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We employ density-functional theory to calculate the self-consistent electronic structure, free energy, and
linear source-drain conductance of a lateral semiconductor quantum dot patterned via surface gates on the
two-dimensional electron gas formed at the interface of a GaAs-AlxGa12xAs heterostructure. The Schro¨dinger
equation is reduced from 3D to multicomponent 2D and solved via an eigenfunction expansion in the dot. This
permits the solution of the electronic structure for dot electron numberN;100. We present details of our
derivation of the total dot-lead-gates interacting free energy in terms of the electronic structure results, which
is free of capacitance parameters. Statistical properties of the dot level spacings and connection coefficients to
the leads are computed in the presence of varying degrees of order in the donor layer. Based on the self-
consistently computed free energy as a function of gate voltages,Vi , andN, we modify the semiclassical
expression for the tunneling conductance as a function of gate voltage through the dot in the linear source-
drain, Coulomb blockade regime. Among the many results presented, we demonstrate the existence of a shell
structure in the dot levels which~a! results in envelope modulation of Coulomb oscillation peak heights,~b!
influences the dot capacitances and should be observable in terms of variations in the activation energy for
conductance in a Coulomb oscillation minimum, and~c! possibly contributes to departure of recent experi-
mental results from the predictions of random-matrix theory.@S0163-1829~96!02243-6#

I. INTRODUCTION

Study of the Coulomb blockade and charging effects in
the transport properties of semiconductor systems is pecu-
liarly suitable to investigation through self-consistent elec-
tronic structure techniques. While the orthodox theory,1 in
parametrizing the energy of the system in terms of capaci-
tances, is strongly applicable to metal systems, the much
larger ratio of Fermi wavelength to system size,lF /L, in
mesoscopic semiconductor devices, requires investigation of
the interplay of quantum mechanics and charging.

In the first step beyond the orthodox theory, the ‘‘constant
interaction’’ model of the Coulomb blockade supplemented
the capacitance parameters, which were retained to charac-
terize the gross electrostatic contributions to the energy, with
noninteracting quantum levels of the dots and leads of the
mesoscopic device.2,3 This theory was successful in explain-
ing some of the fundamental features, specifically the peri-
odicity, of Coulomb oscillations in the conductance of a
source-dot-drain-gate system with varying gate voltage.
Other effects, however, such as variations in oscillation am-
plitudes, were not explained.

In this paper we employ density-functional~DF! theory to
compute the self-consistently changing effective single par-
ticle levels of a lateral GaAs-AlxGa12xAs quantum dot, as a
function of gate voltages, temperatureT, and dot electron
numberN.4 We also compute the total system free energy
from the results of the self-consistent calculation. We are
then able to calculate the device conductance in the linear
bias regime without any adjustable parameters. Here we con-
sider only weak (,̃0.1 T! magnetic fields in order to study
the effects of breaking time-reversal symmetry. We will
present results for the edge state regime in a subsequent
publication.5

We include donor layer disorder in the calculation and
present results for the statistics of level spacings and partial
level widths due to tunneling to the leads. Recently we have
employed Monte Carlo variable range hopping simulations
to consider the effect of Coulomb regulated ordering of ions
in the donor layer on the mode characteristics of split-gate
quantumwires.6 The results of those simulations are here
applied to quantum dot electronic structure.

A major innovation in this calculation is our method for
determining the two-dimensional electron gas~2DEG!
charge density. At each iteration of the self-consistent calcu-
lation, at each point in thex-y plane we determine the sub-
bandsen(x,y) and wave functionsjn

xy(z) in the z ~growth!
direction. The full three-dimensional density is then deter-
mined by a solution of the multicomponent 2D Schro¨dinger
equation and/or 2D Thomas-Fermi approximation.

Among the many approximation in the calculation are the
following. We use the local density approximation~LDA !
for exchange-correlation~XC!, specifically the parametrized
form of Stern and Das Sarma.7 While the LDA is difficult to
justify in small (N;502100) quantum dots, it is empirically
known to give good results in atomic and molecular systems
where the density is also changing appreciably on the scale
of the Fermi wavelength.8

In reducing the 3D Schro¨dinger equation to a multicom-
ponent 2D equation we cut off the expansion in subbands,
often taking only the lowest subband into account. We also
cut off the wave functions by placing another artificial
Al xGa12xAs interface at a certain depth~typically 200 Å!
away from the first interface, thereby ensuring the existence
of subbands at all points in thex-y plane. Generally the
subband energy of this bare square well is much smaller than
the triangular binding to the interface in all but those regions
which are very nearly depleted.

