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We study the magnetic phases of two coupled two-dimensional electron gases in order to determine under
what circumstances these phases may occur in real semiconductor quantum wells, and what the experimental
properties of the broken-symmetry ground states may be. Within the local-density approximation to time-
dependent density-functional theory~DFT!, we find a phase transition signaled by the vanishing of the inter-
subband spin-density excitations at low but accessible (;1010–1011 cm22) electron densities. Through a
self-consistent Hartree-Fock calculation, we associate this transition with an antiferromagnetic phase and study
the phase diagram, thermodynamics, and collective modes in it. The collective modes are in principle observ-
able in inelastic light-scattering experiments, and we discuss the implications of our calculations for these
measurements. We also examine the ferromagnetic transition in both single and double quantum wells within
the local-spin-density approximation to DFT, and obtain a critical density which depends on the well width and
which is far below that of the antiferromagnetic transition.@S0163-1829~96!02844-5#

I. INTRODUCTION

The study of spin instabilities holds a fascination for both
theoretical and experimental condensed-matter physicists. To
theorists, these instabilities illustrate the qualitatively new
states of matter which may result in simple systems through
the presence of electron-electron interactions. To experimen-
talists, they lead to interesting phases with unique and poten-
tially useful properties. Consequently, the search for systems
which exhibit unusual spin instabilities is an area of active
research, and any guidance that theory can provide which
suggests avenues for this investigation should be welcome.

One class of systems ready for serious exploration are
single- or double-quantum-well structures at low density.
Theoretically, the low dimensionality of these structures re-
stricts the phase space available for electron-electron scatter-
ing, increasing the relative importance of the interaction, and
thereby enhancing the potential for interesting phase transi-
tions. Another, more practical, reason for looking at these
structures is that they can be physically realized in semicon-
ductor space-charge layers and, in particular, ultrapure
modulation-doped GaAs/AlxGa12xAs heterostructures.
These devices may be fabricated with precisely controlled
dimensions that are nearly free of defects, and which are
tunable over a wide range of densities and band structures.
This freedom yields a large parameter space in which inter-
esting effects may be found and explored with both experi-
mental and theoretical tools.

In isolating the interesting regions of this parameter
space, researchers can be guided by simple energetic consid-
erations. When the kinetic energy of an electron gas domi-
nates the Coulomb repulsion, as at high electron densities,
the system behaves like a nearly ideal Fermi gas. Therefore,
interesting phases will be found only in the regime in which
the kinetic energy is smaller than or of the same order as the
potential energy. Two ways of reaching this limit suggest
themselves: applying a magnetic field or reducing the elec-
tron density. In a strong magnetic field, the kinetic energy is
quenched by the Landau quantization, leading to a variety of

strongly correlated quantum phases, the best-known example
being the fractional quantum Hall liquid.1–8 At extremely
low densities, the electrons prefer to crystallize, as predicted
some time ago by Wigner.9 Experimental evidence of this
crystallization has been somewhat equivocal in semiconduc-
tor heterostructures, but it is clearly seen in a two-
dimensional electron gas suspended above the surface of liq-
uid helium.10 For somewhat higher densities, magnetic
instabilities to spin-density wave11 or ferromagnetic12 phases
have been proposed.

The parameter space defined by the energetics of a single
low-dimensional electron gas is well defined and thoroughly
explored. To find further effects, many current investigations
of these systems add an additional degree of freedom by
coupling two two-dimensional electron gases together. The
resulting two-layer system has an additional energy scale due
to the splitting of the isolated quantum-well levels into sym-
metric and antisymmetric components which compete with
the intralayer and interlayer Coulomb energies. In a high
magnetic field, this additional degree of freedom can lead to
the disappearance of odd-integer and the appearance of even-
integer fractional quantized Hall steps,4,5,7 and possibly to
spontaneous charge transfer between the layers.13,14

In zero field, a number of experimental results and theo-
retical predictions have also appeared in the literature.15–25

Many of these zero-field studies focus on the behavior of the
collective excitations involving transitions between the sym-
metric and antisymmetric levels and which are therefore
unique to two-layer systems. These excitations can be pro-
duced in either the charge or spin channels, and have ener-
gies which are sensitive to the many-body interactions in the
system. For example, in quantum wells with either square or
parabolic confining potentials, theoretical work suggests that
there exists a critical density below which the many-body
corrections to the charge-density excitations cause the energy
of this mode to drop below the energy of the symmetric-
antisymmetric splitting.19 This effect was recently observed
by inelastic light-scattering experiments.23 Another experi-
mental study of coupled double-quantum-well systems re-
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veals that the spin-density excitation energy abruptly merges
with the continuum of intersubband single-particle excita-
tions as the electron density is increased beyond the point at
which the second-lowest subband begins to populate.21

Time-dependent local-density approximation calculations22

agree quite well with this experiment for most of the range of
densities used, but the abrupt merge seems to demand a more
refined calculation.

Of most relevance to the subject of this paper, recent cal-
culations of the intersubband spin-density excitations in
coupled double-quantum-well systems indicate that the en-
ergy of the lowest intersubband spin-density excitation may
vanish at sufficiently low density.24 The obvious interpreta-
tion of this collapse is that it indicates an electronic phase
transition from the metallic Fermi-liquid phase to a conden-
sate of zero-energy spin-density excitations. Since these ex-
citations involve an intersubband electronic transition ac-
companied by a spin-flip, this condensate has been termed a
spin-triplet intersubband exciton liquid. The word ‘‘exciton’’
here does not refer to the usual bound state of an electron in
the conduction band and a hole in the valence band of the
semiconductor; rather, it is used as a reminder that the final-
state interaction or vertex correction is included in the calcu-
lation of the spin-density excitations.26 In general terms, this
transition involves the electronic spin in a fundamental way,
suggesting that the ground state would have nontrivial mag-
netic properties. Hence the region of parameter space includ-
ing the quantum-well structures exhibiting this spin-density
excitation collapse are ideal candidates for the study of in-
teresting spin instabilities.

In this paper, we examine the question of spin instabilities
in such single- and double-quantum-well structures in the
absence of an external magnetic field. Our goal is to deter-
mine in what structures and under what conditions these in-
stabilities may occur, and what the experimental signatures
of the ground states may be. Our primary interest is in the
spin-density-excitation-collapsed phase discussed above,24

but we also explore the more general question of ferromag-
netism in single- and double-quantum-well structures. We
predict that the SDE-softened phase will occur in fairly typi-
cal coupled double-quantum-well structures at low but acces-
sible densities of order 1010–1011 cm22, and we show that
this phase corresponds to antiferromagnetic order of the spin
densities in the two wells. By constructing a minimal model
of the antiferromagnetic state and treating it within mean-
field theory, we are able to discuss the qualitative features of
this phase. In particular, we find that the transition to this
state may occur at temperatures on the order of the splitting
between the lowest two subbands in the quantum wells,
which can be around 10 K. Moreover, although transport
measurements will likely show no pronounced anomaly at
the transition, both the collective excitations and the specific
heat show distinctive features which can be used to identify
the antiferromagnetic phase. Lowering the electron density
further, our calculations indicate that these systems reenter
the normal state and then enter a ferromagnetic phase at den-
sities around 109 cm22. In wide single-quantum-well struc-
tures as well, both ferromagnetic and antiferromagnetic
phases exist, and we study the critical density of the ferro-
magnetic transition as a function of the well width. As ex-
pected from the increasing importance of exchange effects in

lower dimensions, we find that the ferromagnetic phase is
stable below a critical density which increases as the well
width decreases.

This paper is structured in the following way. In Sec. II,
we discuss the formalism which underlies our computations.
In the normal and ferromagnetic states, this formalism is the
density-functional theory in the local-~LDA ! and local-spin-
density approximations~LSDA!, respectively. A time-
dependent version of the LDA is also reviewed in Sec. II A,
which provides quantitative results for the collective excita-
tion spectra that we discuss in Sec. III. Additionally, in Sec.
II B we describe the equations for the self-energy and the
density response function in a self-consistent Hartree-Fock
theory, which is the basis of our calculations within the an-
tiferromagnetic state. In Sec. III, we reproduce and extend
the results of Ref. 24, which predicted the softening of the
intersubband spin-density excitations, and characterize the
phase transition on the paramagnetic side in greater detail.
Section IV contains a study of the ferromagnetic transition in
these systems within the LSDA, and we demonstrate that
that the instability predicted in Sec. III occurs at a much
higher density than the ferromagnetic transition, and so can-
not be associated with it. We also take a first step in the
study of the ground-state spin polarization of the inhomoge-
neous electron gas in semiconductor quantum wells by cal-
culating the critical density of the ferromagnetic transition in
square single quantum wells as a function of well width at
zero temperature. In Sec. V, we develop a simple model for
the spin-density instability of Sec. III, and treat it within the
self-consistent Hartree-Fock theory of Sec. II B. We study
the ground state, thermodynamic quantities, and the
collective-mode spectrum in the broken-symmetry phase and
discuss their experimental ramifications. Section VI presents
some speculations on the importance of nontrivial spin-
density modulations transverse to the layering direction in
these quantum-well structures, and summarizes the results of
this paper.

II. FORMALISM

A. Density-functional theory

1. Unpolarized electron gas (LDA)

The central aim of this subsection is to develop the for-
malism used to compute the intersubband collective excita-
tions in the unpolarized state of double and wide single
quantum wells that we will use in Sec. III. We compute these
collective excitations within the so-called time-dependent
local-density approximation~TDLDA !. This approach was
first employed by Ando27 to compute intersubband charge-
density excitations~CDE’s! and later extended by Katayama
and Ando28 to study resonant inelastic light scattering in
semiconductor structures. The use of inelastic light scattering
in these systems is motivated by the fact the charge- and the
spin-density excitations~SDE’s! couple to the light polariza-
tion differently, and this fact allows a selective measurement
of both types of collective modes.29,30 Detailed descriptions
of the TDLDA method for calculating CDE and SDE ener-
gies and spectra have been given in the literature.28,19How-
ever, for the sake of completeness and to facilitate the dis-
cussion of our results in Sec. III, we describe the TDLDA
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approach in some detail in the remainder of this subsection.
In Sec. II A1, we shall generalize this formalism to allow for
the possibility of a spin-polarized ground state of the electron
gas.

The first step in the TDLDA calculation of the intersub-
band excitations consists of obtaining the renormalized sub-
band energies in the local-density approximation of Refs.
31–33. We choose a coordinate system with thez axis along
the direction of confinement in the quantum-well structure.
The effective single-particle Schro¨dinger equation or Kohn-
Sham equation for this system then reads

S 2
\2

2m*
¹21VEFF~z! DC~R!5EC~R!, ~1!

where we have assumed that the effective electron mass
m* is constant across the well,R5(r ,z) denotes a three-
dimensional vector, and the self-consistent effective potential
VEFF(z) is given below. The in-plane (xy) and z depen-
dences can be separated, and, due to the assumed transla-
tional invariance in thexy plane~the localized donor charges
are assumed to be smeared out uniformly in the plane!, the
eigenenergies and wave functions become

Enk5«n1
\2k2

2m*
~2!

and

Cnk~R!5
1

AA
eik–rfn~z!. ~3!

In these expressions,A is the sample area,k is the in-plane
wave vector of the electron, and«n andfn(z) are the solu-
tions to the one-dimensional Kohn-Sham equation

S 2
\2

2m*
d2

dz2
1VEFF~z! Dfn~z!5«nfn~z!. ~4!

The effective single-particle potential

VEFF~z!5VCONF~z!1VH~z!1VXC~z! ~5!

contains the confining potential of the bare quantum well
VCONF(z), and the self-consistent Hartree and exchange-
correlation potentialsVH(z) andVXC(z), respectively. The
Hartree potential takes into account the average electrostatic
interaction with the other electrons and the positively
charged donor ions, and is given by the solution of the Pois-
son equation

d2VH~z!

dz2
52

4pe2

e
@n~z!2ND~z!#, ~6!

wheree is the static dielectric constant of GaAs,n(z) is the
electron density, andND(z) is the density of positive donor
charges, which are assumed to be located far from the quan-
tum wells. Integrating Eq.~6! twice, one obtains

VH~z!52
4pe2

e S E
0

z

dz8~z2z8!n~z8!

1zE
2`

0

dz8n~z8!2
Ns

2
zD , ~7!

whereNs is the electronic sheet density. For the exchange-
correlation potential, we use the parametrization due to Cep-
erley and Alder34 given by Eq.~33! in Sec. II A 2 for both
the spin-polarized and -unpolarized cases.

Once the subband energies«n and wave functionsfn(z)
are obtained by solving Eq.~4! numerically, the
z-dependent electron density is calculated from

n~z!5gs(
nk

f ~Enk!uCnk~R!u2, ~8!

where the factorgs accounts for the spin degeneracy and
f (E) 5 1/(ebE11) is the Fermi-Dirac distribution function
with b51/T the inverse temperature (kB51 throughout this
paper!. This density may be rewritten as

n~z!5(
n

nnufn~z!u2, ~9!

with the subband occupancynn given by

nn5
gs
A(

k
f ~Enk!. ~10!

The chemical potential is determined implicitly by the rela-
tion

Ns5E dzn~z!5(
n

nn . ~11!

At zero temperature,f (E)→Q(2E), andnn becomes

nn5gsN0~«F2«n!Q~«F2«n!, ~12!

whereQ is the step function,«F is the Fermi energy, and
N05m* /2p\2 is the two-dimensional, single-spin density
of states.

The LDA electronic structure for the spin-unpolarized
case is thus obtained by solving Eq.~4! together with Eq.~7!
for VH@n(z)#, Eq. ~33! for VXC@n(z)#, and Eq.~9! for n(z)
self-consistently. The results of applying this procedure to a
typical double-quantum-well structure are shown in Fig. 1.

