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The change in conductivity of quantum wires under the influence of nonequilibrium phonons is considered
theoretically. The particular mechanism of this acoustoconductivity~AC! depends on the wire lengthL. For
long wires with L exceeding the localization length, the main effect involves the phonon-induced partial
delocalization of carriers. In this case AC will be positive. The electron-phonon scattering rate and, hence, the
amplitude of AC, oscillates with the electron density in a wire, having maxima when the Fermi level coincides
with the edge of some one-dimensional subband. All these regularities are in agreement with the recent
experimental data. In the case of short, ballistic wires, nonequilibrium phonons cause additional backscattering
of carriers and AC must be negative.@S0163-1829~96!00943-5#

I. INTRODUCTION

Nonequilibrium ballistic phonon pulses have been suc-
cessfully used to probe the properties of low-dimensional
electron systems, providing information on, for example, the
electron spectrum and scattering processes~see, e.g., Ref. 1!.
Among the various phonon pulse techniques, an important
place belongs to acoustoconductivity~AC!, the change in the
conductivity under the influence of nonequilibrium phonons.
Scanning AC, or ‘‘phonon imaging,’’2 has been used so far
to investigate the electron-phonon interaction in a two-
dimensional electron gas, particularly under the quantum
Hall effect conditions.3

Recently, the first results of AC measurements in struc-
tures with a quasi-one-dimensional electron gas~quantum
wires! have appeared.4 They demonstrated that for quasibal-
listic wires where the equilibrium conductivitys0 vs Fermi
energyEF dependence exhibited steps which were not very
well pronounced, AC had a positive sign and strong oscilla-
tions as a function ofEF . In the present paper, we present a
physical picture of AC which provides, in particular, a pos-
sible explanation of the experimental results of Ref. 4 and
predicts some new regularities.

II. ELECTRON-PHONON INTERACTION

In order to describe the properties of AC, we must first of
all consider the electron-acoustic phonon interaction in quan-
tum wires. The analogous problem for equilibrium phonons
has already been considered by several authors.5–9 In the
papers devoted to the energy relaxation problem,10,11 where
processes of phonon emission dominate over those of ab-
sorption, similar calculations have been made for a nonequi-
librium distribution of hot electrons. In our case, the situation
is in some sense the opposite: we have an equilibrium elec-
tron distribution at a low temperature and a nonequilibrium
phonon system so that the phonon emission can be neglected
compared to the absorption.

We consider a quantum wire formed by some lateral con-

fining potentialU(x) in a two-dimensional electron system
occupying the planez50. The energy spectrum and wave
functions of the wire are

E5EN1
\2k2

2m
, ~1!

C5exp~ iky!c0~z!uN~x!, ~2!

where k is the wave vector along the wire (y axis!, EN
(N50,1,2, . . . ) are theenergy levels in the confining poten-
tial U(x) corresponding to the wave functionsuN(x), and
c0(z) is the ground state wave function for the two-
dimensional electron gas formed by strong confinement in
the z direction.

For electrons with isotropic effective mass the interaction
with acoustic phonons with wave vectorq is described by
the potentialVq5(Cqg/V)1/2exp(iq•r ), whereV is the nor-
malizing volume, g511 for deformation coupling and
21 for piezoelectric coupling. Interaction constantsC for
both types of interaction may be found, for example, in Ref.
12. The corresponding matrix elements can be easily calcu-
lated:

^N,kuVquM ,k8&5~Cqg/V!1/2dk8;k1qy
Z~qz!QMN~qx!. ~3!

Here Z(qz)5* dz c0
2(z)exp(iqzz) and QMN(qx)

5* dx uM* (x)uN(x)exp(iqxx) are the form-factors suppress-
ing the electron-phonon interaction for largeqx and qz ex-
ceeding the inverse wire widtha and thicknessb in x and
z directions, respectively. We are considering the typical
situation for quantum wires wherea.b and the lateral quan-
tization in x direction is weaker than that in thez direction.

