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Elementary excitations of incompressible quantum liqi@d.'s) are anyons, i.e., quasiparticles carrying
fractional charges and obeying fractional statistics. To find out how the properties of these exotic quasiparticles
manifest themselves in the optical spectra, we have developed the anyon-excitor(Aftide¢land compared
the results with the finite-size data for excitonswef 1/3 andv=2/3 IQL’s. The model considers an exciton
as a neutral composite consisting of three quasielectrons and a single hole. The AEM works well when the
separation between electron and hole confinement plémedeys the conditiom=2I, wherel is the mag-
netic length. In the framework of the AEM an exciton possesses momektamd two internal quantum
numbers, one of which can be chosen as the angular momdntuinthe k=0 state. Charge fractionalization
manifests itself in striking differences between the properties of anyon excitons and ordinary magnetoexcitons.
The existence of the internal degrees of freedom results in the multiple-branch energy spectrum, craterlike
electron density shape, and 120° density correlation& 0@ excitons, and the splitting of the electron shell
into bunches fork#0 excitons. Forh=2| the bottom states obey the superselection tue3m, where
m=2 are integers, and all of them are hard-core statesh&d&l there is one-to-one correspondence between
the low-energy spectra found for the AEM and the many-electron exciton spectra ot IQL, whereas
some states are absent from the many-electron spectra o&thé8 IQL. We argue that this striking difference
in the spectra originates from the different populational statistics of the quasielectrons of charge conjugate
IQL’s and show that the proper account of the statistical requirements eliminates excessive states from the
spectrum. Apparently, this phenomenon is the first manifestation of the exclusion statistics in the anyon bound
states[S0163-182606)07643-4

[. INTRODUCTION duced to the minimum. The intrinsic spectroscopy of IQL’s
is the magnetospectroscopy of excitons. However, properties

Incompressible quantum liquilsS(IQL’s) underlie the of excitons reflect the spectrum of the elementary excitations
fractional quantum Hall effedtFQHE) discovered by Tsui, of an IQL (quasielectrons and quasiholes, magnetorofons,
Stormer, and GossafdThe charge carriers in these liquids etc) and can be treated in terms of them only when the
are anyons, i.e., quasiparticléguasielectrons and quasi- separatiorh between electron and hole confinement planes is
holeg carrying fractional chargésand obeying fractional sufficiently large. Indeed, whem<I, wherel is the magnetic
statistics** Historically the main experimental discoveries in length, the filling factorv of the liquid strongly deviates in
this field were done by magnetotransport experiments. Howthe vicinity of the hole from the quantized value=p/q.
ever, the role of spectroscopic methods is continuously inUnder these conditions the properties of the IQL cannot be
creasing since they provide an indispensable tool for investreated in terms of its quasiparticles. The spectroscopy of a
tigating spectra of elementary excitations. Fine structureemote hole has been discussed from different standpoints in
specific for different electronic phases was discovered in the number of papers.12 Despite the fact that experiments in
spectra of radiative photoemissidiThese spectra were used theh>| region are rather complicated, the separations up to
to measure gaps in the energy spectra of IQL’s, for investih~5| were achieved in experiments on extrinsic radiative
gation of phase transitions between the IQL and Wignephotoemissiot® Of special importance might be experi-
solid phases, etc. The frequency of long-wave neutral elments performed for a fixed filling factor=p/q and a vari-
ementary excitations of IQL’s was measured in Raman scatble dimensionless electron-hole separatioh'* The first
tering experiment§. experiments of this kind were reported recerfly.

A challenging problem in physics of IQL’s is a direct  The investigation of excitons is also important from the
observation of the charge fractionalization. Between differ-different standpoint. In the theory of IQL’s the statistical
ent exciting approaches to this problem the spectroscopiproperties of the system of free anyons are usually discussed.
approach seems to be one of the most promising. Indeedh an exciton the anyons exist in a bound state because of the
spectroscopy permits one to observe properties of IQL’s irattracting potential of a hole. It was shotf’ that the en-
the bulk where the effect of the impurities and edges is reergy spectra of excitons of=1/3 and v=2/3 IQL’s are
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closely related to the statistical and dynamical properties ofight exciton is the bottom state of the exciton spectrum in all
guasielectrons of these IQL’'s. Therefore, the exciton probthe regionh=<2I. Therefore, thdr=2| region seems to be of
lem can be really treated as a few-anyon problem. Excitonthe most importance for the study of the anyon substructure
represent a wide class of few-anyon systems. It includes exef excitons and for the spectroscopic observation of the
citons, anyon ion$'® (which can be also treated as charge fractionalization.
quasiparticle-exciton compleXds some impurity centers, =~ We suppose everywhere in this paper that the spin-
etc. In what follows, we consider excitons as bound few-Polarized background is stable with respect to formation of
anyon composites and investigate their properties in somgharged spin textures(skyrmiong. It was predicted
detail. recently’® that spin textures develop in the ground state of a
There are two approaches to the theory of excitons iv=1 exciton for large values ofi/l; the critical value of
IQL’s. The first approach is based on the exact diagonalizab/! is about 1.5 for GaAs. Nevertheless, we feel that the
tion for finite-size systems in the spherical geométriflav-  spin-polarized ground state of &= 1/3 magnetoexciton is
ing in mind workable system sizes, it provides reliable re-stable because skyrmions can exist only at very low mag-
sults for h<2l, at least as applied to the=1/3 and netic fields whenv~1/33 Spin-depolarized excitons should
v=2/3 IQL’s. The second approach is based on the anyorP€e seen in the spectrum of excited states.
exciton model(AEM) proposed by the present authdts? In this paper we develop the theory of excitons in the
In the framework of this approach an exciton is considered affamework of the AEM as applied to excitons consisting of
a neutral composite quasiparticle consisting of severalhree quasielectrons and a hole. We use Halperin
anyons and a hole. This model is exact only when the excipseudo-wave-functiodsn a boson basis and investigate the
ton size which is abouh is large compared to the size of energy spectrum, electron density distribution, and anyon
anyons which is about i.e., forh/I>1. Therefore, the two correlations in an exciton. We make comparison with the

approaches are complementary and one can expect that thijite-size daté'’ on the excitons of thev=1/3 and
match wherh/l ~1. v=2/3 IQL’s and conclude that excitons of the=2/3 IQL

It is the main statement of the AEM that excitons of are described rather well by the AEM because of the bosonic
|Q|_’S possess a mu|tip|e-branch spectrum. Indeed, a Chargdﬂ.‘)pulational statistics and the narrow form factors of the
particle at the lowest Landau level possesses a single degrégasielectrons of this liquid. We also relate the difference in
of freedom and a single quantum number. An exciton beinghe energy spectra of the anyon excitons of thel/3 and
a neutral entity possesses in a magnetic field a vector mgz=2/3 IQL’s to some specific features in the exciton shape
mentumk absorbing two degrees of freeddiiTherefore, an  found in the framework of the AEM. For both IQL’s the
exciton consisting of] anyons and a hole possessps 1 bottom exciton states are made by tight 0 excitons for
internal degrees of freedom. For an ordinary magnetoexcitoR=2l and by a succession of anyon excitonsHer2|. This
g=1 and the spectrum consists of a single-branch. Fopuccession consists of hard-core excitons with the angular
g=2 an exciton acquires internal quantum nuntgeand mMomentaL which are integers of 3 and increase lash?
multiple-branch spectrum. This prediction of the AEM per- With h.
mitted Apalkov et a]16:17.24 ¢4 represent the energy spectra The general outline of the paper is as follows. In Sec. Il
found by finite-size computations for=1/3 and »v=2/3  We construct a full basis of the exciton wave functions for
IQL’s as a system of exciton-branches and to assign to thed8e AEM using the translational symmetry and permutation
branches internal quantum numbers. The latter determine tH&ymmetry arguments. In Sec. Il we develop a technique for
values of the exciton angular momentumin the k=0 calculating different matrix elements entering the Sehro
states. Zang and Birm&hand Chen and Quirtfi also in-  dinger equation. In Secs. IV, V, and VI we obtain energy

ferred the existence of several exciton branches in theipPectra, electron density distributions, and the density corre-
finite-size data. lation functions, respectively. The latter functions unveil the

In the range accessible for finite-size studtes;2l, there ~ anyon substructure of excitons both in the finite-size data and
are two types of excitons in the lower part of the energyin the AEM. In Sec.VIl we make a comparison of the results
spectrum, anyon excitons and tight excitoAsyon excitons obtained in the framework of the AEM with finite-size data
are loose entities with a pronounced anyon-density dip at thef Refs. 16 and 17. We propose that a striking difference in
center. They are generically related to the quantum statel§e finite-size data for the=1/3 andv=2/3 IQL’s origi-
making up the low-energganyon sectof?® of the electron  nates from the difference in the populational statistics of the
subsystem. Each anyon exciton is a bound state of a threguasielectrons of these liquids.
quasielectron complex from the anyon sector and a hole.

