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We study the magnetic phases of two coupled two-dimensional electron gases in order to determine under
what circumstances these phases may occur in real semiconductor quantum wells, and what the experimental
properties of the broken-symmetry ground states may be. Within the local-density approximation to time-
dependent density-functional theaFT), we find a phase transition signaled by the vanishing of the inter-
subband spin-density excitations at low but accessibld@°-10"" cm~?) electron densities. Through a
self-consistent Hartree-Fock calculation, we associate this transition with an antiferromagnetic phase and study
the phase diagram, thermodynamics, and collective modes in it. The collective modes are in principle observ-
able in inelastic light-scattering experiments, and we discuss the implications of our calculations for these
measurements. We also examine the ferromagnetic transition in both single and double quantum wells within
the local-spin-density approximation to DFT, and obtain a critical density which depends on the well width and
which is far below that of the antiferromagnetic transitiff0163-18206)02844-3

I. INTRODUCTION strongly correlated quantum phases, the best-known example
being the fractional quantum Hall liquid® At extremely
The study of spin instabilities holds a fascination for bothlow densities, the electrons prefer to crystallize, as predicted
theoretical and experimental condensed-matter physicists. Tabme time ago by WignérExperimental evidence of this
theorists, these instabilities illustrate the qualitatively newcrystallization has been somewhat equivocal in semiconduc-
states of matter which may result in simple systems througlor heterostructures, but it is clearly seen in a two-
the presence of electron-electron interactions. To experimerdimensional electron gas suspended above the surface of lig-
talists, they lead to interesting phases with unique and potensid helium!® For somewhat higher densities, magnetic
tially useful properties. Consequently, the search for systemimstabilities to spin-density wavkor ferromagnetit? phases
which exhibit unusual spin instabilities is an area of activehave been proposed.
research, and any guidance that theory can provide which The parameter space defined by the energetics of a single
suggests avenues for this investigation should be welcomelow-dimensional electron gas is well defined and thoroughly
One class of systems ready for serious exploration arexplored. To find further effects, many current investigations
single- or double-quantum-well structures at low density.of these systems add an additional degree of freedom by
Theoretically, the low dimensionality of these structures re-coupling two two-dimensional electron gases together. The
stricts the phase space available for electron-electron scattelesulting two-layer system has an additional energy scale due
ing, increasing the relative importance of the interaction, ando the splitting of the isolated quantum-well levels into sym-
thereby enhancing the potential for interesting phase transmetric and antisymmetric components which compete with
tions. Another, more practical, reason for looking at thesehe intralayer and interlayer Coulomb energies. In a high
structures is that they can be physically realized in semiconmagnetic field, this additional degree of freedom can lead to
ductor space-charge layers and, in particular, ultrapuréhe disappearance of odd-integer and the appearance of even-
modulation-doped  GaAs/AGa;_,As heterostructures. integer fractional quantized Hall step3/ and possibly to
These devices may be fabricated with precisely controlledspontaneous charge transfer between the ldyéfs.
dimensions that are nearly free of defects, and which are In zero field, a number of experimental results and theo-
tunable over a wide range of densities and band structuresetical predictions have also appeared in the literaltire.
This freedom vyields a large parameter space in which interMany of these zero-field studies focus on the behavior of the
esting effects may be found and explored with both expericollective excitations involving transitions between the sym-
mental and theoretical tools. metric and antisymmetric levels and which are therefore
In isolating the interesting regions of this parameterunique to two-layer systems. These excitations can be pro-
space, researchers can be guided by simple energetic consitliced in either the charge or spin channels, and have ener-
erations. When the kinetic energy of an electron gas domigies which are sensitive to the many-body interactions in the
nates the Coulomb repulsion, as at high electron densitiesystem. For example, in quantum wells with either square or
the system behaves like a nearly ideal Fermi gas. Therefor@arabolic confining potentials, theoretical work suggests that
interesting phases will be found only in the regime in whichthere exists a critical density below which the many-body
the kinetic energy is smaller than or of the same order as theorrections to the charge-density excitations cause the energy
potential energy. Two ways of reaching this limit suggestof this mode to drop below the energy of the symmetric-
themselves: applying a magnetic field or reducing the elecantisymmetric splitting® This effect was recently observed
tron density. In a strong magnetic field, the kinetic energy isby inelastic light-scattering experimeritsAnother experi-
quenched by the Landau quantization, leading to a variety amental study of coupled double-quantum-well systems re-
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veals that the spin-density excitation energy abruptly mergewer dimensions, we find that the ferromagnetic phase is
with the continuum of intersubband single-particle excita-stable below a critical density which increases as the well
tions as the electron density is increased beyond the point atidth decreases.

which the second-lowest subband begins to popdfate. This paper is structured in the following way. In Sec. Il
Time-dependent local-density approximation calculafibns We discuss the formalism which underlies our computations.
agree quite well with this experiment for most of the range ofln the normal and ferromagnetic states, this formalism is the
densities used, but the abrupt merge seems to demand a mél@nsity-functional theory in the localDA) and local-spin-
refined calculation. density approximations(LSDA), respectively. A time-

Of most relevance to the subject of this paper, recent cadépendent version of the LDA is also reviewed in Sec. Il A,
culations of the intersubband spin-density excitations iV_VhICh provides quantl_tatlve r_esults for the c_o_llectlve _excna-
coupled double-quantum-well systems indicate that the e lon spectra that we d|scuss_ in Sec. lll. Additionally, in Sec.
ergy of the lowest intersubband spin-density excitation ma |B we describe the equations for the s.elf—energy and the
vanish at sufficiently low densif} The obvious interpreta- density response function in a self-consistent Hartree-Fock

tion of this collapse is that it indicates an electronic phasé.r]leory' WhiCh. Is the basis of our calculatior:js within the an-
transition from the metallic Fermi-liquid phase to a conden-{Téromagnetic state. In S_ec. I, we reproduce a_nd extend
he results of Ref. 24, which predicted the softening of the

sate of zero-energy spin-density excitations. Since these eﬁh

citations involve an intersubband electronic transition aCJntersubbanc_j_spin—density excitation;;, apd _characterize the
ase transition on the paramagnetic side in greater detail.

companied by a spin-flip, this condensate has been termed i . . L
ection |V contains a study of the ferromagnetic transition in

spin-triplet intersubband exciton liquid. The word “exciton” o
here does not refer to the usual bound state of an electron Fﬁ‘ese sy.stems.\.NIthln the LS.DA’ and we demonstrate that
at the instability predicted in Sec. Ill occurs at a much

the conduction band and a hole in the valence band of the. , . o
semiconductor; rather, it is used as a reminder that the finaf?9n€r density than the ferromagnetic transition, and so can-

state interaction or vertex correction is included in the calcu—nOt be associated with it. We also take a first step in the

lation of the spin-density excitatiod8In general terms, this study oflthe ground—_state Spin %olarlzatlon of the |n”ho[)noge|-
transition involves the electronic spin in a fundamental way,neous electron gas in semiconductor quantum wells by cal-

suggesting that the ground state would have nontrivial ma culating the critical density of the ferromagnetic transition in
netic properties. Hence the region of parameter space inclugduare single quar|1turSn we\us as 3 fur;cnon of wlell W'gthl ?t
ing the quantum-well structures exhibiting this spin—densityzr‘]aro tgmgerat.urg. n b'(Ie'C. féve eve o%a simple .”;]9 eh or
excitation collapse are ideal candidates for the study of inih€ SPin-density instability of Sec. lll, and treat it within the
teresting spin instabilities. self-consistent Hartree-Fock theory of Sec. Il B. We study

In this paper, we examine the question of spin instabilitiesthe g_round state, thermodynamic quantities, and the
in such single- and double-quantum-well structures in thee@llective-mode spectrum in the broken-symmetry phase and

absence of an external magnetic field. Our goal is to dete'giscuss their experimental ramifications. Section VI presents

mine in what structures and under what conditions these in2°M€ speculatlc_)ns on the importance of T‘O””'.V'a' Spin-
ensity modulations transverse to the layering direction in

stabilities may occur, and what the experimental signature X
of the ground states may be. Our primary interest is in thdnese guantum-well structures, and summarizes the results of
spin-density-excitation-collapsed phase discussed alove,NiS Paper.

but we also explore the more general question of ferromag-

netism in single- and double-quantum-well structures. We Il. FORMALISM
predict that the SDE-softened phase will occur in fairly typi-
cal coupled double-quantum-well structures at low but acces- A. Density-functional theory

sible densities of order #&-10'* cm~2, and we show that
this phase corresponds to antiferromagnetic order of the spin
densities in the two wells. By constructing a minimal model The central aim of this subsection is to develop the for-
of the antiferromagnetic state and treating it within mean-malism used to compute the intersubband collective excita-
field theory, we are able to discuss the qualitative features dfons in the unpolarized state of double and wide single
this phase. In particular, we find that the transition to thisquantum wells that we will use in Sec. Ill. We compute these
state may occur at temperatures on the order of the splittingollective excitations within the so-called time-dependent
between the lowest two subbands in the quantum welldpcal-density approximatiofTDLDA). This approach was
which can be around 10 K. Moreover, although transporfirst employed by And® to compute intersubband charge-
measurements will likely show no pronounced anomaly atlensity excitationsCDE's) and later extended by Katayama
the transition, both the collective excitations and the specifiand Andd® to study resonant inelastic light scattering in
heat show distinctive features which can be used to identifigemiconductor structures. The use of inelastic light scattering
the antiferromagnetic phase. Lowering the electron densitjn these systems is motivated by the fact the charge- and the
further, our calculations indicate that these systems reentepin-density excitation6SDE’s) couple to the light polariza-
the normal state and then enter a ferromagnetic phase at detivn differently, and this fact allows a selective measurement
sities around 1Dcm~2. In wide single-quantum-well struc- of both types of collective modé&:*° Detailed descriptions
tures as well, both ferromagnetic and antiferromagnetiof the TDLDA method for calculating CDE and SDE ener-
phases exist, and we study the critical density of the ferrogies and spectra have been given in the literattiféHow-
magnetic transition as a function of the well width. As ex- ever, for the sake of completeness and to facilitate the dis-
pected from the increasing importance of exchange effects inussion of our results in Sec. Ill, we describe the TDLDA

1. Unpolarized electron gas (LDA)
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approach in some detail in the remainder of this subsection.
In Sec. Il A1, we shall generalize this formalism to allow for
the possibility of a spin-polarized ground state of the electron

gas.

The first step in the TDLDA calculation of the intersub-
band excitations consists of obtaining the renormalized sub-
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4e?

Vh(2)=— p

( szz’(z—z’)n(z’)
0

+ZJO dz’n(z’)—%z), (7

band energies in the local-density approximation of RefswhereNq is the electronic sheet density. For the exchange-

31-33. We choose a coordinate system withzlagis along

correlation potential, we use the parametrization due to Cep-

the direction of confinement in the quantum-well structure.erley and Aldet* given by Eq.(33) in Sec. Il A 2 for both

The effective single-particle Schdimger equation or Kohn-

Sham equation for this system then reads

2

2m*

V24 Veed2) | (R)=EW(R), (1)

where we have assumed that the effective electron mass

the spin-polarized and -unpolarized cases.
Once the subband energies and wave functiongp,(2)

are obtained by solving Eq.(4) numerically, the
z-dependent electron density is calculated from
N(2)=0gs2 f(Eno|¥n(R)I%, ®)

m* is constant across the weR=(r,z) denotes a three- \yhere the factom, accounts for the spin degeneracy and
dimensional vector, and the self-consistent effective potentigd gy — 1/(efE+1) is the Fermi-Dirac distribution function

Veed2) is given below. The in-planexf) and z depen-

with 8=1/T the inverse temperaturé&g= 1 throughout this

dences can be separated, and, due to the assumed tran?jgpe)_ This density may be rewritten as

tional invariance in thety plane(the localized donor charges

are assumed to be smeared out uniformly in the plaihe
eigenenergies and wave functions become

#°k?
Enk:8n+ﬁ 2
and
1 ik-r
\Pnk(R):ﬁe ?n(2). ©)

In these expressiong, is the sample are; is the in-plane
wave vector of the electron, ang, and ¢,(z) are the solu-
tions to the one-dimensional Kohn-Sham equation

2 d2

5 g2 P VerdD) | D =endn(2). (@

The effective single-particle potential

VeedZ2) =Veond 2) +Vi(2) +Vxc(2) )

contains the confining potential of the bare quantum well

n<z>=; Nl én(2)]2, 9

with the subband occupaney, given by

=2 f(End. 10

The chemical potential is determined implicitly by the rela-
tion

stf dznz)=2, n,. (12)
n
At zero temperaturef(E) — 0 (—E), andn, becomes
Ny=0sNo(er—£n)O(ep—&n), (12

where O is the step functiongg is the Fermi energy, and
No=m*/2742 is the two-dimensional, single-spin density
of states.