As a characteristic of electron-phonon scattering in the
wire, we consider the scattering probabilityWN(k) for an
electron with quantum numbersN andk given by
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where s is the sound velocity. As has already been men-
tioned, we neglect phonon emission processes.

To obtain the explicit formula forWN(k), we must
specify the phonon distribution functionF(q). We consider
two different models forF(q).

A. Isotropic Bose distribution

As our first model, we assumeF(q) to be an isotropic
Bose function with some effective heater temperatureTh :
F(q)5N(q)[@exp(\sq/Th)21#21. For Th,\s/a, wherea
is the wire width, the dominant wavelength phonons cannot
cause interlevel transitions and we may make the approxima-
tion QMN5dMN . Sinceb,a, for such phononsqzb,1 so
thatZ(qz)51. The expression forWN(k) then becomes very
simple:

WN~k!5
Cm

2p\3 F E
max$0;2ms/\22k%

2k12ms/\ dq qg11F~q!

Ak212msq/\

12E
2k12ms/\

` dq qg11F~q!

Ak212msq/\
G . ~5!

This expression acquires its maximum value atk→0 ~near
the subband edge! and decreases monotonically with increas-
ing k.

At higher Th the WN vs k dependence becomes
nonmonotonic, having maxima near k
5@A2m(EM2EN)1m2s22ms#/\, where an additional
scattering channel into theM th subband becomes available.
TheWN vs k dependence at differentTh anda is given in
Fig. 1 for the case of deformation coupling (g51). For pi-
ezoelectric coupling (g521), Eq. ~4! with isotropic Bose
function diverges atq→0, so that the Debye screening
and/or disorder broadening must additionally be taken into
account. We are more interested in deformation coupling
since it is connected with largerq and, hence, with larger
energy transfer and is more effective in phase relaxation pro-
cesses responsible for AC~see Sec. V!.

B. Narrow-angle Bose distribution

In experiments on phonon imaging,2 nonequilibrium
phonons are generated locally at some point on the opposite
side of the substrate by a focused laser beam or a small
resistive heater~Fig. 2!. If the dimensions of this hot spot as
well as of the quantum wire are much less than the substrate
thicknessd, we may assume that all phonons reaching the
wire have almost the same momentum direction which can
be varied by scanning the hot spot. This means that
F(q,u,f);d(u2u0)d(f2f0)N(q), where N(q) is the
Bose function~see Sec. II A! and the anglesu0 ,f0 are de-
termined by the hot spot position~see Fig. 2!.

FIG. 1. Phonon scattering probabilityW0(k) ~arbitrary units! for
the ground subband of a quantum wire with parabolic confining
potentialU(x)5mv2x2/2 and deformation coupling (g511). The
dimensionless temperatureTh /ms2 is equal to 102 ~a! and 10~b!.
The wave vectork is given in units ofAmv/\5a21, so that the
electron energy coincides with theM th subband edge when
k5A2M . The wire width parametersAm/\v5msa/\ is equal to
0.05 ~curve 1!, 0.1 ~curve 2!, and 0.3~curve 3!.

FIG. 2. Schematic picture of experiments on AC in quantum
wires. 1—hot spot; 2—substrate; 3—quantum wire.
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For an electron with quantum numbersN,k, the various
possible transitions can be found in Fig. 3, where
a5arctan(\s/j) andj[usinu0sinf0u5uqyu/q. One can see that
there exist two particular phonons with the wave vectors

q̃MN
f ~k![

1

j
@~2k1ms/\j!

1A~k2ms/\j!212m~EN2EM !/\2# ~6!

and

q̃MN
b ~k![

1

j
@~k1ms/\j!

