinfgsingyg|=|q,//q. One can see that
there exist two particular phonons with the wave vectors

1
3
+ J(k—mg# )%+ 2m(Ey—Ey)/%?]

Gon(=Z[(—k+mghig)

(6)
and

1
&
+J(k+mg7é&)%+2m(Ey—Ey)/A?],

Tk ==Z[(k+mhg)

()
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causing, correspondingly, forward and backscattering into

the Mth subband M +#N) [for intrasubband transitions
(M=N) forward scattering is possible only fdrké<msg.
Equation(4) gives

FIG. 3. Energy spectrum of a quantum wire and possible
phonon-induced electron transitions. Intra- and intersubband transi-
tions are shown fofiké>ms («;) andzké<ms (ay).

[Gun(}) 172 Z(@ln(K) cos90)| 2| Quin @lin(K) SiNdocospo)|?

Wy(k)~ .
n(K) % \/(k—ms/ﬁf)z—l—zm(EN—EM)/ﬁZ[quﬁs’ahN(k)/Th)_1] )
for >0 and
Wik~ [T (K) 17 2| Z (@R k) cOS0)| 2| Quin@iyn(K) SinBocospo) |2 o
N M (K+mhE) 2+ 2m(Ey— En)/ A2 expi Sty (K)/ Ty — 1]

for ¢<<0. Note that Eqs(6)—(9) assumek>0. To obtain the
corresponding equations fr 0, the superscripts andf as
well as conditionsp>0 and <0 should be interchanged.
Figure 4 shows the resulting/y vs k dependences for sev-
eral different phonon incident anglégifferent &).

Ill. IDEAL BALLISTIC QUANTUM WIRES

Let us discuss briefly AC for an ideal quantum wire with

only electron-phonon scattering. The assumption of ideality

means that at low temperatur&sthe equilibrium conduc-
tanceo of a wire must have a ballistic character. It is well
known (see, e.g., Ref. J3hat in this case

2
€
0=7 2 TnO(Er—En), (10

whereEy is the energy of th&th energy level and is the
transmission coefficient for electrons in thiéh subband. At

e’LmcC

> 1

Ao=

da,da,q"F(9)|Z(d,)|? Qun(ax) |?

zero temperature allfy=1. Their deviation from unity
caused by equilibrium phonons at nonzero temperature was
calculated in Refs. 14,15. To obtain the formula for AC
Ao in an ideal wire, we must derive the similar expression,
but now for nonequilibrium phonon distributions.

For sufficiently small phonon density such that multiple
electron-phonon scattering processes can be neglected, the
electron transmission probability through the wire with
length L is determined by the probability of a single back-
scattering eventWt,il(k) (we are interested only in back-
scattering since in one-dimensional systems forward scatter-
ing does not influence the conductiVity, and is given by
1— LW (k)m/fik. Here WS (k) is determined by a formula
similar to Eq.(4), where the integration ovey; is restricted
to the interval (-«,0). Assuming electrons to be completely
degenerate and calculating this expression at the Fermi en-
ergy, we obtain the coefficierfty in Eq. (10) and, eventu-
ally,

/]

- (2m%%m JEr—Ey

(11)

VEF—Epm+7isq
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The divergencies occurring in the kinetic characteristics
150 ] of an ideal model are an immanent property of a one-
dimensional system and are connected with the fact that in
125 the one-dimensional case, even weak elastic scattering
100 causes localization of electron states and, hence, cannot be
ignored in most cases. The important role of elastic scatter-
75 ing in the particular experimerftshat we want to explain, is
confirmed by the fact that the observed steps in the experi-
mentaloy vs Er dependence were considerably smooth.

As a result, the adequate AC theory must inevitably take
into account the elastic scattering of carriers by impurities
and wire defects. This will be done in the next sections.

Wo (arbitrary units)

(@)
IV. EFFECTS OF ELASTIC SCATTERING

Prior to discussing the AC effect in a nonideal wire, we
consider such a wire without phonon scattering and calculate
the characteristic time of elastic scattering k) for an elec-
tron with wave vectok in the Nth subband determining the
width of a quantum level and the amplitude of peaks appear-
ing in the density of states instead of singularities at the
energiesE=E, . We shall describe these scatterers by their
concentrationN; and the potential of a single scatterer
V(r)=Z4Vqexplqg-r). In the Born approximation

Wy (arbitrary units)

0 0.25 0.5 0.75 1 1.25 1.5

1 N;Q?
o N - ez > | PalviiziaFioual?

wk)  (2m*h

FIG. 4. Phonon scattering probabilityy(k) for the same wire

2
as in Fig. 1 withT,,/m&=10? ands\Vm/Aw=0.1, but for narrow- % 8l Ex—Ev— ﬁquy N ﬁzqy (12
angle phonon distribution witf=0.1 (solid curve and £é=0.15 N =M m om |-

(dashed curve (a) $<0. (b) ¢>0.