The LDA electronic structure for the spin-unpolarized
case is thus obtained by solving E¢) together with Eq(7)
for Vu[n(2)], Eq. (33) for Vxc[n(2)], and Eq.(9) for n(z)
self-consistently. The results of applying this procedure to a
typical double-quantum-well structure are shown in Fig. 1.
From the wave functions and eigenenergies of the LDA

Vcon(2), and the self-consistent Hartree and exchangeg,cyjation, we can compute the collective modes of the con-

correlation potentiald/y(z) and Vyc(z), respectively. The

Hartree potential takes into account the average electrostat'géattering experiments. The relation between the cross sec-

fined electron gas which are visible in inelastic light-

interaction with the other electrons and the positivelyijon of resonant inelastic light scattering by electronic
charged donor ions, and is given by the solution of the Poisg,itations was obtained by Hamilton and McWhaitdor

son equation

d?Vy(2) 41re?
47 == e [n(z2)—Np(2)], (6)

wheree is the static dielectric constant of GaA¥z) is the

bulk systems and was adapted to the case of semiconductor
heterostructures by Katayama and ArffloThese authors
showed that the cross section for inelastic light scattering by
CDE's is proportional to the imaginary part of theducible
electronic polarizability functiodI with the proportionality
factors depending on the details of the band structure of the

electron density, antlip(z) is the density of positive donor host material. These factors vanish for perpendicular polar-
charges, which are assumed to be located far from the quaieations of the incoming and scattered light, and are maxi-
tum wells. Integrating Eq(6) twice, one obtains mized for parallel polarizations. Thus CDE spectra are mea-
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Dyson’s equation for the effective Coulomb interactin,

'¢""" one obtains the reducible polarizability function
_ 6 ]
; _/\/\/\/— ] _ H(q,(,())
wn
Z : ] I1(q,w)= . 14
I S V2 W (.9)= TG ()Tl a9
s 5 W ] whereUy(q) is the Fourier transform of the bare Coulomb
e r 1 interaction. Combining Eqg13) and (14), we obtain
[ [ b3 i
e _ 1%q,)
ot Mo Ao = U@ -Uoige
- H SYMMETRIC In a confined electron gas system, where the confinement
f ] discretizes the single-particle energy levels, the collective ex-
r_n@@ /S NN ] citations must be calculated within a generalized dielectric
‘ o ] function formalisn®’ In this context, the functions xc and
oF ——— _H- e ] Uy(q) are replaced by matrices with indices labeling the
: 4 \ ] different subbands. Within the TDLDA, we have
%\ Ez Veonr ]
i . ] , Nxc
E oo} R U= —f dzf dz' ¢i(2) ¢5(2)— = (2)
&} xc ]
ag A% 1
- o " X 8(2-2) bu(2) 60(Z) 16
—200 E_ El,Ez .............. B P EF _E and
:I 111 I 1111 | I | | 1111 | | 3 | I 1111 l 11t l L1 |: 27Te2
-300-200-100 Q 100 200 300 Ul (@)= J dz dZ ¢(2) ¢;(2)
z () <

xe 4z=2lg (2. (2), 1
FIG. 1. Typical coupled double-quantum-well structure, and its $m(2') bn(2') (17
self-consistent LDA subband energy levels, eigenfunctions wheree is the background dielectric constant.

i, electron densityi(z), and Fermi energfr . Also shown are The reducible polarizability functiodl(q,q,,®), whose
the effective, Hartree, and exchange-correlation potenWigls,  imaginary part is proportional to the spectrum of the CDE’s
Vi, andVyc. The sheet densiti=2.68< 10" cm 2. and to the Raman intensity in the polarized configuration, is
: 8
given by

sured in practice within the so-calledpolarized
configuration, i.e., with parallel polarizations of the two ~ a2V
beams. On the other hand, the scattering cross section due%q'qz’w):f dzf dze” " Ml(z,2';q,w), (18
spin-density excitations is proportional to the imaginary part .
of theirreducible electronic polarizability functiodl, which with
is also called the spin-polarizability function, and contains _ _
prefactors that are maximized for perpendicular polarizationsI1(z,z’;q,w) =_Z ?i(2) $i(D1Lj 1(d, @) P (2") h1(2'),
of the incident and scattered beams. This is the usual geom- Lkl
etry employed in measurements of SDE spectra, and is re- (19
ferred to as thalepolarizedconfiguration. Since we are in- ~
terested in the properties of the electron gas confined in thBij i
semiconductor structure, it is sufficient to calculate the elec- _
tronic response functionsl and IT and ignore the band- +, I3 (0, @)U e D Tpi(d @), (20)
structure-dependent factors. mn

We compute these response functions within the TDLDA, U _uH _uxe 21
which is equivalent to calculating the irreducible polarizabil- ij,mn() = Ui mn(@) = Uij i, (2D)
ity function including a staticg-independent vertex correc- and
tion in the ladder diagram approximatibhWithin this ap-
proximation, the integral equation for the irreducible HO( )_22 f(Ej(k+q))—f(Ei(k))
polarizability I1(g,w) can be solved exactly, and gives ijlg,@ ' (Ej(k+9)— (Ei(K)—h(w+iy)’

q,w)=Hioj(q.w)5ik5j|

(22

e In these equations, subscripts are the subband indjcasd
q,0)= L&") (13) k are two-dimensional in-plane wave vectors, apdand
' 1+ Uyl (g, 0)° e; are the LDA-calculated subband wave functions and en-
ergies. In addition,H?j is the leading-order polarizability
whereIl1%(q,w) is the leading-order polarizability function function for the transitioni —j, Ej(k):sj+(h2k2/2m*),
and Uy is the static,g-independent vertex function. From f(E) is the Fermi factor, and/ is a phenomenological in-

H(
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verse scattering time; af=0, an analytic expression for To put the LSDA approach in context, we briefly review
1'[i°j can be found in Ref. 38. We note that the random-phasthe theoretical and numerical evidence that the uniform elec-
approximation(RPA) is obtained in the subband representa-tron gas in two and three dimensions embedded in a uniform
tion by removing the vertex correctidd ., in Eq. (21). positive backgroundthe jellium mode)l undergoes a ferro-

The imaginary part of the irreducible polarizability func- Mmagnetic transition at a certain critical density. A simple
tion II is proportional to the SDE spectrum and to thetheoretical estimate for the density at which a ferromagnetic
Raman-scattering intensity in the depolarized configurationstate will form may be obtained from Hartree-Fock theory,
In the subband representation, the calculatiofila analo- ~ Which treats the electron-electron Coulomb interaction to
gous to that ofll [Egs. (17)=(22)] with the following two f|r_st order. _For a uniform e_Iectron gas in three dimensions
modifications. Since the irreducible polarizability does notWith N. spin-up andN_ spin-down electrons, the ground-
include dynamic Coulomb screenirigpin-density excita- State energy in this approximation can be written in terms of
tions are unscreened by the spin-conserving Coulomb intefl€ total number of partlclgﬁz N.+N_ and the magneti-
action, we setUf =0 in Eq. (21). The second change zationm=(N, —N_)/N as

concerns the vertex correctitu; 7, which for spin-density Ne? 3 (971281 (14m\58 (1—m) 53
excitations is given in the TDLDA by El=—— —| | = +
HF 2a, 101 2] r2[| 2 2
XC / Nxc 2/3 4/3 4/3
UiSn=—| dz| dz'¢i(2)¢;(2) om (@ _Ei 9m|#P1[/1+4m . 1-m
2ag 4\ 2 rs 2 2 '

X 5(2_ Z,)d’m(zl)(ﬁn(zl) (23) (26)
instead of by Eqg. (16. In this equation,

m(z)=n(z) —n,(2) is the local spin densityy; andn, be- 13 . ! !

) ; . e ; =(3V/4mN)~"~/a, parameterizes the density. The first term

ing the spin-up and spin-down local densities, reSpeCtJ—VQly'in(this expaessioonpis the kinetic energy V\>I/hiCh prefers the
The CDE and SDE energies are given by the poleBlof ,-amagnetic state, while the second term is the exchange

ang I1, respectively, which occur when the determinantgnergy which prefers to polarize the spins. At densities sat-

IT15;Uij mn— 8ij,mnl vanishes. In the numerical work pre- isfying r¢>5.45, the exchange energy dominates, and the

sented in this paper, we solve this equation keeping all thgsrromagnetic state is stable. In two dimensions, a similar
subband levels. If, as in the quantum-well structures we congnaysis yield&

sider, the lowest two subbands are well separated in energy

where ap,=#%/m*e® is the Bohr radius andrg

from the higher subbands, then one can approximate this o N[ 1+m? 4.2
determinental equation in the limit of low densities and tem- Efp=5 | —7 3—[(1+ m)%2+(1-m)¥?3) ¢,
peratures by keeping only subbands 1 and 2, yielding o s s 27
0 0 _

(Io+ M) Us07= 1. (24 \where nowr =(A/7N)Y%a,. In this case, the condition for
For q—0, this condition gives the resonance energies in thé polarized ground stat&Z2(rs,m=1)<EZ(rs,m=0), is
familiar form of Ando?’ satisfied ifr &>2.01. Thus, within the Hartree-Fock approxi-

mation, the spin-polarized state occurs at higher density
7@ =e5+ 281U 1AN1—Ny), (25 (lowerry) than in three dimensions.

Hartree-Fock theory neglects contributions to the energy

whereey=¢e;— e, andulZ,lZ;U 15,140) ~ U5 1,in the case beyond the exchange term, and is therefore expected to over-
of the CDE, andJ, ;= — U1z, for the SDEs. estimate the density at which the ferromagnetic transition
) occurs. Including these so-called correlation terms can only

2. Polarized electron gas (LSDA) be done approximately, however. Currently, the most accu-

In this subsection, we introduce a generalization of thgate method for performing these calculations are numeri-
local-density approximation to density-functional theory dis-cally intensive Monte Carlo techniques. Ceperley and
cussed in Sec. I A 1 which allows for different populations Alder* calculated the ground-state energy of an electron gas
of the two spin orientations, i.e., a finite spin polarization.in two and three dimensions employing the variational
This local-spin-density approximatigihtSDA) formalism is  Monte Carlo(VMC). They found that in both two and three
also based on the self-consistent solution of the Qthger-  dimensions there is an intermediate density regime where a
like Kohn-Sham equation, coupled with the Poisson equatioifully polarized state has the lowest energy compared to the
and a local exchange-correlation potential. The main technidnpolarized quantum liquid and the Wigner crystal. In three
cal difference between LSDA and LDA is that the effective dimensional (3D) the polarized phase is stable for
exchange-correlation potential in LSDA depends on the local6<r <67, and, in 2D, for 13r<33. Additional results
spin polarization as well as the electron density. Thereforeseem to indicate that in 3D there is a transition to a partially
one has to solve two Kohn-Sham equations, which contaipolarized liquid atr~20 and to a fully polarized phase at
spin-dependent effective potentials, for the two componentss~50.2 Eleven years later, Tanatar and Cepeftegcalcu-
of the spinor wave function. The LSDA was first formally lated the ground-state properties of the electron gas in two
justified by von Barth and Hedfland Pant and Rajagofl  dimensions employing the VMC technique and the more ac-
and is suitable for studying ferromagnetic systems eithecurate fixed-node Green’s-function Monte Cafl@FMC)
with or without an external magnetic fiefd. technique. The VMC technique predicted again a transition
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from the unpolarized to the polarized liquidrgtbetween 10 ¢ y
and 20, consistent with Ceperley’s results. The more accu- €'xc=—+ﬁ,
rate GFMC technique predicted a transition from the unpo- s 1+,31\/f—s+ Bars

larized liquid to the Wigner crystal at;=37, without an |\ hare i=U (unpolarized, m=0) or i=P (polarized

intermediate polarized phase. However, the authors point oy, — 1). The exchange-correlation contribution to the chemi-
that, near the transition, the polarized phase has an energy, potential is
very close to the energy of the other phases and that, due to
finite-size effects and errors associated with their approxima- i 7 4 4 g
. . . - . re d\ . d 1+ ret+ r
tion method, their conclusion should not be taken as definite. .= ( 1— = _) o= —+7 6 ,31\/_5 3,32 23.
This leaves open the possibility of a stable, fully polarized 3 drg s 7 (14 B rs+Bor)
phase in the two-dimensional electron gas. (39

The LSDA falls somewhere between elementary Hartréethe parameters in the previous expressions, as obtained by
Fock theory and Monte Carlo calculations in terms of theceperley and Alde# are cV=—0.9163, cP=—1.1540
quantitative accuracy of its predictions. Its main strengthqu—_ _ 172018 dP=,—1.5393 'yU=—,O.1423 yp’

and the reason we use this technique here, is that it can _ g 0g43 ﬁf:1.0529 ﬁ1P:1_3981 ,8‘2J=0.3334 and

e e o OgEnoL el s Wt Xt 208, 0.2611. For imermeciate polarizatons (@11, we
q P se an interpolation formula proposed by von Barth and

of the critical density of the ferromagnetic transitions in Hedin3? in which the correlation enerav has the same polar-
these structures that could guide future experiments. In addi- ' 9y P

tion, the LSDA is a direct extension of the LDA, and so Ization dependence as the exchange energy.:

alloyvs a compariso_n between the two cglculations which will exc(re,m)= G)L(Jc(rs) + f(m)(G)F(,C(rS) _ €>L<Jc(fs)) (32)

be important in ruling out ferromagnetism as the source of

the spin-density-excitation softening which appears in ouand

TDLDA calculations[cf. Sec. lll. We note that a similar U b U

problem to that of the spin polarization of the ground-state inVxc(I's:M) = Vxc(r's) + (M) (Vic(rs) = Vxc(rs))

guantum wells is the problem of “valley condensation” in df

Si-SiO, syste_ms, where, instead of spin _states, the _electrons +(5§C(rs)_ Egc(rs))(sgr(g)_ m)d_’ (33

can occupy different valleys of the Brillouin zone. This prob- m

lem has been studied in the past with techniques similar tQ,nere

the ones employed hefeIn addition, the LSDA has been

employed to study spin effects in wide parabolic quantum (1+m)*3+(1-m)*3-2

wells in the presence of a perpendicular magnetic figld. f(m)= >AB_ 5 : (34)
Our computations in the LSDA proceed as follows. After

factorizing the complete single-electron wave function asThe Hartree potentiaV,(z) is calculated as in the unpolar-

was done in Eq(3), we write down thez-dependent Kohn- ized formalism described in Sec. Il A; it satisfies Poisson

(30

Sham equation equation, Eq(6), and is given by Eq(7).
To complete the specification of the problem, we note that
2 42 the density associated with each subband and spin orienta-
5 g2 T Ve@ Va2 T V(D) | ) =engn(z), o s gven by
(28) nn(2)=nl$n(2)]?, (35

wheren? is the occupancy of each level, which at zero tem-

wheren is the subband index ang denotes the spin orien- perature is given by

tation, which can be up+) or down(-). We assume that no
more than two subbands are populated andhtetl denote N7=No(er—£2)O(sr—&0). (36)
the lower-energy symmetric leve) andn=2 the higher-

energy antisymmetric levéAS). We therefore need to con- The total electron density may be written

sider four wave functionsd; , ¢1, ¢, , ¢,) and their

corresponding energies in E@8). n(z)=>, n%(z), (37)

