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Quantum dot self-consistent electronic structure and the Coulomb blockade
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We employ density-functional theory to calculate the self-consistent electronic structure, free energy, and
linear source-drain conductance of a lateral semiconductor quantum dot patterned via surface gates on the
two-dimensional electron gas formed at the interface of a GaA&#|_,As heterostructure. The Scliiager
equation is reduced from 3D to multicomponent 2D and solved via an eigenfunction expansion in the dot. This
permits the solution of the electronic structure for dot electron numbed00. We present details of our
derivation of the total dot-lead-gates interacting free energy in terms of the electronic structure results, which
is free of capacitance parameters. Statistical properties of the dot level spacings and connection coefficients to
the leads are computed in the presence of varying degrees of order in the donor layer. Based on the self-
consistently computed free energy as a function of gate voltagesand N, we modify the semiclassical
expression for the tunneling conductance as a function of gate voltage through the dot in the linear source-
drain, Coulomb blockade regime. Among the many results presented, we demonstrate the existence of a shell
structure in the dot levels whicta) results in envelope modulation of Coulomb oscillation peak heighjs,
influences the dot capacitances and should be observable in terms of variations in the activation energy for
conductance in a Coulomb oscillation minimum, &gl possibly contributes to departure of recent experi-
mental results from the predictions of random-matrix thepB80163-18206)02243-§

I. INTRODUCTION We include donor layer disorder in the calculation and
present results for the statistics of level spacings and partial
Study of the Coulomb blockade and charging effects inlevel widths due to tunneling to the leads. Recently we have
the transport properties of semiconductor systems is pec@mployed Monte Carlo variable range hopping simulations
liarly suitable to investigation through self-consistent elec-to consider the effect of Coulomb regulated ordering of ions
tronic structure techniques. While the orthodox thebiy,  in the donor layer on the mode characteristics of split-gate
parametrizing the energy of the system in terms of Capaciquar.ltumwirea6 The results of t.hose simulations are here
tances, is strongly applicable to metal systems, the mucfPplied to quantum dot electronic structure.
larger ratio of Fermi wavelength to system siag/L, in A major innovation in this calculation is our method for

mesoscopic semiconductor devices, requires investigation Getermining the two-dimensional electron g&8DEG)
the interplay of quantum mechanics and charging. charge density. At each iteration of the self-consistent calcu-

In the first step beyond the orthodox theory, the “constantlt?t'on' at each point in the-y plane we determine the sub-

 XY{on T

interaction” model of the Coulomb blockade supplemented gndfen(x:r)g afnclil \;\;]ave Lgnct|oqsgfn (|sz n t_he_z (?r:omg) ¢

the capacitance parameters, which were retained to charag'-rec lon. The full three-dimensional density is then deter-
ined by a solution of the multicomponent 2D Sdtirger

terize the gross electrostatic contributions to the energy, wit . . S

. . equation and/or 2D Thomas-Fermi approximation.
nonlnterac_tmg q.“a';“““f‘ levels of the dots and !eads OT the Among the many approximation in the calculation are the
mesoscopic devicg® This theory was successful in explain- following. We use the local density approximati¢hDA)

Ing some of the fundamgntql feat.ures, specifically the PElzoy exchange-correlatiofXC), specifically the parametrized
odicity, of Coulomb oscillations in the conductance of @y of Stern and Das Sarmiaihile the LDA is difficult to
source-dot-drain-gate system with varying gate voltagejstify in small (N~ 50— 100) quantum dots, it is empirically
Other effects, however, such as variations in oscillation amgnown to give good results in atomic and molecular systems
plitudes, were not explained. where the density is also changing appreciably on the scale
In this paper we employ density-functior@F) theory to  of the Fermi wavelength.
compute the self-consistently changing effective single par- |n reducing the 3D Schrbnger equation to a multicom-
ticle levels of a lateral GaAs-AlGa; - ,As quantum dot, as a ponent 2D equation we cut off the expansion in subbands,
function of gate voltages, temperatufe and dot electron often taking only the lowest subband into account. We also
numberN.* We also compute the total system free energycut off the wave functions by placing another artificial
from the results of the self-consistent calculation. We areal,Ga, _,As interface at a certain deptiypically 200 A)
then able to calculate the device conductance in the lineagway from the first interface, thereby ensuring the existence
bias regime without any adjustable parameters. Here we comf subbands at all points in the-y plane. Generally the
sider only weak €0.1 T) magnetic fields in order to study subband energy of this bare square well is much smaller than
the effects of breaking time-reversal symmetry. We will the triangular binding to the interface in all but those regions
present results for the edge state regime in a subsequewhich are very nearly depleted.
publication® The dot electron states in the zero magnetic field regime
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surface procedure for the direction, is only tractable in the current
gate pattern method when a region with a small number of electrons
X <--- (N=<100) is quantum mechanically isolated, such as in a
D S Y
y ~ quantum dot.
Xy, L 5
&0 @ 2DEG 5 1. Poisson equation and Newton’s method
z
Tj; - In principal, a self-consistent solution is obtained by iter-
growth profile (z) 3 ating the solution of Poisson’s equation esmnemethod for
j ble | AlGaAs (ndoped calculating the charge densitgee following Sec. Il A 2 and
zg | VAnAVe surface metal gates I1A3). In practice, we follow Kumaret all° and use an
%‘g 250m | p-doped AlGaAs N-dimensional Newton’s method for finding the zeros of the
| 20nm | spacer (AlGaAs) functional F(¢)=A- ¢+ p(¢)+q, where the potentiabp;
20 nm G“AS(ZDEG)2 i and densityp; on the \ discrete lattice sites\(~100 000)
nd (artificial arrier - - -
25um | AlGaAs are written as vectorsp andp. The vectorg represents the
inhomogeneous contribution from any Dirichlet boundary
v conditions,A is the Laplaciannote that here it is a matrix,

) . . ) not a differential operatgr modified for boundary condi-
FIG. 1. Schematic of device used in calculation. The jons. Innovations for treating the Jacobiam /d¢; beyond
z-subband structure throughout the plane are calculated at each %—D Thomas-Fermi, and for rapidly evaluating thé mixing pa-
eration of the self-consistency loop. Most results presented with ! .
gate variation assume that both the upper and lower pins of thgametert (_See Ref._ 1pare discussed below. )
relevant gate are simultaneously varied. The P0|sson grld spans a rectangular solid and .hence.the
boundary conditions on six surfaces must be supplied. Wide
regions of the source and drain must be included in order to
apply Neumann boundary conditions on these= (cons})
interfaces, so a nonuniform mesh is essential. It is also pos-
sible to apply Dirichlet boundary conditions on these inter-
faces using the ungated waféwne-dimensional potential
profile calculated off-liné! In this case, failure to include

are simply treated as spin degenerate. BgrO0 an unrenor-
malized Landeg factor of —0.44 is used. We employ the
effective mass approximation uncritically and ignore the ef-
fective mass difference between GaAs and,@4; ,As
(m* =0.067n). Similarly we take the background dielectric

constant to be that of pure GaAs+¢12.5) thereby ignoring sufficiently wide lead regions shows up as induced charge on

'T:gi?l egﬁgtst(rlga:hﬁneAIia?e?%QSQS;s VZeS;]g;rore c;?;ﬁgglceste these surfaceonvanishing electric fiejd To keep the total
9 9 PP iduced charge on all surfaces below 0.5 electron, lead re-

These effects have been treated in other calculations of self- .
consistent electronic structure for GaAs;®a; ,As gions of ~5um are necessary, assuming a surface gate to
X —X

) 2DEG distancdi.e., Al,Ga;_,As thicknes} of 1000 A. In
deviceg and have generally been found to be small. ) )
. : . . other words, we need an aspect ratio of 50:1. We note that
We mostly employ effective atomic units wherein 1 we ignore background compensation and merely assume that
* — x4 2.2 * _ 32 * a2 . 8 . -
Ey =m*e/2hk"~5.8 meV and &g =#"«/m"e"~100 the Fermi level is pinned at some fixed depthz,.”
The structure of the paper is as follows. In Sec. Il we first~2'5 pm) into the GaAs at the donor level. The donor en-

di th lculat f the electronic struct f >"ergy for GaAs is taken as 1 Rybelow the conduction band.
'Siﬁss fe ;:a cu ar|]c'>nho €e ic ronic strr:churFe, t(r)]cusmqn the source and drain regions, the potential of the 2DEG

sections then consider the reatment of iscrete ion chargeT) Srace is fixed by the desirédput lead voltage.

and disorder, calculation of the total dot free energy from the We apply Neumann boundary conditions at ghe const

self-consistent electronic structure results, calculation of th surfaces. The=0 surface of the device has Dirichlet con-
. : N . itions on the gated regionwoltage equal to the relevant
source-dot-drain conductance in the linear regime, and cals

culation of the dot capacitance matrix. Section |1l providesdeSIred gate voltageand Neumann conditionsj¢/dn=0,

: - . ! “elsewhere. This is equivalent to the “frozen surface” ap-
results which are further subdivided into basic electrostatic. ~ . . . . . :
. . . : roximation of Ref. 12, further assuming a high dielectric
properties, properties of the effective single electron spectr . . . .
o . . -constant for the semiconductor relative to air. Further discus-
statistics of level spacings and widths, and conductance in. ; . . "
o | . : sion of this semiconductor-air boundary condition can be
the Coulomb oscillation regime. Section IV summarizes th ;
ound in Refs. 12 and 13.

principal conclusions which we derive from the calculations.

