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When a surface acoustic wave~SAW! is coupled piezoelectrically to a two-dimensional electron gas
~2DEG!, a velocity shift and attenuation of the SAW are induced that reflect the conductivity of the 2DEG.
This paper considers the case of an AlxGa12xAs heterostructure with a 2DEG a distanced from a ~100!
surface of the crystal where the SAW’s are propagated in the@011# direction at wave vectorq. It is found that
the velocity shift Dvs and the attenuation coefficientk satisfy the well known equation
(Dvs /vs)2( ik/q)5(a2/2)/@11 isxx(q,v)/sm#, wheresxx(q,v) is the complex conductivity at wave vector
q and frequencyv5vsq with vs the velocity of the SAW. The coefficientsa andsm are calculated and it is
found thata has a nontrivial dependence on the productqd. @S0163-1829~96!07943-X#

I. INTRODUCTION

For almost 30 years it has been known that the velocity
vs of surface acoustic waves~SAW’s! in piezoelectric crys-
tals can be effected by the electrical properties of nearby
conductors.1,2 If the nearby conductors are dissipative, then
they can allow the SAW to attenuate also. Work by
Ingebrigtsen,1 and later authors3,4 showed that when a piezo-
electric is brought next to a thin layer of a conducting me-
dium, the SAW velocity shiftDvs and the attenuation coef-
ficient k satisfy the relation

Dvs
vs

2
ik

q
5

a2/2

11 isxx~q,v!/sm
, ~1!

wheresxx(q,v) is the longitudinal conductivity of the ad-
joining medium at wave vectorq and frequencyv5vsq.
Note that the velocity shift is measured with respect to the
velocity of the SAW when the adjoining medium has infinite
conductivity. The coefficientssm anda2/2 depend on mate-
rial parameters and are discussed at length in this paper.

Using the above relation between SAW velocity shift~or
attenuation! and the conductivity of a surface layer, experi-
mentalists have probed the conducting properties of two-
dimensional electron gases~2DEG’s! placed near the surface
of crystals of GaAs.5–10,12~An approximation of the experi-
mental geometry is shown in Fig. 1.! In the earlier of these
experiments,5,6 the wavelength of the probing SAW was
much larger than the distanced from the surface. In this
case, the depthd can be neglected, and the coefficientssm
and a2/2 can be assumed to be constant. However, in the
more recent experiments,8–11 the wave vectorq can be so
large that the productqd is of order unity. In this case, one
must carefully consider the wave-vector dependences of
these coefficients. Roughly one might expect that the cou-
pling a2/2 should decay approximately ase22qd. However,
it is seen experimentally that the coupling remains roughly
constant up to the highest wave vectors probed (qd'4). In
this paper, the wave-vector dependences ofsm anda2/2 are
explicitly derived for an experimental geometry similar to
that used in these experimental works. Using the results de-
rived here, it should be possible to deduce quantitative re-

sults about the frequency and wave-vector-dependent con-
ductivities of the samples~a detailed analysis of the data in
Refs. 9 and 10 is given in Ref. 13!.

In Refs. 5–11, the SAW’s are propagated in the@011#
direction along a~100! surface of an~Al !GaAs crystal. For
most of this paper it will be sufficient to approximate this
system as the geometry shown in Fig. 1. In other words we
assume that the 2DEG is a thin conducting layer a distance
d ~typically between 1000 and 5000 Å! from the surface of a
homogeneous AlxGa12xAs crystal with the fractionx of Al
taken to be approximately 30%. The effects of the differ-
ences between the actual experiments and this idealization
will be considered in the concluding section of this paper.

The outline of the remainder of this paper is as follows. In
Sec. II, the electromagnetic response functionK00 is defined
and related to the conductivitysxx . The parametersm is
then defined in terms of the SAW velocity and the effective
dielectric constant~i.e., the effective strength of the Coulomb
interaction in the 2DEG!. The effective dielectric constant is
calculated explicitly in the Appendix. In Sec. III a qualitative
explanation is given as to how the SAW induces a potential
through piezoelectric coupling, thus resulting in an energy
shift and/or dissipation through the real and/or imaginary
part of the conductivity. Equation~1! is then derived leaving
only the coupling constanta2/2 to be calculated. In Sec. IV

FIG. 1. Approximate model geometry for surface acoustic wave
experiments. In the experiments the spacingd is typically between
1000 and 5000 Å. The AlxGa12xAs typically has a fraction of Al
given byx'30%.
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the form of the SAW~neglecting the piezoelectric coupling!
is discussed with particular focus on finding the energy den-
sity per unit area of the SAW. The effect of a small piezo-
electric coupling is then considered in Sec. V yielding a form
for the induced potential. The couplinga2/2 is then derived
and is found to have a nontrivial and nonmonotonic depen-
dence onqd. Finally, Sec. VI considers a number of experi-
mental issues and summarizes results.