This equation also contains the exchange-correlation po- no
tential, which in the LSDA formalism depends on both the

densityn(z) and the spin polarizatiom(z), which is defined which implies that the Fermi levete is implicitly deter-

mined by the condition

as
NG R e Y e LTGRO Ne= ] dz@=2 %9
n(z) ' [cf. Egs. (8)—(12)]. The self-consistent solution of these

equations proceeds exactly as in the LDA case with the dif-
In our calculations, we use the parametrization of theference that now, in each iteration, one has to solve two
exchange-correlation energy for the uniform 3D electron ga&ohn-Sham equations, E(28), for the two spinor compo-
obtained by Ceperley and Ald&t, nents of the wave functions .
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B. Self-consistent Hartree-Fock theory dR dR’

— (r=r') ¢x

While conventional density-functional theory is a fairly Vab’Cd(q)_aganéchdJ A el )éna(z)gnb(z)
accurate method for determining the properties of semicon-
ductor heterostructures in their paramagnetic and ferromag- XV(R=R")&; (2')€n(Z'). (43
netic phases, it is unable to address more complicated mag-
netic ordering such as antiferromagnetism. To study such Our goal is to solve this model within the mean-field
phases, it is useful to return to a model Hamiltonian of thetheory, allowing for the possibility of broken-symmetry
electronic system and search for the existence of brokerPhases. For reasons that will be discussed in Sec. V, we shall
symmetry states within a mean-field theory. In some caseggstrict attention to those ground states which are translation-
such as superconductivity, the mean-field theory gives ally invariant transverse to the layering direction, but we
quantitative account of these pha8ésMore commonly, shall allow for off-diagonal order in both the subband and
however, it sacrifices quantitative accuracy in favor of quali-spin indices. This assumption excludes from the outset the
tative insight. This insight manifests itself not only in a study of intrawell charge- or spin-density waves and Wigner
physical intuition about the nature of the ground state, bugrystallization, and it is also implicit in the density-functional
also in the ability to study the distinctive features of thecalculations discussed in Sec. Il A. One could modify our
broken-symmetry phase, which may serve as a guide for intreatment to include such phases, but the present model is

terpreting experimental data in these systems. We adopt thigfficient for the purposes of exploring the effects of the
point of view in what follows. interwell degrees of freedom. The assumption of transla-

To that end, consider a three-dimensional electron gational invariance implies conservation of the transverse wave
interacting through a potenti®(R—R’) and confined along Vector, and so the quasiparticle propagator can be written
thez direction by a potentidV/ ong(2) - A confining potential p
of this type is shown in Fig. 1 for a double quantum well, but __ iwnT T
the pre)c/iie shape is uning1portant for the ((jqevelopment of the Ganlkn) = fo dre <TT[Cak(7)Cbk(O)]>’ 44
formalism. Given a particula¥cong2), One can construct
its eigenfunctionsé,(z) and eigenenergies,, n = 1,2,3
..., by solving the time-independent Schilinger equation

wherek,= (k,iw,), B=1/T (h=kg=1 throughout this pa-
pen, and the rest of the notation is stand&ftd.
The mean-field theory for our model is constructed by
52 g2 using this propagator to compute the electronic self-energy
— Wd—TpLVCONF(z) ()= €nén(2). (39 in thg sglf—consistent Hartree-Fock approximation. This ap-
proximation corresponds to expanding the self-energy to
In terms of these eigenfunctions, the quasiparticle annihiladne-loop order in the interaction and is shown diagrammati-

tion operatory,(R) can be written as cally in Fig. 2a). The resulting self-energy is
P(RI==3 e (2)c (40 Sal)=5 3 e
o \/Knk n nko s kr,n
where R=(r,2)=(x,y,z) and k=(ky,k,), A is the trans- X[Vab,dc(0) =~ Vac,an(K=K") ]Gcq(kp).  (45)

verse area of the sample, ag, anniilates a quasiparticle The self-consistency of this approximation arises because the

in subbandn, of transverse wave vectdtr, and with spin ;
T ' ; . ' ._propagators used in E@45) are dressed by the same self-
projectiono (these conventions will be used throughout th'senergy according to the Dyson equation

papej. Note that, unlike the density-functional approach, the

total confining potentiaV-on(2) is specified at the outset i oo — 83 (K)1Gri(K.)= 8. 46

and is not determined self-consistently. [(Teon= €abd) S~ 2 (k) [Goclkn) = dec (48
Defining a composite subband and spin indexTo completely specify the system of equations, the chemical

a=(n,,o,) with summation over repeated indices implied, potential is determined from the band-filling constraint

the Hamiltonian may be written in the basis defined by Eq.

(40) as Ns=£k2 & 1m0 Gy Ky, (47)

_ _ t
=Hy+H = . . . .
H=Ho+Hin zk: €akCakCa An alternative form of these equations, which will turn

out to be convenient for future work, is obtained by inverting

1 . . .
_ t T the Dyson equation for the interacting propaga®y, (k)
+ ZAkkE/q Vad,bc(q)cak+qcbk’-qC°k’Cdk' (41) [Eq. (46)] by making an appropriate choice of the basis.
) . o From Egs.(43) and(45), the matrixey Sap+ 2 ap(K) is Her-
In this expression, the quasiparticle energy mitian, and so possesses a complete and orthonormal set of
22 eigenfunctionse; (k). These eigenfunctions satisfy the ei-
€ak= €nt S M (42) genvalue equation

€a0apt 2 an(K) Jop(K) =E°S(k) @s(k (48
is measured with respect to the chemical potentiahand the [ Eakdant Zan(k)]en( (k) ealk)
matrix elements of the interaction are (no sum onc) and the orthonormality relations
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gies of the quasiparticles of the interacting system within

(@) Q self-consistent Hartree-Fock theory. An alternative way of
; LT saying the same thing is that we have performed a mean-field

z = - - _— decomposition of the Hamiltonian, and diagonalized the re-

sult with a Bogoliubov transformation in the particle-particle

(b) channel. The annihilation operators for the interacting quasi-

. A .
Ej¢ = OO . O particles y¢ are therefore obtained from the bare operators

via yi= ¢3(K)Cay -
In addition to the physical insight afforded by rewriting
() the self-energy equations in terms of these functions, the
I1 = O calculation of the energy, entropy, and specific heat of the
system becomes straightforward. The energy is the expecta-

tion value of the HamiltoniarlEq. (41)], with the energy
shift due to the chemical potential removed:

(d)

E=(H+uN)=(Hg)+(Hin) + uNs. (54

= o + )O Within our self-consistent Hartree-Fock theory, the contribu-
tion to the energy from the interaction term in the Hamil-

tonian is shown graphically by the diagrams in Figb)2

D These diagrams lead to the result

T :

| (Hi) =52 €% Gpa(kn)Zap(k), (55

FIG. 2. Many-body diagrams used to compuyt the self- Kn

energy 2, (b) the contribution of the interactions to the energy

Eine=(Hin), (c) the generalized polarizabilitf, and(d) the vertex

function y within the self-consistent Hartree-Fock approximation. T )

The solid lines represent dressed electronic propaggars(44)] E= 52 e 1“0 [2¢ k5ab~l-Eab(k)]Gba(kn)+,u,NS.

and the dashed lines the effective interactibhEq. (43)], both of Kn &

which are matrices in subband and spin space. In order to treat both (56)

spin and charge polarizabilities with the same equations, the polaSubstituting Eq(51) into this equation, using the eigenequa-

izability is not separated into reducible and irreducible parts. tion Eq. (48) and orthonormality relation Eq50), and per-
forming the Matsubara sum, the total energy becomes

which allows us to write Eq(54) as

@3(K) @E “(K) = p (49)
and E=%§ [|$S(K)|?€ac+ES(K)IF(ES(K))+ uNg.  (57)

b(py— sab
eo(k) @g (k)= 6. (30 The entropy in the interacting basis is simply the standard

Equation(46) is diagonal in the basis of these eigenfunctionsfree-fermion result
by construction, so we may invert the equation to obtain

C k Cx k
Gab(kn):?a( ey (K)

S=— 2 {f(E°(K))Inf(E°(K)+[1~F(E*(K))]
k

) (51
wn—E*(k) X In[ 1— f (ES(K)1}, (58)
Substituting this relation back into the equation for the self-5 4 the specific heat is obtained directly from this equation:
energy[Eq. (45)], and performing the sum over Matsubara
frequencies yields S If(ES(k)) d(BE®(k))
( FEO g

Cv=Tm=2 |~ e
In order to get a full picture of the interacting system, one
must go beyond the single-particle properties and thermody-

(59)
1
Eab<k>=K§ [Vab,dc0) = Vag,an(k—k")]

e ! *€ ! e !
X @k g (k) TEK), (52 namic functions, and examine the response of the system to
where f(x)=1/(e?*+1) is the Fermi function. The band external perturbation. As discussed in Sec. Il A1, resonant
filling constraint Eq.(47) may similarly be written inelastic light scattering has proven to be a powerful tool for

studying the charge- and spin-density excitations in semicon-
1 o s . ductor heterostructures. Consequently, we will focus on the
NS:K; f(E (k))=2 n=. (53 generalized density response function and the resulting col-
lective excitations which can be observed in these experi-

Equations(48)—(53) are the equations we will ultimately ments. As in Sec. Il A 1, we will not compute the form fac-
solve for a simple model interaction in Sec. V A. tors necessary to connect the polarizability to the inelastic
The eigenfunctiong;(k) and eigenenergieg®(k) of the light-scattering cross section; we merely note that the collec-
operatore, 5., 2 ap(k) are the wave functions and ener- tive modes we will discuss are detectable in these experi-
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ments with a particulaand structure-dependenarrange- and
ment of scattering angles, polarizations, etc.
We begin by defining a generalized density operator . ) b , )
T Fesao) = [ 426, (268, (2)0% 0P idaz o)
PH(R) =Y (R0 (R, (60) (70

whereo* = {0°,0t,0%,6% = {1,6%,0¥,0%. Note that the
number density n(R)=p°R) and the spin density
s'(R)=(#%/2)p'(R), i = 1, 2, or 3. Suppose we can couple
to this density through an external foré&, (R,t) which
adds a term

In order to obtain the subband- and spin-resolved polariz-
ability [Eqg. (68)], we compute the polarizability in Matsub-
ara frequenciesv,=27nT,

B t
Map ca(dn)=— J’o d7e'“n(T.[ pan(0:7)peg(A.0) 1) (71)

Hodt)=- [ dR pHROFE(RD (6D
(gn,=(q,iv,)), and analytically continue to real frequencies
to the Hamiltonian(a sum ong is implied. The linear re- by the conventional substitutior,—Q+i4 (cf. Ref. 48.
sponse of the generalized density to this perturbation is themhis polarizability is calculated within a conserving
given by*® approximatiof’ using the diagrams shown in FiggcPand
2(d). These diagrams vyield the expressions

<5p“(R,t)>=iJ drR’dt’ o(t") T
X<[p”’(R 1),p"(R' A IFL(R ) Hab,cd(qn):K; Gea(km)be(km+qn)')’ef,cd(kmvkm'l'qn)
T e (72

where the angle brackets denote the thermodynamic averager the polarizability, and
in the absence dfl,,(t).

As mentioned above, we assume that the interacting sys- Yab,cd(Km,KmTdn)
tem is translationally invariant in the transverse direction, -
and it is also time-translation invariant. Thus we may intro- _ ! N
duce partial Fourier transforms = %acbd Akz [Voreak=K') = Vbaer(a)]
|
P#(R:t):%E f g_:ei(q'riwt)p’u(l’,z,t), (63 XGge(kI,)th(kll +0n) '}’gh,cd(kI, K +an)
q
(73

and write Eq.(62) as ) )
for the vertex function. Contrary to the usual convention, we

. s veriot! ares include the RPA screening diagrams in the vertex function,
<5p”(q,2,w)>—lf dz'dt’e’ o(t") and thus do not distinguish between reducible and irreduc-
ible polarizabilities. The reason is that, in the broken-
X{[p*(q,2,1),p"(—0q,2",t")]) symmetry phases we will examine, the propagators are no
XF2 (.2, 0) 64) longer diagpnal in spin, so thes_e screening terms enter into
ext i ® T both the spin- and charge-density response functions, reduc-
From Eqgs.(40) and(60), we can rewrite the Fourier compo- ing the usefulness of the division between reducible and ir-
nents of the density operator as reducible polarizabilities. Note that even these approximate
equations for the polarizability must be solved numerically
PH(0,2) =& &n 0 o mPan(4), (65  for a general interaction. If the interaction is wave vector
with independent, on the other hand, the vertex equation can be

solved simply(cf. Sec. V).
The interpretation of the polarizability as a response func-
(66)  tion can be used to visualize the real-space density fluctua-
tions it describes. If one perturbs the system with the external

Using this relation, we obtain the final form for the general-force F4,(R,t) « €@~ Y, Eqs.(62)—(70) imply that the
ized density response, response in real space will be

— T
Pab(q) - ; Cakcbk+q .