2. Charge density, quasi-2D treatment
Il. CALCULATIONS o . L
The charge densitwithin the Poisson gridi.e., not sur-

A. Quantum dot self-consistent electronic structure face gate chargencludes the 2DEG electrons and the ions

We consider a lateral quantum dot patterned on a 2DEAN the donor layer. The treatment of discreteness, order, and
heterojunction via metallic surface gatésg. 1). At a semi-  disorder in the donor ionic chargg,, has been discussed in
classical level, other gate geometries, such as a simple poifkef. 6 in regards to quantum wire electronic structure. Some
contact or a multiple dot system, can be treated with thdurther relevant remarks are made below in Sec. Il B.
same metho&® However, a full 3D solution of Schrb As noted above, we take advantage of the quasi-2D nature
inger's equation, even employing our subband expansioof the electrons at the GaAs-fba, ,As interface to sim-
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plify the calculation for their contribution to the total charge. (ay)
Given qZ we begin by solving Schinger's equation in the 60 anB 20 0 y(a,,)
z directionat every pointin the x-y plane, | I

0
Yoo
2 9

d
— 2 TVe(2) Ted(xy,2) |£7(2) = en(x,Y) £7(2), )

oY)

whereVg(2) is the potential due to the conduction-band off-
set between GaAs and &ba; ,As. We generally employ .
fast Fourier transform with 16 or 32 subbands. oo ‘ \

In order that there be a discrete spectrum at each pointi = ) \.; N
thex-y plane, it is convenient to takéz(z) as asquare well a0
potential (Fig. 1). That is, we effectively cut off the wave
function with a second barrier, typically 200 A from the 60 60 40 20
primary interface. In undepleted regions the potential is still x(as) (a)
basically triangular and only the tail of the wave function is
affected. However, near the border between depleted and ui
depleted regions the artificial second barrier will introduce i
some error into the electron density. This is because as 0.5 (b)
depletion region is approached, the bindiggctric fieldat
the 2DEG interface(slope of the triangular potentjare-
duces, in addition to the interface potential itself rising. Con-
sequently, all subbands become degenerate ragat the 0.0 —— :
edge electrons are three dimensiafhiaMWe have checked
that this departure from interface confinement, and in genere
in-plane gradients of:Y(z), contribute negligibly to quan-
tum dot level energies. However, theoretical descriptions o
2DEG edges commonly assume perfect confinement of elec
trons in a plane. In particular the description of edge excita:
tions in the quantum Hall effect regime in terms of a chiral
Luttinger liquid™ may be complicated in real samples by the
emergence of this vanishing energy scale and collective 0 5 10 15 20
modes related to it. y(aB')

Assuming only a single subband now and dropping the

index n, we determm,e the charge d'smbuuon, in they FIG. 2. (a) Contour plot for density and potential, quiet dot, TF.
plane from the effective potentiai(x,y), employing @ 2D |ggjines in potential spaced at0.1 Ry* up to 0.5 Ry above
Thomas-Fermi approximation for the charge in the leads angtem; jevel, after which much more widely. Density isoline spacing
solving a 2D Schrdinger equation in the dot. In order that ~0.01a% "2, maximum density~0.1a% 2. Ripples near QPC’s
the dot states be well defined, the QPC saddle points must kge finite grid size effect; plottek-y mesh shows every other grid
classically inaccessiblélf this is not the case it is still pos- |ine. (b) Transversey direction half-profiles of density and poten-
sible to use a Thomas-Fermi approximation throughout théal corresponding tda), taken at 3.85 intervals from dot center.
plane for the charge densit). In the dot, the density is Uppermost potential trace, entirely above Fermi surface, is in QPC
determined from the eigenstates by filling states according tpx~54a% in (a)], where density is zero. Density is scaled to nomi-
a Fermi distribution either to a prescribed “quasi-Fermi en-nal 2DEG value 0.1&; ?~1.4xX10' cm™2,

ergy” of the dot, or to a fixed number of electrons. It has

been pointed out that a Fermi distribution for the level occuyye set the 2D potentials throughout teadsto their values
pancies in the dot is an inaccurate approximation to the cora; the saddle points, thereby ensuring that the wave functions
rect grand canonical ensemble dlsltglbut?dmnethe'ess' for  decay uniformly into the leads. Thus the energy of the higher
small dots N=15) Jovanovicet al.™ have shown that, re- yying states will be shifted upward slightly. In seeking a basis
garding the filling factor, the discrepancy between a Fermj, which to expand the solution of E(R) we must consider
function evaluation and that of the full grand canonical en-ype approximate shape of the potential. The quantum dots
semble is~5% _at half-filling anq significantly smgller away which we model here are lithographically approximately
from the Fermi surface. A increases the discrepancy square in shape. However, the potential at the 2DEG level
should become smaller. and also the effective 2D potentia(r,6) (now in polar
coordinategare to lowest order azimuthally symmetric. The
radial dependence of the potential is weakly parabolic across
To solve the effective 2D Schdinger’s equation in the the center. Near the perimeter higher order terms become
dot, important[cf. Fig. 2b) and Eq.(15)].
As the choice of a good basis is not completely clear, we
[—V2+e(x)]f(x)=Ef(x), (2  have tried two different sets of functions: Bessel functions

3. Solution of Schralinger’s equation in the dot
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and the so-called Darwin-FodlDF) states.” The details of  accumulated® When the fraction of ionized donors
the solution for the eigenfunctions and eigenvalues diffelamong all donors is less than unity, redistribution of the ion-

significantly whether we use the Bessel functions or the DFze( sites through hopping can lead to ordering of the donor
states. The Bessel function case is largely numerical wherefilgyer chargé®®

the DF functions together with polynomial fitting of the azi- In this paper we consider the effects of donor charge dis-

muthally symmetric part of the radial potential allow a €O ribution on the statistical properties of quantum dot level

siderable amount of the work to be done analytically. Fur- : : .
; . spectra, in particular the unfolded level spacings, and on the
ther, neither of the two bases comes particularly close tg : - 2= 7
- . connection coefficients to the leads, of the individual
fitting the somewhat eccentric shape of the actual dot pOtenétates(see below. These dot properties are calculated with
tial. It is therefore gratifying that comparing the eigenvaluesensembles of dbnor char epthi)ch range from comoletel
determined from the two bases when reasonable cut offs aré 9 9 P y

' . andom (identical to #=1, no ion reordering possibleo
used, we find for up to the 50th eigenenergy agreement tp. = . . .
three significant figures, or to within roughlyrbicro eV, ighly ordered (~~1/10). For a discussion of the glasslike

properties of the donor layer and the Monte-Carlo variable
4. Summary and efficiency range hopping calculation which is used to generate ordered
ion ensembles, see Refs. 6 and 21.