II. RESPONSE FUNCTIONS

The density-density responseK00(q,v) is defined by the
relation

n~q,v!5K00~q,v!fext~q,v!, ~2!

wherefext is the perturbing externally applied scalar poten-
tial applied at a frequencyv and wave vectorq5qx̂, and
n(q,v) is the induced fluctuation density. As we will see
below, the SAW experiments directly measureK00 at finite
frequency and wave vector.

Many linear response measurements do not measure,
however, the ratio of induced density to the externally ap-
plied potential but rather the response to the total potential. A
densityn(q) induced by the external potential gives rise to a
Coulomb scalar potential

f ind~q,v!52v~q!n~q,v!, ~3!

wherev(q)52p/eeffq is the Fourier transform of the usual
Coulomb interactionv(r )51/(eeffur u). ~In principle, currents
in the sample give rise to an induced vector as well as scalar
potential, but in practice these fields are negligible.! Here
eeff is the effective background dielectric constant. The
wave-vector-dependent form of this dielectric constant for
the case of the model geometry of Fig. 1 is derived in the
Appendix, and is given by

eeff
e

5
1

2 S ~e1e0!exp~qd!

ecosh~qd!1e0sinh~qd! D , ~4!

where e is the dielectric constant of the bulk AlxGa12xAs
and e0 is the dielectric constant of the medium above the
surface ('1). The dielectric constant14 for Al xGa12xAs with
x'0.3 is approximately 12.5~which is slightly lower than
the dielectric constant for GaAs, which is approximately
13.0!.

Using Eq.~3!, the total scalar potential

f tot5fext1f ind ~5!

is now written as

f tot5@12v~q!K00#f
ext. ~6!

It then becomes useful to define the polarizationP00(q,v),
which relates the induced densityn(q,v) to the total scalar
potential via

n~q,v!5P00~q,v!f tot~q,v!. ~7!

Combining this definition with Eqs.~2! and ~6! yields the
equation

@K00#
215@P00#

211v~q!. ~8!

Since the response functionP00 relates the density to the
total potential, it is useful to write this function in terms of
the conductivitysab which relates the two spatial compo-
nents of the current (j x , j y) to the two spatial components of
the total electric field (Ex ,Ey) via j5sE. Using current con-
servation to givej x5(vn/q) then yields

sxx5
2 iv

q2
P00. ~9!

In particular, this allows us to write the general relation

@K00#
215v~q!2

iv

q2sxx
. ~10!

Throughout this work, we will assume thatv5vsq with vs
the SAW velocity, which then implies

K00~q,v!5
eeffq

2p@12 ism /sxx~q,v!#
~11!

with

sm5
vseeff
2p

. ~12!

The functionsm(qd) is shown in Fig. 2. Here, the experi-
mentally relevant parameters for Refs. 9 and 10 are used.
These aree512.5 andvs53010 m/sec~see Sec. IV below!.

FIG. 2. Coupling constants as a function ofqd with q the wave
vector andd the distance from the 2DEG to the surface. Top:
sm(qd) in units of inverseV. In this calculation, the dielectric
constant of the medium (AlxGa12xAs) is taken to be 12.5. Bottom:
a2(qd)/2 ~dimensionless!. Here, the piezoelectric constant is taken
as 0.145 C/m2. The uncertainty in this number results in an uncer-
tainty in the scale of approximately 50%. Note that atqd50 the
coupling constant is roughly 3.731024 in good agreement with
experiment.
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III. INDUCED ENERGY SHIFT

Due to the piezoelectric coupling, an external scalar po-
tentialfext is induced in the 2DEG. For now, we will write

fext5Ce14F~qd!/e, ~13!

whereC is the amplitude of the SAW,e14 the piezoelectric
stress constant, andF is a dimensionless function ofqd that
represents the fact that the SAW decays into the bulk.
ClearlyF should approach a constant asqd→0 and should
approach zero asqd→`. Roughly, one should expect that
the functionF should decay ase2qd.