(008(0.0)) =~ Mapedd@IFEf A @), (61 (5pH(R0)xe @ Ve (D)6 (D)ol ol (G ) e,
where (74)
where S is related to how this force perturbs the subband

Hapca(q, @)= —if dtei‘”t<[pab(q,t),pld(q,O)]>, (68 and spin indices. For example, to examine the spin-density
response between the lowest two subbands,

(8p"(0,2,0)) =&} (2)é0, ()05, 0uu(Span(d, ), y
T ) (69) fea=[0n.10n.2F 0 2001105164, - (79
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& . R PR N FIG. 4. Dependence on the sheet densityof (a) the mean-
= 05k . ; Bepg ] field vertex correction|Uyc12x34 (solid line) and the absolute
= \ N 1 value of the lowest-order polarizabiliiiy((l’2 (dashed ling and(b)
ot , A L ] the spin-polarized exchange-correlation-induced vertex correction
108 10° 1010 1oM 1012 Uyc 12 for the double-quantum-well structure in Fig. 1. Note that
Ng (em™) the electron gas is unstable in the range of densities where

|Uxcxid=1 (see text

FIG. 3. Calculated intersubband  charge-density exCitationcalculated long-wavelength energies of the intersubband col-
Ecpe, spin-density excitatiofEgpe, and single-particle excitation 9 9 9

Espe= A sas energies as functions of the 2D electron denbsigyfor lective m(_)d_es asa function of the sheet den_S|ty.
a DQW structure with barrier widthls = 40 A and well width Two distinctive features of these collective modes are
dy = 139 A. The critical density for the instability S€€N IN Fig. 3. The first feature is that the CDE energy be-

- 2 Thi
Ne~0.69x 10 cm™2. The bottom figure shows an expanded den-COMES less tha g, aroundNg=0.2x 10'* cm~2. This be-

sity range, making obvious the reentrance of the normal phase &avior, originally predicted ir_1_Ref. 19 for single quantum
very low electron density. wells, has recently been verified experimentafiynd will

not be discussed further. The second—and for our purposes
This procedure works for genera' wave vector and fremore important—feature is that the intersubband SDE en-
quency, but has special significance when these quantiti®y9y_goes to zero below a critical densiyc~0.7x 1G1
correspond to a collective-mode of the system, in which caséM > and becomes finite again below & 10 cm~2. This
the response gives the polarization of the collective modeSoftening of the intersubband SDE mode indicates that the
Note that, since the response function diverges at a collectiv@ormal system with a “metallic” Fermi surface is unstable
excitation, in practice one applies this formula by adding a@t or belowNc, since it can spontaneously create spin-
small imaginary part to the frequency to control this diver-reversed intersubband electron-hole paifsriplet exci-
gence. As with the equations for the polarizability, this nu-tons”) at no cost in energy. We conclude that there is a
merically intensive approach for obtaining the collective-Phase transition in this DQW at the critical sheet density
mode polarization is required for the broken-symmetrch from the normal 2D electron liquid to a triplet intersub-

phases where the off-diagonal terms make an analytic calcdand exciton liquid, and that the system reenters the normal
lation difficult. phase at a lower density. This electronic phase transition is

due exclusively to exchange-correlation effects which make
the vertex correction or excitonic shift larger thagas[Eq.
lll. INTERSUBBAND INSTABILITIES (25)] and thus cause the SDE to collapse. The reentrance of

In this section, we shall study the instabilities of an elec-the normal phase at lower density is simply explained by the
tron gas confined to coupled double-quantum-wBIQW) fact that the vertex correction van|_shesl‘¢ss—>0 _accordlng
and wide single-quantum-well structures by examining theif© Ed. (25). We note that the transition to a Wigner crystal
intersubband collective excitations. We begin by applyingccurs at much lowel values than those considered in this
the formalism described in Sec. Il A to the typical GaAs/ Paper and so does not account for the SDE collapge.
Al,Ga,_,As DQW structure shown in Fig. 1; similar Additional ewdencg in support of the excitonic tfansmon
samples were used in the experimental study of Ref. 21c0mes from the density dependence of the mean-field vertex
Although our TDLDA calculation includes all the subband correction|Uxcx3,|, which is plotted in Fig. ). This ver-
energies shown in the figure, we are only concerned witiex correction consists of the spin-polarized, exchange-
intersubband transitions between the lowest two subbandprrelation-induced vertex functiodyc [Fig. 4b)] and the
(subbands 1 and )2 whose typical separation uncorrected intersubband polarizabili§,=T13,+ 113, [Fig.
Agps=e,—e1~1 meV (SAS is symmetric-antisymmetjic  4(a)]. In the two-subband limit, the vertex-corrected irreduc-
The exact values aksasare plotted in Fig. 3, along with the ible response function is given bl 1— Uxcx2,] 2, which
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0 ! ! FIG. 6. Calculated zero-temperature phase diagram for coupled
30 40 50 60 double quantum wells in terms of°=(wNg) Y%a, and the di-
d (Z\) mensionless symmetric-antisymmetric subband splittihg,s/
B

(€?/e(dy+dg)), wherea, and e are the Bohr radius and dielectric
constant for GaAs andg (dy,) is the barrier(well) width. Solid
FIG. 5. Calculated zero-temperature phase diagram for doublgjrcles correspond tdy, = 139 A and variousls, and are taken
guantum wells in terms of the sheet densMy and the barrier  from the main part of Fig. 5, while the crosses correspondigte=
width dg for fixed well widthsd,, = 139 A. Inset: phase diagram 40 A and variousl,, and are obtained from the inset to Fig. 5. The
for fixed dg = 40 A in terms of the sheet density and well widths. normal (N) and the triplet excitonicE) phases are shown.
The normal ) and the triplet excitonickE) phases are shown.

spin-density mode for several sheet densibigsaboveNc .
clearly has an instability whefUycx3,/=1 [cf. Eq. (24)].  The most important feature shown is that the SDE mode
As shown in Fig. 4a), this “Stoner criterion” is satisfied in becomes soft at a finite value of the in-plane momentum
the range of sheet densities in which the SDE has collapsettansfer,q., at a critical density somewhat higher than the

Having established the existence of the SDE-collapsedritical density found at zero in-plane momentum transfer.
phase for a particular DQW structure, we can vary the geThe critical momentum is given byg.=kg;—kg,, where
ometry of the structure to study the persistence of this phaség; is the in-plane Fermi wave vector of thith subband in
For well widths fixed at 139 A, the calculated zero- the normal state. This indicates that the excitonic instability,
temperature phase diagram in terms of the sheet density and
barrier widthdg is shown in Fig. 5. For very small barrier
widths, Agag is too large for the vertex correction to over- 0.8
come it, even at low densities, making the normal phase the
only stable phase. For very large barrier widths, on the other
hand, Agag is exponentially small, and the normal phase
gives way to the excitonic one at extremely low densities. Of
course, for such exponentially smalk,g, the critical tem-
perature for our predicted instability is also exponentially
low, implying that the phase transition in lardg- low-
density DQW structures would be unobservable in practice.
At higher densities in the largas structures, the normal
phase reasserts itself due to the diminishing influence of the
vertex correction. For intermediate values of the barrier 0.2
width, we see the reentrant behavior described above with an
upper critical density that is nearly independent of the barrier
width. A similar phase diagram is obtained when the barrier
width is fixed at 40 A and the well widths are varied, as 0
demonstrated by the inset to Fig. 5. By expressing the sheet
density andA g5 in dimensionless form, the data from Fig. 5
can be reduced to the universal zero-temperature phase dia-

gram shown in Fig. 6. From this figure, we see quite clearly £ 7. Energy of the intersubband spin-density excitations
that .the excitonic p_hase.appears inarange of densities belog, a5 a function of wave vectar in a coupled double-quantum-
a critical symmetric-antisymmetric splittindsas, and that  \vell system with a barrier width of 40 A and well widths of 139 A
this density range increases ag,s decreases. for sheet densitieNls in units of 16* cm~2 approaching the critical
The results discussed so far for the intersubband SDHensityN.=0.686x 10'* cm~2 from above(thick lines. The thin
energy are for zero in-plane momentum transfer. Figure Tines show the lower boundary of the particle-hole continuum,
shows the dispersion relation of the lowest intersubban@bove which the collective excitations are Landau damped.

0.6

0.4

Espe (meV)
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FIG. 8. Calculated Raman-scattering spectra in the cross- = E.E
polarization geometry for a double-quantum-well structure with a 2
40-A barrier width and 139-A well widths. The curves illustrate the =
signatures of the excitonic instabilifp) as the sheet densityg is = —-220F .
lowered to the critical density, an@) as the wave-vector transfer

q is increased at constant sheet denslty=0.7x 10'* cm™~2. ' ' ‘ ) ) ) '
—-600 —400 -200 Q 200 400 600

for densities slightly abovéls, may occur at a finite value z (8)

of in-planeq, a point to which we shall return in Secs. V B
and VI. FIG. 9. Typical wide square quantum well given by the bare
Thus, we expect that a softening of the intersubband SDEONfiNing potentialVeone, and its self-consistent LDA subband
may be observed either at fixedand varyingNs [cf. Fig. energy level€E,,, eigenfunctionsp,,, electron densityi(z), Fermi
8(a)] or for q—q, at certain fixed values oN, [cf. Fig energyEr, and effective, Hartree, and exchange-correlation poten-
C S . .

. T 1
8(b)]. In Fig. 8&), we show the spectral function of the in- ::Iflr:s‘zv'El'FhFé f?(‘/:]ue?sri]wccj)xgchbv-\ll- Tﬁe Seklltg;trocrj\?cnzglslgsgrgﬁsla: ggtlzomes
tersubband spin-density excitations as the instability is APiocalized on the sides of the well, similar to the profile in a double

proached from the high-density Slde. at very smaliAs Ny quantum-well system. Bottom: lowest energies in expanded scale.
approached., the spectral peak shifts toward zero energy,

and the line narrows. On the other hand, the approach to the . . . A
critical momentum transfeq, at densities just abovhl., For the square well considered, whose width is 1000 A, the

T N — - ; ion in which the SDE has collapsed is somewhat smaller
presented in Fig. @) for Ng=N¢=0.7x10" cm~2 at vari-  f€g'lonnw . _ hat s
ous values ofy approachingj, the line broadens as it soft- than that for the DQW of Fig. 1 with a 40-A barrier width,

; . 1 -2
ens. These spectra are similar to what would be observed ﬁ)lut It occurs around_ the Sam‘:s 0.4x 10 cm 2. Hence
Raman-scattering experiments in the cross-polarizatio elastic light-scattering experiments should be able to detect

geometry?®151621 For " sheet densities within the SDE- the SDE instability in wide square wells also.
collapsed phase, the TDLDA treatment employed in the sec-

tion breaks down, .and we must employ the te_chniques of IV. FERROMAGNETIC PHASE
Sec. Il B to determine the collective modes, which we shall
do in Sec. V. In Sec. lll, we showed that an electron gas confined in a

Finally, we mention that the instability discussed here forcoupled double-quantum-well structure has an instability
DQW'’s can also happen in widgingle quantum wells, in  which is indicated by the vanishing of the energy of the
which the effective potential develops a barrier in the centeintersubband spin-density excitations. One of the goals of
at moderate densities, becoming similar to a DOWh ex-  this section is to establish whether this instability corre-
ample of this phenomenon is illustrated in Fig. 9; notice thatsponds to a phase transition from the normal spin-
the electron density profile is similar to that for the DQW unpolarized(paramagneticground state to a spin-polarized
system shown in Fig. 1. In thisffectivedouble-well system, (ferromagnetit one. A second goal is to employ the LSDA
the separation between the two lowest-lying subbands iformalism of Sec. Il A 2 to the ferromagnetic phase transi-
small, about 0.2 meV, as in the coupled DQW'’s, and thetion in single square quantum wells. In particular, we are
possibility of a suppression of the intersubband SDE'’s by thénterested in the dependence of the critical density on the
vertex correction arises. A calculation of the SDE energiesvell width, as it would reveal an aspect of the crossover from
shows that this is indeed the case, as can be seen in Fig. 1%0- to three-dimensional behavior of the electron gas
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N studied. If the calculation converges to a polarized or an
unpolarized state for both values ¢f we take the result as
the true polarization at that givew. Otherwise, we assume
that the result is affected by the insufficient numerical preci-
sion.
1 With this method, we obtain the phase diagram of spin
] polarization as a function dflg for the coupled DQW de-
fined above. The calculation converges to a fully polarized
state, regardless of the initial choice of spin densities, for
] N,<4x10® cm~2, and to an unpolarized state for
] Ng>1.7X10° cm~2. In the rangeNg= 0.4-1.7 X10°
] cm™2, the solution is polarized for the choiog=0.95, and
unpolarized forp=0.55.
Therefore, our first conclusion is that, within the LSDA,
there is a ferromagnetic transitioas a function of the elec-
s - - tron densityN in a coupled DQW system; for our particular
0.0 0.2 0.4 0.6 0.8 1.0 choice of parameters, the transition occurs around
N, (10"em™) Ng~1x10° cm~2 at zero temperature. On the other hand,
the ferromagnetic transition occurs at a density which is al-
FIG. 10. Calculated intersubband charge-density excitation ent0st two orders of magnitude smaller than the critical den-
ergyEcpe, spin-density excitation enerdyspe, and single-particle Slty NC of the excitonic transition of Sec. lll. Moreover, it
excitation energyEspe=Asas as functions of the 2D electron den- does not seem to show reentrant behavior at lower density as
sity N for the wide square-well structure shown in Fig. 9. Note thethe excitonic transition does. Based on these differences, we
collapse ofEgpg for Ng=0.2—0.4x 10" cm™2. conclude thathe ferromagnetic transition cannot be identi-
fied as the excitonic phase transitiofh Sec. Ill.
which, to our knowledge, has not been explored in the past. Having achieved the first aim of this section, we now turn
Our main finding is that the LSDA does predict a ferromag-to the second, namely, the possibility of ferromagnetism in
netic transition in single quantum wells and, moreover, thakingle square wells. We wish to determine the critical density
as the electron gas is widened the transition density deof the ferromagnetic transition as a function of the well
creases(the ferromagnetic phase becomes less favoyablewidth in order to take the first step in studying the evolution
This dependence of the critical density on the electron-layegf this transition as a function of the dimensionality of the
width agrees with the well-known fact that the influence ofelectron gas. The analytical results for two and three dimen-
the Coulomb interaction is stronger for lower dimensionality.sions summarized in Sec. Il A 2 indicate that, in 2D, the
We first determine whether the excitonic instability StUd-exchange energy is more important than in 3D, indicating a
ied in Sec. Il can be explained in terms of a ferromagnetichigher 2D critical density. In quasi-2D systems, we therefore
transition, that is, a transition from the usual spin-expect that the ferromagnetic critical density should decrease
unpolarized ground state to a partially or fully polarized one.gs the well width is increased.
We concentrate on a coupled double-quantum-well system in  Employing the method described above, we study the fer-
which each individual square well is 139 A wide and theromagnetic transition in five single square wells of widths
well separation is 40 A—the main structure studied in Secd,,=a,, 2a,, 4a,, 6a,, and &,, wherea, = 98.7 A is the
lll. As in the better-known 3D case, a fully polarized phaseeffective Bohr radius in GaAs. The resulting phase diagram
is expected at low density, and a normal, unpolarized phasg presented in Fig. 11 in terms b, versus well width, and
at high density. To compute the spin polarization of the sysa|so in terms of the 2D and 3R and well width; the vertical
tem at a given sheet densitys within the iterative, self- bars give the density range where the polarization of our
consistent LSDA method, it should be enough, in principle solution depends on the initial choice of spin densities. As
to introduce a slight asymmetry in the initial choice of spin expected, we see that the critical density decreases with in-
densities. If the correct ground state were unpolarized, thereasing well width. However, the limiting values of for
initial asymmetry would rapidly disappear in the iteration narrow, and wide wells cannot be directly compared with the
process. On the other hand, if a polarized state were eure two- and three-dimensional Hartree-Fock values for
pected, the initial small polarization would increase untilthree reasons. First, the analytical results are obtained in the
convergence to the fully polarized is achieved. Howeverjellium model, whereas in our quantum-well calculations the
since the solution of the self-consistent set of equations ofositive charges of the ionized donors are located far away
the LSDA method is affected by numerical inaccuracies, infrom the electron gas, which should produce an important
practice our algorithm is sensitive to the initial guess for thechange in the direct Coulomb energy and hence affect the
spin-density profiles. Therefore, we employ the following ferromagnetic critical density. Second, our calculation in-
method to determine the ground-state polarization of the sysjudes correlation effects which go beyond the exchange in-
tem. For a given densitiNs, we solve the self-consistent teraction. Third reason to expect differences is that, in the
algorithm starting with the spin densities (z)=#7n,(z),  LSDA, exchange is treated in a local and static approxima-
n; (2)=(1—-7)ny(2), n;(2)=0, and n,(z2)=0 for tion.
7=0.55 and 0.95 and,(z) the density from the unpolarized This exchange-correlation potential is obtained from the
LDA calculation (only one subband is occupied at the low ground-state energy of a uniform electron gas, which is not