From the wave functions and eigenenergies of the LDA
calculation, we can compute the collective modes of the con-
fined electron gas which are visible in inelastic light-
scattering experiments. The relation between the cross sec-
tion of resonant inelastic light scattering by electronic
excitations was obtained by Hamilton and McWhorter35 for
bulk systems and was adapted to the case of semiconductor
heterostructures by Katayama and Ando.28 These authors
showed that the cross section for inelastic light scattering by
CDE’s is proportional to the imaginary part of thereducible
electronic polarizability functionP̃ with the proportionality
factors depending on the details of the band structure of the
host material. These factors vanish for perpendicular polar-
izations of the incoming and scattered light, and are maxi-
mized for parallel polarizations. Thus CDE spectra are mea-
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sured in practice within the so-calledpolarized
configuration, i.e., with parallel polarizations of the two
beams. On the other hand, the scattering cross section due to
spin-density excitations is proportional to the imaginary part
of the irreducibleelectronic polarizability functionP, which
is also called the spin-polarizability function, and contains
prefactors that are maximized for perpendicular polarizations
of the incident and scattered beams. This is the usual geom-
etry employed in measurements of SDE spectra, and is re-
ferred to as thedepolarizedconfiguration. Since we are in-
terested in the properties of the electron gas confined in the
semiconductor structure, it is sufficient to calculate the elec-
tronic response functionsP̃ and P and ignore the band-
structure-dependent factors.

We compute these response functions within the TDLDA,
which is equivalent to calculating the irreducible polarizabil-
ity function including a static,q-independent vertex correc-
tion in the ladder diagram approximation.19 Within this ap-
proximation, the integral equation for the irreducible
polarizabilityP(q,v) can be solved exactly, and gives

P~q,v!5
P0~q,v!

11UXCP0~q,v!
, ~13!

whereP0(q,v) is the leading-order polarizability function
andUXC is the static,q-independent vertex function. From

Dyson’s equation for the effective Coulomb interaction,36

one obtains the reducible polarizability function

P̃~q,v!5
P~q,v!

12UH~q!P~q,v!
, ~14!

whereUH(q) is the Fourier transform of the bare Coulomb
interaction. Combining Eqs.~13! and ~14!, we obtain

P̃~q,v!5
P0~q,v!

12„UH~q!2UXC…P
0~q,v!

. ~15!

In a confined electron gas system, where the confinement
discretizes the single-particle energy levels, the collective ex-
citations must be calculated within a generalized dielectric
function formalism.37 In this context, the functionsUXC and
UH(q) are replaced by matrices with indices labeling the
different subbands. Within the TDLDA, we have

Ui j ,mn
XC 52E dzE dz8f i~z!f j~z!

]VXC

]n
~z!

3d~z2z8!fm~z8!fn~z8! ~16!

and

Ui j ,mn
H ~q!5

2pe2

eq E dz dz8f i~z!f j~z!

3e2quz2z8ufm~z8!fn~z8!, ~17!

wheree is the background dielectric constant.
The reducible polarizability functionP̃(q,qz ,v), whose

imaginary part is proportional to the spectrum of the CDE’s
and to the Raman intensity in the polarized configuration, is
given by38

P̃~q,qz ,v!5E dzE dz8e2 iqz~z2z8!P̃~z,z8;q,v!, ~18!

with

P̃~z,z8;q,v!5 (
i , j ,k,l

f i~z!f j~z!P̃i j ,kl~q,v!fk~z8!f l~z8!,

~19!

P̃i j ,kl~q,v!5P i j
0 ~q,v!d ikd j l

1(
m,n

P i j
0 ~q,v!Ui j ,mn~q!P̃mn,kl~q,v!, ~20!

Ui j ,mn~q!5Ui j ,mn
H ~q!2Ui j ,mn

XC , ~21!

and

P i j
0 ~q,v!52(

k

f „Ej~k1q!…2 f „Ei~k!…

„Ej~k1q!…2„Ei~k!…2\~v1 ig!
. ~22!

In these equations, subscripts are the subband indices,q and
k are two-dimensional in-plane wave vectors, andf j and
« j are the LDA-calculated subband wave functions and en-
ergies. In addition,P i j

0 is the leading-order polarizability
function for the transitioni→ j , Ej (k)5« j1(\2k2/2m* ),
f (E) is the Fermi factor, andg is a phenomenological in-

FIG. 1. Typical coupled double-quantum-well structure, and its
self-consistent LDA subband energy levelsEi , eigenfunctions
f i , electron densityn(z), and Fermi energyEF . Also shown are
the effective, Hartree, and exchange-correlation potentialsVEFF,
VH , andVXC . The sheet densityNs52.6831011 cm22.
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verse scattering time; atT50, an analytic expression for
P i j

0 can be found in Ref. 38. We note that the random-phase
approximation~RPA! is obtained in the subband representa-
tion by removing the vertex correctionUi j ,mn

XC in Eq. ~21!.
The imaginary part of the irreducible polarizability func-

tion P is proportional to the SDE spectrum and to the
Raman-scattering intensity in the depolarized configuration.
In the subband representation, the calculation ofP is analo-
gous to that ofP̃ @Eqs. ~17!–~22!# with the following two
modifications. Since the irreducible polarizability does not
include dynamic Coulomb screening~spin-density excita-
tions are unscreened by the spin-conserving Coulomb inter-
action!, we setUi j ,mn

H 50 in Eq. ~21!. The second change
concerns the vertex correctionUi j ,mn

XC which for spin-density
excitations is given in the TDLDA by

Ui j ,mn
XC 52E dzE dz8f i~z!f j~z!

]VXC

]m
~z!

3d~z2z8!fm~z8!fn~z8! ~23!

instead of by Eq. ~16!. In this equation,
m(z)5n↑(z)2n↓(z) is the local spin density,n↑ andn↓ be-
ing the spin-up and spin-down local densities, respectively.

The CDE and SDE energies are given by the poles ofP̃
and P, respectively, which occur when the determinant
uP i j

0Ui j ,mn2d i j ,mnu vanishes. In the numerical work pre-
sented in this paper, we solve this equation keeping all the
subband levels. If, as in the quantum-well structures we con-
sider, the lowest two subbands are well separated in energy
from the higher subbands, then one can approximate this
determinental equation in the limit of low densities and tem-
peratures by keeping only subbands 1 and 2, yielding

~P12
0 1P21

0 !U12,1251. ~24!

For q→0, this condition gives the resonance energies in the
familiar form of Ando:27

\2ṽ21
2 5«21

2 12«21U12,12~N12N2!, ~25!

where«21[«22«1 andU12,125U12,12
H (0)2U12,12

XC in the case
of the CDE, andU12,1252U12,12

XC for the SDEs.

2. Polarized electron gas (LSDA)

In this subsection, we introduce a generalization of the
local-density approximation to density-functional theory dis-
cussed in Sec. II A 1 which allows for different populations
of the two spin orientations, i.e., a finite spin polarization.
This local-spin-density approximation~LSDA! formalism is
also based on the self-consistent solution of the Schro¨dinger-
like Kohn-Sham equation, coupled with the Poisson equation
and a local exchange-correlation potential. The main techni-
cal difference between LSDA and LDA is that the effective
exchange-correlation potential in LSDA depends on the local
spin polarization as well as the electron density. Therefore,
one has to solve two Kohn-Sham equations, which contain
spin-dependent effective potentials, for the two components
of the spinor wave function. The LSDA was first formally
justified by von Barth and Hedin39 and Pant and Rajagopal40

and is suitable for studying ferromagnetic systems either
with or without an external magnetic field.41

To put the LSDA approach in context, we briefly review
the theoretical and numerical evidence that the uniform elec-
tron gas in two and three dimensions embedded in a uniform
positive background~the jellium model! undergoes a ferro-
magnetic transition at a certain critical density. A simple
theoretical estimate for the density at which a ferromagnetic
state will form may be obtained from Hartree-Fock theory,
which treats the electron-electron Coulomb interaction to
first order. For a uniform electron gas in three dimensions
with N1 spin-up andN2 spin-down electrons, the ground-
state energy in this approximation can be written in terms of
the total number of particlesN5N11N2 and the magneti-
zationm5(N12N2)/N as36

EHF
3D5

Ne2

2a0

3

10S 9p

2 D 2/3 1r s2 F S 11m

2 D 5/31S 12m

2 D 5/3G
2
Ne2

2a0

3

4p S 9p

2 D 2/3 1r s F S 11m

2 D 4/31S 12m

2 D 4/3G ,
~26!

where a05\2/m* e2 is the Bohr radius and r s
5(3V/4pN)1/3/a0 parameterizes the density. The first term
in this expression is the kinetic energy, which prefers the
paramagnetic state, while the second term is the exchange
energy, which prefers to polarize the spins. At densities sat-
isfying r s.5.45, the exchange energy dominates, and the
ferromagnetic state is stable. In two dimensions, a similar
analysis yields42

EHF
2D5

Ne2

2a0
H 11m2

r s
2 2

4A2
3pr s

@~11m!3/21~12m!3/2#J ,
~27!

where nowr s[(A/pN)1/2/a0. In this case, the condition for
a polarized ground state,EHF

2D(r s ,m51),EHF
2D(r s ,m50), is

satisfied ifr s.2.01. Thus, within the Hartree-Fock approxi-
mation, the spin-polarized state occurs at higher density
~lower r s) than in three dimensions.

Hartree-Fock theory neglects contributions to the energy
beyond the exchange term, and is therefore expected to over-
estimate the density at which the ferromagnetic transition
occurs. Including these so-called correlation terms can only
be done approximately, however. Currently, the most accu-
rate method for performing these calculations are numeri-
cally intensive Monte Carlo techniques. Ceperley and
Alder34 calculated the ground-state energy of an electron gas
in two and three dimensions employing the variational
Monte Carlo~VMC!. They found that in both two and three
dimensions there is an intermediate density regime where a
fully polarized state has the lowest energy compared to the
unpolarized quantum liquid and the Wigner crystal. In three
dimensional ~3D! the polarized phase is stable for
26,r s,67, and, in 2D, for 13,r s,33. Additional results
seem to indicate that in 3D there is a transition to a partially
polarized liquid atr s'20 and to a fully polarized phase at
r s'50.43 Eleven years later, Tanatar and Ceperley44 recalcu-
lated the ground-state properties of the electron gas in two
dimensions employing the VMC technique and the more ac-
curate fixed-node Green’s-function Monte Carlo~GFMC!
technique. The VMC technique predicted again a transition
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from the unpolarized to the polarized liquid atr s between 10
and 20, consistent with Ceperley’s results. The more accu-
rate GFMC technique predicted a transition from the unpo-
larized liquid to the Wigner crystal atr s537, without an
intermediate polarized phase. However, the authors point out
that, near the transition, the polarized phase has an energy
very close to the energy of the other phases and that, due to
finite-size effects and errors associated with their approxima-
tion method, their conclusion should not be taken as definite.
This leaves open the possibility of a stable, fully polarized
phase in the two-dimensional electron gas.

The LSDA falls somewhere between elementary Hartree-
Fock theory and Monte Carlo calculations in terms of the
quantitative accuracy of its predictions. Its main strength,
and the reason we use this technique here, is that it can
describe the inhomogeneous electron gas which exists inside
quantum-well structures and can therefore provide estimates
of the critical density of the ferromagnetic transitions in
these structures that could guide future experiments. In addi-
tion, the LSDA is a direct extension of the LDA, and so
allows a comparison between the two calculations which will
be important in ruling out ferromagnetism as the source of
the spin-density-excitation softening which appears in our
TDLDA calculations @cf. Sec. III#. We note that a similar
problem to that of the spin polarization of the ground-state in
quantum wells is the problem of ‘‘valley condensation’’ in
Si-SiO2 systems, where, instead of spin states, the electrons
can occupy different valleys of the Brillouin zone. This prob-
lem has been studied in the past with techniques similar to
the ones employed here.45 In addition, the LSDA has been
employed to study spin effects in wide parabolic quantum
wells in the presence of a perpendicular magnetic field.46

Our computations in the LSDA proceed as follows. After
factorizing the complete single-electron wave function as
was done in Eq.~3!, we write down thez-dependent Kohn-
Sham equation

S 2
\2

2m*
d2

dz2
1VC~z!1VH~z!1VXC

s ~z! Dfn
s~z!5«n

sfn
s~z!,

~28!

wheren is the subband index ands denotes the spin orien-
tation, which can be up~1! or down~-!. We assume that no
more than two subbands are populated and letn51 denote
the lower-energy symmetric level (S) andn52 the higher-
energy antisymmetric level~AS!. We therefore need to con-
sider four wave functions (f1

1 , f1
2 , f2

1 , f2
2) and their

corresponding energies in Eq.~28!.
This equation also contains the exchange-correlation po-

tential, which in the LSDA formalism depends on both the
densityn(z) and the spin polarizationm(z), which is defined
as

m~z![
n1

1~z!1n2
1~z!2n1

2~z!2n2
2~z!

n~z!
. ~29!

In our calculations, we use the parametrization of the
exchange-correlation energy for the uniform 3D electron gas
obtained by Ceperley and Alder,34

eXC
i 5

ci

r s
1

g i

11b1
i Ar s1b2

i r s
, ~30!

where i5U ~unpolarized, m50) or i5P ~polarized,
m51). The exchange-correlation contribution to the chemi-
cal potential is

VXC
i 5S 12

r s
3

d

drs
D eXC

i 5
di

r s
1g i

11 7
6 b1

i Ar s1 4
3b2

i r s

~11b1
i Ar s1b2

i r s!
2
.

~31!

The parameters in the previous expressions, as obtained by
Ceperley and Alder,34 are cU520.9163, cP521.1540,
dU521.2218, dP521.5393, gU520.1423, gP

520.0843, b1
U51.0529, b1

P51.3981, b2
U50.3334, and

b2
P50.2611. For intermediate polarizations (0,m,1), we

use an interpolation formula proposed by von Barth and
Hedin,39 in which the correlation energy has the same polar-
ization dependence as the exchange energy:

eXC~r s ,m!5eXC
U ~r s!1 f ~m!„eXC

P ~r s!2eXC
U ~r s!… ~32!

and

VXC
s ~r s ,m!5VXC

U ~r s!1 f ~m!„VXC
P ~r s!2VXC

U ~r s!…

1„eXC
P ~r s!2eXC

U ~r s!…„sgn~s!2m…
d f

dm
, ~33!

where

f ~m!5
~11m!4/31~12m!4/322

24/322
. ~34!

The Hartree potentialVH(z) is calculated as in the unpolar-
ized formalism described in Sec. II A; it satisfies Poisson
equation, Eq.~6!, and is given by Eq.~7!.

To complete the specification of the problem, we note that
the density associated with each subband and spin orienta-
tion is given by

nn
s~z!5nn

sufn
s~z!u2, ~35!

wherenn
s is the occupancy of each level, which at zero tem-

perature is given by

nn
s5N0~«F2«n

s!Q~«F2«n
s!. ~36!