1A~k1ms/\j!212m~EN2EM !/\2#, ~7!

causing, correspondingly, forward and backscattering into
the M th subband (MÞN) @for intrasubband transitions
(M5N) forward scattering is possible only for\kj,ms].
Equation~4! gives

WN~k!;(
M

@ q̃MN
f ~k!#g12uZ„q̃MN

f ~k!cosu0…u2uQMN„q̃MN
f ~k!sinu0cosf0…u2

A~k2ms/\j!212m~EN2EM !/\2@exp„\sq̃MN
f ~k!/Th…21#

~8!

for f.0 and

WN~k!;(
M

@ q̃MN
b ~k!#g12uZ„q̃MN

b ~k!cosu0…u2uQMN„q̃MN
b ~k!sinu0cosf0…u2

A~k1ms/\j!212m~EN2EM !/\2@exp„\sq̃MN
b ~k!/Th…21#

~9!

for f,0. Note that Eqs.~6!–~9! assumek.0. To obtain the
corresponding equations fork,0, the superscriptsb and f as
well as conditionsf.0 andf,0 should be interchanged.
Figure 4 shows the resultingWN vs k dependences for sev-
eral different phonon incident angles~different j).

III. IDEAL BALLISTIC QUANTUM WIRES

Let us discuss briefly AC for an ideal quantum wire with
only electron-phonon scattering. The assumption of ideality
means that at low temperaturesT the equilibrium conduc-
tances0 of a wire must have a ballistic character. It is well
known ~see, e.g., Ref. 13! that in this case

s05
e2

p\(
N

TNu~EF2EN!, ~10!

whereEN is the energy of theNth energy level andTN is the
transmission coefficient for electrons in theNth subband. At

zero temperature allTN51. Their deviation from unity
caused by equilibrium phonons at nonzero temperature was
calculated in Refs. 14,15. To obtain the formula for AC
Ds in an ideal wire, we must derive the similar expression,
but now for nonequilibrium phonon distributions.

For sufficiently small phonon density such that multiple
electron-phonon scattering processes can be neglected, the
electron transmission probability through the wire with
lengthL is determined by the probability of a single back-
scattering event,WN

b (k) ~we are interested only in back-
scattering since in one-dimensional systems forward scatter-
ing does not influence the conductivity13!, and is given by
12LWN

b (k)m/\k. HereWN
b (k) is determined by a formula

similar to Eq.~4!, where the integration overk1 is restricted
to the interval (2`,0). Assuming electrons to be completely
degenerate and calculating this expression at the Fermi en-
ergy, we obtain the coefficientTN in Eq. ~10! and, eventu-
ally,

Ds52
e2LmC

~2p!3\3(
MN

1

AEF2EN
E E dqxdqzq

gF~q!uZ~qz!u2uQMN~qx!u2

AEF2EM1\sq
. ~11!

FIG. 3. Energy spectrum of a quantum wire and possible
phonon-induced electron transitions. Intra- and intersubband transi-
tions are shown for\kj.ms (a1) and\kj,ms (a2).
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Here they component ofq has a fixed value approximately
~with neglection of the phonon energy! equal to
2A2m(AEF2EN1AEF2EM)/\. This is virtually the same
result which can be obtained from the expressions of Refs.
14,15 derived by the method of kinetic equation.

Not considering the expression in detail, we point out the
two most important conclusions:

~1! AC is always negative.
~2! AC diverges atEF→EN , that is at the subband edges.
The first result is evident since in the ideal case any scat-

tering ~in our case—by nonequilibrium phonons! can only
decrease the coefficientsTN . But this contradicts the experi-
mental data4 whereDs.0. The second result is a conse-
quence of the singularities in one-dimensional density of
states and appears in calculations of the quantum wire con-
ductivity which employ the simple Born approximation~see,
e.g., Refs. 5, 16, and 17!.

The divergencies occurring in the kinetic characteristics
of an ideal model are an immanent property of a one-
dimensional system and are connected with the fact that in
the one-dimensional case, even weak elastic scattering
causes localization of electron states and, hence, cannot be
ignored in most cases. The important role of elastic scatter-
ing in the particular experiments4 that we want to explain, is
confirmed by the fact that the observed steps in the experi-
mentals0 vs EF dependence were considerably smooth.