[av)
—— T

ENERGY (meV)

—
LI B




54 SPIN INSTABILITIES IN COUPLED SEMICONDUCTOR ... 13 845

servations about the excitonic instability which will guide us

15 ) ; : . . o
in developing this model. First, the instability in the LDA
& calculations occurs with ave-vector-independeiriterac-
g 101 ] tion, as seen from the LDA expressions for the irreducible
o PARAMAGNETIC polarizability, Egs.(13) and (16). Second, the instability is
Z st ] signaled by a soft mode which is an excitation between the
» [ lowest two subbands and is accompanied by a spin flip. Thus
Z FERROMAGNETIC . .
- our minimal model will focus only on the lowest two sub-
0 - - - ] bands, allow for off-diagonal terms in the subband and spin
2D rg ~ ro=(nNg)™* ] indices, and use an interaction which in constant in wave-
. 15F 03D rg -~ ro=(3dy/4nNg) ] vector space. In the rest of this section, we discuss the results
% . which follow from this minimal model; a preliminary report
£ o10p  rERRONGHER 1 of this work has already appeared in the literafiire.
o 5 : / ]
g PARAMAGNETIC ] A. Point-contact model
ok

A g-independent interaction has several simplifying con-
sequences. First, as seen from Eth), the self-energy will
also be wave-vector independent. From E&), this result
implies that the eigenfunctiongS(k) are also wave vector

FIG. 11. Approximate zero-temperature, spin-polarization phas?ndependent and that the interacting eigenenergies may be

0 200 400 600 800 1000
dy (4)

diagram of single square wells calculated in the Iocal-spin-densiq(mritten
approximation in terms of the sheet dendity and well widthdg
(top) and ther s parameter and well widtkbottom). 5212
E°(k)=e"+ m (76)
- . 2m*
known exactly and must be calculated within some approxi-

mation scheme. Several authors have proposed different P4 se these eigenenergies are the energies of the interact-
rametrizations of the exchange-correlation potential, whlchng quasiparticles, the effect of the interaction is to shift

are based on different calculations of the 3DEG ground-staig,qor rearrange the noninteracting bands without destroying
energy and which therefore differ somewhat from each othery, o parabolic dispersion. Consequently, the broken-

We have checked some of our results using the parametrizgy mmetry phases available within this model will not exhibit
tion of Gunnarsson and Lundqvigt,which gives a larger any energy gap, in contrast to what occurs in

difference between the potentials for different spin poIariza'superconductivitV and in other excitonic transitions which

tions than the Ceperley-Alder one, making the ferromagneti¢,,, e peen studied. The reason for this difference is that the
phase more favorable. For example, for the square well ofyieracting quasiparticles are linear combinations of elec-

. _ -y . . 0 72
width dy=4a,, the critical density is 1.810' cm™2, ten  yone and holes in the latter cases, whereas in this case they

times higher than with Ceperley Alder. Thus our calculationsyre jinear combinations of electrons from different subbands
indicate that within the LSDA a ferromagnetic transition is , the former.

indeed present in the quasi-two-dimensional electron gas, but Second, the simplest interaction whichgisndependent is

the value of the critical Qensit_y for the transition cannot be, st nction in real space/(R)=V&(R). Inserting this form
accurately determined with this method. into Eq. (43) yields

V. ANTIFERROMAGNETIC PHASE Vab,cd(@) = 5_o, 05,04V n, nony: (77)

Based on the results of the preceding two subsections, wgith
can draw the following conclusiondl1) double or wide
single quantum-well structures can undergo an excitonic in- . .
stability in a range of densities, aii2) this instability cannot Vnanb,ncnd:\/f dz&, (2)6n, ()& (2)én(2). (78
be associated with a ferromagnetic transition. We would like
to understand the nature of the ground state of the excitonibaking the standard assumption that the quantum-well struc-
phase and determine its excitations, but we see that thigire is symmetric, the wave functiogg(z) may be chosen
density-functional approach cannot assist us further. In ordelo be real and parity eigenstates. From Etp), these sym-
to make progress, we employ the self-consistent Hartregmetries imply that the order of the subband indices in the
Fock formalism developed in Sec. Il B, which allows us to matrix elements is irrelevant, and that matrix elements of the
study ground states with broken symmetries which are notorm Vi3 15, Vi22,, and cyclic permutations vanish. Thus
accessible through ordinary density functional theory. there are only three independent matrix elements:
As pointed out in Sec. Il B, the self-consistent Hartree-V11=V13 11, V2= V2525, andV,=V; 5, plus permutations.
Fock model for systems with a Coulomb interaction is notSince we are interested in the minimal model exhibiting the
guantitatively accurate, but should reproduce the qualitativexcitonic instability, we will neglect/,; andV,, in order to
features of the later phase. Our goal is therefore to construdéocus on the intersubband effects, leaving a model with two
a minimal model of the systems which exhibit the excitonicfree parameters: the sheet dendity and the intersubband
instability which is still tractable. We can make several ob-interactionV,.
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Applying these approximations to E¢p2), we find that between the bubbles, which is unscreened, and the interac-
the self-energy reduces to tion within the bubbles that gives the nontrivial part of the
vertex equation, which should be screened. Summing a par-
ticular set of screening diagrams may reduce the error intro-
duced into the self-energy, but would render the collective-
~ Phyo, Phgr,  T17 0. mode calculation completely intractable. Thus we adopt a

(79 strong approximation to the actual Coulomb interaction, a
point-contact interaction, which should reproduce the quali-

Eq. (53), with the electron density in each interacting sub-able set of equations.
band given by

c *C _

(Pn37(rl(pn47¢r11 01=0

2n,0q.00,= Vnn, nan,N°
101:N203 1M2:N3Ny

B. Normal-state instability

1 . . ~ . .
ncz—Z F(ES(K)). (80) Ou_r goal is to use the point-contact interaction mod:_al we
AT have just described as the minimal model for the excitonic
instability. It is therefore critical to verify that this model

In addition, the integral equations determining the polar_exh|b|ts the instability in its normal state, an exercise which

izability [Egs. (72)—(73)] can be reduced to a matrix equa- will also provide guidance as to the nature of the broken-

tion. The first step in this reduction is to observe that theSymmetry state. The first step in this process is to compute

vertex functiony in Eq. (73) is a function only ofg,, when the self-energy and chemical potential in the interacting sys-

. i e tem. In the normal paramagnetic phase of this model, we
the the interaction has nq dependence, and satisfies the : .
equation know that the wave functions of the subbands are not mixed,

and that the band structure consists of two parabolic sub-
bands, each with degenerate spin-up and spin-down compo-
Yab,cd(Un) = Sacdpa+ [ Vbaer— Vor eal lIs gn(0n) Ygnca(dn).  nents. Consequently, the self-energy is diagonal in subband
(81) and spin indices, and the eigenvectors of E@) are given
by ¢5= 455 with the corresponding eigenvalues satisfying
where ell=ell=e;, and e?’'=e?'=e,. It then follows that
nt'=nt=n;, n?'=n?=n, 3, ;=3 ,=%; and
T S0t 21 =35 5=23,. Inserting these formulas into E¢79)
Hg(ng(qn):KkE GealKm)Gpd(km+an) (82 yieTId; the lsellf-energy equatiols = VN, andS ,=V,n;.

m At finite temperatures, the simultaneous solution of these
self-energy equations and the band-filling constraint(&8)
must be performed numerically, but &t 0 the solution can
be obtained analytically. In order to exhibit the zero-
temperature solutions in a compact form, we define the non-

interacting subband splitting in terms of the eigenvalues of
I ca(0n) = 0} Senetes 1% (ay). (83  EQ. (39: A2,c=€,— ;. The interaction renormalizes this
splitting without modifying the identity of the underlying
After analytically continuing to real frequencies, the function subbands. Applying the self-energy equations allows us to
1¢(q) is just EQ.(22) with gs=1 and using the interacting write this renormalized splitting as
energies[Eq. (76)]. Inserting this result into Eq(72) and
rearranging yields

[5ag5bh_Hgob),ef(Q)(er,gh_th,ge)]th,cd(q)znggcd(q)-

(84) If the chemical potential is measured from the bottom of the
Inverting this matrix equation gives the polarizability. When lower subband angt<A%,5 then only the lower subband is
this equation cannot be inverted for a particulgrd), i.e.,  occupied at zero temperature, and we shall refer to this state
when the determinant of the matrix in brackets vanishes, thas theN, phase. Alternatively, ifu>AZ%,5, both subbands
system exhibits a collective mode. The polarization of theserre occupied, and we shall refer to this as Mephase. By
collective modes can be determined by, for example, theglving the equations fak%,s and the band filling constraint

method discussed in Sec. II B. _ Eq. (53) simultaneously, we obtain
Before proceeding to a discussion of the normal-state

properties of our point-contact model, it is appropriate to
discuss briefly the question of how well this model approxi-

is the polarizability without vertex corrections. In the inter-
acting systemﬂg%),cd may be written through the use of Eq.
(51) as

Afps=er—e1= At Vixn—ny). (85)

mates reality. The Hartree-Fock approximation is known to Agast 7NsViz (Ny phasg

be a poor one in the interacting electron gas because it ne- A= 0 (86)
glects screening effects, but including these effects realisti- Asas (N, phase

cally is a difficult problem which has not yet been resolved. 1—NgVi, 2 P

In computing the collective modes, this problem is amplified
by the distinction one should draw between the interactiorand
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Ng 15[
PN (N1 phase
= 8
7] oNe 1 Al ®7 :
(N2 phase. 1.0

_J’_ i —
4N, 2 1-NoVp,

No¥is

The crossover fromN; to N, occurs whenu=A¥,g or I
Ng/2NgA2,s = 1/(1—NgVyy). 05
With the renormalized splitting £, and chemical poten- I
tial . computed, we are now in a position to study the col-
lective intersubband spin-density excitations of this model to i
X e I ” 0.0 :
see if the excitonic instability occurs. The condition for these B i 5 5
excitations obtained from Ed84) through the use of Eg. N_ / 2N,A0
83) is s 0°SAS

FIG. 12. Mean-field phase diagram of the antiferromagnetic sec-
+ 1 2 _ tor of the point-contact model described in the text. The indepen-
1+ Re[I1*(g,0) + 11°(q, @) ]V1=0, (88) dent variables are the normalized intersubband interaction matrix
element NgoV,, and the sheet density\lSIZNoAgAs, where
where the uppeflower) sign is for the spir(charge density  N,=m*/27#2 in the single-spin density of states and, is the
excitation, and we have dropped the spin indices sIige splitting between the lowest two subbands whgg=0. The other
does not depend on them in the normal stategAtO and  interaction matrix elementg,; = V,, = 0. The regions correspond
T=0, an analytic solution for the frequency of the collectiveto the normal(paramagnetic phase with one subband occupied
modeswy is possible which is just the Ando restflivith a  (N;), the normal phase with both subbands occuplg) (and the
renormalized subband splitting: antiferromagnetic phas@AF). Contours in the antiferromagnetic
region of the phase diagram are the computed values of the critical
temperatureT, for the antiferromagnetic transition in units of
02=(A%29%F 2V N1~ Np) Ak g, (89 A2, Jkg. Observe thakgT, can be larger thal2,s, indicating
that the antiferromagnetic phase may persist to observable tempera-
tures. The other labels in the figure identify points for future refer-