This expression givesy }(k)— as the Fermi energy ap-
Here they component ofj has a fixed value approximately Proaches any subband edge and, hence, cannot be directly
(with neglection of the phonon enefgyequal to applied. There are some papers where this problem has been
— 2m(\Ep—En+ VEr—Ey)/4. This is virtually the same solved(moﬁ;s_tlz)é numerically by taki_ng into account multiple
result which can be obtained from the expressions of RefSCaltering”~=> We prefer to obtain maybe more crude but
14,15 derived by the method of kinetic equation. semianalytical results and for this reason will employ the

Not considering the expression in detail, we point out theS0-called self-consistent Born approximatior(see, also

two most important conclusions: Refs. 25,26 . S .
(1) AC is always negative. The above-mentioned approximation is obtained by re-

(2) AC diverges aEr—E,, that is at the subband edges. placing the§ function in (12) with a broadened density of
The first result is evident since in the ideal case any scatStates:
tering (in our case—bhy nonequilibrium phongnesan only
decrease the coefficienty, . But this contradicts the experi- 1 N; Q2
mental dath where Ac>0. The second result is a conse- ™n(K,E) (277)2;3%
guence of the singularities in one-dimensional density of

f A0l Vel21Z(0,) | Qun( )2

states and appears in calculations of the quantum wire con- XI'w(k—qy,E), (13
ductivity which employ the simple Born approximatisee,
e.g., Refs. 5, 16, and 17 where

L fil2ry(k—qy ,E)
[E—En—7%4(k—qy)%/2m]*+[#/27y(k—qy ,E)]*’

Cy(k—qy,E):=m" (14

Note, 7y is, in general, now a function of bothandE—treated as independent variables. Théntegral is readily carried out
if the g dependence df is neglectede.g., for as-like impurity potentia). In this casesy depends only on the total electron
energyE and is to be found from the equation
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> 2

2
. = {\/(E—EM) + 5 g5) TEEw
—Ni|v|2% ffdQquz|Z(qz)|2|QMN(qx)|2 - . (15)

E)  (2mh)?
\/ (E—Ey)2+

% 2
ZTM(E)>

This self-consistent Born approximation is well definedkg is the Fermi wave vectprWe assume our wires to be of
for all E and expected to be reasonably accurate providetligh enough quality so that this inequality does not take
fl Ty<Eny1— En and the density of scatterers is sufficiently place.
low such that multiple scattering processes can be neglected.

It is convenient to introduce the individual rat@,\l,,(E) V. ACOUSTOCONDUCTIVITY
for an electron initially in theNth subband to scatter into the IN A NONIDEAL QUANTUM WIRE

Mth subband, so thdfl5) is written as ) ) .
In the absence of inelastic processes the resistance of a

wire depends on its length according to Anderson’s scaling
From (15), we see that for a given enerdy, the individual r(b)=rs

(16)  expressiorf?
F{ pcL

ex r—
ratesm,\l,,(E) with Ey,— E>#/7), can be neglected and thus . . ® . )
the sum oveM approximated by a finite sum. Furthermore, Hererg is the scaling resistance equal tera@fi/e“, where
TMlA(E) and hence—,;l(E) has a maximum & =E,, , with a is a numerical factor=2 andp. is the classical resistivity
the width of the peak depending oW ry(E,). This is  Per unit wire length equal tarfi(2e*Syly) ~* (ly is the
clearly demonstrated in Fig. 5, obtained by numerically solv-elastic mean free path in théth subbangl The formula is
ing Eq. (15). valid for nonballistic wires withL>1,.

In principle, for very high elastic scattering rates the for- Inelastic, phase-breaking electron-phonon and_electron-
mulas of Sec. Il forWy(k) become inadequate since we electron scattering will modify the wire resistance. Electron-
cannot calculate the electron-phonon matrix element usin§l€ctron scattering in quantum wires is strongly suppressed
electron wave functions of an ideal wire. In this case, itcompared to two- and three-dimensional electron systems.
would be more correct to use the more involved approacﬁ')arucularly, n a StrlCtly one-dimensional ideal wire with a
developed by Schmfd for the theory of the electron-phonon Single occupied subband it is completely forbidden by en-
interaction in dirty metals. However, we may expected con-ergy and momentum conservatithin the presence of inter-
siderable deviations from the ideal wire formulas of Sec. IISubband scattering electron-electron relaxation becomes pos-
only in the case when the energy uncertaififyy exceeds sible but vanishes in the zero temperature limit together with