As a result, the adequate AC theory must inevitably take
into account the elastic scattering of carriers by impurities
and wire defects. This will be done in the next sections.

IV. EFFECTS OF ELASTIC SCATTERING

Prior to discussing the AC effect in a nonideal wire, we
consider such a wire without phonon scattering and calculate
the characteristic time of elastic scatteringtN(k) for an elec-
tron with wave vectork in theNth subband determining the
width of a quantum level and the amplitude of peaks appear-
ing in the density of states instead of singularities at the
energiesE5EN . We shall describe these scatterers by their
concentrationNi and the potential of a single scatterer
V(r )5(qVqexp(iq•r ). In the Born approximation

1

tN~k!
5

NiV
2

~2p!2\(
M

E d3quVqu2uZ~qz!u2uQMN~qx!u2

3dSEN2EM2
\2kqy
m

1
\2qy

2

2m D . ~12!

This expression givestN
21(k)→` as the Fermi energy ap-

proaches any subband edge and, hence, cannot be directly
applied. There are some papers where this problem has been
solved~mostly numerically! by taking into account multiple
scattering.18–23 We prefer to obtain maybe more crude but
semianalytical results and for this reason will employ the
so-called self-consistent Born approximation24 ~see, also
Refs. 25,26!.

The above-mentioned approximation is obtained by re-
placing thed function in ~12! with a broadened density of
states:

1

tN~k,E!
5

NiV
2

~2p!2\(
M

E d3quVqu2uZ~qz!u2uQMN~qx!u2

3GM~k2qy ,E!, ~13!

where

GM~k2qy ,E!:5p21
\/2tM~k2qy ,E!

@E2EM2\2~k2qy!
2/2m#21@\/2tM~k2qy ,E!#2

. ~14!

Note,tN is, in general, now a function of bothk andE—treated as independent variables. Theqy integral is readily carried out
if the q dependence ofV is neglected~e.g., for ad-like impurity potential!. In this case,tN depends only on the total electron
energyE and is to be found from the equation

FIG. 4. Phonon scattering probabilityW0(k) for the same wire
as in Fig. 1 withTh /ms25102 andsAm/\v50.1, but for narrow-
angle phonon distribution withj50.1 ~solid curve! and j50.15
~dashed curve!. ~a! f,0. ~b! f.0.
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1

tN~E!
'

Am
~2p\!2

NiuVu2(
M

E E dqxdqzuZ~qz!u2uQMN~qx!u2
FA~E2EM !21S \

2tM~E!
D 21E2EMG 1/2

A~E2EM !21S \

2tM~E!
D 2

. ~15!

This self-consistent Born approximation is well defined
for all E and expected to be reasonably accurate provided
\/tN!EN112EN and the density of scatterers is sufficiently
low such that multiple scattering processes can be neglected.

It is convenient to introduce the individual ratetNM
21 (E)

for an electron initially in theNth subband to scatter into the
M th subband, so that~15! is written as

1

tN~E!
5(

M

1

tNM~E!
. ~16!

From ~15!, we see that for a given energyE, the individual
ratestNM

21 (E) with EM2E@\/tM can be neglected and thus
the sum overM approximated by a finite sum. Furthermore,
tNM

21 (E) and hencetN
21(E) has a maximum atE5EM , with

the width of the peak depending on\/tM(EM). This is
clearly demonstrated in Fig. 5, obtained by numerically solv-
ing Eq. ~15!.

In principle, for very high elastic scattering rates the for-
mulas of Sec. II forWN(k) become inadequate since we
cannot calculate the electron-phonon matrix element using
electron wave functions of an ideal wire. In this case, it
would be more correct to use the more involved approach
developed by Schmid27 for the theory of the electron-phonon
interaction in dirty metals. However, we may expected con-
siderable deviations from the ideal wire formulas of Sec. II
only in the case when the energy uncertainty\/tN exceeds
typical phonon energies which are of the order\kFs ~where

kF is the Fermi wave vector!. We assume our wires to be of
high enough quality so that this inequality does not take
place.