The total electron density may be written

n~z!5(
ns

nn
s~z!, ~37!

which implies that the Fermi levelEF is implicitly deter-
mined by the condition

Ns5E
2`

`

dzn~z!5(
ns

nn
s ~38!

@cf. Eqs. ~8!–~12!#. The self-consistent solution of these
equations proceeds exactly as in the LDA case with the dif-
ference that now, in each iteration, one has to solve two
Kohn-Sham equations, Eq.~28!, for the two spinor compo-
nents of the wave functions,fn

s .
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B. Self-consistent Hartree-Fock theory

While conventional density-functional theory is a fairly
accurate method for determining the properties of semicon-
ductor heterostructures in their paramagnetic and ferromag-
netic phases, it is unable to address more complicated mag-
netic ordering such as antiferromagnetism. To study such
phases, it is useful to return to a model Hamiltonian of the
electronic system and search for the existence of broken-
symmetry states within a mean-field theory. In some cases,
such as superconductivity, the mean-field theory gives a
quantitative account of these phases.47 More commonly,
however, it sacrifices quantitative accuracy in favor of quali-
tative insight. This insight manifests itself not only in a
physical intuition about the nature of the ground state, but
also in the ability to study the distinctive features of the
broken-symmetry phase, which may serve as a guide for in-
terpreting experimental data in these systems. We adopt this
point of view in what follows.

To that end, consider a three-dimensional electron gas
interacting through a potentialV(R2R8) and confined along
thez direction by a potentialVCONF(z). A confining potential
of this type is shown in Fig. 1 for a double quantum well, but
the precise shape is unimportant for the development of the
formalism. Given a particularVCONF(z), one can construct
its eigenfunctionsjn(z) and eigenenergiesen , n 5 1,2,3
. . . , by solving the time-independent Schro¨dinger equation

F2
\2

2m*
d2

dz2
1VCONF~z!Gjn~z!5enjn~z!. ~39!

In terms of these eigenfunctions, the quasiparticle annihila-
tion operatorcs(R) can be written as

cs~R!5
1

AA(
nk

eik–rjn~z!cnks , ~40!

whereR5(r ,z)5(x,y,z) and k5(kx ,ky), A is the trans-
verse area of the sample, andcnks annihilates a quasiparticle
in subbandn, of transverse wave vectork, and with spin
projections ~these conventions will be used throughout this
paper!. Note that, unlike the density-functional approach, the
total confining potentialVCONF(z) is specified at the outset
and is not determined self-consistently.

Defining a composite subband and spin index
a5(na ,sa) with summation over repeated indices implied,
the Hamiltonian may be written in the basis defined by Eq.
~40! as

H5H01H int5(
k

e
ak
cak
† c

ak

1
1

2A(
kk8q

V
ad,bc

~q!cak1q
† cbk82q

† cck8cdk . ~41!

In this expression, the quasiparticle energy

eak5en1
\2k2

2m*
2m ~42!

is measured with respect to the chemical potentialm, and the
matrix elements of the interaction are

Vab,cd~q!5dsasb
dscsdE dR dR8

A
eiq–~r2r8!jna

* ~z!jnb~z!

3V~R2R8!jnc
* ~z8!jnd~z8!. ~43!

Our goal is to solve this model within the mean-field
theory, allowing for the possibility of broken-symmetry
phases. For reasons that will be discussed in Sec. V, we shall
restrict attention to those ground states which are translation-
ally invariant transverse to the layering direction, but we
shall allow for off-diagonal order in both the subband and
spin indices. This assumption excludes from the outset the
study of intrawell charge- or spin-density waves and Wigner
crystallization, and it is also implicit in the density-functional
calculations discussed in Sec. II A. One could modify our
treatment to include such phases, but the present model is
sufficient for the purposes of exploring the effects of the
interwell degrees of freedom. The assumption of transla-
tional invariance implies conservation of the transverse wave
vector, and so the quasiparticle propagator can be written

Gab~kn!52E
0

b

dteivnt^Tt@cak~t!cbk
† ~0!#&, ~44!

wherekn5(k,ivn), b51/T (\5kB51 throughout this pa-
per!, and the rest of the notation is standard.48

The mean-field theory for our model is constructed by
using this propagator to compute the electronic self-energy
in the self-consistent Hartree-Fock approximation. This ap-
proximation corresponds to expanding the self-energy to
one-loop order in the interaction and is shown diagrammati-
cally in Fig. 2~a!. The resulting self-energy is

Sab~k!5
T

A(
km8

e2 ivm02

3@Vab,dc~0!2Vac,db~k2k8!#Gcd~km8 !. ~45!

The self-consistency of this approximation arises because the
propagators used in Eq.~45! are dressed by the same self-
energy according to the Dyson equation

@~ ivn2eak!dab2Sab~k!#Gbc~kn!5dac . ~46!

To completely specify the system of equations, the chemical
potential is determined from the band-filling constraint

Ns5
T

A(
km

e2 ivm02Gaa~km!. ~47!

An alternative form of these equations, which will turn
out to be convenient for future work, is obtained by inverting
the Dyson equation for the interacting propagatorGab(kn)
@Eq. ~46!# by making an appropriate choice of the basis.
From Eqs.~43! and~45!, the matrixeakdab1Sab(k) is Her-
mitian, and so possesses a complete and orthonormal set of
eigenfunctionswa

c(k). These eigenfunctions satisfy the ei-
genvalue equation

@eakdab1Sab~k!#wb
c~k!5Ec~k!wa

c~k! ~48!

~no sum onc) and the orthonormality relations
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wa
c~k!wb*

c~k!5dab ~49!

and

wc
a~k!wc*

b~k!5dab. ~50!

Equation~46! is diagonal in the basis of these eigenfunctions
by construction, so we may invert the equation to obtain

Gab~kn!5
wa
c~k!wb

c* ~k!

ivn2Ec~k!
. ~51!

Substituting this relation back into the equation for the self-
energy@Eq. ~45!#, and performing the sum over Matsubara
frequencies yields

Sab~k!5
1

A(
k8

@Vab,dc~0!2Vac,db~k2k8!#

3wc
e~k8!wd*

e~k8! f „Ee~k8!…, ~52!

where f (x)51/(ebx11) is the Fermi function. The band
filling constraint Eq.~47! may similarly be written

Ns5
1

A(
ck

f „Ec~k!…[(
c
nc. ~53!

Equations~48!–~53! are the equations we will ultimately
solve for a simple model interaction in Sec. V A.

The eigenfunctionswa
c(k) and eigenenergiesEc(k) of the

operatoreakdab1Sab(k) are the wave functions and ener-

gies of the quasiparticles of the interacting system within
self-consistent Hartree-Fock theory. An alternative way of
saying the same thing is that we have performed a mean-field
decomposition of the Hamiltonian, and diagonalized the re-
sult with a Bogoliubov transformation in the particle-particle
channel. The annihilation operators for the interacting quasi-
particlesgk

c are therefore obtained from the bare operators
via gk

c5wa
c(k)cak .

In addition to the physical insight afforded by rewriting
the self-energy equations in terms of these functions, the
calculation of the energy, entropy, and specific heat of the
system becomes straightforward. The energy is the expecta-
tion value of the Hamiltonian@Eq. ~41!#, with the energy
shift due to the chemical potential removed:

E5^H1mN&5^H0&1^H int&1mNs . ~54!

Within our self-consistent Hartree-Fock theory, the contribu-
tion to the energy from the interaction term in the Hamil-
tonian is shown graphically by the diagrams in Fig. 2~b!.
These diagrams lead to the result

^H int&5
T

2(kn
e2 ivn02Gba~kn!Sab~k!, ~55!

which allows us to write Eq.~54! as

E5
T

2(kn
e2 ivn02@2e

ak
dab1Sab~k!#Gba~kn!1mNs .

~56!

Substituting Eq.~51! into this equation, using the eigenequa-
tion Eq. ~48! and orthonormality relation Eq.~50!, and per-
forming the Matsubara sum, the total energy becomes

E5 1
2(

k
@ ufa

c~k!u2eak1Ec~k!# f „Ec~k!…1mNs . ~57!

The entropy in the interacting basis is simply the standard
free-fermion result

S52(
k

$ f „Ec~k!…lnf „Ec~k!…1@12 f „Ec~k!…#

3 ln@12 f „Ec~k!…#%, ~58!

and the specific heat is obtained directly from this equation:

CV5T
]S

]T
5(

k
S 2

] f „Ec~k!…

]Ec~k! DbEc~k!
d„bEc~k!…

db
. ~59!

In order to get a full picture of the interacting system, one
must go beyond the single-particle properties and thermody-
namic functions, and examine the response of the system to
external perturbation. As discussed in Sec. II A 1, resonant
inelastic light scattering has proven to be a powerful tool for
studying the charge- and spin-density excitations in semicon-
ductor heterostructures. Consequently, we will focus on the
generalized density response function and the resulting col-
lective excitations which can be observed in these experi-
ments. As in Sec. II A 1, we will not compute the form fac-
tors necessary to connect the polarizability to the inelastic
light-scattering cross section; we merely note that the collec-
tive modes we will discuss are detectable in these experi-

FIG. 2. Many-body diagrams used to compute~a! the self-
energyS, ~b! the contribution of the interactions to the energy
Eint5^H int&, ~c! the generalized polarizabilityP, and~d! the vertex
function g within the self-consistent Hartree-Fock approximation.
The solid lines represent dressed electronic propagators@Eq. ~44!#
and the dashed lines the effective interactionV @Eq. ~43!#, both of
which are matrices in subband and spin space. In order to treat both
spin and charge polarizabilities with the same equations, the polar-
izability is not separated into reducible and irreducible parts.
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ments with a particular~and structure-dependent! arrange-
ment of scattering angles, polarizations, etc.

We begin by defining a generalized density operator

rm~R!5cs1

† ~R!ss1s2

m cs2
~R!, ~60!

wheresm 5 $s0,s1,s2,s3% 5 $1,sx,sy,sz%. Note that the
number density n(R)5r0(R) and the spin density
si(R)5(\/2)r i(R), i 5 1, 2, or 3. Suppose we can couple
to this density through an external forceFext

m (R,t) which
adds a term

Hext~ t !52E dR rm~R,t !Fext
m ~R,t ! ~61!

to the Hamiltonian~a sum onm is implied!. The linear re-
sponse of the generalized density to this perturbation is then
given by49

^drm~R,t !&5 i E dR8dt8u~ t8!

3^@rm~R,t !,rn~R8,t8!#&Fext
n ~R8,t8!,

~62!

where the angle brackets denote the thermodynamic average
in the absence ofHext(t).

As mentioned above, we assume that the interacting sys-
tem is translationally invariant in the transverse direction,
and it is also time-translation invariant. Thus we may intro-
duce partial Fourier transforms

rm~R,t !5
1

A(
q
E dv

2p
ei ~q–r2vt !rm~r ,z,t !, ~63!

and write Eq.~62! as

^drm~q,z,v!&5 i E dz8dt8eivt8u~ t8!

3^@rm~q,z,t !,rn~2q,z8,t8!#&

3Fext
n ~q,z8,v!. ~64!

From Eqs.~40! and~60!, we can rewrite the Fourier compo-
nents of the density operator as

rm~q,z!5jna
* jnbssasb

m mrab~q!, ~65!

with

rab~q!5(
k
cak
† c

bk1q
. ~66!

Using this relation, we obtain the final form for the general-
ized density response,

^drab
m ~q,v!&52Pab,cd~q,v!Fcd

ext~q,v!, ~67!

where

Pab,cd~q,v!52 i E dteivt^@r
ab

~q,t !,rcd
† ~q,0!#&, ~68!

^drm~q,z,v!&5jna
* ~z!jnb~z!ssa

,sbm^drab~q,v!&,
~69!

and

Fcd
ext~q,v!5E dz8jnc~z8!jnd

* ~z8!ssc

n sdFext
n ~q,z8,v!.

~70!

In order to obtain the subband- and spin-resolved polariz-
ability @Eq. ~68!#, we compute the polarizability in Matsub-
ara frequenciesinn52pnT,

Pab,cd~qn!52E
0

b

dteivnt^Tt@rab~q,t!rcd
† ~q,0!#& ~71!

„qn5(q,inn)…, and analytically continue to real frequencies
by the conventional substitutioninn→V1 id ~cf. Ref. 48!.
This polarizability is calculated within a conserving
approximation50 using the diagrams shown in Figs. 2~c! and
2~d!. These diagrams yield the expressions

Pab,cd~qn!5
T

A(
km

Gea~km!Gbf~km1qn!ge f,cd~km ,km1qn!

~72!

for the polarizability, and

gab,cd~km ,km1qn!

5dacdbd2
T

A(
kl8

@Vbf,ea~k2k8!2Vba,e f~q!#

3Gge~kl8!Gfh~kl81qn!ggh,cd~kl8 ,kl81qn!

~73!

for the vertex function. Contrary to the usual convention, we
include the RPA screening diagrams in the vertex function,
and thus do not distinguish between reducible and irreduc-
ible polarizabilities. The reason is that, in the broken-
symmetry phases we will examine, the propagators are no
longer diagonal in spin, so these screening terms enter into
both the spin- and charge-density response functions, reduc-
ing the usefulness of the division between reducible and ir-
reducible polarizabilities. Note that even these approximate
equations for the polarizability must be solved numerically
for a general interaction. If the interaction is wave vector
independent, on the other hand, the vertex equation can be
solved simply~cf. Sec. V!.

The interpretation of the polarizability as a response func-
tion can be used to visualize the real-space density fluctua-
tions it describes. If one perturbs the system with the external
force Fext

m (R,t) } ei (q–r2vt), Eqs. ~62!–~70! imply that the
response in real space will be

^drm~R,t !&}ei ~q–r2vt !jna
* ~z!jnb~z!ssa

m sbPab,cd
~q,v! f cd

ext,

~74!

where f cd
ext is related to how this force perturbs the subband

and spin indices. For example, to examine the spin-density
response between the lowest two subbands,

f cd
ext5@dnc1dnd21dnc2dnd1#dsc↑dsd↓ . ~75!
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This procedure works for general wave vector and fre-
quency, but has special significance when these quantities
correspond to a collective-mode of the system, in which case
the response gives the polarization of the collective mode.
Note that, since the response function diverges at a collective
excitation, in practice one applies this formula by adding a
small imaginary part to the frequency to control this diver-
gence. As with the equations for the polarizability, this nu-
merically intensive approach for obtaining the collective-
mode polarization is required for the broken-symmetry
phases where the off-diagonal terms make an analytic calcu-
lation difficult.