The induced energy density per unit area due to this ex-
ternal potential is given by

dU5
1

2
K00ufextu2. ~14!

This expression is obtained from integrating a differential
ddU5n(fext)dfext and using Eq.~2!. ~Using f tot here in-
stead would account for only the electrical energy.! It should
be noted that this expression yields a complex energy. Such
a complex energy should be thought of as proportional to a
complex frequency describing the oscillations of the system
via exp(iqx2ivt) such that the imaginary part of this fre-
quency is the dissipation of the wave.

Using Eq.~10! we can rewrite this energy shift as

dU5
eeffq

4p@12 ism /sxx~q,v!#
ufextu2. ~15!

We now want to measure this energy shift with respect to the
shift for sxx→`. Thus,

DU[dU2dU~sxx5`! ~16!

5
eeffq

4p F 1

12 ism /sxx~q,v!
21G ufextu2 ~17!

5
eeffq

4p F 21

11 isxx~q,v!/sm
G ufextu2. ~18!

It is found below that the surface acoustic wave has an
energy density proportional toC2q2, whereC is the ampli-
tude of the wave andq is the wave vector. Furthermore, the
wave decays exponentially into the bulk with a decay con-
stant proportional toq. Thus, when integrated in theẑ direc-
tion, the energyU per unit surface area is given by

U5qC2H, ~19!

whereH is a factor that depends on material parameters that
we will determine below. Combining this with the results of
the above section, the fractional energy shift is then given by

DU

U
5

2a2/2

11 isxx~q,v!/sm
, ~20!

where

a2

2
5

eeff
e

e14
2

4peH
uF~qd!u2 ~21!

~note that the factor of 4p will vanish wheneeff is converted
into MKSI units!.

Using Eq.~19!, the fractional energy shift is then propor-
tional to the fractional wave-vector shift,

DU

U
5

Dq

q
52

Dvs
vs

1
ik

q
. ~22!

Here we have used the fact that the externally applied driving
frequency is fixed, andvs5Re(v/q).

Equation ~22! along with Eq.~20! implies the velocity
shift and attenuation relation given by Eq.~1!. All that re-
mains now is the tedious job of evaluating the constantH as
well as the functional formF in Eq. ~21!. It should be noted
that in the smallqd limit, various experiments18,5–9 have
measured the value of the coupling constant and have found
a2/2'3.231024. As is discussed below in Sec. VI, these
measurements should be viewed with caution. As discussed
above, one expects roughly thatF decays ase2qd so that
a2/2 decays ase22qd. This, however, contradicts experimen-
tal observation.11 Below, in a more careful analysis, we will
see why the decay is actually somewhat slower and shows a
nonmonotonic dependence onqd.

IV. NONPIEZOELECTRIC SAW’S

We begin by discussing the solution of the SAW equa-
tions with the piezoelectric coupling set to zero. The piezo-
electric coupling will then be added at lowest order.

Defining a displacement vectoruk , the elastic wave equa-
tion is given by15–17

ci jkl ] l] iuk1rü j50, ~23!

wherer is the mass density,c is the elastic tensor, we have
used the notations] l f5] f /]xl , ḟ5] f /]t, and repeated indi-
ces are summed. For GaAs, AlAs, and other crystals of cubic
symmetry there are only three independent elastic constants.
These constants are conventionally calledc11, c12, and
c44. For GaAs at low temperatures, the elastic constants
c11, c12, andc44 are given by

19 12.2631010,5.7131010, and
6.0031010 N/m2, respectively. The constants for AlAs
~Refs. 19 and 20! are given approximately by
12.231010,5.531010, and 5.731010N/m2 respectively. It is
noted that the elastic constants of the two materials are
roughly the same. For AlxGa12xAs it is reasonable to inter-
polate for any value ofx. ~Experimentally, there may be
some uncertainty inx.! The density19 of GaAs is 5307
kg/m3, and the density of AlAs is 3598 kg/m3. Thus for
Al xGa12xAs with x'0.3, the density interpolates to approxi-
mately 4794 kg/m3, which differs from that of GaAs by only
10%.