This finding_establishes a connection betV\_/een the spectros- 1. WAVE FUNCTIONS

copy of excitons and the low-energy physics of the FQHE.

There is a striking difference in the quantum numbers of the Let us consider an exciton consisting of a valence hole
low-energy anyon-excitons of the=1/3 andv=2/3 IQL’s.  with a charge {-e) and three QE’s with electrical charges
It is related to the difference in the energy spectra of the{ —e/3) and statistical charges Such an entity provides the
three-quasielectron complexes originating due to the differAEM description of the anyon excitons of the=1/3 and
ent populational statistics of the quasielectrons of these ligg=2/3 1QL's. For an »=1/3 IQL the statistical charge
uids. Tight excitonsare dense entities. A sharp density maxi-equals o= —1/3, while for a v=2/3 IQL the statistical
mum is achieved either in the center of an exciton or in acharge has the same values=1/3, as for quasiholes in a
close vicinity of the center. These excitons are not related to=1/3 IQL.2 In comparisona=0 for bosons andv=1 for
the low-energy sector of the electron subsystem. Thed  fermions. In the strong magnetic field limit, when the Cou-
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lomb energyec=e? el <fw., Where w. is the cyclotron nomial of the degree which is symmetric in all coordinates
frequency ana is the dielectric constant, it is convenient to Z These polynomials form a boson basis, and the effect of
employ dimensionless variables scaled in umits, |, and  the fractional statistics is taken into account by the factor
e. We use the symmetric gauge=2zXxr/2, wherez is a unit Hj|(z_j|)“.3’31 (iv) A system of four charged particles in a
vector perpendicular to the confinement plane. Instead of theagnetic field possesses four quantum numbers. Two of
hole, ry,, and anyony;, coordinates it is convenient to in- them are absorbed in the 2D momentumTwo others de-

troduce the following two-dimension&2D) coordinates: termine the form of the polynomid_ and are internal quan-
3 3 tum numbers of an anyon exciton. The operdtgrof the z
1 1 1 B projection of the angular momentum commutes with the
R== rh+—z ril, p——z r] M, rj|—rj_r|, R . ~ .
2 31 3 Hamiltonian and the square of the mqmentlkﬁ),butAlt does

i1=12, 23, and 31. & not commute with the projections df, .i.e., with k, and
ky. Therefore, the functioW| , chosen in thek,,k, repre-
R has a meaning of the center-of-mass of the exciton coorsentation is simultaneously an eigenfunctionLgfonly for
dinate. The coordinates andr;, are the internal variables k=0, and in this limitL,= —L.
which are not affected by the translational motion of an ex- Therefore, the quantum numbers of an anyon exciton in-
citon. Complex coordinateg, =x; +iy;; , as well agj; , are  cjude the 2D momenturk and the projection of the angular
not independent. Indeed, momentum) ,= —L, of the exciton withk=0. The angular
Foo Pt Far=0 @ momentumL numerates branch(_as of_the excitqr) spectrum.
127 t2st il The fourth quantum number, which will be specified in what
Despite the fact that the constrai{® results in some com- follows, numerates branches with coinciding valuesLof
plications, the introduction of the variableg enables one to  The multiple-branch structure of the anyon exciton spectrum
develop the theory in a form symmetric in all anyons and,is a direct consequence of the charge fractionalization which
therefore, finally simplifies the equations. results in the appearance of the internal degrees of freedom
Anyons and hole live in two different parallel planes of an anyon exciton and of the related internal quantum num-
separated by the distanbe Nevertheless, only the 2D coor- bers.
dinates of Eq(1) enter into the exciton wave function. The By definition, the polynomiaP is symmetric in coordi-
separatiorh enters only into the Hamiltonian of the anyon- natesz;. To establish the symmetry of it in the symmetric
hole interaction derived in the Sec. Il C. coordinatesz;;, one can start with a monomiiff;?;?l,
The most general form of the pseudo-wave-function of amapply to it all operations of the permutation group, and take
anyon exciton meeting all general requirements is as followsthe sum over the group. This transformation results in the
polynomial

_ i 1
\PL’k(R,p,{Z'|})=eX4ikR+ 52 (pXR) = 2 (p— d)z] —tyotyoty | ottty gt
: 2 4 (2232 3T2 57 52 T2 502 17 2
P2y H e i e e i Y e e i D),
>va |2 N which has different properties depending on the parity of
le:[ (z;)"exp] |ZJ'| /36}/ 2mA, L=I,+I,+I5. If L is even, the polynomial is a permanent,

3 and, therefore, is symmetric in the coordinazt_ﬁs However,
when L is odd, the polynomial is a determinant which is
where the pair of indicefl takes the values specified in Eq. obviously antisymmetric in the coordinate_§ and is non-
(1), A is the normalization area, arfé} is a homogeneous equal to zero only fot,#1,+# 5. For example, for the lowest
polynomial in coordinatez_“ of the degred.. possible value oE, L =3, this determinant turns into a Van-
The basic properties of the functiodg , can be checked dermonde determinant

by inspection.(i) Since the exciton is a neutral entity, it
possesses an in-plane momentiif? and ¥, satisfies the 1 1 1

equation of magnetic translations: W(Zr ZgsZa) = | 712 723 Zay

TV k(R.p{z;}) =exdia-A(p) ]V «(R—-a,p.{z;}) 73, 7% 2%
=e W (R,p{z;}). 4 = (210~ 29 (Zo5— 230 (Z1— 210 (5)

The parameted=2Xk is related to the dipole moment of Therefore,L-even andL-odd polynomialsP, have rather
the exciton (-d). (ii) The function¥_, belongs to the low- different properties. All of them are symmetric in bosonic
est Landau level. Indeed, the nonanalytic factor of it can bgermutationsz; — z,, etc., but they have opposite symmetry

shown to have the form with respect to the permutations of thg« z,3 type. To find
the explicit form of the polynomial®, , it is convenient to
exp{ _ i2~|z-|2—£|z 2 introduce new real coordinates
1270140 g et
- 3
whereas the other factors are analytic functionszofind . :lz ) 6
. - . ! §] r] ro, To r]l- ( )
z,. (i) The functionP (- - -z; - - -) is @ homogeneous poly- 3i=1
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wherer is the center of mass of the anyon sybsystem. Thénteraction. It means that we neglect form factors of
corresponding complex coordinates gfe- &,+ié;,. These quasielectrons which have a scale of several magnetic

coordinates are subject to the constraint lengths and are known only approximatéfy® We post-
5 3 pone the discussion of inaccuracy originating from this ap-
S g S - proximation to Sec. VII.
= §=0, = ¢=0. () Unfortunately, functions¥_ \, , are orthogonal only in

quantum numberg andk. As a result, the scalar products
In these coordinates the bosonic symmetryPpfhas the (¥ y «, ¥ v/ k) #0 for M#M’, and the matriB of these
usual form, and we can apply the fundamental theorem of thecalar products is block diagonal. The size of blocks is equal
theory of symmetric polynomiaf. According to it, to 1 forL<6 andL=7 and increases by 1 each time when
PL(¢1.¢2,¢3) can be expressed in the unique way as a polyL increases by 6. With a nondiagonal matBxthe Schre
nomial in the three elementary symmetric polynomials: edinger equation has a form

P1=81+ 8ot s, Pa=818ot {ods+ {5384, p3=§1§2§(38-) I:|X=sl§>x, (1D

and one has to find matricé$ andB. To perform the cal-
culations, it is convenient to employ variabRsp, and three
rij and to take into account the constraint of E2). by the
usual transformation:

The first polynomial is equal to zerp, =0, because of the
constraint of Eq.(7). Therefore, the polynomial®, are
polynomials only inp, andps. The firstL-even polynomials
are Py = const, P,oxp,, P4o<p§; i.e., there exists only a
single elementary polynomial of a given degteeHowever, df
two elementary polynomial:pg and p%, contribute toPg. It O(r 1t rogtra)= f ———exp{if-(ript+rogtra)}.
is easy to check that the number of basis functions increases (2m) 12
by one each time wheln takes values = 6m, wherem is an (12)
integer. Therefore, the number d&f-even polynomials is It adds the new variablg but all calculations become sym-
equal to[L/6]+ 1, where[L/6] is the integral part oL/6.  metric in anyon variables. The Jacobian of the transforma-
All L-odd polynomials can be obtained by multiplying tion is equal to 1.
L-even polynomials byps. The latter equal®s=— % W The Hamiltonian is diagonal ik; therefore, we write out
because of Eq(6). only thg diagone_ll irk mat.rix elements. Fok=0,. the Hamil-
We are now in position to choose a full basis of polyno-tonian is also diagonal i, and Eq.(11) acquires a block
mials P in symmetric coordinateg; . These coordinates diagonal form.

are most convenient for all the following calculations. Since all terms in the polynomiaB, ., Egs.(9) and
L-even polynomials can be chosen as (10), have the same form, we concentrate in what follows on

the matrix elements taken in the basis of the functions
_T1L-4MT2MS2M |, S L—4MS2M52M .
Pim=2z1, 725325 tZ5 7253127 Wik

—L—AMS2MS2M
tZ3 TZ15Z%, 9

_ [
v R,p.{z;})=exp ikR+ 5z-(pXR
whereM=0,1,.. .[L/6]. PolynomialsP, ,, are linearly in- R iZ}) p[ 2 (PXR)

dependent, and the total number of polynomials with a given
Lis gqual tg L/6]+ 1. All linearly independent.-odd poly- —L(p— dy];:g*”z_gg “Z_"Si““
nomials can be obtained as

PLm=WPLsm, Pao=W. (10 Xexp[—E |zj||2/36]/ J27A.
The total number of them equdléL —3)/6]+1. I
This choice of polynomials determines the full set of (13

guantum numbers in the wave function of Eg) asL, M, H | 1P bstituted b ial d
andk. To our best knowledge, in the previous studies only''€'€¢ Polynomiais—, y aré su stituted by monomials, an

the L-even polynomials have been taken into accddnt. {n} denotes a set of quantum numbags n,, andns. In the
When choosing polynomiaB, ,,, we have not imposed the foIIovv_lng parts of this section we describe in some detail the
hard-core constraint and defer the discussion of the relatertﬁecm'que for performing different types of integrals.
properties to what follows. _ _

It is an important feature of the AEM that the wave func- A. Nonorthogonality matrix elements
tions (and, therefore, electron densities, ptof all eigen- The scalar products of function ., when written in
states withL<5 and alsoL =7 are completely determined the variablexR, p, andr,, have the form
by the symmetry requirements. They do not depend on the
specific form of the Hamiltonian and, in particular, bn By =({n}H{n'})

Ill. THE SCHRO DINGER EQUATION :f de dpf (277)2f i 01 el 52

In this section we calculate the Hamiltonian of the AEM
in the W\ « basis as the matrix of a point charge Coulomb XW nXplif- (ot rogtra)}. (14

i
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Integration overR and the Gaussian integration overare {{n}|{n"}). They do not depend ak either. The coefficients
straightforward. Sinc& . is multiplicative in the variables of these combinations can be found from E6®, (9), and
rj, one can rewrite Eq14) in the form (10), but the final expressions are rather cumbersome, espe-
cially for L-odd polynomials. Therefore, we do not write out
here their explicit form.
Integrals(21) can be simplified forx=0. Indeed, in this
(15 :
= case the Kummer transformatitn

(iD= [

where O(B,y;)=€e'D(y—B,y;—1) (23

results in ab function with the first parameter/(— B) equal
2 gty to a negative integer. This function reduces to a polynomial,
M ()= f dr r>z"z™e : (160 and®(B,y:t) to a polynomial multiplied bye'. Therefore,
the integral in Eq(21) for ({n}|{n’}) can be performed ex-

Since actly. This transformation highly simplifies calculations. In-
deed, in the largé region, where the criterion of the appli-
o cability of the AEM is satisfied, the statistical parameter
f d(pe:imwifrcosw:zmIml\]‘ml(fr), (17)  can be neglected as it is shown in Sec. IV below.
0
whereJ|(fr) is a Bessel function, the angle integration in B. Anyon-anyon interaction
Eq. (16) results in The Hamiltonian of the anyon-anyon interaction is
) Vaa=5{[zul "+ [2d 2+ (23] 71}, (24
ﬁm;,(f) 2qiIm-m |ex;{|(m m )(pf]/\/lmm,(t) (18

) . ) Matrix elements 01\A/aa in the basis of the function¥
wheret=9f/2, ¢ is the azimuth of, and can be calculated by analogy with the matrix elements
{n}{n'}). The denomlnator$zj,| ! lower the power ofr

w by 1 in one of the/\/l (f) factors entering in Eq15). The
(t)= drr1+2a+m+m’efr2/18\] (fr)
o Im—m’| . final expression for the matrix element is
(19

This integral can be expressed in terms of the confluent hy({nHVaaHn 1)
pergeometric functiod (3, y;t) as”’

M(a)

mm’

1 o— [e3 o
( - o )Z{M HAOME OMD ()
M@ (H)=T(maxm,m’} + a+1)
(a) (a 112) ()
2|m+m’\/2+a3|m+m’|+2(a+1) +M (f)M (f)M ( )
t\m—m’\/z
[m—m’! +|v|<“) (@ )M(“ RUL l’2>(f)} (25)

X®(max¥m,m’}+a+1|m—m'|+1;—t). _ . _
Like the nonorthogonality matrix elements, matrix elements

(20 of Vaa also do not depend on the momentkm For this
Here maxmm'’} is the larger of the integers andm’. After  reason, the matrix of the operatd,, is diagonal in the
the integration overg; in Eq. (15, the coefficients angular momentuni,, for arbitrary values of the momentum

{{n}|{n'}) take the form k.
3 C. Anyon-hole interaction
{n}l{n'})= 5nn,(277/3)2f dt[T i, b, The Hamiltonian of the anyon-hole interaction has a form
0 j=1 i
(21)
3
where ~ 1o -~ - _
Van=—52>, Vin(rjn) =1jn", (26)
n=n;+n,+n;. (22 B

where the three-dimensional anyone-hole separatign

Therefore, the scalar produ¢fn}|{n'}) of wo functions should be expressed in terms of the difference coordinates:

Wik is reduced to a onefold integral from the product of
three confluent hypergeometric functions. Matrix elements Foo=p+L2(Fioera)+3h 2
{n}{n’'}) do not depend onk. Scalar products =Pt 5Nz Ta) ' @0
(L,M|L",M") of two functions¥_ y, \, which include poly- ~ Similar equations hold for,, andr gy, .

nomials P, are linear combinations of the coefficients It is convenient to introduce the Fourier image
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Vin(ran) == Jﬁvah(q} ({n}Vanl{n'}y= - f( —zvah(q)e qiz+ik-q

i (@ oM@ (a)
Xexp{iq~p+§q~(r12—r31) - XM (DM (F- /M 70 (F+a/3).

(29
where V,,(q) = (27/q)exp(—gh). The integrations oveR

and p in the matrix elements o¥,,,(r4;) can be performed _ .
in the same way as in Eq14), and the result can be ex- After the angular integration, the factoMS,j’%J, take the

pressed in terms of the coefficierivg&‘fr)n, , Eq.(16), as form of Eq.(18), and Eq.(29) can be rewritten as

3
77)2

1—[1|\n (2m )2j(2 )2 Van(g)e™ 972+ 1k Gexpi oy(n; —nj)

({n}Vapl{n’ }>——

Fie-(Np=np)+ie,(Ng=ny}M," (@) (9f2/2)M<“> (9f /2)/\/1(“ (9f 12). (30)

Vectorsf.. are defined by the equation
f.=f*xq/3. (3D
One can perform one angular integration in E20) if the phaseg; is eliminated by change in the variables:

P=@r—@q, Y= . (32

Here ¢.. are phases of vectofs .
After the integration over,, Eq.(29) takes its final form:

3

~ 1 o et o o B 2 ) , ] ,

<{”}|V1h|{”'}>:_§'|n : lHl il ”1|JO dfff0 dgqVin(g)e qz/2J|n,n,|(kq) . deexplie(n—n')+ig_(n,—ny)
j=

i (Ng= NG ML (9T M (91212 M (91212). (33

Here the direction ok was chosen anng.theaxis to elimi- {/aa andB are diagonal irL for arbitraryk. It was shown in
nate the complex phase from the matrix elem®. Ex- Sec. Il that for each value &f such thal.<5 orL=7 there

plic_it expressions ofj. E_mdfi In terms of the integration exists a single eigenfunction, and it does not dependh.on
variables are as follows: For these values df the equations of Sec. Ill immediately
give the energies df=0 states. When the number Bf \,
/ f, f3=f2+(q/3)2tzchogp_ polynomials with a given value df becomes two or more,
- - 3 equations of Sec. Il give the coefficients of secular equa-
(34 tions of the second, third, etc., order which determinefthe
dependent eigenfunctions and eigenvalues.
The order in whickk=0 levels are arranged changes with
. increasingh. The main regularities can be understood using
real for all sets of the quantum numberg},{nj} compat-  ¢jassical arguments. In the classical limit, which is achieved
ible with our choice of the polynomialB, i, Egs.(9) and o 4 |arge exciton size, the exciton ground state takes the
(10). Matrix elements of the operatoké,, and Vg, can be  shape of an equilateral triangle with anyons in the vertices
written by analogy with Eq(33). ) and a hole in the center. The anyon-anyon distance in this
Equations(25) and (33) for Ehe HamiltonianH and Egs. triangle, r;,, found from the minimum of the electrostatic
(14) and (21) for the matrix B determine completely the energy, is equal to
Schralinger equatiorn(11).

q .
+— e
f_3 e

éwi:

One can check by inspection that E§3) is symmetric in
the indicesn,,n; andns,n3, and that matrix elements are

r12: \/3/21. (35)
IV. ENERGY SPECTRUM It will be shown below that triangular configurations are de-

. scribed by the polynomialBgy v andW Pgy v . A straight-
For k=0 the operator of the anyon-hole interactigy,  forward calculation based on Eg®), (9), and (10) shows
becomes diagonal in the angular momentumTherefore, that a mean-square value of the interanyon distance in these
the Schrdinger equation(11) is also diagonal inL since states is equal to
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FIG. 2. Anyon exciton dispersion law(k) for two values of
h. For h=2, the negative dispersion arises because of the mutual
repulsion ofL=2 andL =3 branches. Level splitting near avoided
crossings becomes tiny with increasingNumbers show values.
h in units of .

FIG. 1. Ground-state energy(k=0), plotted versus separation
h between electron and hole confinement plaesind B — sta-
tistical chargesa=—1/3 anda=0, respectivelyA — triangles
show the points where the angular momenturchanges from zero
to 2, and then to 6 and 9. For the quantum states separated by full

dots on curveB see Fig. 4C — classical limit. For comparison, in Fig. 1 is also shown the energy

eg=— (2/3)*h calculated in the classical limit, EG5). It
is seen that in the region=<4 it differs considerably from

2\ _
(rip=6(L+2+3a). (36 the exact quantum data.
Comparing Eqs(35) and(36) one finds that Since fork#0 the termV,, is nondiagonal inL, the
) dispersion lave (k) can be found only numerically. In Fig. 2
rio~h~L%" (37 it is shown for two values oh. The basis of polynomials

used in computations included 22even polynomials with

for L>1. Therefore, with increasink both the size ;, and L=18, Eq.(8), and 22L-odd polynomials with <21, Eq.

the angular momenturh of the exciton ground state in- . o L
crease. This means that the order of the energy Ievelgg)' The following regular!tles are distinctly seen. As argued
changes, and the bottom state possesses the angular momSRQ\le’ the levels W'th .hlghdr .values draw c.loser 0 the
tum L~hZ2. Since fork=0 the Hamiltonian is diagonal in spectrum bottom with increasing. The level interchange
L, the level interchange occurs usually as a level crossing manifests itself as avoided level crossings. The level splitting
’ In Fig. 1 the ground-state energy is plotted as a functior€ar these crossings increases Wkitand decreases with the
of h for two values of the statistical charge=—1/3 and difference|L—L'|. These regularities can be understood if
a=0, by curvesA andB, respectively. It is s:een that both On€ takes into account that the Bessel function in the inte-

curves show the same gross features, including increase gfand of Ea. (L38)L, S_hOWS the pOV\./er-Iaw bghawor,
the ground-state energy and the angular momentum kwith Jjt-+(k@)>(ka)'*~*"), in the smallk region. In particular,
However, fine details are very different in the<2 region.  for [L—L’|=1 the interaction of two branches can result in
We do not discuss these differences in more detail since thelp€ negative exciton effective mass for snialtalues. Nega-
are expected to be sensitive to anyon form factdré®  five exciton dispersion can appear even in the ground state as
which were not taken into account in our calculations. How-can be seen in Fig.(d. It is interesting to mention that
ever, since curves andB practically coincide foh=2, we  €Xciton d|spersu1n nedr=0 is always positive in the two-
believe that in this region the AEM provides reliable results.S€mMion problent. o

In what follows we restrict ourselves to this region and ne- The above results show that the charge fractionalization
glect the statistical charge, i.e., consider the bosonic modefietermines botki) the basic multiple-branch structure of the
a=0. All data below are presented for this model. It was€Xciton energy spectrum arid) numerous specific features

shown in Sec. Il A, Eq(23), that fora=0 matrix elements Of the spectrum including thk dependence of the arrange-

Msr?r)n’(t) can be expressed in terms of elementary functicmsr_nent of the branches, avoided branch intersections, etc.

This fact permits one to reduce the threefold integral of Eq.
(33) to the onefold integral: V. ELECTRON DENSITY

VL The distribution of the electron densiti, (r,k), around
(LMK|VapL'M k) a hole can be found from the equation
—— [ “expt-sq?i2-ama L (kQu cwe(ada L3
° DA(rk)={32 arj—r=r)) (39
j=1

(39 Ak

where function® y | 'v(q), real and symmetric in indices, where the averaging is performed over the quantum state
are polynomials irg. The lower polynomials are of a simple (A,k), where A numerates exciton branches. The density
form: Quo.0= 1, Q20,0= %2, Qa020=1—q?+q*/4. Appli-  D,(r.k) is exactly the quantity whicki) permits one to
cation of Eqg.(38) highly simplifies all computations. check reliability of the model and in whictii) the specific
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) ) S FIG. 4. The energy(0) and the electron densify(0,0) at the
FIG. 3. Axisymmetric electron density distributioBs (r,0) for  pointr,, where the hole resides plottes h for the ground state of

ak=0 exciton for the states with=<6. TwoL =6 states are shown ap exciton withk=0. The ground-state energy of an anyon exciton
for h=0; the density distribution in the lower state is shown by ajs shown by a solid line; the dots on it show the positions of the
solid line. Numbers show values. intersections between the energy levels with diffetenglues. For
comparison the energy of a conventional magnetoexcitqgih)
pattern of the charge fractionalization manifest itself in awith k=0 is shown by a dashed line. Numbers near En®,0)
rather spectacular way. It is one of the basic criteria of thecurve show thel values. Only the states with=3m reach the
AEM that the excess charge density is small compared witlspectrum bottonfas an exclusion the state=2 appears as a bot-
the density of the IQLyp/27, for v<<1/2[and compared with tom state in an extremely narrow region of thealues.
(1—v)/27 for v>1/2]. Therefore, forv=1/3 and v=2/3
IQL’s one can expect that the AEM becomes applicable onl
whenD, <1/67r~0.05. This criterion will be applied in what

follows. - . . . there are two eigenfunctions; they dependhonin Fig. 3
The explicit expression foD, can be obtained in the they are shown foh=0; the lower-energy component is

same way as Eq38). Indeed, the operatdr,, and the op-  drawn by a solid line.

erator of the electron density of E9) depend on the same Figure 4 shows the energy(0) and the densityp(0,0)

argumentsy; —ry,. Therefore, the integrands differ only in for bottom states as a function bf It is seen from the figure

the substitutionV,,(q) by the Fourier image o6(rj—ry).  that forh=2 the density falls well below its critical value

The final expression is 0.05, which supports our above conjecture, Sec. 1V, that the

AEM provides reliable results fon=2. With increasingh

charge fractionalization, since for ordinary magnetoexcitons
Yhe density shows a maximum &t 0. We will discuss the
properties of this state in more detail in Sec. VI. kot 6

1 o the angular momentum in the bottom stdtealso increases.
Da(rk)=5— > COE{(L—L')G]XJ daq It is a striking feature of the data that only states with
TLm,L'm! 0 L=3n, n=2, reach the spectrum bottofwe cannot make
X exp(—39%/2)J)_L((qr—d]) definite conclusions about tHe=3 state since it does nor
reach the bottom forw= —1/3 anyons, Fig. 1 The bottom
X QLM'L,M,(q);’E,M,(k)XﬁM(k), (40 states described hy-even and.-odd polynomials alternate.