III. INTERSUBBAND INSTABILITIES

In this section, we shall study the instabilities of an elec-
tron gas confined to coupled double-quantum-well~DQW!
and wide single-quantum-well structures by examining their
intersubband collective excitations. We begin by applying
the formalism described in Sec. II A to the typical GaAs/
Al xGa12xAs DQW structure shown in Fig. 1; similar
samples were used in the experimental study of Ref. 21.
Although our TDLDA calculation includes all the subband
energies shown in the figure, we are only concerned with
intersubband transitions between the lowest two subbands
~subbands 1 and 2!, whose typical separation
DSAS[«22«1'1 meV ~SAS is symmetric-antisymmetric!.
The exact values ofDSASare plotted in Fig. 3, along with the

calculated long-wavelength energies of the intersubband col-
lective modes as a function of the sheet density.

Two distinctive features of these collective modes are
seen in Fig. 3. The first feature is that the CDE energy be-
comes less thanDSAS aroundNs'0.231011 cm22. This be-
havior, originally predicted in Ref. 19 for single quantum
wells, has recently been verified experimentally,23 and will
not be discussed further. The second—and for our purposes
more important—feature is that the intersubband SDE en-
ergy goes to zero below a critical densityNC'0.731011

cm22 and becomes finite again below 0.131011 cm22. This
softening of the intersubband SDE mode indicates that the
normal system with a ‘‘metallic’’ Fermi surface is unstable
at or belowNC , since it can spontaneously create spin-
reversed intersubband electron-hole pairs~‘‘triplet exci-
tons’’! at no cost in energy. We conclude that there is a
phase transition in this DQW at the critical sheet density
NC from the normal 2D electron liquid to a triplet intersub-
band exciton liquid, and that the system reenters the normal
phase at a lower density. This electronic phase transition is
due exclusively to exchange-correlation effects which make
the vertex correction or excitonic shift larger thanDSAS @Eq.
~25!# and thus cause the SDE to collapse. The reentrance of
the normal phase at lower density is simply explained by the
fact that the vertex correction vanishes asNs→0 according
to Eq. ~25!. We note that the transition to a Wigner crystal
occurs at much lowerNs values than those considered in this
paper and so does not account for the SDE collapse.18,44

Additional evidence in support of the excitonic transition
comes from the density dependence of the mean-field vertex
correctionuUXCx12

0 u, which is plotted in Fig. 4~a!. This ver-
tex correction consists of the spin-polarized, exchange-
correlation-induced vertex functionUXC @Fig. 4~b!# and the
uncorrected intersubband polarizabilityx12

0 [P12
0 1P21

0 @Fig.
4~a!#. In the two-subband limit, the vertex-corrected irreduc-
ible response function is given byx12

0 @12UXCx12
0 #21, which

FIG. 3. Calculated intersubband charge-density excitation
ECDE, spin-density excitationESDE, and single-particle excitation
ESPE[nSAS energies as functions of the 2D electron densityNS for
a DQW structure with barrier widthdB 5 40 Å and well width
dW 5 139 Å. The critical density for the instability
NC'0.6931011 cm22. The bottom figure shows an expanded den-
sity range, making obvious the reentrance of the normal phase at
very low electron density.

FIG. 4. Dependence on the sheet densityNS of ~a! the mean-
field vertex correctionuUXC 12x12

0 u ~solid line! and the absolute
value of the lowest-order polarizabilityux12

0 u ~dashed line!, and~b!
the spin-polarized exchange-correlation-induced vertex correction
UXC 12 for the double-quantum-well structure in Fig. 1. Note that
the electron gas is unstable in the range of densities where
uUXCx12

0 u>1 ~see text!.
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clearly has an instability whenuUXCx12
0 u>1 @cf. Eq. ~24!#.

As shown in Fig. 4~a!, this ‘‘Stoner criterion’’ is satisfied in
the range of sheet densities in which the SDE has collapsed.

Having established the existence of the SDE-collapsed
phase for a particular DQW structure, we can vary the ge-
ometry of the structure to study the persistence of this phase.
For well widths fixed at 139 Å, the calculated zero-
temperature phase diagram in terms of the sheet density and
barrier widthdB is shown in Fig. 5. For very small barrier
widths,DSAS is too large for the vertex correction to over-
come it, even at low densities, making the normal phase the
only stable phase. For very large barrier widths, on the other
hand, DSAS is exponentially small, and the normal phase
gives way to the excitonic one at extremely low densities. Of
course, for such exponentially smallDSAS, the critical tem-
perature for our predicted instability is also exponentially
low, implying that the phase transition in large-dB , low-
density DQW structures would be unobservable in practice.51

At higher densities in the large-dB structures, the normal
phase reasserts itself due to the diminishing influence of the
vertex correction. For intermediate values of the barrier
width, we see the reentrant behavior described above with an
upper critical density that is nearly independent of the barrier
width. A similar phase diagram is obtained when the barrier
width is fixed at 40 Å and the well widths are varied, as
demonstrated by the inset to Fig. 5. By expressing the sheet
density andDSAS in dimensionless form, the data from Fig. 5
can be reduced to the universal zero-temperature phase dia-
gram shown in Fig. 6. From this figure, we see quite clearly
that the excitonic phase appears in a range of densities below
a critical symmetric-antisymmetric splittingDSAS, and that
this density range increases asDSAS decreases.

The results discussed so far for the intersubband SDE
energy are for zero in-plane momentum transfer. Figure 7
shows the dispersion relation of the lowest intersubband

spin-density mode for several sheet densitiesNs aboveNC .
The most important feature shown is that the SDE mode
becomes soft at a finite value of the in-plane momentum
transfer,qc , at a critical density somewhat higher than the
critical density found at zero in-plane momentum transfer.
The critical momentum is given byqc5kF12kF2, where
kFi is the in-plane Fermi wave vector of thei th subband in
the normal state. This indicates that the excitonic instability,

FIG. 5. Calculated zero-temperature phase diagram for double
quantum wells in terms of the sheet densityNS and the barrier
width dB for fixed well widthsdW 5 139 Å. Inset: phase diagram
for fixed dB 5 40 Å in terms of the sheet density and well widths.
The normal (N) and the triplet excitonic (E) phases are shown.

FIG. 6. Calculated zero-temperature phase diagram for coupled
double quantum wells in terms ofr s

2D[(pNS)
21/2/a0 and the di-

mensionless symmetric-antisymmetric subband splittingDSAS/
„e2/e(dW1dB)…, wherea0 ande are the Bohr radius and dielectric
constant for GaAs anddB (dW) is the barrier~well! width. Solid
circles correspond todW 5 139 Å and variousdB , and are taken
from the main part of Fig. 5, while the crosses correspond todB 5
40 Å and variousdW and are obtained from the inset to Fig. 5. The
normal (N) and the triplet excitonic (E) phases are shown.

FIG. 7. Energy of the intersubband spin-density excitations
ESDE as a function of wave vectorq in a coupled double-quantum-
well system with a barrier width of 40 Å and well widths of 139 Å
for sheet densitiesNS in units of 10

11 cm22 approaching the critical
densityNC.0.68631011 cm22 from above~thick lines!. The thin
lines show the lower boundary of the particle-hole continuum,
above which the collective excitations are Landau damped.
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for densities slightly aboveNC , may occur at a finite value
of in-planeq, a point to which we shall return in Secs. V B
and VI.

Thus, we expect that a softening of the intersubband SDE
may be observed either at fixedq and varyingNs @cf. Fig.
8~a!# or for q→qc at certain fixed values ofNs @cf. Fig.
8~b!#. In Fig. 8~a!, we show the spectral function of the in-
tersubband spin-density excitations as the instability is ap-
proached from the high-density side at very smallq. As Ns
approachesNC , the spectral peak shifts toward zero energy,
and the line narrows. On the other hand, the approach to the
critical momentum transferqc at densities just aboveNC ,
presented in Fig. 8~b! for Ns5NC50.731011 cm22 at vari-
ous values ofq approachingqc , the line broadens as it soft-
ens. These spectra are similar to what would be observed in
Raman-scattering experiments in the cross-polarization
geometry.29,15,16,21 For sheet densities within the SDE-
collapsed phase, the TDLDA treatment employed in the sec-
tion breaks down, and we must employ the techniques of
Sec. II B to determine the collective modes, which we shall
do in Sec. V.

Finally, we mention that the instability discussed here for
DQW’s can also happen in widesingle quantum wells, in
which the effective potential develops a barrier in the center
at moderate densities, becoming similar to a DQW.7 An ex-
ample of this phenomenon is illustrated in Fig. 9; notice that
the electron density profile is similar to that for the DQW
system shown in Fig. 1. In thiseffectivedouble-well system,
the separation between the two lowest-lying subbands is
small, about 0.2 meV, as in the coupled DQW’s, and the
possibility of a suppression of the intersubband SDE’s by the
vertex correction arises. A calculation of the SDE energies
shows that this is indeed the case, as can be seen in Fig. 10.

For the square well considered, whose width is 1000 Å, the
region in which the SDE has collapsed is somewhat smaller
than that for the DQW of Fig. 1 with a 40-Å barrier width,
but it occurs around the sameNs;0.431011 cm22. Hence
inelastic light-scattering experiments should be able to detect
the SDE instability in wide square wells also.

IV. FERROMAGNETIC PHASE

In Sec. III, we showed that an electron gas confined in a
coupled double-quantum-well structure has an instability
which is indicated by the vanishing of the energy of the
intersubband spin-density excitations. One of the goals of
this section is to establish whether this instability corre-
sponds to a phase transition from the normal spin-
unpolarized~paramagnetic! ground state to a spin-polarized
~ferromagnetic! one. A second goal is to employ the LSDA
formalism of Sec. II A 2 to the ferromagnetic phase transi-
tion in single square quantum wells. In particular, we are
interested in the dependence of the critical density on the
well width, as it would reveal an aspect of the crossover from
two- to three-dimensional behavior of the electron gas

FIG. 8. Calculated Raman-scattering spectra in the cross-
polarization geometry for a double-quantum-well structure with a
40-Å barrier width and 139-Å well widths. The curves illustrate the
signatures of the excitonic instability~a! as the sheet densityNS is
lowered to the critical density, and~b! as the wave-vector transfer
q is increased at constant sheet densityNS50.731011 cm22.

FIG. 9. Typical wide square quantum well given by the bare
confining potentialVCONF, and its self-consistent LDA subband
energy levelsEn , eigenfunctionsfn , electron densityn(z), Fermi
energyEF , and effective, Hartree, and exchange-correlation poten-
tials VEFF, VH , and VXC . The sheet density isNs50.931011

cm22. The figure shows how the electronic density profile becomes
localized on the sides of the well, similar to the profile in a double
quantum-well system. Bottom: lowest energies in expanded scale.
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which, to our knowledge, has not been explored in the past.
Our main finding is that the LSDA does predict a ferromag-
netic transition in single quantum wells and, moreover, that
as the electron gas is widened the transition density de-
creases~the ferromagnetic phase becomes less favorable!.
This dependence of the critical density on the electron-layer
width agrees with the well-known fact that the influence of
the Coulomb interaction is stronger for lower dimensionality.

We first determine whether the excitonic instability stud-
ied in Sec. III can be explained in terms of a ferromagnetic
transition, that is, a transition from the usual spin-
unpolarized ground state to a partially or fully polarized one.
We concentrate on a coupled double-quantum-well system in
which each individual square well is 139 Å wide and the
well separation is 40 Å—the main structure studied in Sec.
III. As in the better-known 3D case, a fully polarized phase
is expected at low density, and a normal, unpolarized phase
at high density. To compute the spin polarization of the sys-
tem at a given sheet densityNs within the iterative, self-
consistent LSDA method, it should be enough, in principle,
to introduce a slight asymmetry in the initial choice of spin
densities. If the correct ground state were unpolarized, the
initial asymmetry would rapidly disappear in the iteration
process. On the other hand, if a polarized state were ex-
pected, the initial small polarization would increase until
convergence to the fully polarized is achieved. However,
since the solution of the self-consistent set of equations of
the LSDA method is affected by numerical inaccuracies, in
practice our algorithm is sensitive to the initial guess for the
spin-density profiles. Therefore, we employ the following
method to determine the ground-state polarization of the sys-
tem. For a given densityNs , we solve the self-consistent
algorithm starting with the spin densitiesn1

1(z)5hnu(z),
n1

2(z)5(12h)nu(z), n2
1(z)50, and n2

2(z)50 for
h50.55 and 0.95 andnu(z) the density from the unpolarized
LDA calculation ~only one subband is occupied at the low

Ns studied!. If the calculation converges to a polarized or an
unpolarized state for both values ofh, we take the result as
the true polarization at that givenNs . Otherwise, we assume
that the result is affected by the insufficient numerical preci-
sion.

With this method, we obtain the phase diagram of spin
polarization as a function ofNs for the coupled DQW de-
fined above. The calculation converges to a fully polarized
state, regardless of the initial choice of spin densities, for
Ns,43108 cm22, and to an unpolarized state for
Ns.1.73109 cm22. In the rangeNs5 0.4–1.7 3109

cm22, the solution is polarized for the choiceh50.95, and
unpolarized forh50.55.

Therefore, our first conclusion is that, within the LSDA,
there is a ferromagnetic transitionas a function of the elec-
tron densityNs in a coupled DQW system; for our particular
choice of parameters, the transition occurs around
Ns'13109 cm22 at zero temperature. On the other hand,
the ferromagnetic transition occurs at a density which is al-
most two orders of magnitude smaller than the critical den-
sity NC of the excitonic transition of Sec. III. Moreover, it
does not seem to show reentrant behavior at lower density as
the excitonic transition does. Based on these differences, we
conclude thatthe ferromagnetic transition cannot be identi-
fied as the excitonic phase transitionof Sec. III.