It is clear from this expression that the spin-density excita-ence

tion (SDE will soften completely when Ag,g
§2V12(n1—n2_). At zero temperature, the relations derived reason for this collapse is seen from E&8) when one ob-
in the.precedlng paragraphs can be used to srgow that thseerves that, aT =0 in theN, phase,
softening occurs in théN; phase whermNgV,,/2A5,=1,
and in theN, phase wherN,V;,= 1. These boundaries are
shown in Fig. 12 along with the line separating e and REIT'(q,w) +117%(q,w)]= —2Ng (90)
N, phases. The shaded area represents the region in which
the spin-density excitation is soft g&=0 in this model. The for q<kg;+kg,, indicating that if the energy of a SDE with
phase corresponding to the soft mode occupies a large regi@ne of these wave vectors vanishes, they all must vanish. At
of parameter space, and obtains at any density providing thiateraction strengths slightly larger than that required for a
interactionV, is sufficiently strong. collapse, the solutions to E88) are imaginary in this range
At nonzero wave vector, Eq88) must be solved numeri- of wave vector, with the largest imaginary frequency occur-
cally. From the low-densitN; phase, the results of this cal- ring at q=0. These calculations suggestga0 transition
culation are shown in Fig. 13 for increasing density at fixedfrom the high-density side, but the density-functional com-
interactionV,. As illustrated by the figure, thg=0 spin-  putations in Sec. Il find a softening at the nonzero wave
density excitation softens with increasing density and vanvector g=kg;—Kg,. The discrepancy arises from the fact
ishes beyond a critical density which depends on the interthat the calculations in Sec. Il include all the subband levels,
action strengthV,,. At higher densities, the small- whereas the model in this section contains only two. The
solutions to EQ.(88) become imaginary, and the largest inclusion of higher subbands, even if they are unoccupied,
imaginary frequency—indicating the most unstable wavedisrupt the cancellations leading to E(O), and yield a
vector—continues to be a=0. Thus, the transition from g-dependent function which will select some wave vector.
the low-density side is very clearly =0 instability, as is The consequences of a finite ordering vector will be dis-
also seen in the TDLDA calculations. cussed in Sec. VI, but are beyond the scope of our simple
The situation from the high-density, side is more com- model. We nonetheless expect that many of the qualitative
plicated. The dispersion curves for this case computed fronmsights from our model will apply to more comprehensive
Eq. (89) at fixed density and increasing interaction strengththeories.
closely resemble those in Fig. 7. As the interaction strength One of the most important insights that can be gained by
V1, increases, the energy of the SDE's are reduced until théhe study of the normal-state instability is a physical intuition
entire dispersion curve collapses along a range of wave ve@bout the nature of the ground state in the region of the phase
tors from q=0 to kg —kg,, the difference of the Fermi diagram in which the SDE has softened. In structural phase
wave vectors of the two subbands, at a critivg,. The transitions, a particular phonon softens, and the polarization
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15 C . as in the ferromagnetic transition, but thereaigriori no
i 0o _ 1 restriction of the direction of the spin polarization selected.

SAS | To summarize the results of the application of our simple

2) } model to the normal state, we find a softening of the inter-

subband spin-density excitationscat O for a wide range of

model parameters. These collective excitations produce a

spin-density modulation which is antiferromagnetically cor-

L ] related between the wells. Thus the softening of dgkre0

0.5 - spin density modes indicate the formation of an antiferro-

I ] magnetic phase in which the spins in both wells are polarized

Vi, =10 ] but in opposite directions. In the more realistic density-
functional calculations of Sec. Ill, g#0 instability was

0.0 | 1 1 . . . . . .. .

0.0 05 Lo 5 50 |nd_|cated, whlch wouldllmply an additional |ntrayvgll modu-
a/ kg lation of the spin densitysee Sec. V)l For simplicity, we
focus on theq=0 phase.

FIG. 13. Dispersion of the intersubband spin-density excitations
(SDE’9) as the sheet densifyf; approaches the antiferromagnetic
phase from the low-density, one-subband-occupied side computed
in the antiferromagnetic sector of the point-contact interaction With an understanding of the nature of the excitonic in-
model discussed in the text with,V,,=1.0. The thick lines show sStability as an antiferromagnetic ordering, we are able to ex-
the energyi w of the SDE’s in units of the renormalized splitting of amine the ground state and its properties within our model.
the lowest two subbands$,s as a function of wave vectay rela- ~ We first note that both spin rotation invariance and parity are
tive to the Fermi wave vectdt: . The thin lines show the bound- broken in the antiferromagnetic state, so we are studying a
aries of the particle-hole continuum, within which the collective genuine symmetry-breaking phase transition. The first task
excitations are damped. The sheet densities and correspondirghcountered in studying such a transition is to identify the
points in the phase diagram of Fig. 12 are given in the figure. Theyrder parameter. For concreteness, consider the antiferro-
transition to the antiferromagnetic phase occurs when e magnetic phase with the spin density aligned along %he

SDE'’s soften aNg/2NoA2,s = 1.0. A similar softening appears in direction. From Eqs(60) and (65), the only nonzero compo-
Fig. 7, which shows the approach to the antiferromagnetic phasgent of the spin density is then

from the high-density side computed within the LDA.

N_/2Nyh

1.0

¥
SAS

hw / A

C. Antiferromagnetic ground state and thermodynamics

of that phonon determines the structure. In the same way, the %

polarization of the soft spin-density excitation should reveal (sX2))=5&n (2 & (2){pn 1.0, (A= 0)). (92
. . 2°>M 2 112

a great deal about the ground state. This polarization can be

computed by means of Eq&4) and (75), which leads to a

density response in the normal state given by Because the antiferromagnetism requires {s&tz)) be odd

in z, only the terms which are off-diagonal in subband index
(pM(R,1))yoce @19V ¢ (2)£,(2)[T1'4(q, 0) + 1124 q, w)] are nonzero in this phase. Defining

X (X—iy), (91

which is shown graphically in Fig. 14). Notice that the Pﬁlnzzaﬁlazz <C21kalcn2kaz>v (93
response occurs in the spin channel and has the character of

a traveling wave transverse to the layering direction. Also

observe that, since the wave function of the lowest subbangngd using Eq(66), this implies that

£1(2) is even inz due to the assumed symmetry of the

guantum-well structure, and the wave function of the next

subband,(z) is odd, the overall response oddanThus the %

intersubband spin-density excitation corresponds to a spin- (sx(z)>=§§n1(z)§n2(z)2 [(cIchz,(l)Jr(c;chlkl)
density wave in which the spin-density is antiferromagneti- K

cally correlated between the quantum wells. (94)
With this interpretation, the nature of the excitonic insta-

bility becomes obvious: the softening of the=0 SDE cor- 5

responds to the formation of antiferromagnetic order be- _n X . X

tween the quantum wells with no modulation of the spin 2 ény(2)én, () P12t P21 (99)

density within a well. A profile of the resulting spin density

is presented in the inset of Fig. 15. Note that there are three

degenerate SDE’s in the normal phase which may be assogi,+ p3; is finite in the antiferromagnetic phase and vanishes
ated with spin polarizations along the three Cartesian direcin the normal phase, so it is the order parameter of the phase
tions. Although all three soften simultaneously, we expectransition. From the spin-rotational invariance of the system
that a particular spin direction will be selected by the systenthe direction in which the spin density can be polarized in the
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(a) Normal SDE

200

A

100

200

FIG. 14. Polarization ofa) an intersubband
spin-density excitation in the normal phase and of
the (b) phase(Nambu-Goldstoneand (c) ampli-
(b) Phase Mode tude modes in the antiferromagnetic phase with
200 - the spin density oriented along the direction

3 computed as described in the text. The configu-
ration of the quantum wells is as in Fig. 1. The
two planes are sections through this geometry
normal to the layering direction and are located in
the center of each well. The distances in these
planes are measured in units of the wavelength of
the collective excitatior\, whose propagation is
in the X direction. The arrows show the direction
and magnitude of the spin density modulation in-
duced by the collective excitations. These modes
have the form of a traveling wave, so the spin
modulation at a different time is obtained by
shifting these pictures along thk direction.
Since the total spin density is the sum of the an-
tiferromagnetic polarization and the modulations
shown in(b) and (c), the identification of these
modes with the phase and amplitude motions is
(¢) Amplitude Mode apparent.

200 -

100

200

100

z (&)

~10Q

200

antiferromagnetic phase is arbitrary, so the general form of With this identification, we can construct a form for the
the order parameter is self-energy matrix which permits the off-diagonal expecta-
tion values we require, yet preserves the other symmetries of
Ni=pl,+ph,, i=123. (96)  the system. Thimnsatzmay be writter*
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interacting quasiparticles are considerably different: from
Eqg. (99), we see that these quasiparticles are linear combina-

5 T<T, tions of electrons from the two noninteracting subbands.
0.75 T i, i The parameters in the eigenenergies and eigenvalues are
KoV 1 n determin_ed from _the self-cons_istency equations obtained by
= substituting the eigenvectors into reduced self-energy equa-
v tion, Eq.(79). This procedure gives

s S, =V (nu2+ntu2), (102
0251 ] S,=V(n*ul+nv), (103
i P2 and
0.00 |
0.0 0.5 1.0 1.5 2 =2V (n—_n+)uU. (104)
0 a=2V1
kgT / Bgpg °

He3

Using the definitions ofu and v [Eqg. (99)] and the band
filling constraint

FIG. 15. Staggered spin densityjg+ p3,), which is the order
parameter for the antiferromagnetic phase transition discussed in

the text[cf. Eq.(96)], normalized by the electron sheet dengity Ng=2(n"+n"), (109
as a function of temperatu® in units of the splitting between the these self-energy equations can be written
two lowest subbands in the non-interacting lim&,s. The curves
are computed foNS/2N0A‘§AS: 2.5 andNyV,, = 0.55 t0 0.80 in 1
increments of 0.05; the lower and upper values correspond to points 2+ 22:§V12N5a (106
D, andD, in the phase diagram of Fig. 12. Inset: Expectation value
of the spin densitys*(z)) in real space as a function of the distance 0
along the layering direction for the double quantum well of Fig. 1 A, 3. -3 = Asas (107
in the antiferromagnetic phase. Note tiat(z)) = 0 in the para- SAST =2 “179_V,(n"—n")/2D’
magnetic phase.
and
%, 0 0 S od Vi (n~—nt)
0 21 Eod 0 20d=T20d. (108)

2ap= (97

0 34 2, O
300 O 0 2

Inserting this form into the eigenvalue equation E48)
yields the eigenvectors

u 0 0 —v
. O u —-v O
=10 » u 0 (98)
v 0 O u

(columns correspond to the supersdripnd eigenenergies

e® = {e",e",e",e"} [cf. Eq.(76)], where

u 1 _AgAS+22_21 12

(U)_ §(1+—2D s
0
or _AsasT 2oty (100
2 1
and

AO +E _E 2 1/2

= (%“) _|_2(2)d (101)

In the antiferromagnetic phas®,4# 0, implying from Eq.
(108 that D=V,4(n~—n™). Equation(107) then becomes
Apst3,—3;=2A%,s from which we obtain D?=
(A%AS)2+E§C, by Eg.(101). Comparing the two expressions
for D vyields

Soa=[ViAn —n")?=(A59%"% (109
The splitting between the interacting bands is
A, _=2D=2V)n"—n"), (110

and the chemical potential is determined implicitly by Eqg.
(105).

At zero temperature, these equations can be easily solved.
First, suppos@™ =0. Then Eqs(105 and (109 imply that

(VIZNS 1/2

20d= , (111

2
> ) — (A8

Equation(110) becomesA , - =V5Ng, and the band-filling
constraint yieldsNg=2Ngyu. This solution is consistent {fl)
ViNg/2A2,=1 [Eq. (11D)], and (2) u<A, _, which is
equivalent taN,V;,= 3. These constraints are precisely those
obtained in Sec. V B as the boundaries of the normal-state
instability and are depicted in Fig. 12, demonstrating that

The eigenenergy spectrum indicates that the single-particle” =0 over the entire range of the antiferromagnetic phase.
band structure in the antiferromagnetic phase consists of twbhus only the lowest “-” bands are occupied in this phase.

sets of two degenerate parabolic subbands separated in df-om Eq.(111), we also observe tha& 4 rises from zero
ergy byA, _=e"—e =2D. This band structure is similar continuously along the boundary shared with tg phase
to that in the normal phases, but the wave functions of thé¢cf. Fig. 12, indicating a second-order phase transition at
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zero temperature. Along the boundary with tNg phase, and the specific heat,. The temperature at which the anti-

however,2 .4 jumps discontinuously to a finite value, show- ferromagnetic transition occurs is found by linearizing the

ing that this transition igirst-order atT=0. self-energy equations in the off-diagonal self-enebiyy.
This interpretation is confirmed by a calculation of the This procedure allows Eq108) to be written as

energy change of the system across the transition, which also o 0

demonstrates the stability of the antiferromagnetic phase VAN~ —n")=Agpg (119

relative to the normal phases. From the relations and also leads to the result, =A%, for A%, defined by

Eqg. (85). From these two expressions, we deduce that
=NoT In(e¥T+1), (112 A, _=2Agpgat T,. Thus the critical temperature is deter-

mined by the simultaneous solution of E4$19 and (105

with the constraintA . - =2Agag. Using Eq.(112), we find

1 72k
K; f( 2m* X

T:>0Nox0(x) (113  that theT. equation may be written, after some algebra, in
- the reduced variableg,=A2,dT., x=Ng/2NoA2,s, and
y: NOV12 as
1 h2K? [h2Kk? ) . x2 Bc(xy+1)/2y
A2 st 5 =X | T O0Ng - 6(x), (11 e -1
A; 2m* (Zm* 072 ( ) ( 4) Zﬂczln e,BC(xy—l)/Zy_]J' (120)
and Eqs.(76), (42), (50), and (53), we can write the total The reduced variables andy are just the axes of the phase
energy[Eq. (57)] as diagram in Fig. 12, in which the contours of constant
E kgT./A2,g are also shown. We note that the critical tem-
S E(|9"g|26na+"‘)' (115  perature can be of the order a8, Jkg, which may be on

the order of 10 K for double quantum wells of the type

Inserting the subband occupations, eigenvectors, and chenfibown in Fig. 1.
cal potential obtained from the solution of the self-energy Below the transition temperature, the order parameter be-

and band-filling equations at=0, we find, for theN, phase, COmMes finite, and we must solve the full nonlinear set of
equations. To relate the self-energy parameters obtained in

ENL N§ this way to the staggered spin density in Eg§5), we first
—_— = (116 note that Eq(51) can be used to show that

A 4Ny’
for the N, phase, > (o) = ointexC. (121
EN2 N2 Adss NoAgas k
= TEN (1+NgVyp) + > N+ TNV (117 Inserting this result into Eq95) and applying Eqs(98) and
0 —NoVi2