typical phonon energies which are of the ordéss (where  the scattering by thermal phonons. Elastic scattering will also
reduce momentum restrictions and make electron-electron

scattering possible. In the following, we suppose that the
phase breaking processes will be determined mainly by non-
equilibrium phonons, that is by the processes described in
Sec. Il. If elastic scattering events are more frequent than
those of phonon scattering, the electron motion has a diffu-
sive character. For semiquantitative estimates we will as-
sume that all subbands are characterized by the same elastic
mean free path, diffusion coefficientD, and electron-
phonon rateW. In this case, we may describe phase relax-
ation in the wire by a single characteristic relaxation length
L,=VD/W. In the Appendix we discuss briefly more gen-
eral expressions which allow for different elastic and inelas-
tic scattering rates for the different subbands.

Now it becomes evident that for calculating AC, one must

FIG. 5. Energy dependence of the elastic scattering probabilit)ﬂn,d the dependence of a wire resistivity on thg phase. relax-
75 (E), obtained by self-consistent numerical calculations. The&tion lengthL,, the only parameter characterizing the influ-

probability is given in units ofw (= subband spacing), while ~ €nce of nonequilibrium phonons on the electron system.
E is given in units ofiw/2, so that subband edges are located atThere is no single universal formula for this dependence and

E=2M+1. The scattering strengthi;|V|2 is chosen such that the answer will depend on the relations between the charac-
75 X(Ep)=0.1w (curve ) and 75 (Eq)=0.3» (curve 3. Also teristic lengths of the systerh:, L, |, andl . It is conve-
shown are the individual probabilities,' (curves 1,2') and 7o;* nient to classify all possible cases depending on the wire
(curves 1,2"). lengthL.

1 _ 1
TN(E)_ m Tnm(E)

—1l=rdexpL/lo)—1]. (17

2 /hw
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A. Long wires (lj5c,L g<L) were calculated by averaging, over the Poisson distribu-

tion of inelastic collisions which gave
: rs L L2\ 4rg L2
perature must vanish. At nonzero temperatures phonon,§: —lexpg—|—1llexg — —|+4—exg — ==
cause hopping transitions between localized states which re- L o LG L 2L,

sults in nonzerooy. It is natural to expect that the same L2 L X 2y2

transitions can be caused by nonequilibrium phonons as well.  x f dx exp( )cos)’(— exp{ - _2) . (19

As a result, we may expect a positive AC for this case. 0 2l 1o lioc L

ap;larlli Jy?naggfthggnfi):tCzelgﬂf;r:mvgetsgilé mu;eer;rtfr fpd%g:ﬁ% the limit L<l;c,L,, Eq. (19) results in the following
. . L ,-dependent part of the wire conductivity:

dence of the wire conductance caused by destruction of lo-¢ P P y

calization. To illustrate this, let us suppose that inelastic scat- L2 e?L 2w

tering takes place at a single poiyy. In this case, electron Ao= erl2” 7D
motion in the regions &y<y, andy,<y<L becomes un- s-¢

correlated and the wire can be considered as two independent 1,4 positive AC described by EGO) decreases with the

wires with lengthsy, and L —y, connected in series. The gecrease of.. On the other hand, additional scattering by
resistance of each wire is given by the formula Ef?).  \,nequilibrium phonons will decrease the mean free path

Since ther vs wire length dependen¢&q. (17)] is superlin- 4 hence, decrease the classical component of conductance.
ear, the conductance of such a composed wire will exceegis correction tao

the value obtained from Eq17) for a single wire with

lengthL. Hence, inelastic scattering increases the wire con- W el oW

ductance. AO-N_O'OU_N_ o (21)
We consider a Poisson time distribution of inelastic scat- F F

tering events with a mean valW& *. This means that in our increases in magnitude at smialand, hence, at some critical

case of a very long wire the inelastic mean free pdthe = L=L. the crossover from positive to negative AC will take

lengths of independent wirgg are described by the distri- place. By comparing Eq$20) and (21), we obtain

bution function P(§)=(2§/L¢)exp(—§2/L§5). The resulting 173

wire resistivity per unit length is determined as a series re- Lo~ (liod )™ (22

sistance of these elementary parts and given by the formul&ince the expression E¢RO) used in our estimates is valid
only for L<l ., one can see that., in fact, belongs to the

In wires with l,<L,<L, all electron states are
localized® and the equilibrium conductivity-, at zero tem-