Having achieved the first aim of this section, we now turn
to the second, namely, the possibility of ferromagnetism in
single square wells. We wish to determine the critical density
of the ferromagnetic transition as a function of the well
width in order to take the first step in studying the evolution
of this transition as a function of the dimensionality of the
electron gas. The analytical results for two and three dimen-
sions summarized in Sec. II A 2 indicate that, in 2D, the
exchange energy is more important than in 3D, indicating a
higher 2D critical density. In quasi-2D systems, we therefore
expect that the ferromagnetic critical density should decrease
as the well width is increased.

Employing the method described above, we study the fer-
romagnetic transition in five single square wells of widths
dW5a0, 2a0, 4a0, 6a0, and 8a0, wherea0 5 98.7 Å is the
effective Bohr radius in GaAs. The resulting phase diagram
is presented in Fig. 11 in terms ofNs versus well width, and
also in terms of the 2D and 3Dr s and well width; the vertical
bars give the density range where the polarization of our
solution depends on the initial choice of spin densities. As
expected, we see that the critical density decreases with in-
creasing well width. However, the limiting values ofr s for
narrow, and wide wells cannot be directly compared with the
pure two- and three-dimensional Hartree-Fock values for
three reasons. First, the analytical results are obtained in the
jellium model, whereas in our quantum-well calculations the
positive charges of the ionized donors are located far away
from the electron gas, which should produce an important
change in the direct Coulomb energy and hence affect the
ferromagnetic critical density. Second, our calculation in-
cludes correlation effects which go beyond the exchange in-
teraction. Third reason to expect differences is that, in the
LSDA, exchange is treated in a local and static approxima-
tion.

This exchange-correlation potential is obtained from the
ground-state energy of a uniform electron gas, which is not

FIG. 10. Calculated intersubband charge-density excitation en-
ergyECDE, spin-density excitation energyESDE, and single-particle
excitation energyESPE[DSAS as functions of the 2D electron den-
sity NS for the wide square-well structure shown in Fig. 9. Note the
collapse ofESDE for NS.0.220.431011 cm22.
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known exactly and must be calculated within some approxi-
mation scheme. Several authors have proposed different pa-
rametrizations of the exchange-correlation potential, which
are based on different calculations of the 3DEG ground-state
energy and which therefore differ somewhat from each other.
We have checked some of our results using the parametriza-
tion of Gunnarsson and Lundqvist,52 which gives a larger
difference between the potentials for different spin polariza-
tions than the Ceperley-Alder one, making the ferromagnetic
phase more favorable. For example, for the square well of
width dW54a0, the critical density is 1.331010 cm22, ten
times higher than with Ceperley Alder. Thus our calculations
indicate that within the LSDA a ferromagnetic transition is
indeed present in the quasi-two-dimensional electron gas, but
the value of the critical density for the transition cannot be
accurately determined with this method.

V. ANTIFERROMAGNETIC PHASE

Based on the results of the preceding two subsections, we
can draw the following conclusions:~1! double or wide
single quantum-well structures can undergo an excitonic in-
stability in a range of densities, and~2! this instability cannot
be associated with a ferromagnetic transition. We would like
to understand the nature of the ground state of the excitonic
phase and determine its excitations, but we see that the
density-functional approach cannot assist us further. In order
to make progress, we employ the self-consistent Hartree-
Fock formalism developed in Sec. II B, which allows us to
study ground states with broken symmetries which are not
accessible through ordinary density functional theory.

As pointed out in Sec. II B, the self-consistent Hartree-
Fock model for systems with a Coulomb interaction is not
quantitatively accurate, but should reproduce the qualitative
features of the later phase. Our goal is therefore to construct
a minimal model of the systems which exhibit the excitonic
instability which is still tractable. We can make several ob-

servations about the excitonic instability which will guide us
in developing this model. First, the instability in the LDA
calculations occurs with awave-vector-independentinterac-
tion, as seen from the LDA expressions for the irreducible
polarizability, Eqs.~13! and ~16!. Second, the instability is
signaled by a soft mode which is an excitation between the
lowest two subbands and is accompanied by a spin flip. Thus
our minimal model will focus only on the lowest two sub-
bands, allow for off-diagonal terms in the subband and spin
indices, and use an interaction which in constant in wave-
vector space. In the rest of this section, we discuss the results
which follow from this minimal model; a preliminary report
of this work has already appeared in the literature.25

A. Point-contact model

A q-independent interaction has several simplifying con-
sequences. First, as seen from Eq.~45!, the self-energy will
also be wave-vector independent. From Eq.~48!, this result
implies that the eigenfunctionswa

c(k) are also wave vector
independent and that the interacting eigenenergies may be
written

Ec~k!5ec1
\2k2

2m*
2m. ~76!

Because these eigenenergies are the energies of the interact-
ing quasiparticles, the effect of the interaction is to shift
and/or rearrange the noninteracting bands without destroying
their parabolic dispersion. Consequently, the broken-
symmetry phases available within this model will not exhibit
any energy gap, in contrast to what occurs in
superconductivity47 and in other excitonic transitions which
have been studied.53 The reason for this difference is that the
interacting quasiparticles are linear combinations of elec-
trons and holes in the latter cases, whereas in this case they
are linear combinations of electrons from different subbands
in the former.

Second, the simplest interaction which isq independent is
ad function in real space:V(R)5Vd(R). Inserting this form
into Eq. ~43! yields

Vab,cd~q!5dsasb
dscsd

Vnanb ,ncnd
, ~77!

with

Vnanb ,ncnd
5VE dzjna

* ~z!jnb~z!jnc
* ~z!jnd~z!. ~78!

Making the standard assumption that the quantum-well struc-
ture is symmetric, the wave functionsjn(z) may be chosen
to be real and parity eigenstates. From Eq.~78!, these sym-
metries imply that the order of the subband indices in the
matrix elements is irrelevant, and that matrix elements of the
form V11,12, V12,22, and cyclic permutations vanish. Thus
there are only three independent matrix elements:
V115V11,11, V225V22,22, andV125V11,22plus permutations.
Since we are interested in the minimal model exhibiting the
excitonic instability, we will neglectV11 andV22 in order to
focus on the intersubband effects, leaving a model with two
free parameters: the sheet densityNs and the intersubband
interactionV12.

FIG. 11. Approximate zero-temperature, spin-polarization phase
diagram of single square wells calculated in the local-spin-density
approximation in terms of the sheet densityNS and well widthdB
~top! and ther s parameter and well width~bottom!.
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Applying these approximations to Eq.~52!, we find that
the self-energy reduces to

Sn1s1 ,n2s2
5Vn1n2 ,n3n4

ncH wn32s1

c wn42s1
* c , s15s2

2wn3s1

c wn4s2
* c , s1Þs2.

~79!

This equation is supplemented by the band-filling constraint
Eq. ~53!, with the electron density in each interacting sub-
band given by

nc5
1

A(
k

f „Ec~k!…. ~80!

In addition, the integral equations determining the polar-
izability @Eqs. ~72!–~73!# can be reduced to a matrix equa-
tion. The first step in this reduction is to observe that the
vertex functiong in Eq. ~73! is a function only ofqn when
the the interaction has noq dependence, and satisfies the
equation

gab,cd~qn!5dacdbd1@Vba,e f2Vbf,ea#Pe f,gh
~0! ~qn!ggh,cd~qn!,

~81!

where

Pab,cd
~0! ~qn!5

T

A(
km

Gca~km!Gbd~km1qn! ~82!

is the polarizability without vertex corrections. In the inter-
acting system,Pab,cd

(0) may be written through the use of Eq.
~51! as

Pab,cd
~0! ~qn!5wa*

ewb
fwc

ewd*
fPe f~qn!. ~83!

After analytically continuing to real frequencies, the function
Pe f(q) is just Eq.~22! with gs51 and using the interacting
energies@Eq. ~76!#. Inserting this result into Eq.~72! and
rearranging yields

@dagdbh2Pab,e f
~0! ~q!~Vfe,gh2Vfh,ge!#Pgh,cd~q!5Pab,cd

~0! ~q!.
~84!

Inverting this matrix equation gives the polarizability. When
this equation cannot be inverted for a particular (q,v), i.e.,
when the determinant of the matrix in brackets vanishes, the
system exhibits a collective mode. The polarization of these
collective modes can be determined by, for example, the
method discussed in Sec. II B.

Before proceeding to a discussion of the normal-state
properties of our point-contact model, it is appropriate to
discuss briefly the question of how well this model approxi-
mates reality. The Hartree-Fock approximation is known to
be a poor one in the interacting electron gas because it ne-
glects screening effects, but including these effects realisti-
cally is a difficult problem which has not yet been resolved.
In computing the collective modes, this problem is amplified
by the distinction one should draw between the interaction

between the bubbles, which is unscreened, and the interac-
tion within the bubbles that gives the nontrivial part of the
vertex equation, which should be screened. Summing a par-
ticular set of screening diagrams may reduce the error intro-
duced into the self-energy, but would render the collective-
mode calculation completely intractable. Thus we adopt a
strong approximation to the actual Coulomb interaction, a
point-contact interaction, which should reproduce the quali-
tative features of the screening effects while leaving a solv-
able set of equations.

B. Normal-state instability

Our goal is to use the point-contact interaction model we
have just described as the minimal model for the excitonic
instability. It is therefore critical to verify that this model
exhibits the instability in its normal state, an exercise which
will also provide guidance as to the nature of the broken-
symmetry state. The first step in this process is to compute
the self-energy and chemical potential in the interacting sys-
tem. In the normal paramagnetic phase of this model, we
know that the wave functions of the subbands are not mixed,
and that the band structure consists of two parabolic sub-
bands, each with degenerate spin-up and spin-down compo-
nents. Consequently, the self-energy is diagonal in subband
and spin indices, and the eigenvectors of Eq.~48! are given
by wa

c5da
c with the corresponding eigenvalues satisfying

e1↑5e1↓[e1 and e2↑5e2↓[e2. It then follows that
n1↑5n1↓[n1, n2↑5n2↓[n2, S1↑,1↑5S1↓,1↓[S1, and
S2↑,2↑5S2↓,2↓[S2. Inserting these formulas into Eq.~79!
yields the self-energy equationsS15V12n2 andS25V12n1.

At finite temperatures, the simultaneous solution of these
self-energy equations and the band-filling constraint Eq.~53!
must be performed numerically, but atT50 the solution can
be obtained analytically. In order to exhibit the zero-
temperature solutions in a compact form, we define the non-
interacting subband splitting in terms of the eigenvalues of
Eq. ~39!: DSAS

0 [e22e1. The interaction renormalizes this
splitting without modifying the identity of the underlying
subbands. Applying the self-energy equations allows us to
write this renormalized splitting as

DSAS* [e22e15DSAS
0 1V12~n12n2!. ~85!

If the chemical potential is measured from the bottom of the
lower subband andm,DSAS* then only the lower subband is
occupied at zero temperature, and we shall refer to this state
as theN1 phase. Alternatively, ifm.DSAS* , both subbands
are occupied, and we shall refer to this as theN2 phase. By
solving the equations forDSAS* and the band filling constraint
Eq. ~53! simultaneously, we obtain

DSAS* 5H DSAS
0 1

1

2
NsV12 ~N1 phase!

DSAS
0

12N0V12
~N2 phase!

~86!

and
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m5H Ns

2N0
~N1 phase!

Ns

4N0
1
1

2

DSAS
0

12N0V12
~N2 phase!.

~87!

The crossover fromN1 to N2 occurs whenm5DSAS* or
Ns /2N0DSAS

0 5 1/(12N0V12).
With the renormalized splittingDSAS* and chemical poten-

tial m computed, we are now in a position to study the col-
lective intersubband spin-density excitations of this model to
see if the excitonic instability occurs. The condition for these
excitations obtained from Eq.~84! through the use of Eq.
~83! is

16Re@P12~q,v!1P21~q,v!#V1250, ~88!

where the upper~lower! sign is for the spin~charge! density
excitation, and we have dropped the spin indices sincePab

does not depend on them in the normal state. Atq50 and
T50, an analytic solution for the frequency of the collective
modesv0 is possible which is just the Ando result27 with a
renormalized subband splitting:

v0
25~DSAS* !272V12~n12n2!DSAS* . ~89!

It is clear from this expression that the spin-density excita-
tion ~SDE! will soften completely when DSAS*
<2V12(n12n2). At zero temperature, the relations derived
in the preceding paragraphs can be used to show that the
softening occurs in theN1 phase whenNsV12/2DSAS

0 >1,
and in theN2 phase whenN0V12>

1
2. These boundaries are

shown in Fig. 12 along with the line separating theN1 and
N2 phases. The shaded area represents the region in which
the spin-density excitation is soft atq50 in this model. The
phase corresponding to the soft mode occupies a large region
of parameter space, and obtains at any density providing the
interactionV12 is sufficiently strong.

At nonzero wave vector, Eq.~88! must be solved numeri-
cally. From the low-densityN1 phase, the results of this cal-
culation are shown in Fig. 13 for increasing density at fixed
interactionV12. As illustrated by the figure, theq50 spin-
density excitation softens with increasing density and van-
ishes beyond a critical density which depends on the inter-
action strengthV12. At higher densities, the small-q
solutions to Eq.~88! become imaginary, and the largest
imaginary frequency—indicating the most unstable wave
vector—continues to be atq50. Thus, the transition from
the low-density side is very clearly aq50 instability, as is
also seen in the TDLDA calculations.

The situation from the high-densityN2 side is more com-
plicated. The dispersion curves for this case computed from
Eq. ~88! at fixed density and increasing interaction strength
closely resemble those in Fig. 7. As the interaction strength
V12 increases, the energy of the SDE’s are reduced until the
entire dispersion curve collapses along a range of wave vec-
tors from q50 to kF12kF2, the difference of the Fermi
wave vectors of the two subbands, at a criticalV12. The

reason for this collapse is seen from Eq.~88! when one ob-
serves that, atT50 in theN2 phase,

Re@P12~q,v!1P21~q,v!#522N0 ~90!

for q,kF11kF2, indicating that if the energy of a SDE with
one of these wave vectors vanishes, they all must vanish. At
interaction strengths slightly larger than that required for a
collapse, the solutions to Eq.~88! are imaginary in this range
of wave vector, with the largest imaginary frequency occur-
ring at q50. These calculations suggest aq50 transition
from the high-density side, but the density-functional com-
putations in Sec. III find a softening at the nonzero wave
vector q5kF12kF2. The discrepancy arises from the fact
that the calculations in Sec. III include all the subband levels,
whereas the model in this section contains only two. The
inclusion of higher subbands, even if they are unoccupied,
disrupt the cancellations leading to Eq.~90!, and yield a
q-dependent function which will select some wave vector.
The consequences of a finite ordering vector will be dis-
cussed in Sec. VI, but are beyond the scope of our simple
model. We nonetheless expect that many of the qualitative
insights from our model will apply to more comprehensive
theories.