We attribute the periodicity i to the superselection rule
where 6 is the angle between the vectods-r and d. originating from the combination of the space and permuta-
D, (0,k) shows the electron density on the hole. tion symmetry. Indeed, we observe this periodicity in the

For k=0, the density distributiorD, (r,0) is shown in  semiclassical region where the quantization rule includes an-
Fig. 3 forL=<6. In this case\ can be completely identified gular integration between two exchange points separated by
by the indexL for L<5, but there are two functions for the angle 2r/3 rather than the usual®integration®®
L=6. ForL=5 the energies, the eigenfunctions, and there- PolynomialsP_,, with L=6M play a special role in the
fore also the densitieB, , do not depend oh. TheL=0 class ofL-even polynomials. All of them obey the hard-core

state has a high densit;y(0,0)>0.05. Therefore, the shape constraint. Indeed, the polynomi&lgy v(2z12,223,23,) van-

of the curveDy(r,0) cannot be reliable. Nevertheless, it is ishes a§jt|’3 each time when one of its argumenz_ﬁ,, turns
remarkable that numerical calculations performed in thento zero. From the standpoint of the general thebryard-
spherical geometry fow=1/3 (Refs. 12, 16, 25, 38and core functions are the only “legitimate” wave functions of
v=2/3 1QL’s (Refs. 17 convincingly show that foh<2 the  an anyon system. The exponén8 is the maximum order of
spectrum bottom is made by the=0 exciton having the the zero for a wave function with the angular momentum
electron density which is very close to the Fermi limit, L, and this maximum is achieved only f&%y y polynomi-
1/27.*%2% FunctionsD,_, become broader with increasing als. Therefore, Coulomb repulsion is strongly suppressed for
L, and D, (0,0) decreases. The state=3 from which  these polynomials. Polynomial¥/ Pgy, v play a similar role
L-odd polynomials originate is especially remarkable be-in the class of.-odd polynomials. It is a remarkable fact that
cause it is the first to show a craterlike density distributionin the h=2 region all bottom states are eithBgy \ or
with @ minimum atr =0. This minimum is a signature of the W Pg), \, polynomials.
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For comparison, in Fig. 4 is also shown tha@lependence
- of the energy of a conventional magnetoexciten,dh),
 h=1 with the momentumk=0. In the limit h—0 this energy
i #5 exactly coincides with the energy of an exciton in the many-
- electron system because of the hidden symmetry inherent in
L / \\# 12 the problem; see Refs. 14 and 19 and references therein. In
0.01 ¢ N AN the region ofh<1 the accuracy of the AEM is low. How-
N ever, it increases fadn=2 when the charge fractionalization
r becomes important. In this regian,{h) follows the usual
Coulomb law, e ,{h)~—1/h, whereas for many-electron
0.00 Hitontii i systems the dependence of the exciton binding energy on
) also is close to a Coulomb law, but the numerator is consid-
0.02 ) . T
- erably less than 1 since the electron density distribution has a
h=2 width abouth. The magnetoexciton and AEM approaches
- are exact in the opposite limits. The results should be
T #13 matched in the intermediate regionkat 2.
= Above in this section we discussed the electron density
0.01 D L .
L A 43\ distribution only fork=0 anyon-excitons. The charge frac-
- tionalization manifests itself for these excitons in the crater
r shape oD, (r,0). However, the most spectacular manifesta-
tion of the charge fractionalization can be expected in the
0.00 Bl large k region,k=1. Indeed, the exciton dipole momeaht
0.02 differs fromk only by the rotation byr/2, Sec. Il. Therefore,
r one can expect that with increasikgthe electron density
N splits into bundles, their charges being multiples of 1/3. The
i # 20 splitting of the electron shell into two well separated quasi-
SN particles has been observed previously for a two-semion
0.01 [ g < exciton!! For a three-anyon-exciton the patterns are much
r \ more impressive. For the bottom state, they are shown in Fig.
\ 6 for h=3 when the criterion of the large electron-hole sepa-
r ration is fulfilled. The distribution which is cylindrically
symmetric fork=0 transforms with increasink into a dis-
0.00 AT T I tribution with a single split-off anyonk=2 and 3. Two
-8-6-4-20 2 4 6 8 anyons constituting the exciton core show a slight but dis-
COORDINATE, r (1) tinct splitting in a perpendicular direction. This core can be
considered as an anyon ion. The core changes its shape with
k but remains stable in a wide rangelofFinally, for rather
largek values, it splits in thal direction as it is seen in the
last figure,k=6. The asymmetric density distribution f&r
#0 arises completely due to the admixturelobdd poly-
nomials to theL =6 state.
The well-outlined profiles of the electron density seen in
Using the polynomial®s),, M=0 and 1, as an example, Fig. 6 may be smeared by the oscillatory screening inherent
we can follow the way in which hard-core states move to thén 1QL’s.*® Nevertheless, the basic pattern of the charge
spectrum bottom wheh increases. For smal values the separation in an exciton should strongly influence khae-
low-energy component of thé=6 doublet has a pro- pendence of the magnetoroton-assisted recombination pro-
nounced maximum near=0 as seen in Figs. 3 and 5. For cesses since charge-density excitations are left in a crystal
h<2 the low-energy component is close{q;,; for h=0 afterwards.
the overlap is 0.96. Fan~2 wave functions of both com-
ponents are strongly mixed, and they show similar distribu-
tions of the density, Fig. 5. Fdr>2 the function¥¢ ; wins VI PAIR-CORRELATION FUNCTIONS
the competition. Foh=3 it dominates in the low-energy ~ One can see in Fig. 3 that the=3 state is the first state
state; the overlap is 0.97. The denslgy v(r,0) has a which shows a craterlike shape of the dengtgr,0). This
single maximum for each value d¥l. One can obtain a shape indicates the existence of the anyon substructure of an
simple analytic expression for the position of the maximumexciton as it was argued in Sec. V. It is typical of all bottom
by averaging the density over,. This latter function, states withL=6. In this section we compare properties of
D m(r,0), reaches the maximum gt= V2L, and the maxi- ¥3oand ¥, states and show that despite the similarity in
mum of Dy (r,0) is very close to this value. More detailed the shape of the density, they differ critically in the shape of
information on the nature of thk=0 bottom states comes the radial pair-correlation functiow(r).
from the correlation functions which are discussed in Sec. VI It is convenient to use the square of the wave function
below. ¥ of Eq. (3) averaged over the hole coordinate. Using Egs.

0.02

DENSITY, D(r,0) (17°)

FIG. 5. Electron density distributioD(r,0) for theL=6 states
with k=0 for three values oh. The density in the lower energy
state is shown by a solid line. Consecutive numbkrsf the en-
ergy levels are shown near the curves.



13800

M. E. PORTNOI AND E. I. RASHBA

é h=3, k=0 é h=3,
ga AN o
EQ‘ / EG '::\
,///, w7 Vl /|
R T lia |» il HRN
§ it A R
il 4 ) Q ’I‘,,,’l‘v‘“‘lw\\»lm‘al““
i) ATTTHONN i ‘~'l Wi
9 q //Iii"i" ’ ‘!'““" “\‘ “\" Q //,'{ill.""""""‘ l'“‘i\\‘\\\“- ‘!‘\\
N I N iR
¥ iy "I'I"I’;‘oy%‘;m""\““ S ///// miu‘n‘
<& .,' N XYY il bt N. Pl FIG. 6. Electron density distri-
@ A T > Ao
< N X% -

bution in an anyon exciton for dif-
ferent values ok. A hole is at the

w2 e origin; thex axis is chosen in the
d direction. The center of the elec-
tron density distribution is at
x=Kk, y=0. The data were ob-
;\ h k« h=3, k=6 ta_uned with the 44 polynomial ba-
N E\ sis,L=<21; data for the 70 polyno-
t‘;ig Ny mial basis,L <27, also show the
ES gq change in the shape of the exciton
[,q [’Q core for largek values.x, y, and
Q q VY h in units of|; k in units of | 7%;
i I . 2
. /ll Iy I; H density in units ofl ~~.
I, Q A
\ I MU /
=z ':1.‘.';';'94!“ D et
ES /I[, ’“A A | o -qf“""'l[ '“‘A‘““‘

“A'O“v
%0

hh. ¥

(3) and(9) and performing Gaussian integration ovgr one
can write the following equation for the averagdthy v
function:

T S 5 5 2 4M
|‘I’6M,M(212-2231231)| (T 190 3l 31)

1
><exp: - E(rfﬁ rog+r3,)
(41

Choosingr 1, r13, andy, wherey is the angle between the
vectorsry, and ry, as independent variables, rewriting
|\P6M m|? in terms of these variables, and looking for the
maximum first over cos and then overry, andr,3, one
finds that the maximum ofWgy u|? is reached for a con-
figuration of an equilateral triangle with
ra,=ri,=r2,=6L. (42)

In the semiclassical limitL>1, this result coincides with
Eq. (36).