-1

(20

271 2
—=r J d¢ fexp(—¢ /L) [exp(é/lioc) —1] region of intermediate wire lengths considered in this sec-
s J dé Eexp(—£IL3) tion.
2
_ s e Ly 1+ Lo C. Short wires (L<I)
= Tr : (18
l loc 41 loc 2| loc

This case, which includes also ballistic point contacts,

Here ®(x) is the probability integral. The positive sign of corresponds to the ideal wire considered in Sec. Ill. Formula

dp/dL, results in positive AC. FoL 4<l,c, Eq. (18) re-  Eq.(11) gives an adequate description of AC except for the

duces to the well-known expression for the weak localizatioarrow regions wherégeg=Ey. To obtain an expression

correction to the wire conductivityA o~ _rs_quS (see, e.g., Which is valid everywhere, we must perform similar calcu-

Ref. 31). lations using the self-consistent density of states taking into
Note thatL , decreases with the sample temperature andaccount the level broadening and calculated in Sec. IV. This

hence, Eq(18) explains not only positive AC, but also the Procedure suppresses the divergenciegt Ey. One can

increase of equilibrium wire conductivity, with the tem-  S€e that for short, ballistic \_/vires AC is always negative con-

perature also observed in Ref. 4. Similar temperature behaftary to the case of long wires.

ior in metallic wires was observed in Ref. 32 and treated as a

manifestation of localization effects in Ref. 33. VI. PHONON SCATTERING AND PROPERTIES

OF POSITIVE AC

B. Intermediate wires (<L <ljoc,L ) In the previous section we have shown that, except for the

In this case, the localization tertho responsible for the case of very short wires, AC is positive and grows monotoni-
positive AC will be a small additional correction to the equi- cally with increasing probability of scattering by non-
librium conductancery=(r(L)) ! determined by Eq(17). equilibrium phonondVy (k). That is why the main properties
If, besides,L is much less than,,., oq is given by the of AC and, particularly, its dependence & (that is on
classical formulaoy~1,,c/(rsl). electron concentrationare determined by corresponding

To obtain the expression fdxro in relatively short wires, properties ofWy(k).
we shall follow the approach of Ref. 33 for the correction to  Let us now explore in more detail tHe- dependence of
the conductivity caused by weak localization in wires with AC. In Fig. 6, we show ACA o vs Eg for long wires(see
| <L<loc,Ly4. In this case rare inelastic scatterings divideSec. V A in the weak localization regime, i.6.,<L,l .
the wire into not more than two independent pdsse Sec. HereAo is given by the weak localization formula derived
V A). The corresponding corrections to the wire conductancédor two occupied subbands in Appendix Eé11) with the
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1-3 in the figure show this. Such double-peak features are

T o also apparent in the experimental curve of Ref. 4, lending
g ‘ 1 support to our present model.
> It is worth noting that, according to the results of Sec.
g 0-6r Il B, the character of the AC VEg dependence is sensitive
= to the angled,, ¢, (see Fig. 4 This means that by shifting
£ o the hot spot positiofespecially along the wire directignve
<b] can change this dependence which is experimentally mea-
2 0.2} > sured in gated quantum wire structures, such as in Ref. 4.
0 ’l 2 3 - : VII. CONCLUSION
2Ep [Tw To summarize, we have shown that the positive AC can

be adequately explained by a model of a quantum wire with

FIG. 6. Fermi energy dependence of A (arbitrary units for elastic scatterers causing electron localization which, in turn,
heater temperatureT,=10°ms’* and ambient temperature is partially suppressed by inelastic phonon scattering. The
T,=10ms’. The wire width parametes\m/% o is equal to 0.05 probability of electron-phonon scattering and, hence, the am-
(curve D, 0.1 (curve 2, and 0.3(curve 3. Note that the sharp plitude of AC oscillates with the Fermi enerdi in a wire
transition atEr=3 (=N=1 subband edgewould be smoothed which can be changed by a gate voltage. Both a positive
somewhat by the inclusion of disorder effects in the phonon rat&sign of AC and its oscillation witt/g have found their con-
Wy - firmation in the experiment.