In considering surface waves, the wave equation must be
supplemented with the boundary condition at the free surface
so that there is no total force at the surface. This condition is
written as15,16

cẑjkl] luk50, ~24!
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where the subscriptẑ represents the direction normal to the
surface. For certain geometries, analytic solutions of the
SAW equations are available. In the present case of a~100!
surface with wave propagation in the@011# direction, the
velocity of SAW propagation is given by the solution~here
we are interested in the lowest velocity solution! of the cubic
equation,21

S 12
c11
c44

XD S c11c118 2c12
2

c11
2 2XD 25X2S c118c112XD , ~25!

where c118 5 1
2(c111c1212c44) and X5rvs

2/c11 gives the
SAW velocity vs .

For AlxGa12xAs with x'0.3, the velocity is approxi-
mately 3010 m/sec.~This differs from that of pure GaAs by
only 5%.! Once the velocity is determined, one can easily
solve analytically for the form of the SAW. For the experi-
mental geometry we are presently considering, the displace-
ments for this wave can be written as21,22

ux5C~e2Vqz2 iw1e2V* qz1 iw!eiq~x2vst !, ~26!

iuz5C~ge2Vqz2 iw1g* e2V* qz1 iw!eiq~x2vst !, ~27!

with uy50 and C the amplitude (C has dimensions of
length!. Here, thex̂ direction is chosen in the direction of
wave propagation~the @011# direction!. The parametersV,
g, andw are determined by21,22

05~c118 2Xc112V2c11!~c442Xc112V2c44!

1V2~c121c44!
2, ~28!

g5VF c121c44
c442~X1V2!c11

G , ~29!

e22iw52
g*2V*

g2V
. ~30!

In the case of AlxGa12xAs with x50.3, the values ofg and
V and w are given in this case byV'0.50110.472i ,
g'20.70511.146i , andf'1.06.

The local energy density of this wave can be written
as15,17

E5 1
2 ci jkl ui j ukl* , ~31!

where the strainui j is given by

ui j5
1
2 ~] iuj1] jui !. ~32!

For the AlxGa12xAs surface wave discussed above, the en-
ergy density can be written as17

E5 1
2 ~c118 uuxxu21c11uuzzu212c12Re@uxx* uzz#1c44u2uxzu2!.

~33!

Inserting the above described form of the wave yields the
strains

uxx5 iqux , ~34!

uzz5 iqC~gVe2Vqz2 iw1c.c.!eiq~x2vst !, ~35!

2uxz5Cq~@g2V#e2Vqz2 iw1c.c.!eiq~x2vst !, ~36!

with ‘‘c.c.’’ meaning complex conjugate. Finally, integrating
the result of Eq.~33! in the ẑ direction yields an energy per
unit surface area in the form given by Eq.~19! with

H5ReFc118 S e22iw

V
1
1

a D1c11S ~g2V!2e22iw

V
1

ug2Vu2

a D
1c44S ~g2V!e22iw1

ugVu2

a D
12c12S ge22iw1

Re~gV!

a D G , ~37!

wherea5Re(V). This yields a numerical value of

H'28.831010 N/m2 ~38!

~the value for pure GaAs is lower by only about 2%!.

V. PIEZOELECTRIC COUPLING

When a piezoelectric coupling is added, the wave equa-
tions take the form1,16,17

ci jkl ] l] iuk1eki j]k] if1rü j50, ~39!

eikl] l] iuk2e¹2f50, ~40!

wheree is the piezoelectric stress tensor,f is the electric
potential, ande is the dielectric constant of the medium~here
e is assumed to be isotropic!. For GaAs and AlAs~and other
cubic crystals of class 4̄3m), there is only one independent
nonzero component of the piezoelectric tensor17 callede14.