One of the most important insights that can be gained by
the study of the normal-state instability is a physical intuition
about the nature of the ground state in the region of the phase
diagram in which the SDE has softened. In structural phase
transitions, a particular phonon softens, and the polarization

FIG. 12. Mean-field phase diagram of the antiferromagnetic sec-
tor of the point-contact model described in the text. The indepen-
dent variables are the normalized intersubband interaction matrix
element N0V12 and the sheet densityNs /2N0DSAS

0 , where
N05m* /2p\2 in the single-spin density of states andDSAS

0 is the
splitting between the lowest two subbands whenV1250. The other
interaction matrix elementsV11 5 V22 5 0. The regions correspond
to the normal~paramagnetic! phase with one subband occupied
(N1), the normal phase with both subbands occupied (N2), and the
antiferromagnetic phase~AF!. Contours in the antiferromagnetic
region of the phase diagram are the computed values of the critical
temperatureTc for the antiferromagnetic transition in units of
DSAS
0 /kB . Observe thatkBTc can be larger thanDSAS

0 , indicating
that the antiferromagnetic phase may persist to observable tempera-
tures. The other labels in the figure identify points for future refer-
ence.
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of that phonon determines the structure. In the same way, the
polarization of the soft spin-density excitation should reveal
a great deal about the ground state. This polarization can be
computed by means of Eqs.~74! and ~75!, which leads to a
density response in the normal state given by

^rm~R,t !&}ei ~q–r2vt !j1~z!j2~z!@P12~q,v!1P21~q,v!#

3~ x̂2 i ŷ !, ~91!

which is shown graphically in Fig. 14~a!. Notice that the
response occurs in the spin channel and has the character of
a traveling wave transverse to the layering direction. Also
observe that, since the wave function of the lowest subband
j1(z) is even in z due to the assumed symmetry of the
quantum-well structure, and the wave function of the next
subbandj2(z) is odd, the overall response odd inz. Thus the
intersubband spin-density excitation corresponds to a spin-
density wave in which the spin-density is antiferromagneti-
cally correlated between the quantum wells.

With this interpretation, the nature of the excitonic insta-
bility becomes obvious: the softening of theq50 SDE cor-
responds to the formation of antiferromagnetic order be-
tween the quantum wells with no modulation of the spin
density within a well. A profile of the resulting spin density
is presented in the inset of Fig. 15. Note that there are three
degenerate SDE’s in the normal phase which may be associ-
ated with spin polarizations along the three Cartesian direc-
tions. Although all three soften simultaneously, we expect
that a particular spin direction will be selected by the system

as in the ferromagnetic transition, but there isa priori no
restriction of the direction of the spin polarization selected.

To summarize the results of the application of our simple
model to the normal state, we find a softening of the inter-
subband spin-density excitations atq50 for a wide range of
model parameters. These collective excitations produce a
spin-density modulation which is antiferromagnetically cor-
related between the wells. Thus the softening of theq50
spin density modes indicate the formation of an antiferro-
magnetic phase in which the spins in both wells are polarized
but in opposite directions. In the more realistic density-
functional calculations of Sec. III, aqÞ0 instability was
indicated, which would imply an additional intrawell modu-
lation of the spin density~see Sec. VI!. For simplicity, we
focus on theq50 phase.

C. Antiferromagnetic ground state and thermodynamics

With an understanding of the nature of the excitonic in-
stability as an antiferromagnetic ordering, we are able to ex-
amine the ground state and its properties within our model.
We first note that both spin rotation invariance and parity are
broken in the antiferromagnetic state, so we are studying a
genuine symmetry-breaking phase transition. The first task
encountered in studying such a transition is to identify the
order parameter. For concreteness, consider the antiferro-
magnetic phase with the spin density aligned along thex̂
direction. From Eqs.~60! and~65!, the only nonzero compo-
nent of the spin density is then

^sx~z!&5
\

2
jn1~z!jn2~z!^rn1↑,n2↓~q50!&. ~92!

Because the antiferromagnetism requires that^sx(z)& be odd
in z, only the terms which are off-diagonal in subband index
are nonzero in this phase. Defining

rn1n2
m 5ss1s2

m (
k

^cn1ks1

† cn2ks2
&, ~93!

and using Eq.~66!, this implies that

^sx~z!&5
\

2
jn1~z!jn2~z!(

k
@^c1k↑

† c2k↓&1^c2k↑
† c1k↓&

~94!

5
\

2
jn1~z!jn2~z!@r12

x 1r21
x #. ~95!

r12
x 1r21

x is finite in the antiferromagnetic phase and vanishes
in the normal phase, so it is the order parameter of the phase
transition. From the spin-rotational invariance of the system
the direction in which the spin density can be polarized in the

FIG. 13. Dispersion of the intersubband spin-density excitations
~SDE’s! as the sheet densityNs approaches the antiferromagnetic
phase from the low-density, one-subband-occupied side computed
in the antiferromagnetic sector of the point-contact interaction
model discussed in the text withN0V1251.0. The thick lines show
the energy\v of the SDE’s in units of the renormalized splitting of
the lowest two subbandsDSAS* as a function of wave vectorq rela-
tive to the Fermi wave vectorkF . The thin lines show the bound-
aries of the particle-hole continuum, within which the collective
excitations are damped. The sheet densities and corresponding
points in the phase diagram of Fig. 12 are given in the figure. The
transition to the antiferromagnetic phase occurs when theq50
SDE’s soften atNs /2N0DSAS

0 5 1.0. A similar softening appears in
Fig. 7, which shows the approach to the antiferromagnetic phase
from the high-density side computed within the LDA.
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antiferromagnetic phase is arbitrary, so the general form of
the order parameter is

Ni5r12
i 1r21

i , i51,2,3. ~96!

With this identification, we can construct a form for the
self-energy matrix which permits the off-diagonal expecta-
tion values we require, yet preserves the other symmetries of
the system. Thisansatzmay be written54

FIG. 14. Polarization of~a! an intersubband
spin-density excitation in the normal phase and of
the ~b! phase~Nambu-Goldstone! and ~c! ampli-
tude modes in the antiferromagnetic phase with
the spin density oriented along thex̂ direction
computed as described in the text. The configu-
ration of the quantum wells is as in Fig. 1. The
two planes are sections through this geometry
normal to the layering direction and are located in
the center of each well. The distances in these
planes are measured in units of the wavelength of
the collective excitationl, whose propagation is
in the x̂ direction. The arrows show the direction
and magnitude of the spin density modulation in-
duced by the collective excitations. These modes
have the form of a traveling wave, so the spin
modulation at a different time is obtained by
shifting these pictures along thex̂ direction.
Since the total spin density is the sum of the an-
tiferromagnetic polarization and the modulations
shown in ~b! and ~c!, the identification of these
modes with the phase and amplitude motions is
apparent.
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Sab5FS1 0 0 Sod

0 S1 Sod 0

0 Sod S2 0

Sod 0 0 S2

G . ~97!

Inserting this form into the eigenvalue equation Eq.~48!
yields the eigenvectors

wa
c5F u 0 0 2v

0 u 2v 0

0 v u 0

v 0 0 u

G ~98!

~columns correspond to the superscript! and eigenenergies
ec 5 $e1,e1,e2,e2% @cf. Eq. ~76!#, where

S uv D 5F12 S 17
DSAS
0 1S22S1

2D D G1/2, ~99!

e65
DSAS
0 1S21S1

2
6D, ~100!

and

D5F S DSAS
0 1S22S1

2 D 21Sod
2 G1/2. ~101!

The eigenenergy spectrum indicates that the single-particle
band structure in the antiferromagnetic phase consists of two
sets of two degenerate parabolic subbands separated in en-
ergy byD125e12e252D. This band structure is similar
to that in the normal phases, but the wave functions of the

interacting quasiparticles are considerably different: from
Eq. ~98!, we see that these quasiparticles are linear combina-
tions of electrons from the two noninteracting subbands.

The parameters in the eigenenergies and eigenvalues are
determined from the self-consistency equations obtained by
substituting the eigenvectors into reduced self-energy equa-
tion, Eq. ~79!. This procedure gives

S15V12~n
2u21n1v2!, ~102!

S25V12~n
1u21n2v2!, ~103!

and

Sod52V12~n
22n1!uv. ~104!

Using the definitions ofu and v @Eq. ~99!# and the band
filling constraint

Ns52~n21n1!, ~105!

these self-energy equations can be written

S11S25
1

2
V12Ns , ~106!

DSAS
0 1S22S15

DSAS
0

12V12~n
22n1!/2D

, ~107!

and

Sod5
V12~n

22n1!

D
Sod. ~108!

In the antiferromagnetic phase,SodÞ0, implying from Eq.
~108! that D5V12(n

22n1). Equation~107! then becomes
DSAS
0 1S22S152DSAS

0 from which we obtain D25

(DSAS
0 )21Sod

2 by Eq. ~101!. Comparing the two expressions
for D yields

Sod5@V12
2 ~n22n1!22~DSAS

0 !2#1/2. ~109!

The splitting between the interacting bands is

D1252D52V12~n
22n1!, ~110!

and the chemical potential is determined implicitly by Eq.
~105!.

At zero temperature, these equations can be easily solved.
First, supposen150. Then Eqs.~105! and~109! imply that

Sod5F SV12Ns

2 D 22~DSAS
0 !2G1/2, ~111!

Equation~110! becomesD125V12Ns , and the band-filling
constraint yieldsNs52N0m. This solution is consistent if~1!
V12Ns /2DSAS

0 >1 @Eq. ~111!#, and ~2! m<D12 , which is
equivalent toN0V12>

1
2. These constraints are precisely those

obtained in Sec. V B as the boundaries of the normal-state
instability and are depicted in Fig. 12, demonstrating that
n150 over the entire range of the antiferromagnetic phase.
Thus only the lowest ‘‘-’’ bands are occupied in this phase.
From Eq. ~111!, we also observe thatSod rises from zero
continuously along the boundary shared with theN1 phase
@cf. Fig. 12#, indicating a second-order phase transition at

FIG. 15. Staggered spin density (r12
x 1r21

x ), which is the order
parameter for the antiferromagnetic phase transition discussed in
the text@cf. Eq. ~96!#, normalized by the electron sheet densityNs

as a function of temperatureT in units of the splitting between the
two lowest subbands in the non-interacting limitDSAS

0 . The curves
are computed forNs /2N0DSAS

0 52.5 andN0V12 5 0.55 to 0.80 in
increments of 0.05; the lower and upper values correspond to points
D1 andD2 in the phase diagram of Fig. 12. Inset: Expectation value
of the spin densitŷsx(z)& in real space as a function of the distance
along the layering directionz for the double quantum well of Fig. 1
in the antiferromagnetic phase. Note that^sx(z)& 5 0 in the para-
magnetic phase.
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zero temperature. Along the boundary with theN2 phase,
however,Sod jumps discontinuously to a finite value, show-
ing that this transition isfirst-order atT50.

This interpretation is confirmed by a calculation of the
energy change of the system across the transition, which also
demonstrates the stability of the antiferromagnetic phase
relative to the normal phases. From the relations

1

A(
k

f S \2k2

2m*
2xD5N0T ln~ex/T11!, ~112!

T→
→
0N0xu~x! ~113!

and

1
A(

k

\2k2

2m*
f S \2k2

2m*
2xDT→→ 0N0

x2

2 u~x!, ~114!

and Eqs.~76!, ~42!, ~50!, and ~53!, we can write the total
energy@Eq. ~57!# as

E

A
5
nc

2
~ uwa

cu2ena1m!. ~115!

Inserting the subband occupations, eigenvectors, and chemi-
cal potential obtained from the solution of the self-energy
and band-filling equations atT50, we find, for theN1 phase,

EN1

A
5

Ns
2

4N0
, ~116!

for theN2 phase,

EN2

A
5

Ns
2

8N0
~11N0V12!1

DSAS
0

2 SNs1
N0DSAS

0

12N0V12
D , ~117!

and, for the antiferromagnetic~AF! phase,

EAF

A
5

Ns
2

4N0
2

1

2N0V12
S NsV12

2DSAS
0 21D 2. ~118!

We see immediately from Eqs.~116! and ~118! that, in the
range of parameter space in which bothN1 and AF solutions
exist,EAF,EN1. In addition, the energy at theN1-AF phase
boundary@cf. Fig. 12# can be seen to be continuous and with
continuous first derivatives. The second derivative is discon-
tinuous at the phase boundary, however, showing that the
phase transition is second order. Similarly, it can be shown
that Eqs.~117! and ~118! yield EAF,EN2 in the region of
parameter space where both solutions exist, and that thefirst
derivative of the energy difference at the phase boundary is
discontinuous. Thus the antiferromagnetic phase is energeti-
cally stable with respect to the normal phases whenever the
broken-symmetry solution exists, and the phase transition is
second order from theN1 phase and first order from theN2
phase at zero temperature in mean-field theory.

At finite temperature, the self-energy equations in combi-
nation with the band-filling constraint must be solved nu-
merically. The results of these computations can be used to
obtain several quantities which characterize the antiferro-
magnetic phase: the transition temperatureTc and the tem-
perature dependence of the order parameterNx5(r12

x 1r21
x )

and the specific heatcV . The temperature at which the anti-
ferromagnetic transition occurs is found by linearizing the
self-energy equations in the off-diagonal self-energySod.
This procedure allows Eq.~108! to be written as

V12~n
22n1!5DSAS

0 , ~119!

and also leads to the resultD125DSAS* for DSAS* defined by
Eq. ~85!. From these two expressions, we deduce that
D1252DSAS at Tc . Thus the critical temperature is deter-
mined by the simultaneous solution of Eqs.~119! and ~105!
with the constraintD1252DSAS. Using Eq.~112!, we find
that theTc equation may be written, after some algebra, in
the reduced variablesbc5DSAS

0 /Tc , x5Ns /2N0DSAS
0 , and

y5N0V12 as

2bc5 lnFebc~xy11!/2y21

ebc~xy21!/2y21G . ~120!