To summarize the calculation, we begin by choosing the Note that hopping is assumed to take place at tempera-
device dimensions such as the gate pattern, the ionized donmreS (~160 K) much higher than the subliquid helium tem-

gruar:wgi]r?uSnegglr?éei?ritilésn Ifgﬁﬂgnhéflﬁ?\é? tLOe tbhaerrizelrai(r?d me eratures at which the dot electronic structure is calculated.
9 ’ hus the ionic charge distributions generated in the Monte-

';hlckne%s 9f the Alc(-j‘aji;;]x?z la%/?tr't:v E:j cqnstrq;:kt].nontu?l—l Carlo calculation are, for the purposes of the 2DEG elec-
orm grids Inx, y, andz that best fit the device within a total i strycture calculation, considered fixed space charges

of about 10 pom'Fs. Gate voltages, temperature, source-gjrau;}vhich are specifically not treated as being in thermal equi-
voltages, and either the electron numbéror the quasi- librium with the 2DEG

Fermi energy of the dot are inputs. The iteration scheme The region where the donor charge can be taken as dis-

-

begins with a guess @p{®). The 1D Schidinger equation is  crete is limited by grid spacing and hence computation time.
solved at each point in the-y plane and an effective 2D |n the wide lead regions and wide region lateral to the dot the
potentiale(x,y) for one or at most two subbands is thereby donor charge is always treated as “jellium.” Also, to serve
determined. Takind&yY(2)|? for the z dependence of the as a baseline, we calculate the dot structure with jellium
charge density, we compute the 2D dependence in the lea@dgross the dot region as well. We introduce the term “quiet
using a 2D Thomas-Fermi approximation and in the dot bydot” to denote this case.

solving Schrdinger's equation and filing the computed
states according to a Fermi distribution. We compute

= —’(0) . . -
F(d’_ ), which is a measure of how fgr \,Ne are from §elf To calculate the total interacting free energy we begin
consistency, and solve fdip, the potential increment, Using om the semiclassical expression

a mixing parametet. This gives the next estimate for the

potentiaIJS(l). The procedure is iterated and convergence is 1M
gauged by the norm df. FUNh Qi V=2 np83+52 QiVi
In practice there are many tricks which one uses to hasten P '
(or even obtaihconvergence. First, we use a scheme devel-
oped by Bank and Ro&&'°to search for an optimal mixing - > | dtvi(li(, ()]
parametet. Repeated calculation of Scldinger’s equation, 17 dot

which is very costly, is in principle required in the search foryheren, are the occupancies of noninteracting dot energy

t. Far from convergence the Thomas-Fermi approximatioqevelsao; Q; andV; are the charges and voltages of e

i ~ p
can be used in the dot as well as the leads. Nearer to COIE'iistinct “elements” into which we divide the system: dot,

vergence we find that diagonaliziru@q?) in_a basis of abOL_Jt leads, and gates; are the currents supplied by power sup-
ten states near the Fermi surface, treating the charge in tlﬁﬁeS to the elements.

other filled states as inert, is highly efficient. Periodically the' Tphe self-consistenenergy levels for the electrons in the
full solution of Schralinger’s equation is employed to update ot gre &p= (| —V2+VB(Z)+E¢(F)|1//p>. A sum over

the wave functions. these levels double counts the electron-electron interaction.

The wave-function information is also used to make arpys; for the terms in Ed3) relating to the dot, we make the
better estimate ofp;/d¢;. The 3D Thomas-Fermi method gpjacement

for estimating this quantity does not account for the fact that
the change in density at a given grid point will be most 1 1
strongly influenced by the changes in the occupancies of the >, nyeS+ EQdotVdot_’z Npep— §J drpgod 1) (1)
partially filled states at the Fermi surface. Thus use of these P P
wave functions greatly improves the speed of the calculation.

C. Free energy

1
+§f drpion(r) é(r), 4

B. Disorder

Evidence of Coulombiordering of the donor charge in a wherepyy(r) refers only to the charge in the dot states and
modulation doping layer adjacent to a 2DEG has recently;,n(r) refers to all the charge in the donor layer.
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We have demonstratétf*that previous investigatiodd®>  (drain). The notation{n; + p} denotes the set of occupancies
had failed to correctly include the work from the power sup-{n;} with the pth level, previously empty by assumption,
plies, particularly to the source and drain leads, in the energfilled. In Eq. (7) it is assumed that only a single gate voltage,
balance for tunneling between leads and dot in the Couloml, (the “plunger gate,” cf. Fig. 1, is varied.
blockade regime. Here, we assume a low impedance envi-

ronment which allows us to make the replacement E. Tunneling coefficients

1 1 The elastic couplings in Eq. 7 are calculated from the
2.4 ini_igot f dtVi(Hli(t) —— Eigot QiVi. self-consistent wave functiors:

5 2
The charges on the gates are determined from the gradient of ﬁrnp:4K2Wﬁ(avb)‘ J dyfo(Xp,Y)xn (Xp,Y)| , (10)

the potential at the various surface regions, the voltages be-
ing given. Including only the classical electrostatic energy ofwheref(x;,y) is the two-dimensional part of theth wave

the leads, the total free energy is function evaluated at the midpoint of the barrigp,, and
1 Xi (Xp,Y) is thenth channel wave function decaying into the
_ barrier from the leadsW,(a,b) is the barrier penetration
F N,V)= —-= n ) i~
({np.N. Vi) % Mo®p 2[ drpao 1) (1) factor between the classical turning point in the lead and the

point x,,, for channeln computed in the WKB approxima-
i EJ dr pign(1) (1) tion, andx is the wave vector at the matching point. Though
2 fon the channels are 1D we use the two-dimensional density of
states characteristic of the wide 2DEG regtbn.

1 1
—5 2 | draneé( -5 X QV,

i e leads 2i e gates F. Capacitance

(6) Quantum dot system electrostatic energies are commonly
. . . - : : 7
where the energy levels, density, potential, and induce@Stimated on the basis of a capacitance mbdethen the
charges are implicitly functions dfl and the applied gate Self-consistent level energies and potential are known, the
voltagesV; . Note that the occupation number dependence ofotal free energy can be computed without reference to ca-
these terms is ignored. In tfie=0 limit the electrons occupy ~Pacitances. However, the widespread use of this model and

the lowestN states of the dot, and the free energy is denotedn® €ase with which capacitances can be calculated from our
Fo(N,V)). self-consistent resultsee below encourage a discussion.

For a collection ofN metal elements with charg€} and
voltages V; the capacitance matrix, defined %By°
Q=3 1CijVj, can be written in terms of the Green’s func-

The master equation formula for the linear source-draiition G (x,x’) for Laplace’s equation satisfying Dirichlet
conductance though the dot, derived by several autfidfs poundary conditions on the element surfaces:

for the case of a fixed dot spectrum, is modified to the self-
consistently determined free energy case as follbws:

D. Conductance

1 o
Ci=grz | 40 [ 40y FGoxx)], A

s1d 4

G(V ezEP > s _drprp
[ — n ~
(Vo) keT{m} ed {Ni}) ) “P'°F§+1”p where the integrals are over element surfaces witithe
outward directed normal.
XEFEAN+phN+1Vg) —F({ni},N,Vg) — ), In a system with an element of sitenot much greater
(7)  than the screening lengtty, the voltage of the component,

. _ _ _ and hence the capacitance, is not well defiffed.In this
where the first sum is over dot level occupation configura-

. ; e case, as discussed in Ref. 29, the capacitance can no longer
tions and the second is over dot levels. The equilibrium prob b g

o T o : o be written in terms of the solution of Poisson’s equation
ability distribution Pe((in;}) is given by the Gibbs distribu- 5516 "hut must take account of the full self-consistent deter-

tion, mination of theith charge distributiorp;(x) from the jth
1 potential ¢;(x) Vi,j. In general the capacitance will then
Ped{ni})=zexil — BF({n},N.Vg)—w)]. (8  become akemel in an integral relation. A refationship of this
kind has recently been derived in terms of the Linhard
and the partition function is screening function by Btiker.*°

To compute the dot self-capacitance from the calculated
self-consistent electronic structure we have three separate
z=2> exil — BF({n;},N,Vg)—p)]. 9 procedures. In all three cases we vary the Fermi energy of
{ni} -
the dot by some small amount to change the net charge in the
Note that the sum on occupation configuratiofis;}, in-  dot. This requires that the QPC’s be closed. For the first
cludes implicitly a sum orN. In Eq. (7), f is the Fermi  method the total charge variation of the dot is divided by the
function, u is the electrochemical potential of the source andchange in the electrostatic potential minimum of the dot.
drain, andF;(d) are the elastic couplings of levplto source  This is taken as the dot self-capacitari@g,. A second pro-
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cedure for the dot self-capacitance is to divide the change ir
the dot charge simply by the fixed, imposed change of the
Fermi energy. This result is denot€,,. Since the change
in the potential minimum of the dot is not always equal to
the change of the Fermi energy, these results are not ident
cal. Finally, we can fit the computed free enefgfN,V,) to
a parabola inN at eachVy. If the quadratic term isvN?,
then the final form for the self-capacitanceG§,= 1/(2«)
(primes arenot derivatives herg This form, which also
serves as a consistency check on our functional for the en
ergy, is generally quite close to the first form and we present o _
no results for it. FIG. 3. Contour plots of dot showing ion placement for disor-
For the capacitances between dot and gates or leads, tE™ed caséeft) and ordered £=1/5) ion distribution, TF. Isolines
extra dot chargéproduced by increasing the Fermi energy in & g.los RY updto .Fej“?' S#rface’ wider t’\k:ereaﬂer: Glat:e Vﬁltages.
the do} is screened in the gates and the leads so that the nﬁgn OC;Ct?]téO'I”;SAt eQnFt)l(c:a d;r;etrriiggg Easiii.s ir?tgisp;rélgruegrgatsee post-
charge inside the systefmcluding that on the gated bound- g y '
arieg remains zero. The fraction of the charge screened in
particular element gives that element’s capacitance to the d?)
as a fraction ofCy.