The dot electron states in the zero magnetic field regime
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are simply treated as spin degenerate. ForBÞ0 an unrenor-
malized Lande´ g factor of 20.44 is used. We employ the
effective mass approximation uncritically and ignore the ef-
fective mass difference between GaAs and AlxGa12xAs
(m*50.067m0). Similarly we take the background dielectric
constant to be that of pure GaAs (k512.5) thereby ignoring
image effects~in the AlxGa12xAs!. We ignore interface
grading and treat the interface as a sharp potential step.
These effects have been treated in other calculations of self-
consistent electronic structure for GaAs-AlxGa12xAs
devices7 and have generally been found to be small.

We mostly employ effective atomic units wherein 1
Ry*5m* e4/2\2k2'5.8 meV and 1aB*5\2k/m* e2'100
Å.

The structure of the paper is as follows. In Sec. II we first
discuss the calculation of the electronic structure, focusing
on those features which are new to our method. Further sub-
sections then consider the treatment of discrete ion charge
and disorder, calculation of the total dot free energy from the
self-consistent electronic structure results, calculation of the
source-dot-drain conductance in the linear regime, and cal-
culation of the dot capacitance matrix. Section III provides
results which are further subdivided into basic electrostatic
properties, properties of the effective single electron spectra,
statistics of level spacings and widths, and conductance in
the Coulomb oscillation regime. Section IV summarizes the
principal conclusions which we derive from the calculations.

II. CALCULATIONS

A. Quantum dot self-consistent electronic structure

We consider a lateral quantum dot patterned on a 2DEG
heterojunction via metallic surface gates~Fig. 1!. At a semi-
classical level, other gate geometries, such as a simple point
contact or a multiple dot system, can be treated with the
same method.6,9 However, a full 3D solution of Schro¨d-
inger’s equation, even employing our subband expansion

procedure for thez direction, is only tractable in the current
method when a region with a small number of electrons
(N<100) is quantum mechanically isolated, such as in a
quantum dot.

1. Poisson equation and Newton’s method

In principal, a self-consistent solution is obtained by iter-
ating the solution of Poisson’s equation andsomemethod for
calculating the charge density~see following Sec. II A 2 and
II A 3 !. In practice, we follow Kumaret al.10 and use an
N-dimensional Newton’s method for finding the zeros of the
functional FW (fW )[D•fW 1rW (fW )1qW , where the potentialf i
and densityr i on theN discrete lattice sites (N;100 000)
are written as vectors,fW andrW . The vectorqW represents the
inhomogeneous contribution from any Dirichlet boundary
conditions,D is the Laplacian~note that here it is a matrix,
not a differential operator!, modified for boundary condi-
tions. Innovations for treating the Jacobian]r i /]f j beyond
3D Thomas-Fermi, and for rapidly evaluating the mixing pa-
rametert ~see Ref. 10! are discussed below.

The Poisson grid spans a rectangular solid and hence the
boundary conditions on six surfaces must be supplied. Wide
regions of the source and drain must be included in order to
apply Neumann boundary conditions on these (x5 const!
interfaces, so a nonuniform mesh is essential. It is also pos-
sible to apply Dirichlet boundary conditions on these inter-
faces using the ungated wafer~one-dimensional! potential
profile calculated off-line.11 In this case, failure to include
sufficiently wide lead regions shows up as induced charge on
these surfaces~nonvanishing electric field!. To keep the total
induced charge on all surfaces below 0.5 electron, lead re-
gions of;5mm are necessary, assuming a surface gate to
2DEG distance~i.e., AlxGa12xAs thickness! of 1000 Å. In
other words, we need an aspect ratio of 50:1. We note that
we ignore background compensation and merely assume that
the Fermi level is pinned at some fixed depth~‘‘ z`’’
;2.5 mm! into the GaAs at the donor level. The donor en-
ergy for GaAs is taken as 1 Ry* below the conduction band.
In the source and drain regions, the potential of the 2DEG
Fermi surface is fixed by the desired~input! lead voltage.