In very short wires, as well as in quantum point contacts,
phase relaxation rate given by [Eq.(4) and Fig. Jforthe  the localization effects are of minor importance. In this case,
isotropic Bose distribution and the self-consistent relaxationhe main effect of phonon scattering will be an increase in
rate 7y " [Eq. (15 and Fig. 9. The key features to note, the backscattering probability, resulting in negative AC.
besides the positive sign of AC, afe the double peak ap- Note that not only AC but all characteristic lengths
pearing to the left of a given subband edge for some wirg,,., andL 4 oscillate withEr, acquiring their minimum val-
parameters andi) the saturation ofAo for a large heater ues at approximatelr=E,, where the density of states is
temperature. The latter fact is not seen from Fig. 6 but isa maximum(see also Ref. 7 This is why it is possible by
confirmed by the calculations of AC at differefy,. changing the electron concentration for a “short” wire to

To understand these features, let us consider the rangscome “long” and vice versa. In this case AC can change
Er<E; with only one occupied subband. Thénr is ap- its sign periodically, being positive aEg=E, and
proximately negative—far from these points.

2
€ — —
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2
(S APPENDIX
Ao~ + ﬁUF\/TOW;(}, (24)

We give here the derivation of the weak localization cor-
. rection to the conductivity of a long wire, allowing for the
independent of the heater temperature. Equatih sug-  ssibility of having more than one subband edge below
gests the possibility of using nonequilibrium phonon pulsesz _ The derivation is a straightforward generalization of the
to measure directly the absolute value of the weak localizagg,,a1 one for the single subband cdsee, e.g., Ref. 34
tion correction. _ _ Suhrke and Wilk& also consider the multisubband case, but
The double peak in curve 2 is a consequence offpe neglect the dependence of the elastic scattering rate and
dependences dfoth W, [curve 2 in Fig. )] and 7, ~ (Fig.  phase relaxation rate on the subband in¥exAs we shall
5). If Wo were constant, then from Fig. 5 and EB3) we see  gee pelow, keeping théd dependence leads to the additional
that Ao would have a single peak just to the left Bi.  complication of having to invert a matrix of an order equal to
However, the strong peak in the intersubband ¥&ltg close  the number of subband edges belBy.
to theN=1 subband edge produces a “dip” in ther peak, Assuming the subband separation is much larger than the
resulting in the double-peak profile. Increasing the wiregisorder broadening, i.e.,
width smooths theWy vs E dependencécurve 3 in Fig.
1(b)], while decreasing the width suppresses intersubband 5
scattering[curve 1 in Fig. 1b)] and thus in both limits we Evi1—Ey>—, (A1)
expect the dip to vanish, giving just a single peak. Curves ™
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the one electron Green functions are then approximately diand whereM; is the solution to the following equation:

agonal in the quantum numbat: G{;)~G{;) Sy, Where

h2k: ok R A

| *i
2m ~ 2my(E) T 274(E))
(A2)

G{(k,.E)=| E-Ey—

with 7 (E) given by Eq.(15) and whererﬁ(E) is the phase
relaxation time approximately equal W,(,ll given by Eq.

(4). In terms of these one electron Green functions, the weak
localization correction at zero temperature is approximately

e’n’ -
Ao~ WMqu k(a—Kk)Gy, (k.Ef) G},

X(K,Er)Cw(d,Er)Gly (a—Kk,Er)Gyy (a—k,Ep).
(A3)

The functionC denotes the sum over all maximally crossed
diagram contributions to the irreducible vertex function and

is given by

CM(CI'E):% TwlIL(d,E)M3(9,E)Tym,  (A4)

where
Ni|V|? 2 2
Tun= oyt 990%IZ(@) I Quu(a P, (AS)

H|<q,E>=; G{"(k,E)G{)(k—q,E),  (A6)

M;(9,E)= 5IJ+; TikIIk(d,E)Mg4(q,E). (A7)

Carrying out the sum ovek in Egs. (A3) and (A6), we
obtain modulo numerical factors of order one

e? - -
AU’“_ﬁMZJ TM|17'|(7T lJ dq MIJ(Q))

XTImO : (A8)
E=Eg
where
_ _ T3 _
Mg (@)= 8iy =7y m| 1= |+ @7y 7305 (A9)
J
and
i 211/4
Tu=|vE+ (A10)
UM UM m’TM !

with vy =+V2(Er— Ey)/m the ideal wire electron velocity.
The termr,,1, denotes the individual scattering rate into the
Nth subbandsee Eq(16)]. The final steps are the inversion
of Eq. (A9) to obtainM ; and theq integration in Eq(A8).

Let Mo denote the highest occupied subband. Then it is
possible to show that restricting the rangesvbfl, andJ in
Eqgs.(A8) and(A9) to 0,1,. . . ,Maintroduces only a small
error. For example, wheM ,,,=1, we obtain from Egs.
(A8) and(A9)

~2

o —1_~2, -1 12
T10 ToVo T To1 T1V1

e

Ao~ —

(A11)

h Tl_olrg_l-l- TallT‘lﬁ_l .
=Ep
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