To find the most probable configuration for thg; ; state
it is convenient to work ir¢ variables, Sec. I, and perform
averaging over,,. Simple calculation shows that

~ 1
|\I’3,o(212,2237231)|2“§%§§§§EXF’[ —glar e 53,)]
(43)

The maximum of this expression under the constraint of Eq.
(7) can be found in the same way as for E41). Finally,
one recovers an equilateral triangle configuration with
r2,=rs,=r3,=18. This result coincides with Eq42) for
L=3.

Because arbitrarylL-odd polynomials have the form
PLm=WP__3u, Eqg.(10), and the equilateral triangle con-
figuration is optimal for each of the multipliers, it is optimal
also for their productP, \,. Therefore, the most probable
configuration has the same shape of an equilateral triangle
both forL-even and_-odd-states.

To reveal a striking difference in the properties ¥ ;
andV;, states, one can calculate the radial pair correlation
functionsw(r):

W(rqp)= J |\I’(R,P,{Z_jl})|25(r12+ I3+ r31)dRdpdr,qdrs; .

(44)
Substituting| ¥ |? from Eq. (3) results in
1
Wi m(r2)= 2n JdQJ Jdr23dr31|PL ml?
1 s
ex _1_8; ri+ig-(rigtrastray)
(45)

Straightforward calculation shows that
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FIG. 7. Radial anyon pair correlation functiom(r) for the 0'00 """ 277/3477/3 """ éﬂ
states¥g ; and¥35; k=0. ANGLE, ¢ (rad)
r’ FIG. 8. Normalized i lation functiam, @)
We (1) = 1+ 1(r/e)yexp —r2/12), 46 . 8. ized anyon pair correlation functiams o ¢
6a(r) 19277'{ 2(r/6)"exul ) (46) found in the anyon exciton mode{=0.

1 The integration ovelp can be performed analytically; how-
W3 ofl)= E{l"‘ H(ri2)Mexp —r2/12). (47 ever, the final expression is rather cumbersome. The result is
plotted in Fig. 8. Two distinct maxima in the vicinity of
Both functions are shown in Fig. 7. The functiag (r) has ~ 27/3 and 4r/3 reveal 120° correlations in th#, state.
a hard-core behavior, whereas; ((r) does not vanish at The maxima are shifted from the angler3 since the func-
r=0. On the contrary, it reaches its absolute maximum afion ¥ vanishes for the collinear configuration of anyons,
this point. The second maximum is by the factor 0.97 lower§1= — &2, &=0.

than the main one. Therefore, functioh;, violates the Apalkov and .Rash(ﬁé have found the density-density
hard-core constraint. Of course, all bottom-statedd poly- ~ correlation function,wz(¢), for the »=2/3 IQL with a
nomials withL=9 show a hard-core behavior. single extra electron. Calculations were performed in the

The above conclusion on the triangular shape of the mogipherical ~ geometry  for  the Lgp)max—Lor=3,
probable configuration of th' 5 , exciton implies existence (Lqp),=Lqp quantum state. The quantity§p) max—Lqp.
of the 120° correlations in the density correlation function. Which is the difference between the three-quasiparticle angu-
To investigate these correlations it is convenient to workar momentum in the spherical geometiyop, and the
in the & variables. The two-particle correlation function maximum value of this momentum, should be compared to
w3 ¢) depending on the angle between vectorg, and  the exciton angular momentumn.*®*” It is convenient to
& can be written as introduce mean values

- _ 2
Wsd 9 [ AEQEAEI T k.6 £ 9= [ ¥ .o 60

— and
X6(&1+&E+E)0(6E— )

pz(w,w')=f V(0,0 03, ...0%do; . . .doy.
(51)

><exp[—(§§+ §§+ £1£,C080)/3}. (48) Here w;(9,¢) are unit vectors designating the positions of
the electrons on the sphere. Electron density depends only on

The & function takes into account the constraint of Eg), the polar angled and equals;(¥)=Np4(?), whereN is
andZ; &, stands for the angle betwe&pandé&, expressed in  the number of electrons. If one introduces the deviation,
terms of the coordinates of these vectors. Integration over thAn(w)=n(w)—n,(¥), of the density from its mean value,
variablesg; in Eq. (48) results in the averaged correlation the density-density correlation function can be written as
function; the main contribution comes from the area dd ) )
£2~ g2~ £2~ 6 where| W5 o reaches the maximum. The last ~ Wad 9.¢—¢") =(An(d,¢)An(d,¢"))
integral can be performed in polar coordinates, _1 _ _ )
£1=£cos@l2), £,=&sin(Al2), 0< <, and the normalized N(N=Dpo(D.0= @) —ni(9).
functionw; o ¢) takes the form (52)

21
x fo dé10E,(£16,)3(E+ 5+ 2£,£,c08p)?

In Eq. (52) the polar angles of the vectow® and ' are
(49) chosen equalg=49'. Therefore, the correlation function,
w39, ), is the function of the azimutp and depends on

B Slfﬂda sinA(1+ sinfcosp)
Wad®)= g 0 (2+ sinfcosp)®
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linear screening of the unit positive charge by these two

04r IQL's. The effect of the screening on the exciton energy
¥=0.8 spectrum was discussed in Ref. 42. However, there are also

I /,_iqi_\ different mechanisms resulting in the difference in the prop-
031 o5 | erties of these excitons. They are related to rather different

L \ form factors and different statistical properties of the

- N quasielectrons of the=1/3 andv=2/3 IQL’s. Neglecting

0.2 L i i spin effects, we can consider electrons as spinless fermions.
- .' Then, because of the charge symmetry, the properties of the

\ quasielectrons of the=2/3 IQL are identical to the proper-

! ties of the quasiholes of the=1/3 IQL. Therefore, we will

\ start with a comparative study of quasielectrons and quasi-

holes of thev=1/3 IQL.

I The form factors of charged particles of the=1/3 IQL

0.0 st e ‘ were investigated in a number of papers. The data are sum-

marized in Refs. 34-36. It is known that a quasihole has a

narrow profile with a radius up to two magnetic lengths. The

density decreases away from the center of a quasihole nearly

monotonically. In contrast, a quasielectron has a pronounced

density dip at the center, the density maximum at about two

magnetic lengths, and the radius of about four magnetic

9=0.8 is close to the maximum of the electron density. Correla—lengths' Therefore, the model of pplnt anyons developed

X . . : —above matches much better the excitons of #the2/3 1QL

tions between quasielectrons manifest themselves in the maxi

neare=27/3 and 4r/3. [Apalkov and RashbéRef. 41). mt%an the excitons of the=1/3 IQL. . L.
eem [Apalkov shbiR b Another aspect of the problem is related to statistical

) i properties of anyons. In the AEM the effect of the fractional
¥ as a parameter. In E¢h2) the singular term proportional “eymytational statistics of anyons was taken into account by
to §(w—w Zjdls omitted, ’as usual, since it makes no Comr"including the factoﬂj,(z_“)“ into the Halperin pseudo-wave-
bution to W30 fqr w# w'. The results of calculations are f,nction V¥, ., Eq. (3). It was shown in Sec. IV that the
presented in Fig. 9 for three values &f The value of effect of this factor can be neglected for2, i.e., in the
9¥=0.8 is close to the maximum of, (). region where the AEM is expected to be valid. However, one
Since the anyon exciton wave functidin o does not de-  should also take into account the nontrivial populational sta-
pend onh, the data of Figs. 8 and 9 can be compared. Thergstics of anyons. This can be done using the theory of com-

is a striking similarity between them. All three curves in Fig. posite fermion®’ and the approach to the dimensionality of
9 show flat but distinct maxima near the same values of thene quasiparticle space based on exclusion statftits.

argumente=2m/3 and 4r/3. These maxima are much flat- gosonic Haldane dimensiodgp, is an effective number of

ter than the maxima in Fig. 8. This difference can be attribyhe gingle-quasiparticle states defined in such a way that the
uted to the smearing originating from the quasielectron form,;s,,a1 Bose distribution

factors. Nevertheless, there is no doubt that it is the three
guasielectron substructure of the many-electron dtate3
which manifests itself in 120° correlations.