disordered ordered, ¥ = 1/5

hich minimizesF,(N,V,) at eachV, (gates other than the
unger gate are assumed fiyxedrhis occurs when the
chemical potential of the dot equals those of the Igadsch
are taken as equal to one another and represent the energy
. RESULTS zerg and gives the most probable electron number. Results

resented below as a function of varying gate voltage, par-

We consider only a small subspace of the huge availablgc larly the spectra in Figs. 10 and 12, are assumed to be
parameter space. For the results presented here we have flxg| ng the resonance curve '

the nominal 2DEG density to 1:410' cm~2 and the alu-
minum concentration of the barrier to 0.3. The lithographic

gate pattern is shown in Fig. 1, as is the growth prdiite A. Electrostatics

cluding our artificial second barrierSome results are pre- Figure 2a) shows an example of a potential profile along
sented with a variation of the total thicknegssof the  with a corresponding density plot for a quiet dot containing
Al,Ga; _,As (Fig. D. 62 electrons. The basic potential and/or density configura-

To interpret the results we note the following consider-tion, as well as the capacitances, are highly robust. These
ations. Hohenberg-Kohn-Sham theory provides only that thelata are computed completely in the 2D Thomas-Fermi ap-
ground-state energy of an interacting electron system can kfgoximation, singlez subband, aff=0.1 K. Solution of
written as a functional of the density>2 The single-particle ~ Schralinger's equation or variation of results in only
eigenvalues:, have, strictly speaking, no physical meaning. subtle changes. The depletion region spreading is roughly
However, as pointed out by Slafethe usefulness of DF 100 nm. Figure @) shows a set of potential and density
theory depends to some extent on being able to interpret therofiles along the direction(transverse to the current direc-
energies and wave functions as some kind of single-particléon) in steps of 3.85 in x, from the QPC saddle point to the
spectrum. In the Coulomb blockade regime it is particularlydot center. Note that the density at the dot center is only
important to be clear what that interpretation is, and what itsabout 65% of the ungated 2DEG density. Correspondingly,

limitations are. the potential at the center is above the floor of the ungated
A distinction is commonly made between the addition2DEG (~—0.9 Ry*).
spectrum and the excitation spectrum for quantum ots. We discuss a simple model for the potential shape of a

Differences between our effective single-particle eigenvaluesircular quantum dot belowSec. Ill B 1). Here we note only
represent an approximation to the excitation spectrum. As ghat the radial potential can be regarded as parabolic to low-
specific example, in the absence of depolarization and excest order with quartic and higher order corrections whose
tonic effects, the first single-particle excitation from theinfluence increases near the perimeter. In Thomas-Fermi
N-electron ground state with gate voltage®; is studies on larger dots® with a comparable aspect ratio we
ens+1(N, Vi) —en(N, V). find that the potential and density achieve only 90% of their
The addition spectrum, on the other hand, depends on théngated 2DEG value nearly 200 nm from the gate. Regard-
energy difference between the ground states of thendet-  ing classical billiard calculations for gated structures,
acting with its environmerat two differentN. Thus, in our  therefore>®~*even in the absence of impurities it is difficult
formalism, the addition spectrum is given by differences into see how the “classical” Hamiltonian at the 2DEG level
F({np},N,V;) at neighboringN, possibly further modulated can be even approximately integrable unless the lithographic
by excitations, i.e., differences in the occupation numbergate pattern is azimuthally symmetrit.
{ng}- The importance of the remote ionized impurity distribu-
In contrast to experiment, the electronic structure can béon is demonstrated in Fig. 3, which shows a quantum dot
determined for arbitraryN and V; (so long as the dot is with randomly placed ionized donors on the left, and with
closed. This includes both nonintegét as well as values ions which have been allowed to reach quasiequilibrium via
which are far from equilibriuntdiffering chemical potential  variable range hopping on the right. In both cases the total
with the leads. The “resonance curnvkis given by theN ion number in the area of the dot is fixed. The example
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FIG. 4. Histograms of deviation of effective 2D potential from
quiet dot values at the sanxey point and the same gate voltages,
for several ion to donor ratio, TF. Solid lines are statistics for FIG. 5. Dot self-capacitances, equilibrium electron number, and
points below Fermi surface, dashed lines, showing substantiallpotential minimum as a function of plunger gate voltdtmver).
more variation, aboveF=1 is completely randon(disordered Numericaluncertainty is indiscernible, so variations@©f4 are real
case. Distributions uniformly asymmetric, positive potential devia-and related to spectrunCgy calculated usingAEg rather than
tions from quiet dot case being more likely, but means are venAV,, S0 strong anomaly near 1.15 V due to rigidity ofN.
close to zero. Inset shows standard deviation of histograms versud$pper panel: expanded view of capacitances near anomaly; cf.
F, triangles below, squares above Fermi level. spectrum, Fig. 9.

shown here for the ordered case assumes, in the variablg€ iOnS are arranged in a Wigner crysake limiting case at
range hopping calculation, one ion for every five donors’” = 0), potential fluctuations would be expected in compari-

(F=1/5). As in Ref. 6 we have, for simplicity, ignored the SO With ionic jellium. _ _ -
negativeU model for the donor impuritiesOX centers, The success of the capacitance model in describing ex-

which is still controversiat®“®4Lif the negativel model, at perimental results of charging phenomena.in mesoscopic
some barrier aluminum concentration, is correct, the mostYStems ha_s been remarkafﬂeF.or our caIcuIauqns as well,
ordered ion distributions will occur faF=1/2, as opposed even the simplest formulations for the capacitance tend to

to the neutralDX picture employed here, where ordering produce smoot_hly va_rying results when gate voltages or dot
increases monotonically a5 decrease®? ' charge are varied. Figure 5 shows the trend of the dot self-

For these assumptions Fig. 4 indicates that ionic Ordering/apacnances witlVq . Also shown are the equilibrium dot

substantially reduces the potential fluctuations relative to th lectron numbeN and the minimum of the dot potential

completely disordered case, even for relatively lage min @S functions OVQ' Note here thal/py;, is the minimgm
Herep usir):g ensembles of dots with varyifgwe c}(/)mpfre of the 3D electrostatic potential rather than the effective 2D

the effective 2D potential with a quiet ddjellium donor po':jegtial which is presented elsewhegeich as in Figs. 2
nd 3.

layen at the same gate voltages and same dot electron nurft
ven 9 9 That Cy44 generally decreases as the dot becomes smaller

ber. The distribution of the potential deviation is computed, 2" .
as P P is not surprising and has been discussed elsewfietd.

three forms ofC44 are roughly in agreement, giving a value
1 ~2fF (the capacitance as calculated from the free energy is
_ not shown. The fluctuations result from variations in the
Pav)= S_szS IEJ SHAV=[VAXiYj) —VodXi,¥))1} quantized level energies as the dot size and shape are
(12)  changed by . Note thamumericalerror is indiscernible on
the scale of the figure. The pronounced collaps€ gf near
wheres labels samplegdifferent ion distribution} typically ~ Vy=—1.15V, which is expanded in the upper panel, shows
up toS=10, N is the total number of ory grid points in the  the presence of a region where the chang® ofith E¢ is
dot (~50), and “qd” stands for quiet dot. The distributions greatly suppressed. Since the chang¥ gf, with E¢ is simi-
for all F are asymmetri¢Fig. 4). Although the means are larly suppressed, there is no corresponding anomaly in
indistinguishably close to zero, the probability for large po-Cgyq4. Interestingly, the capacitance computed from the free
tential hills resulting from disorder is greater than for deepenergy also reveals no deep anomaly.
depressions. Also, the distributions for points above the The anomaly aV,=—1.15V and also the fluctuation in
Fermi surfacddashed linesare broader by an order of mag- the electrostatic properties nearl.1 V are related to a shell
nitude (in standard deviationthan below, due to screening. structure in the spectrum which we discuss below.
Finally, saturation as¥—0 (inset Fig. 4 shows that even if A frequently encountered model for the classical charge
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about 1.4 electrons. Screening charge, white region, in leads is posi- QPC Gate Voltage [V]

tive. White curve gives profile along line bisecting dot, scaled to

average change &f per unit area. Right panel shows model of Ref. £ 7. variation of dot capacitances with QPC voltage. Solid
44, where confining potential has fixed parabolicity. Note that thisjj,,og forV, (g are effective 2D potential for lefright) saddle point
model drastically underestimates the degree to which charge i&ight-hand scale C5(A) andCs(B) are dot self-capacitances.
added to perimeter. Fig. 5 computed using\V,,,, andAEg , respectively. “Source” is

S ) ) ) _ (arbitrarily) outsideleft saddle point. Note tha¥, goes practically
distribution in a quantum dot is the circular conducting diskig zero but the dot capacitance to the source only marginally in-
with a parabolic confining potentiéf:*> It can be shown creases relative to dot to drain capacitance. Capacitances for QPC
(solving, for example, Poisson’s equation in oblate spheroiand plunger are for a single finger only in each case. Anomaly
dal coordinatesthat for such a model the 2D charge distri- related to dot reconstruction also visible here as QPC voltage is
bution in the dot goes as changed.