(99), we find that the staggered magnetization

and, for the antiferromagnetié&F) phase,

2
[piz+p§ﬂ=—2(n‘—n+)ﬁ. (122

A 4N, 2NgVi,

2AgAS

EAF N2 1 (NSV12 1)2 (118

At zero temperature, this expression reduces to

We see immediately from Eq$116) and (118 that, in the 2A2, ¢\ 2]V2
range of parameter space in which bdthand AF solutions [p1oF p5]=—Ns 1—( )
exist, EAT<EM1. In addition, the energy at th,-AF phase VaNs
boundary[cf. Fig. 12| can be seen to be continuous and with Solving theT>0 self-energy and band-filling equations for a
continuous first derivatives. The second derivative is disconvariety of interaction strengths, and substituting the results
tinuous at the phase boundary, however, showing that thigito Eq.(122), yields the curves in Fig. 15. We see that the
phase transition is second order. Similarly, it can be showstaggered magnetization rises rapidly from zero bely
that Egs.(117) and (118 yield EAF<EM2 in the region of and saturates quickly to it§=0 value. This behavior is
parameter space where both solutions exist, and thdirtte generally expected for an order parameter in mean-field
derivative of the energy difference at the phase boundary igheory.
discontinuous. Thus the antiferromagnetic phase is energeti- Another quantity of theoretical and possibly experimental
cally stable with respect to the normal phases whenever thigterest is the specific heat. The specific heat is proportional
broken-symmetry solution exists, and the phase transition i the second derivative of the free energy with respect to
second order from thdl; phase and first order from tié,  temperature, so this quantity is discontinuous at either a first-
phase at zero temperature in mean-field theory. or a second-order phase transition. This discontinuity is in
At finite temperature, the self-energy equations in combiprinciple measurable and would provide direct evidence of a
nation with the band-filling constraint must be solved nu-thermodynamic phase transition occurring in these systems.
merically. The results of these computations can be used tactually observing this discontinuity in semiconductor de-
obtain several quantities which characterize the antiferrovices of the kind we are considering would be difficult, how-
magnetic phase: the transition temperatliggand the tem-  ever, due to the low concentration of the relevant electrons.
perature dependence of the order paramiter (p’,+ p3;) The specific heat is computed from E§9) for a particular

(123
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temperature with the eigenenergies and chemical potential The latter behavior is not universal, however, as seen
obtained from the self-consistency equations. Using(6)..  from Fig. 16c). This figure shows the evolution of the
in Eq. (59), the specific heat per sample area may be writterspecific-heat function at a fixed density and increasing inter-
action. The system is initially in the two-subband-occupied
+o0 xe*dx / d(u—e°) N, phase and becomes antiferromagnetic wiNgV,,>3
cy=NoT> f . (ex+1)2\x+ a7/ (124 (cf. Fig. 12. In the normal stateg,(T) has the shape ex-
¢ JoAume) pected from Fig. 1@&) with a low-temperature slope charac-
teristic of having two subbands occupie., Ny,..=4 in Eq.
(125)]. Increasing the interaction strength has only minor
effects until the antiferromagnetic region of the phase dia-
(125 gram is reached, at which poin{, develops a discontinuity
at T.. At the same time, the slope of the low-temperature
specific heat drops by a factor of 2 in accordance with Eq.
whereN,. is the number of occupied subbandi,..=2 in (125 and the fact that only the lowest interacting bands are
theN; andAF phases antll,..=4 in theN, phase. Equation occupied in the antiferromagnetic state. Abdvg the spe-
(125 is just the usual result obtained from a Sommerfeldcific heat is qualitatively similar to the other normal-state
expansior> curves. BelowT., and in contrast to Fig. 16), cy>T at
Since we are aware of no calculations in the literatureboth low temperatures and temperatures rnEaibut with
regarding the specific heat of a paramagnetic electron gas ififferent slopes. The slope ne&g is a function of the inter-
a quantum-well structure, in Fig. (@ we present,, for the  action strength and equals the low-temperature value for
noninteracting electron gas to use as a comparison for thl,V,,=1; for NgV,,>1, the slope neaf is actually less
interacting case. At low temperature, the curves naturallthan the low-temperature slope.
resolve themselves into two groups according to whether one
or two subbands are occupied &t 0. This feature follows
directly from Eq.(125 and is emphasized in the inset to Fig.
16(a). Observe that Eq125) is an inadequate description of  In addition to the ground-state and thermodynamic prop-
cy WhenT is larger than only a small fraction of the subbanderties of the antiferromagnetic phase, it is also important to
splitting A%AS. The precise fraction is density dependent, asexamine its collective excitations. The first indication of the
is whether the actual specific heat is smaller or larger thaantiferromagnetic phase transition is the disappearance of the
Eqg. (125 predicts. The reason underlying this behavior isintersubband spin-density excitations, and, on general theo-
that, unlike the metallic case, the Fermi energy and the termretical grounds, one would like to know what replaces them
perature are often comparable in these quantum-well strudn the broken-symmetry phase. Moreover, experimental stud-
tures, invalidating the Sommerfeld expansion. At higher temies of semiconductor heterostructures by inelastic light scat-
peratures, the form of the specific heat for both one- andering can measure these excitations, and theory should pro-
two-subband-occupied ground states are similar, and havewide some guidance about the expected signatures of the later
magnitude at fixed temperature which increases monotonphase. The latter point is particularly important in light of
cally with density. When the temperature becomes of theurrent searches for this phafe.
order of the energies of the higher subbands, this two- The basis for studying the collective modes in the antifer-
subband description breaks down. Of course, 84 may romagnetic phase is Eq83) and(84) supplemented by the
still be used to computey at these temperatures, providing eigenvaluesp, eigenvector€®, and chemical potential de-
the higher subbands are included in this equation and thgermined as in Sec. V C. Because the wave functions of the
equation determining the chemical potential. interacting quasiparticles mix different subbands and spins,
With the noninteracting specific heat as a baseline, we cathe bUbbmHé%),cd(Q) is no longer diagonal in these indices,
now examinecy in the interacting system in both the normal and so Eq(84) becomes a 18 16 matrix equation in sub-
and antiferromagnetic phases. Figurélresents the spe- band and spin space. The remaining symmetries in the anti-
cific heat as a function of temperature calculated for a fixederromagnetic phase do not seem to be amenable to decom-
interaction strength. The different curves show the evolutiomosing this matrix equation and arriving at an analytic
of cy(T) as the density is increased from the single-subbandsolution, which forces us to adopt a numerical approach. We
occupiedN; phase into the antiferromagnetic phase. Thetherefore obtain the interacting polarizability,p, .q(q) by
specific heat in thé\; phase is similar to the noninteracting direct numerical inversion of Eq84) at T=0, and identify
plots in Fig. 16a), exhibiting the low-temperature, linear-in- the collective modes from the condition
T behavior expected from Eq125 which crosses over at
some density-dependent temperatls{gél'<A%AS to an ap- )
proximately constant value. As one enters the antiferromag- def Sacba— Ilapef(d) (Vreca™ Vrdce) ]=0. (126
netic phase, one sees a discontinuity develogjimat T,
which signals the phase transition. Unlike Since we are interested primarily in the intersubband spin-
superconductivity, there is no universal value for this dis- density modes, we will focus on the intersubband spin-flip
continuity due to the large renormalizing effects of the tem-polarizability
perature on the band-structure parameters. Abbyge the
curves resemble their normal-state counterparts, while, be- oxt oxt
low T., the low-temperature result E(125 seems to hold. Hinted @) =fapllap ca(D f g (127

which at low temperature reduces to

’7T2
CVZ? NocdNoT,

D. Collective excitations
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FIG. 16. Electronic specific heat at constant volueis nor-
malized by 27?°NyA2,43 as a function of the temperatufie in

units of A2, J/kg for (@) NgV1,=0 andN¢/2NoA

aas=0.1t02.0in

increments of 0.1(b) NgV3,=1 andNg/2NoA2,s = 0.5to 1.5 in
increments of 0.1i.e., along the line fronA, to B, in Fig. 12), and
(c) Ng/2NoA2,s = 2.5 andNyV;, = 0.2 to 0.8 in increments of
0.05(i.e., along the line fronC; to D, in Fig. 12). The inset in(a)
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FIG. 17. Dispersion of the intersubband spin density collective
modes in the antiferromagnetic phase at the pdiat8, and (b)
B, of the phase diagram of Fig. 12, corresponding to
(Ng/2NoA2,s, NoVyip) = (1.1,1.0 and(1.5,1.0, respectively. The
thick lines are the energf in units of the non-interacting sub-
band spIittingAgASof the amplitude mode of the antiferromagnetic
order parameter as a function of the wave veaoin units of
g3 =m*A2,J%2 The shaded region is the particle-hole continuum,
with darker shades representing larger spectral weight than lighter
shades on a logarithmic intensity scale. The dark linear feature is
the phase or Nambu-Goldstone mode of the order parameter. Note
that this mode is damped by particle-hole excitations and that intra-
subband excitations enter into the spectrum due to the mixing of the
non-interacting wave functions in the symmetry-broken phase.

with fgﬁt given by Eq.(75). Typical results for the spectral
function of this polarizability in the antiferromagnetic phase,
—ImIT;ye{Q), are shown in Fig. 17.

In analyzing these figures, it is useful to keep in mind the
following facts about the band structure of the antiferromag-
netic phase revealed by the analysis of Sec. (1J:the
interacting band structure consists of two sets of two degen-
erate parabolic subbands separated by an engrgy, (2)
only the lower set of interacting subbands are occupied,
yielding a single Fermi wave vectd=, and (3) the wave
functions corresponding to the interacting bands are a mix-

enlarges the low-temperature portion of the main figure in order tguré of the wave functions of the noninteracting subbands.

see the deviation from the analytic lolvexpression, Eq(125).

Facts(1) and(2) indicate that the band structure is similar to

Entrance into the antiferromagnetic phase is signaled by a discobat in theN; phase, so we expect to see a region of inter-

tinuity in the specific heat that is apparent(b) and(c) but absent
in (a).

subband particle-hole excitations in the spectral function
similar to those in Fig. 13. The kinematics of these excita-
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tions require that their spectral weight startias=A . _ at  tions involving the breaking of a continuous symmetty}®
g=0, and spread within the boundaries given by In our case, the continuous symmetry is spin-rotation or
SU(2) invariance, and the extent to which it is broken is
quantified by the staggered spin densMy[Eq. 96]. The
collective modes in the broken-symmetry phase correspond
to the modulation in space and time of either the direction or
for >0 and » measured from the bottom of the lowest the magnitude oN, and are therefore called phase and am-
interacting subband. In the normal phases, these intersubjitude modes, respectively. The polarization of the collec-
band excitations are cleanly separated from the intrasubbanfe excitations discussed above unambiguously identify the
magnetic state, however, fa@) indicates that such a sepa- modes with orthogonal polarizations, and the optical excita-
ration is impossible, leading to the additional low-frequencytion as the amplitude mode. This identification is strength-
particle-hole continuum present in Fig. 17. Kinematics againened by the dispersion of these excitations: the phase mode
show that this region is defined by <Qu<(%%2m*)  should have an energy which vanishegas0, since ground
X(q+kg)?— p for g<2kg . Although not shown in Fig. 17, states with different orientations oN are degenerate,
at largerq>2ke, the extent of this region of particle-hole \yhereas the amplitude mode should possess an excitation
excitations is defined by gap. These expectations are borne out in Fig. 17.
Further insight into these collective modes can be gained
2 by following the evolution of the intersubband spin-density
(Qtke) = p. (129 excitations as we change the parameters of our model and
move from the normal to antiferromagnetic phases. We start
Within the particle-hole continuum, we find one striking in the single-subband-occupi®f phase at the point marked
feature at low frequencies which appears in Fig. 17 as a darld; in Fig. 12. Increasing the density at fixed interaction, we
linearly dispersing feature at low frequencies. Examining thanove toward the antiferromagnetic phdpeintA,), causing
solutions of Eq(126),>" we find that this feature is in fact a the three degenerate intersubband spin-density excitations to
Landau-damped collective mode of the system. The polarizesoften as shown in Fig. 13. When tlje=0 excitations van-
tion of this collective mode is extracted by returning to theish, the system enters the antiferromagnetic phase and the
full interacting polarizabilityIT,, .4(q) and applying Egs. three intersubband SDE's turn into two degenerate phase
(74) and (75) at the wave vectors and frequencies lying onmodes and an amplitude mode as seen in Fi¢p)1thcreas-
the dispersion curve for this mode. A real-space representaag the density still furthefto pointB,), the amplitude mode
tion of the resulting spin-density displacements is given inmoves to higher frequencies while the phase mode is largely
Fig. 14b). To interpret these results, we first note that theunchangedFig. 17b)].
antiferromagnetic phase for these calculations has its spin This behavior is typical of entry into the antiferromag-
density oriented along the direction. From Fig. 14), we  netic phase, and can be summarized by a plot ofothe®
see that the collective mode corresponds to a wave of antintersubband excitation spectrum as a function of the model
ferromagnetic spin displacements normal to this orientationparameters, Fig. 18. In Fig. (&, we see the transition just
namely, in they direction, traveling transverse to the layer- described, in which the system is initially in ti phase
ing direction of the quantum wells. The spin displacementsand the density is increased at fixed interaction strength. The
are in opposite directions in different wells, so the net effectcollapse of the intersubband spin-density-excitation and the
is a rotation of the total spin density in they plane that emergence of the amplitude mode is clearly seen. We also
preserves the antiferromagnetic correlation of the spin dersbserve that both the splitting between the interacting sub-
sity between the wells. Note that there is another collectivdbands and the intersubband charge-density excitations are
mode degenerate with this one which corresponds to a rotaontinuous and non-zero across the antiferromagnetic transi-
tion of the total spin density in thgz plane; this mode is tion, but both have a discontinuity in their first derivatives.
projected out by our choice df} [Eq. (75)]. The antiferromagnetic transition has a slightly different
Outside of the particle-hole continuum, we can look forcharacter when it proceeds from the two-subband-occupied
the undamped collective modes in the same way as in thd, side. Starting in thé\, phase and increasing the interac-
preceding paragrapii.We find a single optical excitation tion strength at fixed density, we see from Fig(d&hat the
whose dispersion is indicated by the thick black line in Fig.intersubband spin-density excitation softens as before, but
17. The polarization of this mode is obtained from Eq?) the amplitude mode in the antiferromagnetic phase appears
and(75), and is shown in Fig. 14). From this figure and our immediately thereafter at finite frequency. The interacting
knowledge of the orientation of the spin density in the anti-subband splitting and the intersubband charge-density exci-
ferromagnetic phase, we conclude that the optical mode cotation are also discontinuous across this phase boundary.
responds to a modulation of the magnitude of the spin denthese jumps are a consequence of the first-order nature of
sity which alters neither its direction in space nor thethe T=0 antiferromagnetic transition from thé, side. Al-
antiferromagnetic correlation between the wells. We notdhough finite temperatures will probably restore continuity to
that, unlike the low-frequency mode, the optical mode bethese curves, the large changes indicated may be experimen-
comes so strongly Landau damped once it enters the particléally observable and could provide strong evidence of the
hole continuum that it is no longer identifiable. transition.
The two collective modes that appear in our calculations Whether the changes in the intersubband excitation spec-
can be understood from general principles of phase transtrum we have discussed are observable in, for example, in-
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A A B B this effect may result in a strong variation in the observed
1 2 1 2 . . .
. o light-scattering spectra after temperature cycling ablyer
. between different samples.