The value ofe14 for GaAs has an accepted value19,17 of
approximately 0.157 C/m2. However, it should be noted that
there is a small amount of evidence23 that the actual value
might be somewhat lower~by perhaps as much as 40%!. For
the present work we will choose to work with the accepted
value. For the case of AlAs, it is even more difficult to find
a reliable value for the piezoelectric coupling. To the au-
thor’s knowledge, no reliable measurement of this quantity
has been made to date.24 Several calculations ofe14 have
been made, and the results range from25 as small as 0.02
C/m2 to26 as large as 0.22 C/m2. If we choose one of these
for the value ofe14 for AlAs and interpolate to obtaine14 for
Al xGa12xAs with x50.3 ~linear interpolation is thought to
be roughly correct24! we will obtain results that range from
approximately 0.11 C/m2 to 0.18 C/m2. Sincee14 is squared
in the final result@Eq. ~21!#, these uncertainties will be mag-
nified. Although this uncertainty results in an overall change
in the magnitude of the coupling, it will not change the func-
tional form of the coupling with respect to changes inqd.
For definiteness, we will choose to work with a value of
e14 of 0.145 C/m2 for Al xGa12xAs with x'0.3 ~which is
close to the value for pure GaAs!. The uncertainty is ap-
proximately 0.04 C/m2. When this quantity is squared in Eq.
~21!, the final result has an uncertainty in scale of about 50%.

Since the piezoelectric couplinge14 is small, it is clear
from the second equation thatf will be order e14 smaller
thanu. Thus, the first equation will be solved by the nonpi-
ezoelectric solution discussed above with corrections only at
ordere14

2 The mechanical boundary conditions in the piezo-
electric case are1,16
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cẑjkl] luk1ekẑj]kf50. ~41!

Again, this will be satisfied by the nonpiezoelectric solution
with corrections at ordere14

2 The electrical boundary condi-
tion that the normal component of electric displacementD is
continuous across the surface can be written as1

f5 i
vs
2

v
ZDẑ , ~42!

D ẑ5eẑkl] luk2e]kf, ~43!

where Z is the transverse magnetic wave impedance
(Z5Ex /Hy) of the medium above the surface. The imped-
ance of the adjoining medium can be written as

Z5
i

vse0
, ~44!

where e0 is the adjoining medium’s dielectric constant.
These conditions can be rewritten as

05~e0qf1eẑkl] luk2e] ẑf!uz50 . ~45!

Here, this boundary condition must be properly treated since
it is of lower order ine14. Thus, we will use the above
nonpiezoelectric solution foru and solve Eqs.~40! and ~45!
for f. These two equations in our case can be recast as

e¹2f5e14~]zuxx12]xuxz!, ~46!

05~e0qf1e14uxx2e] ẑf!uz50 . ~47!

The proposed form of solution is

f5
iCe14

e
eiq~x2vst !@A1e

2Vqz2 iw1A2e
2V* qz1 iw1A3e

2qz#

~48!

with C the amplitude of the SAW. Equation~46! immedi-
ately yields the conditions

A15A2*5
g22V

V221
. ~49!

Finally, using Eq.~47! yields

A35
22

11r
@cosw1rRe~A1e

2 iw!1Re~VA1e
2 iw!# ~50!

with r5e0 /e'1/12.5.
Once the potentialf has been determined, this potential

is then treated as the external potentialfext applied to the
2DEG. Note that the scalar potentialf ind then induced by the
density fluctuations in the 2DEG does not change the solu-
tion to Eqs.~40! and~45! above since¹2f ind50 everywhere
outside of the 2DEG ande0qf ind5e] ẑf

ind at the surface
~the solution of such a boundary condition is discussed in the
Appendix!. The form of the potential is given by Eq.~13!
where the functional dependenceF is given by

F~qd!52uA1ue2aqdcos~bqz1f1j!1A3e
2qd, ~51!

whereV5a1b i andA15uA1ue2 i j. Here we have the val-
uesuA1u'1.59,f1j'2.41,A3'23.10. Using these values

in Eq. ~21! yields a coupling constanta2/2. The functional
dependence ofa2/2 onqd is shown in Fig. 2. It is clear that
the dependence is quite nontrivial. First of all, the exponen-
tial decay at largeqd is roughly proportional toe2qd rather
thane22qd. This is because, due to the precise material pa-
rameters, the SAW decays into the bulk ase2aqd with a'
1
2. More importantly, at smallqd the coupling seems to os-
cillate. The reason for this is roughly that the boundary con-
dition fixes the strainuxz to be zero at z50. Thus
Ex(z50) is mainly caused by the surface charge@i.e., the
A3 term in Eq.~48!#. As z ~or d) increases, the effect of the
surface charge term quickly decays, but the strainuxz be-
comes nonzero so that the coupling decays first, but then
increases. Finally, at largeqd, the exponential decay of the
SAW damps out the coupling.