V. ACOUSTOCONDUCTIVITY
IN A NONIDEAL QUANTUM WIRE

In the absence of inelastic processes the resistance of a
wire depends on its lengthL according to Anderson’s scaling
expression:28

r ~L !5r sFexpS rcL

r s
D21G[r s@exp~L/ l loc!21#. ~17!

Here r s is the scaling resistance equal to 2pa\/e2, where
a is a numerical factor.2 andrc is the classical resistivity
per unit wire length equal top\(2e2(Nl N)

21 ( l N is the
elastic mean free path in theNth subband!. The formula is
valid for nonballistic wires withL. l N .

Inelastic, phase-breaking electron-phonon and electron-
electron scattering will modify the wire resistance. Electron-
electron scattering in quantum wires is strongly suppressed
compared to two- and three-dimensional electron systems.
Particularly, in a strictly one-dimensional ideal wire with a
single occupied subband it is completely forbidden by en-
ergy and momentum conservation.29 In the presence of inter-
subband scattering electron-electron relaxation becomes pos-
sible but vanishes in the zero temperature limit together with
the scattering by thermal phonons. Elastic scattering will also
reduce momentum restrictions and make electron-electron
scattering possible. In the following, we suppose that the
phase breaking processes will be determined mainly by non-
equilibrium phonons, that is by the processes described in
Sec. II. If elastic scattering events are more frequent than
those of phonon scattering, the electron motion has a diffu-
sive character. For semiquantitative estimates we will as-
sume that all subbands are characterized by the same elastic
mean free pathl , diffusion coefficientD, and electron-
phonon rateW. In this case, we may describe phase relax-
ation in the wire by a single characteristic relaxation length
Lf5AD/W. In the Appendix we discuss briefly more gen-
eral expressions which allow for different elastic and inelas-
tic scattering rates for the different subbands.

Now it becomes evident that for calculating AC, one must
find the dependence of a wire resistivity on the phase relax-
ation lengthLf , the only parameter characterizing the influ-
ence of nonequilibrium phonons on the electron system.
There is no single universal formula for this dependence and
the answer will depend on the relations between the charac-
teristic lengths of the system:L, Lf , l , andl loc . It is conve-
nient to classify all possible cases depending on the wire
lengthL.

FIG. 5. Energy dependence of the elastic scattering probability
t0

21(E), obtained by self-consistent numerical calculations. The
probability is given in units ofv ~5 subband spacing/\), while
E is given in units of\v/2, so that subband edges are located at
E52M11. The scattering strengthNi uVu2 is chosen such that
t0

21(E0)50.1v ~curve 1! and t0
21(E0)50.3v ~curve 2!. Also

shown are the individual probabilitiest00
21 ~curves 18,28) andt01

21

~curves 19,29).
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A. Long wires „ l loc ,Lf<L …

In wires with l loc,Lf,L, all electron states are
localized30 and the equilibrium conductivitys0 at zero tem-
perature must vanish. At nonzero temperatures phonons
cause hopping transitions between localized states which re-
sults in nonzeros0. It is natural to expect that the same
transitions can be caused by nonequilibrium phonons as well.
As a result, we may expect a positive AC for this case.

In this and the next section we shall use the approach
applied in Ref. 33 for calculating the temperature depen-
dence of the wire conductance caused by destruction of lo-
calization. To illustrate this, let us suppose that inelastic scat-
tering takes place at a single pointy0. In this case, electron
motion in the regions 0,y,y0 andy0,y,L becomes un-
correlated and the wire can be considered as two independent
wires with lengthsy0 and L2y0 connected in series. The
resistance of each wire is given by the formula Eq.~17!.
Since ther vs wire length dependence@Eq. ~17!# is superlin-
ear, the conductance of such a composed wire will exceed
the value obtained from Eq.~17! for a single wire with
lengthL. Hence, inelastic scattering increases the wire con-
ductance.