Therefore, the stateéV;, shows properties intermediate results in the correct number of states in the Hilbert space of
bereen an anyon exc:jtdon and tlght exciton. Um‘ortunatelyl\]QP quasiparticlesW(NQp)=WB(ng,NQP). The number
reliable calculation ofw™(,¢—¢") cannot be performed "qyasiparticle stated)(Ngp), can be found by counting
for the (Loe)max—Loe=6 states since their size exceeds theihe number of states in the Hilbert space of composite
accessible sphere size. fermions?®**If quasiparticles obey Bose statisticy, does

not depend orNgp. By counting the composite fermion
VIl. COMPARISON WITH FINITE-SIZE CALCULATIONS number of states in the sphenqal geometry, it was s_hown in
Ref. 17 that forv=1/m, m is an integer, the bosonic dimen-

In this section we make a comparison of the AEM with sion of quasiholes equals
computational results for excitons in the spherical geometry.

Three-anyon excitons are expected to appear in two charge d%H:NﬁLl, (53
conjugate IQL's,y=1/3 andv=2/3. Their properties in the

semiclassical regionh>1 andL>1, should be identical. and the bosonic dimension of quasielectrons equals
For intermediateh andL values, excitons of these two lig-

0.1 |

CORRELATION FUNCTION, wyg(y) (arb. units)

ANGLE, ¢ (rad)

FIG. 9. Electron density correlation functiavf%(9,¢) for the
v=2/3 IQL with a single extra electron N=15, the flux
2S=21). The correlation function is plotted as a function of azi-
muth ¢ for three values of the polar angl# = 0.6, 0.8, and 1.0.

Wa(d3p Nop) = (d3p+Nop— 1)1/ (dgp—1)! Nop!

uids are expected to show rather different properties. The dgE:(N+1)—2(NQE— 1). (54)
data obtained by finite-size computatitht’ substantiate
these expectations. HereN is the number of electrons. These equations are con-

There are different reasons whw=1/3 andv=2/3 exci-  sistent with the diagonal coefficients of the exclusion statis-
tons are expected to have different properties in the intermdics of quasiholes and quasielectronsnflgnd 2—1/m, re-
diate region. A simple electrostatic reason is a different nonspectively, found by different author® -8
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Equations(53) and (54) indicate that quasiholes show a tations performed for botlr=1/3 andv=2/3 IQL’s. Actu-

bosonic behavior, while quasielectrons are a subject of thelly, it provides the basic idea for representing the energy

constraint which is even more restrictive than the constraingpectra obtained in the spherical geometry for a discrete set

imposed by Fermi statistics. These conclusions wergf | values in the form of exciton brancheg(k).

supported’ by counting the maximum value of the angular e begin with summarizing some results obtained in Ref.

momentum, Lqp)max. for the system oNqp quasiparticles. 17 py finite-size calculations for excitons of the=2/3 IQL

Itis equal to and compare them with the results obtained in this paper in

the framework of the AEM. Classification of excitons in

(Lon)ma=NouN/2 (55) terms of tight and anyon excitons is used, cf. Sec. I.
for Ny quasiholes, and to 1. Number of exciton speciefnyon exciton is a bound
state of a three-quasielectron complex from the low-energy
(Lge)max= NQeN/2—Nge(Nge—1) (56)  (anyon sectof”?®and a hole. The angular momentum of the

for Nog quasielectrons. Sinde/2 is the angular momentum €Xciton, L, is equal toL* =(Loe)max—Lqe, Wherelqe is

of a single quasiparticlé; Eq. (55) confirms the bosonic be- he angular momentum of the complex, angyf) max is the

havior of quasiholes, whereas E@6) confirms the exist- Maximum value of this momentum which can be found from

ence of the restriction on the population of single-Ed.(55). Therefore, the number of exciton species is equal to

quasiparticle states by quasielectrons. étel?’ were the the number of the three-quasielectron complexes in the low-

first to discover this restriction by means of numerical calcu-energy sector, antl* should be compared to the exciton

lations and to propose Eg&3) and(54). They attributed the angular momentuni of the AEM. Only a single three-

restriction to the hard-core constraint for quasielectrons havguasielectron complex exists if the angular momentLitn

ing a dynamicalshort-range repulsiomather than statistical equalsL* = 0, 2, 3, 4, 5, or 7. The compldx* =1 is absent

origin. because composite fermions obey Fermi statistics. For
For a macroscopic systeN>1, Egs.(53) and(54) give  L*=6 the number of_-even states increases by ofsee

coinciding results, dgg~dg,~N, in the dilute limit, Fig. 1 in Ref. 17.

Nop<N. However, in an exciton the quasiparticles are con- These properties are in a complete agreement with the

fined inside the volume aboutr?, wherer is the exciton classification of the polynomiaB,  of Sec. Il, Eqs(9) and

radius. Therefore, the second term of E84) which signi-  (10). TheL =1 exciton is absent because of the constraint of

fies the deviation from the bosonic behavior of quasielecEq_ 2).

trons, can be of importance. _ 2. L=0 branch Despite the fact that the=0 exciton
Quasielectrons of the=2/3 IQL are described by EGS. 550415 according to its quantum number, as the first state in

(53 .anctj. |(55)t' tTherbeforet,h tge pOE)Lf[!a:.IOI’l of(da;mgle— the series of anyon excitons, it possesses rather special prop-
quasiparticle states obeys the Bose statistics, and3dor erties. This exciton originates from thé&*=0 three-

wave functions is absolutely adequate since it includes poly- =~~~ L :
; S : —— . quasielectron complex, which is quite dense, and the energy
nomialsP \ symmetrical in variableg;. For this reason,

and also taking into account narrow form factors Ofof this complex is high. It is nearly the same as t_he energy of
quasielectrons of the=2/3 IQL, one can conclude that the some states from the next sector. These data imply that the

v=2/3 IQL is the best candidate for comparison with thel- =0 @nyon exciton actually merges with the=0 tight ex-
AEM. We believe that the criterioh=2, established in Sec. €iton. Because of these arguments, the 0 exciton was
V by evaluating the densitp, (r,0), is applicable to the aSS|gneq in R.ef. 17 as a tight exciton rather than an anyon
v=2/3 IQL. one. This assignment is supported by an independent argu-

The situation is more involved for the=1/3 IQL. ment.L=0 excitons of thev=2/3 andv=1/3 IQL’s show

Quasielectrons in this case are described by Es#. and nearly identical properties, whereas the anyon exciton as-
(56). One can apply Eq(54) to the area inside an exciton Signment of the latter entity is excluded by the symmetry
and order thatl§:=Nqoe=3, which results inN=6. The ~arguments based on the composite fermion thédry.

number of electrons inside an exciton can be evaluated as The shape of the =0 exciton density distribution of Fig.
N~ 7r?/27r. Evaluating the exciton radius asr%rlz/\/§ 3 is in agreement with this assignment. The magnitude of
and using the classical equati¢b), one comes to the cri- Dg(0,0) exceeds the maximum density compatible with the
terion h=5. A wide quasielectron form factor imposes a AEM; see the discussion at the beginning of Sec. V.

similar restriction orh. Since the reliable finite-size compu- 3. Electron densityFor a system with a single extra elec-
tations can be performed only ftw<2, the prospects for a tron against a background of the=2/3 IQL, the electron
guantitative comparison of the results obtained by both apdensity has a pronounced maximunrat0 if L*=0, 2, or
proaches seem less favorable for the1/3 IQL than for the 4. TheL* =3 state is the first state with a craterlike electron
v=2/3 IQL. However, we feel that the above rigid criterion density distribution having a density dip &0 (see Fig. 2
relaxes considerably when a qualitative description of thén Ref. 17. The crater shape of the density indicates the
spectrum-bottom states is concerned. charge fractionalization.