— 21p2\1/2
n(r)=n(0)(1-r?R*)", (13 white curves display the density change profiles across the

whereR is the dot radius and(0)=3N/27R? is the density central axis of the dot. The total changeNnis the same in
at the dot center. The “external” confining potential is as- °0th cases, but clearly the model of Eg3) underestimates

sumed to go ad/(r)=V+kr22 andR is related toN the degree to which new charge is added mostly to the pe-
through 0 rimeter.

Recently the question of charging energy renormalization
37 e2 via tunneling as the conductan€g, through a QPC ap-
A (14 proaches unity has received much attenfo#®In a recent
experiment employing two dots in series a splitting of the
wherex is the dielectric constadt. Coulomb oscillation peaks has been observed as the central

To justify this model, the authors of Ref. 44 claim that the QPC (between the two dotsis lowered®® Perturbation
calculations of Kumaret all® show that “the confine- theory for smallG, and a model which treats the decaying
ment...has aearly parabolic form for the external confin- channel between the dots as a Luttinger liquid for
ing potential(sic).” This is incorrect. What Kumaet al’s ~ Go—1(e*/h) lead to expressions for the peak splitting
calculation shows is thdfor N<12) theself-consistenpo-  which is linear in Gy in the former case and goes as
tential, which includes the potential from the electrons them{1—Gg)In(1—Gy) in the latter case.
selves, is approximately cut off parabolic. Teeternalcon- A crucial assumption of the model, however, is that the
fining potential, as it is used in Ref. 44, would be that“bare” capacitance, specifically that between the dots
produced by the donor layer charge and the charge on th€4;_ 42, remains approximately independent of the height of
surface gates only. We introduce a simple mo@ele Sec. the QPC, even when an open channel connects the two dots.
[l B 1 below) wherein this confining potential charge is re- Thus the mechanism of the peak splitting is assumed to be
placed by a circular disk of positive charge whose density igjualitatively different from a model which predicts peak
fixed by the doping density and whose radius is determinedplitting entirely on an electrostatic basis when the interdot
by the number of electrons the dot The gates can be capacitance increases greafly.The independence of
thought of as merely cancelling the donor charge outside thaty; 4, from the QPC potential is plausible insofar as most
radius. The essential point, then, is this: adding electrons telectrons, even when a channel is open, are below the QPC
the dot decreases th@egative charge on the gates and saddle points and hence localized on either one dot or the
therefore increases the radius. One can make the assumptiaher. Further, if the screening length is short and if the chan-
as in Ref. 44, that the external potential is parabolic, but it imel itself does not accommodate a significant fraction of the
a mistake to treat that parabolicitly, as independent dfl. electrons, there is little ambiguity in retaini@y; 4, to de-

This is illustrated in Fig. 6, where we have plotted con-scribe the gross electrostatic interaction of the dots, even
tours for thechangein the 2D density, akg is incrementally  when the dots areonnectecht the Fermi level.
increased, as determined self-consister(finomas-Fermi In Fig. 7 we present evidence for this theory by showing
everywhere, left panghnd as determined from E(L3). The the capacitance between a dot and tbads as the QPC
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AlGaAs thickness t(a,) voltage in latter three is froy=—1.142 to—1.17 V.

bution of the dot capacitance between leads, gates(rastd

FIG. 8. Al,Ga,_,As thickness dependence of capacitancesshowr back gate change only moderately. That gates closer
(lowen. Self-capacitance decreases as gates get closer to 2DE@ the 2DEG plane should produce dots of lower capacitance
Upper panel shows that, for smallgrthe potential confinement is is made clear in the upper panel of the figure, which shows
steeper and charge more compact, hence smallgy. the potential and density profileising TH near a depletion
t,=5.25{,=7.5t;=9, andt,=12a} . Relative capacitance from region at the side of the dot at varyingand constant gate
dot to gates and leads fairly insensitivetto voltage. For smallet the depletion region is widened but the

density achieves its ungated 2DEG val{ere 0.14’,;’2)

voltage is reduced. In the the figuw g, is the effective 2D  more quickly; a potential closer to hard walled is realized. In
potential of the left(right) saddle point as the left QPC gate the presence of stronger confinement the capacitance de-
voltagesVqpc only are varied. The dot is nearly open when creases and the charging energy increases.
the QPC voltagegboth pins on the leftreach~—1.34 V. The profile of the tunnel barriers and the barrier penetra-
The results here use the full quantum-mechanical solutiofion factors are also dependenttorHowever, we postpone a
(without the LDA exchange-correlation enejgynowever, discussion of this until the section on tunneling coefficients.
the electrons in the lead continue to be treated with a 2D TF
approximation. The dot “reconstruction” seen in Fig. 5 is
visible here also aroun®’opc=—1.365 V. Note that the The bulk electrostatic properties of a dot are, to first ap-
right saddle point is sympathetically affected when weproximation, independent of whether a Thomas-Fermi ap-
change this left QPC. While the effect is faint5% of the  proximation is used or Schdinger’s equation is solved. A
change of the left saddle, the sensitivity of tunneling tonotable exception to this is the fluctuation in the capaci-
saddle point voltagésee also belophas resulted in this kind  tances. Figure 9 shows the plunger gate voltage dependence
of cross-talk being problematical for experimentalists. Theof the energy levels. The Fermi level of the dot is kept con-
figure also shows that the capacitance between the dot arsiant and equal to that of the leadsis the energy zero
one lead exceeds that to(single QPC gate or even to a Hence as the gate voltage incread@scomes less negative
plunger gate. However, the most important result of the figN increases.
ure is to show that the dot to lead capacitance is largely Since the QPC's lie along theaxis, the dot is never fully
insensitive to QPC voltage. When the left QPC is as closegsymmetric with respect to interchangefandy, however
as the right Vopc~—1.375 V) the capacitances to the the most symmetric configuration occurs fgg~—1.16 V,
source and drain are equal. But even near the open conditidgawards the right side of the plot. The levels clearly group
the capacitance to the left leddrbitrarily the “source”) into quasishells with gaps between. The number of states per
only exceeds that to the draifwhich is still closed mi-  shell follows the degeneracy of a 2D parabolic potential, i.e.,
nutely. Therefore the assumptions of a “bare” capacitancel,2,3,4... degenerate levels per shelignoring spin.
which remains constant even as contact is made with a leabhere is a pronounced tendency for the levels to cluster at
(or, in the experiment, another dateems to be very well the Fermi surface, here given =0, which we discuss
founded. below.

As noted above, the interaction between a gate and the
2DEG depends upon the distance of the gates from the
2DEG, i.e., the A|Ga; _,As thicknesd. In Fig. 8 we show Shell structure in atoms arises from the approximate con-
that, as we decreasgesimultaneously changing the gate volt- stancy of individual electron angular momenta, and degen-
ages such thadll and the saddle point potentials remain con-eracy with respect ta projection. Since in two-dimensions
stant, the total dot capacitance also decreases, but the disttire angular momentum is fixed in thez (transversgdirec-

B. Spectrum

1. Shell structure
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tion, the isotropy of space is broken and the only remaining

manifest degeneracy, and this only for azimuthally symmet- 23 4 5 6 78 9 10
ric dots, is with respect ta-z. A two-dimensional parabolic ® @ oo ® o0 ol®
potential, in the absence of magnetic field, possesses an ac-® ¢ ®® : oo 000 s e 10 OO

cidental degeneracy for which a shell structure is recovered.
We have shown above that modeling a quantum dot as a ~

classical, conducting layer in axternalparabolic potential

kr2/2, wherek is independent of the number of electrons in  FIG. 11. Schematic showing the first ten levels of quiet dot.

the dot, ignores the image charge in the surface gates fornshell structure consistent with-+m= const, wheren andm are

ing the dot and therefore fails to properly describe the evolvnodes inx andy. Lower energy states show rectangular symmetry.

ing charge distribution as electrons are added to the dot. A

more realistic model, v_vhiclexplain_sthe approximate para- Comparison(not shown of the potential computed from
bolicity of the self-consistenpotential, and hence the appar- Eqg. (15) and the radial potential profilfowest curve, Fig.