We consider a Poisson time distribution of inelastic scat-
tering events with a mean valueW21. This means that in our
case of a very long wire the inelastic mean free paths~the
lengths of independent wires! j are described by the distri-
bution functionP(j)5(2j/Lf)exp(2j2/Lf

2). The resulting
wire resistivity per unit length is determined as a series re-
sistance of these elementary parts and given by the formula

r5r s
* dj jexp~2j2/Lf

2 !@exp~j/ l loc!21#

* dj j2exp~2j2/Lf
2 !

5
r s
l loc

expS Lf
2

4l loc
2 D F11FS Lf

2l loc
D G . ~18!

HereF(x) is the probability integral. The positive sign of
dr/dLf results in positive AC. ForLf! l loc , Eq. ~18! re-
duces to the well-known expression for the weak localization
correction to the wire conductivity:Ds;2r s

21Lf ~see, e.g.,
Ref. 31!.

Note thatLf decreases with the sample temperature and,
hence, Eq.~18! explains not only positive AC, but also the
increase of equilibrium wire conductivitys0 with the tem-
perature also observed in Ref. 4. Similar temperature behav-
ior in metallic wires was observed in Ref. 32 and treated as a
manifestation of localization effects in Ref. 33.

B. Intermediate wires „ l<L< l loc ,Lf…

In this case, the localization termDs responsible for the
positive AC will be a small additional correction to the equi-
librium conductances05„r (L)…21 determined by Eq.~17!.
If, besides,L is much less thanl loc , s0 is given by the
classical formula:s0; l loc /(r sL).

To obtain the expression forDs in relatively short wires,
we shall follow the approach of Ref. 33 for the correction to
the conductivity caused by weak localization in wires with
l,L, l loc ,Lf . In this case rare inelastic scatterings divide
the wire into not more than two independent parts~see Sec.
V A !. The corresponding corrections to the wire conductance

were calculated by averagingy0 over the Poisson distribu-
tion of inelastic collisions which gave

r5
r s
L FexpS L

l loc
D 21GexpS 2

L2

Lf
2 D 14

4r s
Lf
2 expS 2

L2

2Lf
2 D

3E
0

L/2

dxFexpS L

2l loc
D coshS x

l loc
D 21GexpS 2

2x2

Lf
2 D . ~19!

In the limit L! l loc ,Lf , Eq. ~19! results in the following
Lf-dependent part of the wire conductivity:

Ds5
L2

6r sLf
2 ;

e2L2W

\D
. ~20!

The positive AC described by Eq.~20! decreases with the
decrease ofL. On the other hand, additional scattering by
nonequilibrium phonons will decrease the mean free pathl
and, hence, decrease the classical component of conductance.
This correction tos

Ds;2s0

lW

vF
;2

e2l loclW

\LvF
~21!

increases in magnitude at smallL and, hence, at some critical
L5Lc the crossover from positive to negative AC will take
place. By comparing Eqs.~20! and ~21!, we obtain

Lc;~ l locl
2!1/3. ~22!

Since the expression Eq.~20! used in our estimates is valid
only for L! l loc , one can see thatLc , in fact, belongs to the
region of intermediate wire lengths considered in this sec-
tion.

C. Short wires „L< l …

This case, which includes also ballistic point contacts,
corresponds to the ideal wire considered in Sec. III. Formula
Eq. ~11! gives an adequate description of AC except for the
narrow regions whereEF.EN . To obtain an expression
which is valid everywhere, we must perform similar calcu-
lations using the self-consistent density of states taking into
account the level broadening and calculated in Sec. IV. This
procedure suppresses the divergencies atEF5EN . One can
see that for short, ballistic wires AC is always negative con-
trary to the case of long wires.