N | i VI. DISCUSSION AND SUMMARY

e B In this paper, we studied the magnetic instabilities of
semiconductor quantum wells within the local-density ap-
proximation to density-functional theory and a self-
SDE <" Amplitude | consistent Hartree-Fock theory. To create a consistent picture
’ Mode ] of the results of these calculations, one must realize that
1 i these two formalisms supply complementary information.
0 . ‘ | The LDA computations are designed to be quantitatively re-
0.50 0.75 1.00 1.25 1.50 liable for the normal-state properties of these quantum-well
Ny / 2Nghgs structures. The self-consistent Hartree-Fock calculation, on
the other hand, is only qualitatively reliable, but it is able to
TR — describe broken-symmetry phases that cannot be studied
[ (0) Ny/@NgAgg = 25 T within the LDA. In particular, there is little point in trying to
I T 1 relate the parameters from the self-consistent Hartree-Fock
3 . calculation to the LDA results, because the former neglects
I ] such real-world effects as the distribution of the donor im-

O% I e purities which the latter includes. Hence the LDA calcula-
<2 - tions should indicate whether or not the transition occurs,
z L SPE Am litude ] and suggest the structures and densities at which to look for
N Mode ] it, and the self-consistent Hartree-Fock calculations should
L ’ ] provide information on the qualitative features of the result-
ing antiferromagnetic phase that can assist experimentalists
| in identifying it.
((’) 5 0‘4 0'6 0.8 The only qualitative point about which the LDA and self-

' ' ' ' consistent Hartree-Fock calculations disagree is the ordering
wave vector of the transition from the two-subband-occupied
_ 0 side of the phase diagram: the LDA vyields=kg;—Kkg,,

FIG. 18. Normalized energ§ w/Asps of theq=0, T=0 col-  \hjle the self-consistent Hartree-Fock calculation gives
lective excitations and interacting subband splitting @ra fixed g.=0. As mentioned in Sec. V B, the discrepancy between
interactionNoVy,=1.0 and varying sheet d_e”Si"‘yS/ZNOAgASa”q the two formalisms can be traced back to the number of
(b) varying interaction NoVi, and fixed sheet density q,phands included in the calculation and not to the form of
Ns/2NoAsas = 2.5 in the antiferromagnetic sector of the point- o jntaraction, which is taken to be independent of wave
contact model discussed in the text. lllustrated are the intersubba Lctor in both (’:ases Since one expects a calculation includ-
spin-density (S.DE’ solid lines gnd charge den.Si.ty excitations ing more subbands 'to be more accurate, it is reasonable to
(CDE, dotted lines; the renormalized subband splittid:s (SPE, conclude that at least some part of the t,rue hase diagram
dot-dashed lings and the amplitude mode in the antiferromagnetic P P . 9

would haveq.# 0. That not all of the soft-SDE region of the

phase(dashed ling The top axes show the corresponding points in ) ;
the phase diagram in Fig. 12. As seen(im, the collective mode Phase diagram would havg.#0 is demonstrated by that

energies are discontinuous across the two-subband-occuligd ( fact that the one-subband-occupied SDE's unambiguously
to antiferromagnetic phase boundary Bt 0, indicating a first- ~ soften atg.=0 in both the LDA and self-consistent Hartree-
order transition. Fock theories. Since the latter theory focuses on interwell
effects and neglects intrawell ones, its predictions regarding
elastic light-scattering experiments, depends to a great exteirtterwell properties such as the long-wave length intersub-
on the spectral weight associated with these features. As diand spin-density excitations may be qualitatively valid even
cussed in Ref. 25, peaks associated with the phase mode, tiethe g.#0 phase. This phase would have a nontrivial spin-
amplitude mode, and the intersubband particle-hole condensity modulation transverse to the quantum-well layering
tinuum should be visible in Raman spectra, but the responsdirection, but whether this modulation would be of the form
is dominated by the low-frequency phase mode. Most inelasef a simple spin-density wave or something akin to an anti-
tic light-scattering measurements are done at smaiind  ferromagnetic Skyrmion latti¢&in zero field cannot be de-
moderate frequencies, so the phase mode may be difficult iermined from the present calculations. Future investigations
observe unless a concerted effort is made to look for it. In€xploring theq.# 0 phase, and in particular the nature of the
deed, the signature of the antiferromagnetic phase in convewrossover between the.=0 and q.#0 phases, could in
tional light-scattering experiments may simply be the apparprinciple be performed within a generalization of the self-
ent absence of all intensity. We also note that theconsistent Hartree-Fock formalism discussed in this paper.
polarization of the scattered light relative to the antiferro- Our calculations have focused on the physics along the
magnetic ordering direction may affect the observed intensitayering direction, and it is reasonable to ask to what extent
ties of these modes. Since the ordering direction is arbitraryexchange and correlation normal to the layering direction
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have been included. In addressing this point, it is useful talso include the approximate effects of in-plane exchange.
discuss the local-density approximatighDA) and self- We take the screened Coulomb interaction which enters the
consistent Hartree-Fock calculations separately. In the LDAself-energy equations to besgunction in three-dimensional
the effects of exchange and correlation are approximated bgpace. Calculating the properties of our double-quantum-well
a functional of the local electron density. The form of this system with this model interaction automatically involves
functional is deduced from Monte Carlo calculations for aexchange effects both along and normal to the layering di-
free-electron gas in either two or three dimensions. If therection, although this fact may not be apparent from the
ground state of the quantum-well system is translationallysimple wave-vector dependence of this interaction when ex-
invariant along the plane of the wells, then the local electrorpressed in terms of the basis of Eg0). Other worker&®
density depends only on the coordinate normal to the planeolve essentially the same equations in the normal state, but
of the wells,z, leading to Eq(1). Although an explicit func- choose different form for the screened Coulomb interaction.
tion only of z, the effective potential implicitly includes the As argued above, our admittedly crude approximation to the
effects of exchange and correlation along the plane of théteraction should nonetheless allow the study of the quali-
wells through our choice of the exchange-correlation potentative features of the antiferromagnetic phase whose bound-
tial [Eq. (31)]. The form of the interaction then allows us to ary is quantitatively predicted by the LDA.
separate the electronic wave function into a confined compo- With these comments in mind, let us summarize the pri-
nent along the layering direction and a plane-wave compomary results of this work. We have presented a TDLDA
nent normal to ifcf. Egs.(3) and(40)]. This approach is the calculation which shows that the intersubband spin-density
conventional one and underlies almost all calculations of the&xcitations (SDE'’s) in certain coupled double- and wide
physical properties of metal-organic semiconductor field-single-quantum-well structures soften completely in a range
effect transistors and GaAs heterostructiffes. of densities around the point where the second subband be-
This approach fails if either the translational invariance isgins to populate (18-10'* cm~2) and in the absence of an
broken or the LDA is no longer a good approximation. Theexternal magnetic field. Based on these calculations, we con-
loss of translational invariance occurs in the Wigner solid orstructed a phase diagram indicating the structures likely to
in the g.#0 phase discussed above; the LDA can only ex-exhibit this instability. We also computed the excitation
amine the boundaries of these phases but not their propertiespectrum measurable by inelastic light scattering near the
The range of validity of the LDA as a whole is somewhat instability in order to illustrate how the SDE softening would
trickier to ascertain, but its use can be justified by the re-appear in these experiments. Since the TDLDA yields both
markable agreement between its predictions and experimespin- and charge-density excitation spectra which are in very
in both fully three-dimensional and low-dimensional con-good quantitative agreement with experim&ht:?*the soft-
fined quantum systent€232261\we may therefore conclude ening of the spin-density excitations should be observable in
that our LDA calculations contain an appropriate amount ofthe appropriate range of densities.
in-plane exchange and correlation effects. Indeed, if that In trying to understand this instability, we have explored
were not the case, the LSDA would see no ferromagnetithe possibility of ferromagnetic transitions in double- and
transition at all. single-quantum-well structures by including the spin degree
The main effect of in-plane exchange-correlation correcof freedom in a density-functional calculation within the
tions, as long as there is no exchange-correlation-inducedSDA. We find that a ferromagnetic transition occurs in the
guantum phase transition or planar symmetry breaking of thdouble-quantum-well structures which exhibit SDE soften-
type discussed above.g., Wigner crystallization or ferro- ing, but that the transition occurs at much lower 10°
magnetisny, is to introduce many-body Fermi-liquid renor- cm™2) densities, implying that the SDE softening cannot be
malization of the various one-electron parameters such as tlessociated with ferromagnetism. In square single quantum
effective mass and band gap which enter into the LDA calwells, our computations provide evidence of a spin-polarized
culations. Such two-dimensional renormalization effects inphase of the electron gas which lies between the Wigner
GaAs quantum wells have been extensively studied in therystal and normal phases. The critical density for this tran-
literature®? and the quantitative corrections are usually notsition decreases with increasing well width, demonstrating
very large. The LDA calculations should be presumed to bdhat exchange-correlation effects are stronger in lower di-
carried out using effective parametdesg., effective mass mensions, as expected from a simple Hartree-Fock analysis.
which already incorporate these two-dimensional renormal- Having failed to identify the SDE-softened phase within
ization effects. Thus the LDA should be considered an effecdensity-functional theory, we turned to a simple model of
tive theory for describing the normal-state intersubband eleceoupled double quantum wells which we treated within self-
tronic properties. In general, LDA-type calculations haveconsistent Hartree-Fock theory. This model is able to repro-
historically been extremely successful in quantitatively de-duce the SDE softening in its normal state, and the polariza-
termining the intersubband collective mode energies in GaAson of the soft mode indicates that the softening signals the
guantum welldsee Ref. 24, for exampleA full calculation  onset of antiferromagnetic order in the spin density between
of the quantum phase transition predicted and studied in ouhe wells. Extending our calculations into the antiferromag-
paper which includes the complete effects of the Coulominetic phase, we found that this phase exists and is stable over
interaction both in the plane and perpendicular to it is obvi-a wide range of parameters, and that the mean-field transition
ously well beyond the scope of current-day computationatemperature can be of the same order as the symmetric-
resources, and is quite unnecessary for the reasons discussadisymmetric splitting. In addition, we found that the tran-
above. sition to this phase at zero temperature is second order from
The self-consistent Hartree-Fock calculations in this papethe single-subband-occupied side of the phase diagram, but
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first order from the two-subband-occupied side. Due to thehe transition occurs, implying that the actual antiferromag-
absence of an energy gap in the single-particle spectrum, weetic instability may take place at lower electron densities. A
do not expect strong anomalies in the transport properties tthird possibility is that the TDLDA approach may simply be
accompany the transition; however, our calculations of thénadequate for studying semiconductor quantum wells at the
electronic specific heat show that, if this quantity is measuriow densities involved.
able, it will show a characteristic discontinuity at the transi- More promising are the experimental results in small but
tion temperature. A means of searching for the transitiorfinite magnetic fields along the layering direction, which do
which is more likely to succeed is the measurement of théndicate a softening of the intersubband spin-density excita-
collective spin-density excitations through inelastic lighttions at the filling factorsy=2 and 6°° The general obser-
scattering. By computing the spectrum of these excitations iwation of the softening of the intersubband spin-density ex-
the antiferromagnetic phase, we identify a Landau-dampeditations in the presence of a magnetic ff8lig qualitatively
phase mode of the order parameter and a true optical colleconsistent with the prediction of our zero-field theory, since
tive excitation corresponding to the amplitude mode. Thea magnetic field weak enough so that the system in not com-
spectral weight associated with the phase mode is large, sugletely spin-polarized enhances the effects of the interaction
gesting that inelastic light-scattering experiments shouldy reducing the kinetic energy through Landau quantization.
look at low frequencies for this characteristic excitation of Thus, the magnetic field naturally enhances the potential for
the antiferromagnetic phase. the type of spin instabilities discussed in this paper to appear.
In closing, we note that at least one experimental groupMoreover, the basic Hartree-Fock theory underlying the de-
has investigated the possibility of an antiferromagnetic phasscription of the resulting broken-symmetry states do not
transition of the type we describe by performing resonanthange, although the effects of Landau-level quantization
inelastic light-scattering measurements on double-quantunshould be included. Such a generalization of the self-
well structures?® The results, however, have been mixed. Inconsistent Hartree-Fock approach is straightforward, and is
zero field, the complete softening of the spin-density excitaleft for future work.
tion does not seem to appear in the electron density regime
(=5%x10'° cm~?) predicted by the TDLDA theory. It is
possible, of course, that impurity-scattering-induced broad-
ening effects make it impossible to observe the complete The authors would like to thank R. Decca and P. B. Little-
softening of the spin-density excitation. Alternatively, the wood for useful discussions. This work was supported by the
TDLDA theory may overestimate the density range in whichU.S. Office of Naval Research.
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