ent shell structure, is illustrated in Fig. 10. The basic electroz(b)] from the full self-consistent structure shows good
static structure of a quantum dot, in the simplestygreement for overall shape. However, the former is about
approximation, can be represented by two circular disks, 0b504, smallefsameN) indicating that the sharp cut off of the
radiusR and homogeneous charge density separated by a ositive charge s, for these parameters, too extreme. How-
distancea. The positive charge outside is assumed to be ever, Eq.(15) improves for largeN and/or smallet.

canceled by the surface gates. This approximation will bé The wave-function moduli squared associated with the
best for surface gates very close to the donor léiyer, small Fig. 9 quiet dot levels fol/;~—1.16 V, N~54 are shown

t). Larger Al,Ga, _,As thicknesses will require a nonabrupt gchematically for levels 1 through 10 in Fig. 11, and for
termination of the positive charge. In either case, the elecpels 11 through 35 in Fig. 12.

tronic charge is assumed in the classical limit to screen the The |owest level in a shell is, for the higher shells, typi-
background charge as nearly as possible. This is similar ta)y the most circularly symmetric. When the last member
the postulate in which wide parabolic quantum wells are ex¢ 5 shell depopulates witll, the inner shells expand out-
pected to produtl:e approximately homogeneous layers Qf5.q as can be seen nebg=g—1.15 V (Fig. 9 where level
electronic charg&" _ _ _ p=29 depopulates. Since to begin filing a new shell re-
A simple calculation for the radial potentidbr a<R) in g,jires the inward compression of the other shells and hence

the electron layerZ=0) gives, for the first few terms, more energy, the capacitance decreases in a step when a shell
oNe 22 15 ah g2 i§ depopula}tedﬁ The sdhetlélstructure.;goulld hzve tv_\lllo Qistinct
— = signatures in the standafdlectrostatit Coulomb oscillation
B(r)= R VET a/R- R 2RR experiment’ First, since the self-capacitance drops appre-
o 4 ciably (Fig. 5 when the last member of a shell depopulates,
+£ a r_+ (15) hereN goes from 57 to 56, a concomitant discrete rise in the
128 R R* activation energy in the minimum between Coulomb oscilla-

whereNe=mR?0 and « is the background dielectric con-

stant. While the coefficient of the quartic term is comparable g% * L : @ o
to that of the parabolic term, the dependences are scaled | ..‘"". ’:‘;’:‘ ".".“ ”:::\‘ ((“))
the dot radiusR. Hence, the accidental degeneracy of the .':0:. ..4‘:'.. S’o’ \\ "

parabolic potential is broken only by coupling via the quartic
term near the dot perimeter. This picture clearly agrees witt g
the full self-consistent results wherein the parabolic degen "“\ 3 ‘“.»
eracy is observed for low-lying states and a spreading of thi \\“l’ -
previously degenerate states occurs nearer to the Fermi st -
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FIG. 10. Schematic for a simple two charge disk model of quan- -

tum dot. Positive charge outside radiRstaken to be uniformly

canceled by gates, electric charge in 2DEG mirrors positive charge. FIG. 12. Levels 11 through 3&ach spin degeneratef quiet
Resultant radial potential in 2DEG plane, EG5), dominated by  dot, Hartree. Circular symmetry increases with energy. States elon-
parabolic term insidér. gated inx (horizonta) most connected to leads.
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tions can be predicted. Second, envelope modulation of peake capacitances also show anomalies near the same gate
height§ occurs when excited dot states are thermally accesvoltages, where shells depopulate, as in Fig. 4, which is pure
sible as channels for transport, as opposed tolth® case, Hartree.
where the only channel is through the first open state above The two remaining panels in Fig. 9 illustrate the effects of
the Fermi surfaci.e., the (N+ 1)st stat¢ WhenN is inthe  disorder and ordering in the donor lay@fC not included.
middle of a shell of closely spaced, spin degenerate level€}S With the “XC" panel, V4 is varied between-1.142 and
the entropy of the dotkgInQ, whereQ is the number of —_1._17 V The_ “disorder” panel represents a single fixed
states accessible to the dot, is sharply peaked. For exampf@Stribution of ions placed at random in the donor layer as
for six electrons occupying six spin degenerate levets, ~ discussed above. Similarly, the “order” panel represents a
twelve altogetherall within kgT of the Fermi surface, the smgle o_rdered distribution ggneratgd flrom a random distri-
number of channels available for transport is 924. For elevefution via the Monte-Carlo simulatidit;* here 7=1/5 (cf.
electrons in the shell, however, the number of channels reWo0 panels of Fig. B o
duces to 12. Consequently, minima and peaks of envelope The shell structure, which is compIe_ter dgstroyed for
modulation(see also Fig. 21 belovef CB oscillations which  [Ully random donor placemerisee also Fig. 14 is almost
are frequently observed are clear evidence of level bunching€'fectly recovered in the ordered case. In both cases the
if not an organized shell structure. energies are umformly shifted upwards relative to the quiet

Recently experimental evidence has accumulated for th€Ot Py virtue of the discreteness of donor chafgfealso the
existence of a shell structure as observed by inelastic lighfiScussion of Fig. 4 aboyeCloser examination of the disor-
scatterin§? and via Coulomb oscillation peak positions in d€reéd spectrum shows considerably more level repulsion
transport through extremely smalil(-0— 30) vertical quan- than the other cases. o ,
tum dots>® Interestingly, aclassicaltreatment, via Monte- The application of a small magnetic field, roughly a single
Carlo molecular-dynamics simulatihalso predicts a shell flux guantum through the dot, has a dramatic impact on both
structure. Here, the effect of the neutralizing positive back{N€ SPectrum, Fig. 13, and the wave functions, Fig. 14, top.
ground is assumed to produce a parabolic confining potent"€ magnetic field dependence of the levelst shown up
tial. A similar assumption is made in Ref. 55, which analyzed© 0-1 T exhibits shell splitting according to azimuthal quan-
a vertical structure similar to that of Ref. 53. We believe thatlUm number as well as level anticrossing. By 0.05 T level
continued advances in fabrication will result in further em-SPacing(Fig. 13 is substantially more uniform thaB=0,
phasis on such invariant, as opposed to merely statistical;|9- 9: Furthermore, while thB=0 quiet dot displays recon-
properties of dot spectra. struction due to the depopulation of shglls}/@te —1.15 and

As noted above, there is a strong tendency for levels at thg 1-1 V, theB=0.05 T results show a similar pattern, a step
Fermi surface to “lock.” Such an effect has been described" the levels, repeated many times in the same gate voltage
by Sunetal® in the case of subband levels for parallel '@nge. The physical meaning of this is clear. The magnetic
quantum wires. In dots, the effect can be viewed as electrdi€ld principally serves to remove the azimuthal dependence
static pressure on the individual wave functions, thereby?f the mod squared of the wave functioffig. 14. In a
shifting level energies in such a way as to produce leve/nagnetic fleld_, the states at the _Ferml surface also_tend to be
occupanciesvhich minimize the total energy. Insofar as a at the dot perimeter. Depopulation of an electron in a mag-
given set of level occupancies is electrostatically most favorn€tic field, like depopulation of the last member of a shell for
able, level locking is a temperature-dependent effect whictp=0. therefore removes charge from the perimeter of the
increases ad is lowered. This self-consistent modification 90t and a self-consistent expansion of the remaining states
of the level energies can also be viewed as an excitonic coRutward occurs.
rection to excitation energies.

The difference between the cases of a quantum dot and C. Statistical properties
that of parallel wires is one of localized versus extended
systems. It is well known that, unlike Hartree-Fock theory,
wherein self-interaction is completely canceled since the di- The statistical spectral properties of quantum systems
rect and exchange terms have the same kerie-1/|, in ~ whose classical Hamiltonian is chaotic are believed to obey
Hartree theory and even density-functional theory in thethe predictions of random matrix theoRMT).>® Argu-
LDA, uncorrected self-interaction remairisWhile it is rea- ments for this conjecture, however, invariably treat the
sonable to expect that excited states will have their energiddamiltonian as a large finite matrix with averaging taken
corrected downward by the remnants of an excitonic effectpnly near the band center. Additionally, an often unclearly
we expect that LDA and especially Hartree calculations willstated assumption is that the system in question can be
generally overestimate this tendency to the extent that cotreatedsemiclassicallythat is, in some sense the action is
rections for self-interaction are not complete. large on the scale of Planck’s constant and the wavelesfgth

The panel labeled “XC” in Fig. 9 illustrates the preced- all relevant statess short on the scale of the system size.
ing point. In contrast to the large pan@n the lefy these Clearly, for small quantum dots these assumptions are vio-
results have had the XC potential in LDA included. The lated.
differences between Hartree and LDA are generally subtle, RMT predictions apply to level spacingand to transi-
but here the clustering of the levels at the Fermi surface ision amplitudes(for the “exterior problem,” level widths
clearly mitigated by the inclusion of XC. The approximate I').>° RMT is also applied to scattering matrices in investi-
parabolic degeneracy is evidently not broken by LDA, how-gations of transport properties of quantum wit®&rgodic-
ever, and the shell structure remains intact. Similarly for XC,ity for chaotic systems is the claim that variation of some

1. Level spacings
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FIG. 13. V, dependence at fixeB (0.05 T) of level energies,
quiet dot. Multlple reconstructions seen as levels depopulate. Ho
mogeneous level spacing related to uniformity of Coulomb oscilla-
tion peak heights in a magnetic field.

external parameteK will sweep the Hamiltonian rapidly TS

through its entire Hilbert space, whereupon energy averaging P(S)= exli wS?14D?), (16

and ensemblé.e., X) averaging produce identical statistics.