VI. PHONON SCATTERING AND PROPERTIES
OF POSITIVE AC

In the previous section we have shown that, except for the
case of very short wires, AC is positive and grows monotoni-
cally with increasing probability of scattering by non-
equilibrium phononsWN(k). That is why the main properties
of AC and, particularly, its dependence onEF ~that is on
electron concentration! are determined by corresponding
properties ofWN(k).

Let us now explore in more detail theEF dependence of
AC. In Fig. 6, we show ACDs vs EF for long wires~see
Sec. V A! in the weak localization regime, i.e.,Lf,L,l loc .
HereDs is given by the weak localization formula derived
for two occupied subbands in Appendix Eq.~A11! with the
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phase relaxation rate given byWN @Eq. ~4! and Fig. 1# for the
isotropic Bose distribution and the self-consistent relaxation
rate tN

21 @Eq. ~15! and Fig. 5#. The key features to note,
besides the positive sign of AC, are~i! the double peak ap-
pearing to the left of a given subband edge for some wire
parameters and~ii ! the saturation ofDs for a large heater
temperature. The latter fact is not seen from Fig. 6 but is
confirmed by the calculations of AC at differentTh .

To understand these features, let us consider the range
EF,E1 with only one occupied subband. ThenDs is ap-
proximately

Ds'2
e2

p\
vFAt0~AWh0

212AWa0
21!, ~23!

whereWh0 andWa0 are theN50 nonequilibrium and ambi-
ent electron-phonon rates, respectively. When the heater
temperature is much larger than the ambient temperature, we
haveWh0

21!Wa0
21 and therefore

Ds'1
e2

p\
vFAt0Wa0

21, ~24!

independent of the heater temperature. Equation~24! sug-
gests the possibility of using nonequilibrium phonon pulses
to measure directly the absolute value of the weak localiza-
tion correction.

The double peak in curve 2 is a consequence of theEF

dependences ofboth W0 @curve 2 in Fig. 1~b!# andt0
21 ~Fig.

5!. If W0 were constant, then from Fig. 5 and Eq.~23! we see
that Ds would have a single peak just to the left ofE1.
However, the strong peak in the intersubband rateW01 close
to theN51 subband edge produces a ‘‘dip’’ in theDs peak,
resulting in the double-peak profile. Increasing the wire
width smooths theWN vs E dependence@curve 3 in Fig.
1~b!#, while decreasing the width suppresses intersubband
scattering@curve 1 in Fig. 1~b!# and thus in both limits we
expect the dip to vanish, giving just a single peak. Curves

1–3 in the figure show this. Such double-peak features are
also apparent in the experimental curve of Ref. 4, lending
support to our present model.

It is worth noting that, according to the results of Sec.
II B, the character of the AC vsEF dependence is sensitive
to the anglesu0, f0 ~see Fig. 4!. This means that by shifting
the hot spot position~especially along the wire direction!, we
can change this dependence which is experimentally mea-
sured in gated quantum wire structures, such as in Ref. 4.

VII. CONCLUSION

To summarize, we have shown that the positive AC can
be adequately explained by a model of a quantum wire with
elastic scatterers causing electron localization which, in turn,
is partially suppressed by inelastic phonon scattering. The
probability of electron-phonon scattering and, hence, the am-
plitude of AC oscillates with the Fermi energyEF in a wire
which can be changed by a gate voltageVG . Both a positive
sign of AC and its oscillation withVG have found their con-
firmation in the experiment.

In very short wires, as well as in quantum point contacts,
the localization effects are of minor importance. In this case,
the main effect of phonon scattering will be an increase in
the backscattering probability, resulting in negative AC.