VI. CONCLUSION AND FURTHER CONSIDERATIONS

This work has focused on surface acoustic waves in
Al xGa12xAs coupled to a 2DEG a distanced away from the
surface of the sample. The general relation@Eq. ~1!# between
the fractional SAW velocity shiftDvs /vs , the attenuation
k, and the conductivitysxx of the 2DEG was derived, and
the coefficientsa2/2 andsm were explicitly calculated as a
function of the productqd of the wave vectorq and the
distanced to the surface.

Although Eq.~1! is very general, the values of the coef-
ficientssm anda2/2 are quite dependent on material param-
eters. As discussed in the text and in the Appendix,sm is
dependent only on the velocity of the SAW and on the ef-
fective background dielectric constant in the 2DEG~which is
in general wave vector dependent!. The coupling constant
a2/2, on the other hand, is very sensitive to the details of the
sample. In this paper we have focused only on a relatively
simple model geometry where the sample is assumed to be a
homogeneous slab of AlxGa12xAs to simplify the solution
of the wave problem. In actual experiments, the samples are
often complicated many-layer heterostructures. In the rel-
evant experiments,11 the bulk of the crystal~below the
2DEG! is pure GaAs andmostof the crystal between the
2DEG and the surface is AlxGa12xAs with x'0.3. However,
additional thin layers of GaAs are added in this region, along
with Si dopants. In principle, we could solve the wave equa-
tions for this complicated geometry and apply similar meth-
ods, but in practice such problems can only be solved nu-
merically. However, since the elastic constants, densities,
and dielectric constants of AlxGa12xAs and GaAs are so
similar, we suspect that these heterostructures can be well
approximated by the homogeneous system discussed here.

In using Eq.~1! to extractsxx(q,v) from experimental
data, there are several complications. To begin with, accurate
measurements of the attenuation are extremely difficult, as
are absolute measurements of the velocity.11 However, mea-
surements of the relative velocity shift can be made quite
accurately. Another complication is that the above formula
for the velocity shift@Eq. ~1!# gives the velocity shiftDvs
relative to the velocity of the SAW if the conductivity of the
2DEG were infinite. In practice, the velocity shift is usually
measured relative to the velocity of the SAW at zero mag-
netic field. It is often the case in high mobility samples~par-
ticularly at low frequency! that the conductivity at zero mag-
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netic field is sufficiently large that it can be considered
infinite and this approximation becomes reasonable. How-
ever, more generally, if the conductivity at zero field is well
known, the resulting measured shift can be appropriately ad-
justed.

In Refs. 5–10, the parameterssm anda2/2 are both fit to
experiment. To do this, the dc conductivity is measured and
put into Eq.~1!, the values ofsm anda2/2 are then varied
until a good fit is obtained to the experimentally measured
values ofDvs /vs as a function of magnetic field. There are
several possible problems with this procedure. To begin
with, the zero frequency~dc! conductivity is expected to be
somewhat different from the finite frequency and wave-
vector conductivitysxx(q,v5vsq) that must be used in Eq.
~1!. Furthermore, there are indications that due to large scale
inhomogeneities in the sample,27 the measured dc conductiv-
ity may not accurately represent the spatial average ofsxx .
We thus conclude that these experimental fits of these pa-
rameters to the dc conductivity should be viewed with cau-
tion. Nonetheless the qualitative features of these experi-
ments are relatively robust and many of the conclusions
drawn from these experiments are relatively independent8,9

of the precise value of the fit parameterssm and a2/2. A
more careful quantitative analysis of these data is given in
Ref. 13.
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APPENDIX: COULOMB INTERACTION NEAR A
DIELECTRIC INTERFACE

The Coulomb interaction between electrons in the 2DEG
is affected by the presence of the free surface of

Al xGa12xAs since the dielectric constant of the medium
above the surface (e0'1) is much less than the dielectric
constant of AlxGa12xAs (e'12.5). In this appendix, we
consider the electrostatic problem of a charge in a 2DEG a
distanced from this AlxGa12xAs-air interface. Consider a
chargee51 placed in the 2DEG at positionr50 such that
the AlxGa12xAs surface is at the coordinatez5d. It is a
standard result of electrostatics28 that the electrostatic poten-
tial in the AlxGa12xAs generated by such a charge is given
by

F~r !5
e

e S 1

ur u
1F e2e0

e1e0
G 1

ur12ẑdu
D . ~A1!