In our studyX is either the set of gate voltages, the magnetiovhereD is the mean local spacing:®! Figure 15 shows the

field, or the impurity configuration and we consider the sta-calculated histogram for the level spacings for the quiet dot

tistics of the lowest-lying 45 leveléspin is ignored heje  as well as for disordered, ordered, and ordered, with

Care must also be taken in removing the secular variations ®&=0.05 T cases. Statistics are generated fieymmetrical

the spacings or widths with energy, the so-called unfoldingplunger gate variation, in steps of 0.001 V, over a range of
According to RMT, level repulsion leads to statistics of 0.1 V, employing the spacings between the lowest 45 levels;

level spacings which are given by the “Rayleigh distribu- thus about 4500 data points. Deviation from the Rayleigh

tion™: distribution is evident. An important feature of our dot is

symmetry under inversion through both axes bisecting the

dot. It is well known that groups of states which are un-
@ @ coupled will, when plotted together, show a Poisson distri-
bution for the spacings rather than the level repulsion of Eq.

(16). Thus we have also plottdevhite bars the statistics for
those states which are totally even in parity. While the prob-

B=0.05T

..‘. o%s Y - ability of degeneracy decreases,yA test shows that the
‘:)\” 0% 'é% % l.“\\ ,/(.:‘\ ) distribution remains substantially removed from the Ray-
0\\ O ‘o 0 N4 \\\”0} \\-//, leigh form.
Se e In contrast to this, the disordered case shows remarkable

ordered agreement with the RMT prediction. As with the spectrum in

* r3 o - Fig. 9, we use a single ion distribution. However, we also
'0.000. .3,‘0: .'.'::\ %\\ ,,/”” find (not shown that fixing the gate voltage and varying the

‘/'I‘ .‘ .o : " \\\ Y oery, ,,/ random ion distributions results in nearly the same statistics.

“» '..’ Gror ® When the ions are allowed to order, the level statistics again

disordered deviate from the RMT model. This is somewhat surprising
since Fig. 4 shows that, even f@i= 1/5, the standard devia-

31 =
.:4:0‘. 0:«'.0 ’l.‘\\ "““\ - tion of the effective 2D potential below the Fermi surface
se-o, s o8 iigsid W) = from the quiet dot case;-0.05 Ry*, is still substantially
W% V%' oY% - greater than the mean level spacind.02 Ry*. We have

exchange included recently shown that, a& goes from unity to zero, a continu-
ous transition from the level repulsion of Ed.6) to a Pois-
FIG. 14. Levels 31 through 35 fdfrom bottom quiet dot with  Son distribution of level spacings resufitsFinally, the appli-
LDA for XC, Hartree for disordered dot, Hartree for ordered dot cation of a magnetic field strong enough to break time-
F=1/5, andB=0.05 T. XC changes ordering of some levels, but reversal symmetry clearly reduces the incidence of very
has very little influence on states. Ordered case recovers much simall spacings, but the distribution is still significantly dif-
quiet dot symmetry. SmaB changes states altogether. ferent from RMT.
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recapitulate the level structure, spaced now not in energy but
.8 in “bare” partial width. Theactualwidth of a level depends
¢ { ’ upon the wave function for that staftef. Eq. (10)]. For en-

1" channel

9.0 . . U
12.0 ergies above the barrier R(=0. The solid lines represent

P at the Fermi surfacecomputed for three different
Al ,Ga; _,As thicknesses (as in Fig. 8 and for bothn=1
andn=2 (the dashes are computed for 12a%). The QPC
2™ channel voltage is given relative to values at whiehfor n=1 is the
75 same for all three (hence the top three solid lines converge
t g 9.0 at AVgpc=0).
12.0 Quite surprisinglyt has very little influence on the trend
of P with QPC voltage. Note that the ratio of barrier pen-
o - - I I 133" shen etration between the second and first chanigléP,; de-
R L creases substantially with increasihgince the saddle pro-
.10 file becomes wider for more distant gates. Even for
t=7.5a%, however, penetration via the second channel is
about a factor of 5 smaller than vie=1.
AVore [mV] Figure 17 shows the partial width for tunneling vias 1
through the barrier, now using the full E.0), for the quiet
FIG. 16. Barrier penetration factors from classical turning pointdot. The barriers here are fairly wide. While this strikingly
in lead to turning point in dot at same energy, as a function of QPQoherent structure is quickly destroyed by discretely local-
voltage offset.P evaluated at energies of states in quiet dot forized donors even when donor ordering is allowed, the pattern
Al,Ga;_,As thicknesst=12ag . Solid lines indicate barrier pen- is nonetheless highly informative. The principal division be-
etration at Fermi level. Upper three lines for first channel,tween upper and lower states is based on parity. States which
t=7.5,9.0,12.85% , respectively. Lower three lines for second chan- are odd with respect to the axis bisecting the QPC should in
nel, same. AVqpczero set such that first channel conducts equallyfact have identically zero partial widtfihat they do not is

In(P)

at the Fermi surface for atl evidence of numerical error, mostly imperfect convergénce
_ Note thatthis division is largely preserved for discrete but
2. Level widths ordered ions. The widest statéargestl’) are labeled with

In Eq. (10) we definedW,(a,b) as the barrier penetration their level index for comparison with their wave functions in
factor from the classically accessible region of the lead to th&19s: 11 and 12. Comparison shows they represent the states
matching point in the barrier, for theth channel. The pen- which are aligned along the direction of current flow. Thus in
etration  factor completely through the barrier each shell there are likely to be a spread of tunneling coef-
P,=W.,(a,c), wherec is the classical turning point on the ficients, thatis, two members of the same shell will not have

dot side of the barrier, is plotted as a function of QPC volt-the samd". o o
age in Fig. 16P,, is simply the WKB penetration for a given Statistics of the level partial widths are shown in Fig. 18,
channel with a given self-consistent barrier profile, and can

be computed at any energy. Here we have computed it at 0.1

energies coincident with the dot levels. Therefore the dashes | @ quiet dot
0 | | | | | | |
7 28
] 10 15 2 AL B AD =
2041 4 2, & Ta a - g
_ 1a A A a &
2 A
=) ] 4 A
= ,
— i A A
-40— A A AA An RA
_ A A AA AN A A
N A A A
-60 | | | In(I’)
-0.4 -0.2 0.0 0.2

N FIG. 18. Statistics of unfolded partial level widths, first channel
Energy E(Ry) only, (a) quiet dot showing large weight near zero due to patly,
and (c) have B=0.05 T, quiet dot and disordered, respectively.
FIG. 17. Partial widthgthrough first channglfor tunneling to  Remnant of peak at small coupling remains. Dark line represents
the leads, quiet dot. Numbers indicate ordinate of wave functions;é distribution predicted by RMT(d) and (e) are ordered and dis-
Figs. 11 and 12. Weakly connected states zero by pémityzero  ordered withB=0. Ordered case differs significantly from Porter-
only through numerical errpr Thomas distribution plotted in black here.
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here normalized to their local mean values. While the statisease the zero width states result from residual reflection sym-
tics for the quiet dot are in substantial disagreement withmetry, it would be interesting to compare the data from Refs.
RMT, it is clear that discreteness of the ion charge, ever63 and 64, which employ nominally symmetric and nonsym-

ordered, largely restores ergodicity. The RMT prediction, themetric dots, respectively, to see if the incidence of zero width
“Porter-Thomas” (PT) distribution, is also plotted. For non- states shows a statistically significant difference.