We are now in position to compare the basic results of the These data are in a qualitative agreement with the electron
AEM with the computational results for finite-size systems.density distributions of Fig. 3 for excitons having angular
The basic statement of the theory of anyon excitons, that thenomental = 0, 2, 3, and 4. The general shape of the curves
charge fractionalization results in a multiple-branch energyis the same, but there are differences in the magnitudes of the
spectra of excitons:?>was confirmed by finite-size compu- densities at =0. Since wave functions of these excitons do
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not depend om, electron densities for the exciton and three-the bottom.L=5 andL=6 excitons start to compete with
quasielectron states with the angular momehntalL*, re- theL=0 exciton only forh~3 when the accuracy of finite-

spectively, can be compared. size calculations is low.
4. Bottom states. =0 exciton remains the bottom state in  The data are in agreement with Fig. 4.
the whole aredn<2.L=2, L =3, andL=6 excitons move 3. Electron density distribution fok=0 excitons Tight

down to the spectrum bottom, but they start competing withexcitons have narrow electron density distributions. The den-
the L=0 exciton only forh=2.5 when the accuracy of sity of theL=0 exciton is sharply peaked +=0.L=3 and
finite-size calculations becomes ambiguous. The4 exci- L=5 anyon excitons show pronounced density dips at
ton is also seen in the low-energy part of the spectrum but=0 and two maxima of the density. It was hypothestfed
never reaches the spectrum botttif that ther =0 dip originates from the dip in the quasielectron
These data are in agreement with Fig. 4 where the sdform factor, whereas the two-maxima shape indicates the
guence of the first bottom states includes 0, 2, 3, and 6. existence of a two-anyon core and one split-off anyon. It is
5. Charge fractionalization: density correlation function remarkable that the density distribution in the=3 and
It was shown in Sec. VI thatv; (@) reveals 120° correla- L=5 excitons only weakly depends ¢n
tions both for the many-electron and AEM wave functions. Weakh dependence of the density distribution tor=3
These correlations signal the charge fractionalization. andL=5 excitons is in agreement with the existence of a
6. Intrinsic angular momenta of anyonghere is a con-  single polynomialP, y, for L<6, Sec. Il. Splitting of the
vincing one-to-one correspondence between the excitons @fciton shell of ak=0 exciton cannot be described within
many-electron systems having angular momer$6 in the  the framework of the point-anyon AEM.
spherical geometry and the excitons of the AEM with the 4. Dependence of the density distribution bnWhenk
same values of the projections of the angular momentum. increases, the=0 dip in the electron density of the=3
Therefore, our data provide no indication of the existence okxciton transforms into a narrow maximum, and the density
the intrinsic angular momenta of anydtisOn the contrary, distribution acquires a three-maxima shape. It was
our data are in agreement with the recent conjecture on thgroposedf that in this region ok values an exciton consists
absence of anyon spins in the plane liffft. of a single-anyon core and a two-anyon shell.
The AEM predicts identical exciton spectra for the  gpjitting off of anyons from the core with increasikgs

v=2/3 and v=13 IQL's. However, finite-size ;, 4 qualitative agreement with Fig. 6.
calculation$®!’ result in a rather different symmetry of the

low-energy exciton states fdr<2. The exact classification

of the exciton states based on the composite fermion theory
shows that onl). =3 andL=5 anyon excitons can exist in
the v=1/3 IQL.*® This conclusion is supported by numerical  The model of anyon exciton developed and solved in the
data. Therefore, a challenging question arises: Why argaper includes three quasielectrgasyons and one hole. It
L=2 and L=4 excitons of the AEM missing from the is applicable to exciton spectra of two charge conjugate
many-electron spectra of the=1/3 1QL? We argue that |QL’s, v=1/3 andv=2/3, and is exact in the limit of a large
these excitons are excluded because of their small bosonigeparation between electron and hole confinement planes,
dimension which cannot accommodate three quasielectrongs| .

In what follows we compare the results of the finite-size Anyon excitons possess multiple-branch energy spectra,
computations of Ref. 16 for the=1/3 IQL with the AEM gh(k)- An exciton is described by a 2D momentdmand
data. two internal quantum numbers which numerate exciton

1. Excluded stateginite-size calculations and Composite branches. One of these guantum numbers can be chosen as
fermion theory show that anyon excitons of the 1/3 IQL  the exciton angular momenturh, in thek=0 state.
can only possess angular momehta3 andL=5. All ex- A full set of basis functions was chosen with a proper
citons withL =0, 1, 2, and 4 can only appear as tight exci-account of the magnetic translational symmetry and permu-
tons. TheL =0 tight exciton forms the spectrum bottom for tational symmetry. The functions include two types of poly-
h=2, but there are no low-enerdy=2 andL =4 excitons. nomials symmetric in anyon permutations; one of them, ap-

It seems probable that there can exist only obes0,  parently, was considered for the first time. Analytic
tight exciton near the spectrum bottom. Therefore, it is necexpressions for all matrix elements were derived. As a result,
essary to understand whiz=2 and L=4 excitons of exact expressions for the energy spectrum of a four-particle
the AEM, which possess low-energies, do not appear asystem were found fok=0. All exciton states with even
anyon-excitons in many-electron systems. The criteriorangular momentd <6 and odd momenta<9 are nonde-
dgEZNQE results in the minimum anyon-exciton radius generate, and their wave functions are completely deter-
of r n=2+/3. It is seen in Fig. 3 that the criteriarer,,,is  mined by symmetry requirements. This property manifests
violated forL =2 andL =4 excitons. Therefore, we attribute itself in finite-size data in a wealk dependence of the elec-
the exclusion of thé.=2 andL =4 exciton states from the tron density distribution. Properties &f*0 excitons were
many-electron spectrum to the reduction of the bosonic diinvestigated by numerical solution of the Sollimger equa-
mension of the quasielectron space because of the secotidn.
term of Eq.(54). The AEM is not applicable for smah values,h=2I.

2. Bottom statesThe tightL =0 exciton remains the bot- However, the analysis of the internal criteria of the AEM and
tom state up tdh~2 when theL =3 anyon exciton reaches comparison with the finite-size data show that it gives satis-

VIIl. CONCLUSION
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factory results forh~2l, especially for excitons of the h=2l, whereas the second one is of a critical importance in
v=2/3 IQL. Finite-size computations which are reliable for the intermediate region. It follows from the composite ferm-
h=2I, and the AEM, whose accuracy increases witlton-  ion theory that quasielectrons of the=2/3 IQL obey
stitute two supplementary approaches which match abosonic populational statistics. As a result, quantum numbers
h~2l. According to the AEM, exciton states with the angu- of anyon excitons found from the AEM and from the finite-
lar momenta obeying the superselection rule3m, where  size data exactly coincide. In contrast, the bosonic dimen-
m=2 is an integer, form the sequence of the bottom statesion,dgE, of the quasielectron space of the-1/3 IQL rap-
for h=2l. All these states are hard-core states, i.e., theiidly decreases with the number of quasielectrotigg. The
wave functions turn into zero if any two of the anyon coor- condition d352 Nge, written for the area about the exciton
dinates coincide. The equilateral anyon configurations areize, eliminates the exciton states of the AEM with the an-
the most probable ones. Angular momehtaf the bottom  gular momentd. =2 andL =4 from the many-electron spec-
states increase d%, and the size of these statestasThe  trum and brings in agreement the AEM and many-electron
tight L=0 state is the bottom state for<2l, whereas the data. Therefore, foh~2| the AEM supplemented with
L =3 state, which possesses the properties of both anyon anghyon statistics arguments matches the many-electron data
tight excitons, can reach the bottom for= 2. for both IQL’s and sheds light on the origin of the difference
Anyon substructure of excitons manifests itself in theirin their exciton spectra. The above arguments are rather gen-
different properties. First, the multiple-branch energy speceral and can be applied to different problems of the theory of
trum originates because of the existence of the internal dethe bound states of several anyons.
grees of freedom. Second, fér=0 excitons a craterlike Comparison of the AEM and finite-size data for 2/3
shape of the electron density distribution with a pronouncedQL provides no indication of the existence of the intrinsic
dip near the hole signals the existence of the charge fractiorangular momentésping of anyons.
alization. Third, 120° correlations in the electron density In conclusion, the anyon exciton model unveils the gen-
were found both in the framework of the AEM and in finite- eral pattern of the exciton spectra of IQL’s. It predicts the
size data. Fourth, fdk# 0 excitons a spectacular splitting of properties of excitons in the larde limit, h>1, and is in
the electron density into bunches provides a direct manifesagreement with finite-size data in the intermediate region,
tation of the fractional charge substructure. h~2I. The theory suggests that the regibr 2l is most
AEM results in identical low-energy spectra for the exci- favorable for investigating the anyon substructure of excitons
tons of thev=1/3 andv=2/3 IQL’s. This result is definitely in optical experiments.
correct in theh>1 limit. However, finite-size data suggest
that in the |ntermed|at9 regiom~1, the v=1/3 IQL pos- ACKNOWLEDGMENTS
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