The reduced variablesx andy are just the axes of the phase
diagram in Fig. 12, in which the contours of constant
kBTc /DSAS

0 are also shown. We note that the critical tem-
perature can be of the order ofDSAS

0 /kB , which may be on
the order of 10 K for double quantum wells of the type
shown in Fig. 1.

Below the transition temperature, the order parameter be-
comes finite, and we must solve the full nonlinear set of
equations. To relate the self-energy parameters obtained in
this way to the staggered spin density in Eq.~95!, we first
note that Eq.~51! can be used to show that

(
k

^cak
† cbk&5wb

cncwa*
c . ~121!

Inserting this result into Eq.~95! and applying Eqs.~98! and
~99!, we find that the staggered magnetization

@r12
x 1r21

x #522~n22n1!
Sod

D12
. ~122!

At zero temperature, this expression reduces to

@r12
x 1r21

x #52NsF12S 2DSAS
0

V12Ns
D 2G1/2. ~123!

Solving theT.0 self-energy and band-filling equations for a
variety of interaction strengths, and substituting the results
into Eq. ~122!, yields the curves in Fig. 15. We see that the
staggered magnetization rises rapidly from zero belowTc ,
and saturates quickly to itsT50 value. This behavior is
generally expected for an order parameter in mean-field
theory.

Another quantity of theoretical and possibly experimental
interest is the specific heat. The specific heat is proportional
to the second derivative of the free energy with respect to
temperature, so this quantity is discontinuous at either a first-
or a second-order phase transition. This discontinuity is in
principle measurable and would provide direct evidence of a
thermodynamic phase transition occurring in these systems.
Actually observing this discontinuity in semiconductor de-
vices of the kind we are considering would be difficult, how-
ever, due to the low concentration of the relevant electrons.
The specific heat is computed from Eq.~59! for a particular
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temperature with the eigenenergies and chemical potential
obtained from the self-consistency equations. Using Eq.~76!
in Eq. ~59!, the specific heat per sample area may be written

cV5N0T(
c
E

2b~m2ec!

1` xexdx

~ex11!2S x1
d~m2ec!

dT D , ~124!

which at low temperature reduces to

cV5
p2

3
NoccN0T, ~125!

whereNocc is the number of occupied subbands:Nocc52 in
theN1 andAF phases andNocc54 in theN2 phase. Equation
~125! is just the usual result obtained from a Sommerfeld
expansion.55

Since we are aware of no calculations in the literature
regarding the specific heat of a paramagnetic electron gas in
a quantum-well structure, in Fig. 16~a! we presentcV for the
noninteracting electron gas to use as a comparison for the
interacting case. At low temperature, the curves naturally
resolve themselves into two groups according to whether one
or two subbands are occupied atT50. This feature follows
directly from Eq.~125! and is emphasized in the inset to Fig.
16~a!. Observe that Eq.~125! is an inadequate description of
cV whenT is larger than only a small fraction of the subband
splitting DSAS

0 . The precise fraction is density dependent, as
is whether the actual specific heat is smaller or larger than
Eq. ~125! predicts. The reason underlying this behavior is
that, unlike the metallic case, the Fermi energy and the tem-
perature are often comparable in these quantum-well struc-
tures, invalidating the Sommerfeld expansion. At higher tem-
peratures, the form of the specific heat for both one- and
two-subband-occupied ground states are similar, and have a
magnitude at fixed temperature which increases monotoni-
cally with density. When the temperature becomes of the
order of the energies of the higher subbands, this two-
subband description breaks down. Of course, Eq.~124! may
still be used to computecV at these temperatures, providing
the higher subbands are included in this equation and the
equation determining the chemical potential.

With the noninteracting specific heat as a baseline, we can
now examinecV in the interacting system in both the normal
and antiferromagnetic phases. Figure 16~b! presents the spe-
cific heat as a function of temperature calculated for a fixed
interaction strength. The different curves show the evolution
of cV(T) as the density is increased from the single-subband-
occupiedN1 phase into the antiferromagnetic phase. The
specific heat in theN1 phase is similar to the noninteracting
plots in Fig. 16~a!, exhibiting the low-temperature, linear-in-
T behavior expected from Eq.~125! which crosses over at
some density-dependent temperaturekBT!DSAS

0 to an ap-
proximately constant value. As one enters the antiferromag-
netic phase, one sees a discontinuity develop incV at Tc ,
which signals the phase transition. Unlike
superconductivity,47 there is no universal value for this dis-
continuity due to the large renormalizing effects of the tem-
perature on the band-structure parameters. AboveTc , the
curves resemble their normal-state counterparts, while, be-
low Tc , the low-temperature result Eq.~125! seems to hold.

The latter behavior is not universal, however, as seen
from Fig. 16~c!. This figure shows the evolution of the
specific-heat function at a fixed density and increasing inter-
action. The system is initially in the two-subband-occupied
N2 phase and becomes antiferromagnetic whenN0V12.

1
2

~cf. Fig. 12!. In the normal state,cV(T) has the shape ex-
pected from Fig. 16~a! with a low-temperature slope charac-
teristic of having two subbands occupied@i.e.,Nocc54 in Eq.
~125!#. Increasing the interaction strength has only minor
effects until the antiferromagnetic region of the phase dia-
gram is reached, at which pointcV develops a discontinuity
at Tc . At the same time, the slope of the low-temperature
specific heat drops by a factor of 2 in accordance with Eq.
~125! and the fact that only the lowest interacting bands are
occupied in the antiferromagnetic state. AboveTc , the spe-
cific heat is qualitatively similar to the other normal-state
curves. BelowTc , and in contrast to Fig. 16~b!, cV}T at
both low temperatures and temperatures nearTc but with
different slopes. The slope nearTc is a function of the inter-
action strength and equals the low-temperature value for
N0V1251; for N0V12.1, the slope nearTc is actually less
than the low-temperature slope.

D. Collective excitations

In addition to the ground-state and thermodynamic prop-
erties of the antiferromagnetic phase, it is also important to
examine its collective excitations. The first indication of the
antiferromagnetic phase transition is the disappearance of the
intersubband spin-density excitations, and, on general theo-
retical grounds, one would like to know what replaces them
in the broken-symmetry phase. Moreover, experimental stud-
ies of semiconductor heterostructures by inelastic light scat-
tering can measure these excitations, and theory should pro-
vide some guidance about the expected signatures of the later
phase. The latter point is particularly important in light of
current searches for this phase.56

The basis for studying the collective modes in the antifer-
romagnetic phase is Eqs.~83! and~84! supplemented by the
eigenvalueswa

c , eigenvectorsec, and chemical potential de-
termined as in Sec. V C. Because the wave functions of the
interacting quasiparticles mix different subbands and spins,
the bubblePab,cd

(0) (q) is no longer diagonal in these indices,
and so Eq.~84! becomes a 16316 matrix equation in sub-
band and spin space. The remaining symmetries in the anti-
ferromagnetic phase do not seem to be amenable to decom-
posing this matrix equation and arriving at an analytic
solution, which forces us to adopt a numerical approach. We
therefore obtain the interacting polarizabilityPab,cd(q) by
direct numerical inversion of Eq.~84! at T50, and identify
the collective modes from the condition

det@dacdbd2Pab,e f
~0! ~q!~Vfe,cd2Vfd,ce!#50. ~126!

Since we are interested primarily in the intersubband spin-
density modes, we will focus on the intersubband spin-flip
polarizability

P inter~q![ f ab
extPab,cd~q! f cd

ext, ~127!
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with f ab
ext given by Eq.~75!. Typical results for the spectral

function of this polarizability in the antiferromagnetic phase,
2ImP inter(q), are shown in Fig. 17.

In analyzing these figures, it is useful to keep in mind the
following facts about the band structure of the antiferromag-
netic phase revealed by the analysis of Sec. V C:~1! the
interacting band structure consists of two sets of two degen-
erate parabolic subbands separated by an energyD12 , ~2!
only the lower set of interacting subbands are occupied,
yielding a single Fermi wave vectorkF , and ~3! the wave
functions corresponding to the interacting bands are a mix-
ture of the wave functions of the noninteracting subbands.
Facts~1! and~2! indicate that the band structure is similar to
that in theN1 phase, so we expect to see a region of inter-
subband particle-hole excitations in the spectral function
similar to those in Fig. 13. The kinematics of these excita-

FIG. 16. Electronic specific heat at constant volumecV is nor-
malized by 2p2N0DSAS

0 /3 as a function of the temperatureT in
units ofDSAS

0 /kB for ~a! N0V1250 andNs /2N0DSAS
0 5 0.1 to 2.0 in

increments of 0.1,~b! N0V1251 andNs /2N0DSAS
0 5 0.5 to 1.5 in

increments of 0.1~i.e., along the line fromA1 to B2 in Fig. 12!, and
~c! Ns /2N0DSAS

0 5 2.5 andN0V12 5 0.2 to 0.8 in increments of
0.05 ~i.e., along the line fromC1 to D2 in Fig. 12!. The inset in~a!
enlarges the low-temperature portion of the main figure in order to
see the deviation from the analytic low-T expression, Eq.~125!.
Entrance into the antiferromagnetic phase is signaled by a discon-
tinuity in the specific heat that is apparent in~b! and~c! but absent
in ~a!.

FIG. 17. Dispersion of the intersubband spin density collective
modes in the antiferromagnetic phase at the points~a! B1 and ~b!
B2 of the phase diagram of Fig. 12, corresponding to
(Ns /2N0DSAS

0 , N0V12) 5 ~1.1,1.0! and~1.5,1.0!, respectively. The
thick lines are the energy\v in units of the non-interacting sub-
band splittingDSAS

0 of the amplitude mode of the antiferromagnetic
order parameter as a function of the wave vectorq in units of
qD
25m*DSAS

0 /\2. The shaded region is the particle-hole continuum,
with darker shades representing larger spectral weight than lighter
shades on a logarithmic intensity scale. The dark linear feature is
the phase or Nambu-Goldstone mode of the order parameter. Note
that this mode is damped by particle-hole excitations and that intra-
subband excitations enter into the spectrum due to the mixing of the
non-interacting wave functions in the symmetry-broken phase.
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tions require that their spectral weight start at\v5D12 at
q50, and spread within the boundaries given by

\2

2m*
~q2kF!2<\v2D121m<

\2

2m*
~q1kF!2 ~128!

for q.0 andm measured from the bottom of the lowest
interacting subband. In the normal phases, these intersub-
band excitations are cleanly separated from the intrasubband
excitations by the projection in Eq.~127!. In the antiferro-
magnetic state, however, fact~3! indicates that such a sepa-
ration is impossible, leading to the additional low-frequency
particle-hole continuum present in Fig. 17. Kinematics again
show that this region is defined by 0,v<(\2/2m* )
3(q1kF)

22m for q,2kF . Although not shown in Fig. 17,
at largerq.2kF , the extent of this region of particle-hole
excitations is defined by

\2

2m*
~q2kF!22m<v<

\2

2m*
~q1kF!22m. ~129!

Within the particle-hole continuum, we find one striking
feature at low frequencies which appears in Fig. 17 as a dark,
linearly dispersing feature at low frequencies. Examining the
solutions of Eq.~126!,57 we find that this feature is in fact a
Landau-damped collective mode of the system. The polariza-
tion of this collective mode is extracted by returning to the
full interacting polarizabilityPab,cd(q) and applying Eqs.
~74! and ~75! at the wave vectors and frequencies lying on
the dispersion curve for this mode. A real-space representa-
tion of the resulting spin-density displacements is given in
Fig. 14~b!. To interpret these results, we first note that the
antiferromagnetic phase for these calculations has its spin
density oriented along thex̂ direction. From Fig. 14~b!, we
see that the collective mode corresponds to a wave of anti-
ferromagnetic spin displacements normal to this orientation,
namely, in theŷ direction, traveling transverse to the layer-
ing direction of the quantum wells. The spin displacements
are in opposite directions in different wells, so the net effect
is a rotation of the total spin density in thexy plane that
preserves the antiferromagnetic correlation of the spin den-
sity between the wells. Note that there is another collective
mode degenerate with this one which corresponds to a rota-
tion of the total spin density in thexz plane; this mode is
projected out by our choice off ab

ext @Eq. ~75!#.
Outside of the particle-hole continuum, we can look for

the undamped collective modes in the same way as in the
preceding paragraph.57 We find a single optical excitation
whose dispersion is indicated by the thick black line in Fig.
17. The polarization of this mode is obtained from Eqs.~74!
and~75!, and is shown in Fig. 14~c!. From this figure and our
knowledge of the orientation of the spin density in the anti-
ferromagnetic phase, we conclude that the optical mode cor-
responds to a modulation of the magnitude of the spin den-
sity which alters neither its direction in space nor the
antiferromagnetic correlation between the wells. We note
that, unlike the low-frequency mode, the optical mode be-
comes so strongly Landau damped once it enters the particle-
hole continuum that it is no longer identifiable.

The two collective modes that appear in our calculations
can be understood from general principles of phase transi-

tions involving the breaking of a continuous symmetry.58,49

In our case, the continuous symmetry is spin-rotation or
SU(2) invariance, and the extent to which it is broken is
quantified by the staggered spin densityN @Eq. 96!#. The
collective modes in the broken-symmetry phase correspond
to the modulation in space and time of either the direction or
the magnitude ofN, and are therefore called phase and am-
plitude modes, respectively. The polarization of the collec-
tive excitations discussed above unambiguously identify the
two low-frequency, Landau-damped excitations as phase
modes with orthogonal polarizations, and the optical excita-
tion as the amplitude mode. This identification is strength-
ened by the dispersion of these excitations: the phase mode
should have an energy which vanishes asq→0, since ground
states with different orientations ofN are degenerate,
whereas the amplitude mode should possess an excitation
gap. These expectations are borne out in Fig. 17.

Further insight into these collective modes can be gained
by following the evolution of the intersubband spin-density
excitations as we change the parameters of our model and
move from the normal to antiferromagnetic phases. We start
in the single-subband-occupiedN1 phase at the point marked
A1 in Fig. 12. Increasing the density at fixed interaction, we
move toward the antiferromagnetic phase~pointA2), causing
the three degenerate intersubband spin-density excitations to
soften as shown in Fig. 13. When theq50 excitations van-
ish, the system enters the antiferromagnetic phase and the
three intersubband SDE’s turn into two degenerate phase
modes and an amplitude mode as seen in Fig. 17~a!. Increas-
ing the density still further~to pointB2), the amplitude mode
moves to higher frequencies while the phase mode is largely
unchanged@Fig. 17~b!#.