Note that not only AC but all characteristic lengthsl ,
l loc , andLf oscillate withEF , acquiring their minimum val-
ues at approximatelyEF.EN , where the density of states is
a maximum~see also Ref. 17!. This is why it is possible by
changing the electron concentration for a ‘‘short’’ wire to
become ‘‘long’’ and vice versa. In this case AC can change
its sign periodically, being positive atEF.EN and
negative—far from these points.
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APPENDIX

We give here the derivation of the weak localization cor-
rection to the conductivity of a long wire, allowing for the
possibility of having more than one subband edge below
EF . The derivation is a straightforward generalization of the
usual one for the single subband case~see, e.g., Ref. 34!.
Suhrke and Wilke35 also consider the multisubband case, but
neglect the dependence of the elastic scattering rate and
phase relaxation rate on the subband indexM . As we shall
see below, keeping theM dependence leads to the additional
complication of having to invert a matrix of an order equal to
the number of subband edges belowEF .

Assuming the subband separation is much larger than the
disorder broadening, i.e.,

EM112EM@
\

tM
, ~A1!

FIG. 6. Fermi energy dependence of ACDs ~arbitrary units! for
heater temperatureTh5102ms2 and ambient temperature
Ta510ms2. The wire width parametersAm/\v is equal to 0.05
~curve 1!, 0.1 ~curve 2!, and 0.3~curve 3!. Note that the sharp
transition atEF53 ([N51 subband edge! would be smoothed
somewhat by the inclusion of disorder effects in the phonon rate
WN .

54 13 905ACOUSTOCONDUCTIVITY OF QUANTUM WIRES



the one electron Green functions are then approximately di-
agonal in the quantum numberM : GMN

(6)'GM
(6)dMN , where

GM
~6 !~k,E!5SE2EM2

\2k2

2m
6 i

\

2tM~E!
6 i

\

2tM
f ~E! D

21

,

~A2!

with tM(E) given by Eq.~15! and wheretM
f (E) is the phase

relaxation time approximately equal toWM
21 given by Eq.

~4!. In terms of these one electron Green functions, the weak
localization correction at zero temperature is approximately

Ds'
e2\3

pm2V1/3 (
M ,k,q

k~q2k!GM
~1 !~k,EF!GM

~2 !

3~k,EF!CM~q,EF!GM
~1 !~q2k,EF!GM

~2 !~q2k,EF!.

~A3!

The functionC denotes the sum over all maximally crossed
diagram contributions to the irreducible vertex function and
is given by

CM~q,E!5(
I ,J

TMIP I~q,E!MIJ~q,E!TJM , ~A4!

where

TMN5
Ni uVu2

~2p!2V1/3E dqxdqzuZ~qz!u2uQMN~qx!u2, ~A5!

P I~q,E!5(
k
GI

~1 !~k,E!GI
~2 !~k2q,E!, ~A6!

and whereMIJ is the solution to the following equation:

MIJ~q,E!5d IJ1(
K

TIKPK~q,E!MKJ~q,E!. ~A7!

Carrying out the sum overk in Eqs. ~A3! and ~A6!, we
obtain modulo numerical factors of order one

Ds'2
e2

p\ (
M ,I ,J

tMI
21t I S p21E dq MIJ~q! D

3tJM
21tM

3 ṽM
2 U

E5EF

, ~A8!

where

MIJ
21~q!'d IJ2t IJ

21tJF12
tJ
tJ

fG1q2t IJ
21tJ

3ṽJ
2 , ~A9!

and

ṽM5FvM4 1S \

mtM
D 2G1/4, ~A10!

with vM5A2(EF2EM)/m the ideal wire electron velocity.
The termtMN

21 denotes the individual scattering rate into the
Nth subband@see Eq.~16!#. The final steps are the inversion
of Eq. ~A9! to obtainMIJ and theq integration in Eq.~A8!.

Let Mmax denote the highest occupied subband. Then it is
possible to show that restricting the ranges ofM , I , andJ in
Eqs.~A8! and~A9! to 0,1, . . . ,Mmax introduces only a small
error. For example, whenMmax51, we obtain from Eqs.
~A8! and ~A9!

Ds'2
e2

p\ F t10
21t0ṽ0

21t01
21t1ṽ1

2

t10
21t0

f211t01
21t1

f21G1/2U
E5EF

. ~A11!
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