Here,ur12ẑdu is the distance fromr to the image charge, a
distanced away from the surface on the air side. Restricting
r to lie in the plane of the 2DEG, and Fourier transforming,
yields

v~k!5E d2reik•rF~r ! ~A2!

which can be evaluated using Eqs. 6.564, 8.411, and 8.469.3
from Ref. 29 to yield

v~k!5
2p

eeffk
, ~A3!

where the effective dielectric constant is defined by4

1

eeff
5
1

e S 11Fe2e0
e1e0

Ge22kdD ~A4!

which can be rewritten in the form of Eq.~4!. Note that the
effective dielectric constant ranges frome for largeqd@1 to
(e1e0)/2 for qd!1.

1K. A. Ingebrigtsen, J. Appl. Phys.40, 2681~1969!.
2C-C. Tseng and R. M. White, J. Appl. Phys.38, 4274~1967!.
3P. Bierbaum, Appl. Phys. Lett.21, 595 ~1972!.
4A. L. Efros and Y. M. Galperin, Phys. Rev. Lett.64, 1959~1990!;
Some of the calculations given in this work are very similar to
those given here. However, in this reference, the 2DEG is as-
sumed to be a distanced above~i.e., outside of! the piezoelec-
tric.

5A. Wixforth, J. P. Kotthaus, and G. Weimann, Phys. Rev. Lett.
56, 2104~1986!.

6A. Wixforth et al., Phys Rev. B40, 7874~1989!.
7R. L. Willett, M. A. Paalanen, R. R. Ruel, K. W. West, L. N.
Pfeiffer, and D. J. Bishop, Phys. Rev. Lett.65, 112 ~1990!.

8R. L. Willett, R. R. Ruel, M. A. Paalanen, K. W. West, and L. N.
Pfeiffer, Phys. Rev. B47, 7344~1993!.

9R. L. Willett, R. R. Ruel, K. W. West, and L. N. Pfeiffer, Phys.

Rev. Lett71, 3846~1993!; see also R. L. Willett, Surf. Sci.305,
76 ~1994!.

10R. L. Willett, K. W. West, and L. N. Pfieffer, Phys. Rev. Lett75,
2988 ~1995!.

11R. L. Willett ~private communication!.
12For related work, see A. Schenstromet al., Solid State Comm.65,

739 ~1988!; V. W. Ramptonet al., Semicond. Sci. Technol.7,
641 ~1992!; A. Esslingeret al., Surf. Sci.305 83 ~1994!; J. M.
Shiltonet al., J. Phys. Condens. Mater.7, 7675~1995!.

13S. H. Simon, B. I. Halperin, and R. L. Willett~unpublished!.
14Handbook of Optical Constants of Solids, edited by E. D. Palik

~Academic, Boston, 1985!; Handbook of Optical Constants of
Solids II, edited by E. D. Palik~Academic, Boston, 1991!.

15L. D. Landau and E. M. Lifshitz,Theory of Elasticity, 3rd ed.
~Pergamon, Oxford, 1986!.

16G. W. Farnell inPhysical Acoustics, edited by W. P. Mason and

54 13 883COUPLING OF SURFACE ACOUSTIC WAVES TO A . . .



R. N. Thurston~Academic Press, London, 1970!, Vol. 6; See
also G. W. Farnell, inAcoustic Surface Waves,edited by A. A.
Oliner ~Springer-Verlag, New York, 1978!.

17B. A. Auld, Acoustic Fields and Waves in Solids~Wiley, New
York, 1973!, Vol. 1.

18See also T. W. Grudowski and M. Gilden, Appl. Phys. Lett.38,
412 ~1980!. Note that the experimental geometry used in this
reference is slightly different from that considered here.

19M. Neuberger,Handbook of Electronic Materials~Plenum, New
York, 1971!, Vol. 2, and references therein.
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