This behavior is typical of entry into the antiferromag-
netic phase, and can be summarized by a plot of theq50
intersubband excitation spectrum as a function of the model
parameters, Fig. 18. In Fig. 18~a!, we see the transition just
described, in which the system is initially in theN1 phase
and the density is increased at fixed interaction strength. The
collapse of the intersubband spin-density-excitation and the
emergence of the amplitude mode is clearly seen. We also
observe that both the splitting between the interacting sub-
bands and the intersubband charge-density excitations are
continuous and non-zero across the antiferromagnetic transi-
tion, but both have a discontinuity in their first derivatives.

The antiferromagnetic transition has a slightly different
character when it proceeds from the two-subband-occupied
N2 side. Starting in theN2 phase and increasing the interac-
tion strength at fixed density, we see from Fig. 18~b! that the
intersubband spin-density excitation softens as before, but
the amplitude mode in the antiferromagnetic phase appears
immediately thereafter at finite frequency. The interacting
subband splitting and the intersubband charge-density exci-
tation are also discontinuous across this phase boundary.
These jumps are a consequence of the first-order nature of
the T50 antiferromagnetic transition from theN2 side. Al-
though finite temperatures will probably restore continuity to
these curves, the large changes indicated may be experimen-
tally observable and could provide strong evidence of the
transition.

Whether the changes in the intersubband excitation spec-
trum we have discussed are observable in, for example, in-
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elastic light-scattering experiments, depends to a great extent
on the spectral weight associated with these features. As dis-
cussed in Ref. 25, peaks associated with the phase mode, the
amplitude mode, and the intersubband particle-hole con-
tinuum should be visible in Raman spectra, but the response
is dominated by the low-frequency phase mode. Most inelas-
tic light-scattering measurements are done at smallq and
moderate frequencies, so the phase mode may be difficult to
observe unless a concerted effort is made to look for it. In-
deed, the signature of the antiferromagnetic phase in conven-
tional light-scattering experiments may simply be the appar-
ent absence of all intensity. We also note that the
polarization of the scattered light relative to the antiferro-
magnetic ordering direction may affect the observed intensi-
ties of these modes. Since the ordering direction is arbitrary,

this effect may result in a strong variation in the observed
light-scattering spectra after temperature cycling aboveTc or
between different samples.

VI. DISCUSSION AND SUMMARY

In this paper, we studied the magnetic instabilities of
semiconductor quantum wells within the local-density ap-
proximation to density-functional theory and a self-
consistent Hartree-Fock theory. To create a consistent picture
of the results of these calculations, one must realize that
these two formalisms supply complementary information.
The LDA computations are designed to be quantitatively re-
liable for the normal-state properties of these quantum-well
structures. The self-consistent Hartree-Fock calculation, on
the other hand, is only qualitatively reliable, but it is able to
describe broken-symmetry phases that cannot be studied
within the LDA. In particular, there is little point in trying to
relate the parameters from the self-consistent Hartree-Fock
calculation to the LDA results, because the former neglects
such real-world effects as the distribution of the donor im-
purities which the latter includes. Hence the LDA calcula-
tions should indicate whether or not the transition occurs,
and suggest the structures and densities at which to look for
it, and the self-consistent Hartree-Fock calculations should
provide information on the qualitative features of the result-
ing antiferromagnetic phase that can assist experimentalists
in identifying it.

The only qualitative point about which the LDA and self-
consistent Hartree-Fock calculations disagree is the ordering
wave vector of the transition from the two-subband-occupied
side of the phase diagram: the LDA yieldsqc5kF12kF2,
while the self-consistent Hartree-Fock calculation gives
qc50. As mentioned in Sec. V B, the discrepancy between
the two formalisms can be traced back to the number of
subbands included in the calculation and not to the form of
the interaction, which is taken to be independent of wave
vector in both cases. Since one expects a calculation includ-
ing more subbands to be more accurate, it is reasonable to
conclude that at least some part of the true phase diagram
would haveqcÞ0. That not all of the soft-SDE region of the
phase diagram would haveqcÞ0 is demonstrated by that
fact that the one-subband-occupied SDE’s unambiguously
soften atqc50 in both the LDA and self-consistent Hartree-
Fock theories. Since the latter theory focuses on interwell
effects and neglects intrawell ones, its predictions regarding
interwell properties such as the long-wave length intersub-
band spin-density excitations may be qualitatively valid even
in theqcÞ0 phase. This phase would have a nontrivial spin-
density modulation transverse to the quantum-well layering
direction, but whether this modulation would be of the form
of a simple spin-density wave or something akin to an anti-
ferromagnetic Skyrmion lattice59 in zero field cannot be de-
termined from the present calculations. Future investigations
exploring theqcÞ0 phase, and in particular the nature of the
crossover between theqc50 and qcÞ0 phases, could in
principle be performed within a generalization of the self-
consistent Hartree-Fock formalism discussed in this paper.

Our calculations have focused on the physics along the
layering direction, and it is reasonable to ask to what extent
exchange and correlation normal to the layering direction

FIG. 18. Normalized energy\v/DSAS
0 of the q50, T50 col-

lective excitations and interacting subband splitting for~a! a fixed
interactionN0V1251.0 and varying sheet densityNs /2N0DSAS

0 and
~b! varying interaction N0V12 and fixed sheet density
Ns /2N0DSAS

0 5 2.5 in the antiferromagnetic sector of the point-
contact model discussed in the text. Illustrated are the intersubband
spin-density ~SDE, solid lines! and charge density excitations
~CDE, dotted lines!, the renormalized subband splittingDSAS* ~SPE,
dot-dashed lines!, and the amplitude mode in the antiferromagnetic
phase~dashed line!. The top axes show the corresponding points in
the phase diagram in Fig. 12. As seen in~b!, the collective mode
energies are discontinuous across the two-subband-occupied (N2)
to antiferromagnetic phase boundary atT50, indicating a first-
order transition.
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have been included. In addressing this point, it is useful to
discuss the local-density approximation~LDA ! and self-
consistent Hartree-Fock calculations separately. In the LDA,
the effects of exchange and correlation are approximated by
a functional of the local electron density. The form of this
functional is deduced from Monte Carlo calculations for a
free-electron gas in either two or three dimensions. If the
ground state of the quantum-well system is translationally
invariant along the plane of the wells, then the local electron
density depends only on the coordinate normal to the plane
of the wells,z, leading to Eq.~1!. Although an explicit func-
tion only of z, the effective potential implicitly includes the
effects of exchange and correlation along the plane of the
wells through our choice of the exchange-correlation poten-
tial @Eq. ~31!#. The form of the interaction then allows us to
separate the electronic wave function into a confined compo-
nent along the layering direction and a plane-wave compo-
nent normal to it@cf. Eqs.~3! and~40!#. This approach is the
conventional one and underlies almost all calculations of the
physical properties of metal-organic semiconductor field-
effect transistors and GaAs heterostructures.60

This approach fails if either the translational invariance is
broken or the LDA is no longer a good approximation. The
loss of translational invariance occurs in the Wigner solid or
in the qcÞ0 phase discussed above; the LDA can only ex-
amine the boundaries of these phases but not their properties.
The range of validity of the LDA as a whole is somewhat
trickier to ascertain, but its use can be justified by the re-
markable agreement between its predictions and experiment
in both fully three-dimensional and low-dimensional con-
fined quantum systems.19,23,22,61We may therefore conclude
that our LDA calculations contain an appropriate amount of
in-plane exchange and correlation effects. Indeed, if that
were not the case, the LSDA would see no ferromagnetic
transition at all.

The main effect of in-plane exchange-correlation correc-
tions, as long as there is no exchange-correlation-induced
quantum phase transition or planar symmetry breaking of the
type discussed above~e.g., Wigner crystallization or ferro-
magnetism!, is to introduce many-body Fermi-liquid renor-
malization of the various one-electron parameters such as the
effective mass and band gap which enter into the LDA cal-
culations. Such two-dimensional renormalization effects in
GaAs quantum wells have been extensively studied in the
literature,62 and the quantitative corrections are usually not
very large. The LDA calculations should be presumed to be
carried out using effective parameters~e.g., effective mass!
which already incorporate these two-dimensional renormal-
ization effects. Thus the LDA should be considered an effec-
tive theory for describing the normal-state intersubband elec-
tronic properties. In general, LDA-type calculations have
historically been extremely successful in quantitatively de-
termining the intersubband collective mode energies in GaAs
quantum wells~see Ref. 24, for example!. A full calculation
of the quantum phase transition predicted and studied in our
paper which includes the complete effects of the Coulomb
interaction both in the plane and perpendicular to it is obvi-
ously well beyond the scope of current-day computational
resources, and is quite unnecessary for the reasons discussed
above.

The self-consistent Hartree-Fock calculations in this paper

also include the approximate effects of in-plane exchange.
We take the screened Coulomb interaction which enters the
self-energy equations to be ad function in three-dimensional
space. Calculating the properties of our double-quantum-well
system with this model interaction automatically involves
exchange effects both along and normal to the layering di-
rection, although this fact may not be apparent from the
simple wave-vector dependence of this interaction when ex-
pressed in terms of the basis of Eq.~40!. Other workers63

solve essentially the same equations in the normal state, but
choose different form for the screened Coulomb interaction.
As argued above, our admittedly crude approximation to the
interaction should nonetheless allow the study of the quali-
tative features of the antiferromagnetic phase whose bound-
ary is quantitatively predicted by the LDA.

With these comments in mind, let us summarize the pri-
mary results of this work. We have presented a TDLDA
calculation which shows that the intersubband spin-density
excitations ~SDE’s! in certain coupled double- and wide
single-quantum-well structures soften completely in a range
of densities around the point where the second subband be-
gins to populate (1010–1011 cm22) and in the absence of an
external magnetic field. Based on these calculations, we con-
structed a phase diagram indicating the structures likely to
exhibit this instability. We also computed the excitation
spectrum measurable by inelastic light scattering near the
instability in order to illustrate how the SDE softening would
appear in these experiments. Since the TDLDA yields both
spin- and charge-density excitation spectra which are in very
good quantitative agreement with experiment,15,16,22the soft-
ening of the spin-density excitations should be observable in
the appropriate range of densities.

In trying to understand this instability, we have explored
the possibility of ferromagnetic transitions in double- and
single-quantum-well structures by including the spin degree
of freedom in a density-functional calculation within the
LSDA. We find that a ferromagnetic transition occurs in the
double-quantum-well structures which exhibit SDE soften-
ing, but that the transition occurs at much lower (;109

cm22) densities, implying that the SDE softening cannot be
associated with ferromagnetism. In square single quantum
wells, our computations provide evidence of a spin-polarized
phase of the electron gas which lies between the Wigner
crystal and normal phases. The critical density for this tran-
sition decreases with increasing well width, demonstrating
that exchange-correlation effects are stronger in lower di-
mensions, as expected from a simple Hartree-Fock analysis.

Having failed to identify the SDE-softened phase within
density-functional theory, we turned to a simple model of
coupled double quantum wells which we treated within self-
consistent Hartree-Fock theory. This model is able to repro-
duce the SDE softening in its normal state, and the polariza-
tion of the soft mode indicates that the softening signals the
onset of antiferromagnetic order in the spin density between
the wells. Extending our calculations into the antiferromag-
netic phase, we found that this phase exists and is stable over
a wide range of parameters, and that the mean-field transition
temperature can be of the same order as the symmetric-
antisymmetric splitting. In addition, we found that the tran-
sition to this phase at zero temperature is second order from
the single-subband-occupied side of the phase diagram, but

13 856 54R. J. RADTKE, P. I. TAMBORENEA, AND S. DAS SARMA



first order from the two-subband-occupied side. Due to the
absence of an energy gap in the single-particle spectrum, we
do not expect strong anomalies in the transport properties to
accompany the transition; however, our calculations of the
electronic specific heat show that, if this quantity is measur-
able, it will show a characteristic discontinuity at the transi-
tion temperature. A means of searching for the transition
which is more likely to succeed is the measurement of the
collective spin-density excitations through inelastic light
scattering. By computing the spectrum of these excitations in
the antiferromagnetic phase, we identify a Landau-damped
phase mode of the order parameter and a true optical collec-
tive excitation corresponding to the amplitude mode. The
spectral weight associated with the phase mode is large, sug-
gesting that inelastic light-scattering experiments should
look at low frequencies for this characteristic excitation of
the antiferromagnetic phase.

In closing, we note that at least one experimental group
has investigated the possibility of an antiferromagnetic phase
transition of the type we describe by performing resonant
inelastic light-scattering measurements on double-quantum-
well structures.56 The results, however, have been mixed. In
zero field, the complete softening of the spin-density excita-
tion does not seem to appear in the electron density regime
('531010 cm22) predicted by the TDLDA theory. It is
possible, of course, that impurity-scattering-induced broad-
ening effects make it impossible to observe the complete
softening of the spin-density excitation. Alternatively, the
TDLDA theory may overestimate the density range in which

the transition occurs, implying that the actual antiferromag-
netic instability may take place at lower electron densities. A
third possibility is that the TDLDA approach may simply be
inadequate for studying semiconductor quantum wells at the
low densities involved.

More promising are the experimental results in small but
finite magnetic fields along the layering direction, which do
indicate a softening of the intersubband spin-density excita-
tions at the filling factorsn52 and 6.56 The general obser-
vation of the softening of the intersubband spin-density ex-
citations in the presence of a magnetic field56 is qualitatively
consistent with the prediction of our zero-field theory, since
a magnetic field weak enough so that the system in not com-
pletely spin-polarized enhances the effects of the interaction
by reducing the kinetic energy through Landau quantization.
Thus, the magnetic field naturally enhances the potential for
the type of spin instabilities discussed in this paper to appear.
Moreover, the basic Hartree-Fock theory underlying the de-
scription of the resulting broken-symmetry states do not
change, although the effects of Landau-level quantization
should be included. Such a generalization of the self-
consistent Hartree-Fock approach is straightforward, and is
left for future work.
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