zero B, panels(b) and (c), the predicted distribution isé One further statistical feature which we calculate is the

rather than PT. Even the completely disordered ¢asee-  autocorrelation function of the level widths as an external

tains a fraction of vanishing partial width states. Since in ouparameteiX is varied:

iEj [T(X;) = T(X) T (X, + AX) = T(X; + AX)]

C(AX)= (17)

S LX) =T [ [Ti(X+AX) = T(X+AX)]?
] i,j

whereI'(X) is again thelocal average, over levels at fixed tive or negative, the self-correlation of a level width will be
X, of the level widths. Note that the sum oris over levels  independent of whetheXB is positive or negative. This im-
and the sum oij is over starting values oX. plies that the level widths should be independent of the ab-
In Fig. 19 we show the autocorrelation function for vary- solute value oB, or any even powers @, at least to lowest
ing magnetic field(cf. Ref. 64, Fig. 3. The sample is or- order inAB/B. For real quantum dot systems this assump-
dered,F=1/5. Our range oB only encompassd€,0.1] T  tion is inapplicable.
in steps of 0.00F, so we have here averaged over all levels Similar behavior is observed witk taken as théplunge)
(i.e.,i=1—45). The crucial feature, which has been noted ingate voltage, for which we have considerably more calcu-
Ref. 64, and for conductance correlation in open dots in Reflated results, Fig. 20. The upper panel is the analog of Fig.
65, is that the correlation function becomes negative, in con19, only we have broken the average on levels into separate
tradiction with a recent prediction based on RRflindeed, groups of fifteen levels centered on the level listed in the
as noted by Birdet al,®® an oscillatory structure seems to figure [e.g., the “28” denotes a sum in Eq(l7) of
emerge in the data. Comparison with calculation here i$=21,35. The lower panel shows the autocorrelation as a
hampered since the statistics are less gooB awreases.  grey scale for the individual levelgaveraging performed
Nonetheless, the RMT prediction is clearly erroneous. Wednly over startingVg). The very low-lying levels, up to
speculate that the basis of the discrepancy is in the-10, remain self-correlated across the entire range of gate
assumptiof? that C(AX)=C(—AX). Given this
assumptiort! the correlation becomes positive definite.

Physically this means that, regardless of whetBds posi- _
>M
d
1.0-4 ©
1A
= 0.5- 5
BT A g
s AN =
&} | [
1 A .Y VN g
0.0 A
1 A,
7 AA 0.0 0.02 0.04
| | | | AV (V)

0.0 002 004 006 0.08

FIG. 20. Autocorrelation function withVy, averaged over
B(T) groups of 15 levelsupper pangl Number indicates center ¢fon-
tiguoug range of averaged values. Dashed line is average of all
FIG. 19. Autocorrelation function for level partial widths; or- states. Lower panel is grey scale for autocorrelation of individual
dered, 7=1/5, averaged oveB starting point and all 45 levels. levels averaged only ove/, starting point. Black is 1.0 and white
Range ofB is only 0—0.1 T, so statistics are weaker to the right. is —1.0. Data suggest that behavior of autocorrelation is sensitive to
Pronounced anticorrelation near 0.03 T in contradiction with RMT.which levels are averaged.
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voltage. This simply indicates that the correlation field istum dots, with electron number in the range of
level dependent. However, rather than becoming uniformlyN=50—100. Among the principal conclusions that we reach
gray in a Lorentzian fashion, as predicted by RRfTindi-  are the following.
vidual levels tend to be strongly correlated or anticorrelated The electrostatic profile of the dot is determined by metal
with their original values, and the disappearance of correlagates at fixed voltage rather than a fixed space charge. As a
tion only occurs as an average over levels. consequence of this the model of the dot as a conducting disk
Again we expect that the explanation for this behavior lieswith fixed, “external,” parabolic confinement is incorrect.
in the shell structure. Coulomb interaction prevents state€harge added to the dot resides much more at the dot perim-
which are nearby in energy from having common spatialeter than this model predicts.
distributions. Thus in a given range of energy, when one The assumption of complete disorder in the donor layer is
state is strongly connected to the leads, other states are Igsbably overly pessimistic. In such a case the 2DEG elec-
likely to be. Further, the ordering of states appears to survivérostatic profile is completely dominated by the ions and it is
at least a small amount of disorder in the ion configuration.difficult to see how workable structures could be fabricated
at all. The presence of even a small degree of ordering in the
D. Conductance donor layer, which can be experimentally modified by a back
The final topic we consider here is the Coulomb oscilla-?e?/t;" dramatically reduces potential fluctuations at the 2DEG

“Z?aﬁ?rr;dggtaen:ge?]féthﬁh%(ﬂ[' r\:v:tza\:\tli”sltifgz;usrge{;ti?a 2 t:]e?;;g' Dot energy levels show a shell structure which is robust to
P P g 9 prop ordered donor layer ions, though for complete disorder it

to ion ordering are also interesting. : :
: . appears to break up. The shell structure is responsible for
We have shown in Ref. 4 that detailed temperature deperl/'ariations in the capacitance with gate voltage as well as

dence of Coulomb oscillation amplitudes can be e_mployed agnvelope modulation of Coulomb oscillation peaks. The
a form of quantum dot spectroscopy. Roughly, in the low

T limit the peak heights give the individual level connection \

coefficients and, as temperature is raised, activated conduc- 19

tanceat the peakdepends on the nearest level spacings at
the Fermi surface. In this regard we have explained envelope
modulation of peak heights, which had previously not been
understood, as clear evidence of thermal activation involving
tunneling through excited states of the dot.

Figure 21a) shows the conductance as a function of
plunger gate voltage for the ordered doffat 250 mK. Note
that the magnitude of the conductance is small because the
coupling coefficients are evaluated with relatively wide bar-
riers for numerical reasons. Over this range the Mode-
populates from 6Zfar left) to 39. The level spacings and 1 A A A
tunneling coefficients are all changing withy . At low tem- 0.0 : flonmt A M A AR
perature a given peak height is determined mostly by the
coupling to the first empty dot level', 1) and by the spac- -1.1 -L.15
ings between thalth level and the nearest other leyabove (@) gate voltage V, (V)
or below. The relative importance of thE’'s and the level
spacings can obviously vary. In this example, Figgapand *10°
21(b) suggest that peak heights correlate more strongly with 1000
the level spacings. The double envelope coincides with the
Fermi level passing through two shells. In general, the DOS
fluctuations embodied in the shell structure, and the observa-
tion (above that within a shell a spreading of thg&s (with a
most strongly coupled levetesults from Coulomb interac- 1 ; ; o
tion, provide the two fundamental bases of envelope modu- 10
lation.

Finally, we typically find that, when peak heights are plot-
ted as a function of temperatufaot shown some peaks
retain activated conductance downTe- 10 mK. Since the
dot which we are modeling is small on the scale of currently ;
fabricated structures, this study suggests that claims to have 11 115
reached the regime where all Coulomb oscillations represent gate voltage V,(V)
tunneling through a single dot level are questionable. (b)

1 T =250 mK
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IV. CONCLUSIONS FIG. 21. (a) Conductance versg, for ordered dotT=0.25 K.
(b) Fermi surface level spacing and tunneling coefficient at reso-
We have presented extensive data from calculations onance. Conductance (@) correlates somewhat more strongly with
the electronic structure of lateral GaAs;&a; _,As quan-  smaller level spacing than with largEr
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claims that Coulomb oscillation data through currently fab-will occur only when account is taken in, for example, the
ricated lateral quantum dots show unambiguous transpotevel velocity®®’? of the correlating influences of quantum
through single levels are questionable, though some oscillanechanics.
tions will saturate at a higher temperature than others.
The capacitance between the dot and a lead increases only
very slightly as the QPC batrrier is reduced. Thus the electro-
static energy between dot and leads is dominated by charge | wish to express my thanks for the benefit | have gained
below the Fermi surface and splitting of oscillation peaksin conversations with many colleagues. These include, but
through double dot structur®sis undoubtedly a result of are not limited to, Arvind Kumar, S. Das Sarma, Frank Stern,
tunneling. J. P. Bird, Crispin Barnes, Yasuhiro Tokura, B. I. Halperin,
Finally, chaos is well known to be mitigated in quantum Catherine Crouch, R. M. Westervelt, Holger F. Hofmann, Y.
systems where barrier penetration is non-negligiblasofar ~ Aoyagi, K. K. Likharev, C. Marcus, and D. K. Ferry. | am
as noninegrability of the underlying classical Hamiltonian isalso grateful for support from T. Sugano, Y. Horikoshi, and
being used as the justification for an assumption ofS. Tarucha. Computational support from the Fujitsu VPP500
ergodicity’® in quantum dots, our results suggest that furtherSupercomputer and the Riken Computer Center is also grate-
success in comparison with re@le., experimentalsystems  fully acknowledged.
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