We apply Neumann boundary conditions at they5 const
surfaces. Thez50 surface of the device has Dirichlet con-
ditions on the gated regions~voltage equal to the relevant
desired gate voltage! and Neumann conditions,]f/]n50,
elsewhere. This is equivalent to the ‘‘frozen surface’’ ap-
proximation of Ref. 12, further assuming a high dielectric
constant for the semiconductor relative to air. Further discus-
sion of this semiconductor-air boundary condition can be
found in Refs. 12 and 13.

2. Charge density, quasi-2D treatment

The charge densitywithin the Poisson grid~i.e., not sur-
face gate charge! includes the 2DEG electrons and the ions
in the donor layer. The treatment of discreteness, order, and
disorder in the donor ionic chargerW ion has been discussed in
Ref. 6 in regards to quantum wire electronic structure. Some
further relevant remarks are made below in Sec. II B.

As noted above, we take advantage of the quasi-2D nature
of the electrons at the GaAs-AlxGa12xAs interface to sim-

FIG. 1. Schematic of device used in calculation. The
z-subband structure throughout the plane are calculated at each it-
eration of the self-consistency loop. Most results presented with
gate variation assume that both the upper and lower pins of the
relevant gate are simultaneously varied.
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plify the calculation for their contribution to the total charge.
GivenfW , we begin by solving Schro¨dinger’s equation in the
z directionat every pointin the x-y plane,

F2
]2

]z2
1VB~z!1ef~x,y,z!Gjnxy~z!5en~x,y!jn

xy~z!,

~1!

whereVB(z) is the potential due to the conduction-band off-
set between GaAs and AlxGa12xAs. We generally employ
fast Fourier transform with 16 or 32 subbands.

In order that there be a discrete spectrum at each point in
thex-y plane, it is convenient to takeVB(z) as asquare well
potential ~Fig. 1!. That is, we effectively cut off the wave
function with a second barrier, typically 200 Å from the
primary interface. In undepleted regions the potential is still
basically triangular and only the tail of the wave function is
affected. However, near the border between depleted and un-
depleted regions the artificial second barrier will introduce
some error into the electron density. This is because as a
depletion region is approached, the bindingelectric fieldat
the 2DEG interface~slope of the triangular potential! re-
duces, in addition to the interface potential itself rising. Con-
sequently, all subbands become degenerate andnear the
edge electrons are three dimensional.14 We have checked
that this departure from interface confinement, and in general
in-plane gradients ofjn

x,y(z), contribute negligibly to quan-
tum dot level energies. However, theoretical descriptions of
2DEG edges commonly assume perfect confinement of elec-
trons in a plane. In particular the description of edge excita-
tions in the quantum Hall effect regime in terms of a chiral
Luttinger liquid15 may be complicated in real samples by the
emergence of this vanishing energy scale and collective
modes related to it.

Assuming only a singlez subband now and dropping the
index n, we determine the charge distribution in thex-y
plane from the effective potentiale(x,y), employing a 2D
Thomas-Fermi approximation for the charge in the leads and
solving a 2D Schro¨dinger equation in the dot. In order that
the dot states be well defined, the QPC saddle points must be
classically inaccessible.~If this is not the case it is still pos-
sible to use a Thomas-Fermi approximation throughout the
plane for the charge density6,9!. In the dot, the density is
determined from the eigenstates by filling states according to
a Fermi distribution either to a prescribed ‘‘quasi-Fermi en-
ergy’’ of the dot, or to a fixed number of electrons. It has
been pointed out that a Fermi distribution for the level occu-
pancies in the dot is an inaccurate approximation to the cor-
rect grand canonical ensemble distribution.3 Nonetheless, for
small dots (N&15) Jovanovicet al.16 have shown that, re-
garding the filling factor, the discrepancy between a Fermi
function evaluation and that of the full grand canonical en-
semble is;5% at half-filling and significantly smaller away
from the Fermi surface. AsN increases the discrepancy
should become smaller.

3. Solution of Schrödinger’s equation in the dot

To solve the effective 2D Schro¨dinger’s equation in the
dot,

@2“

21e~x!# f ~x!5Ef~x!, ~2!

we set the 2D potentials throughout theleadsto their values
at the saddle points, thereby ensuring that the wave functions
decay uniformly into the leads. Thus the energy of the higher
lying states will be shifted upward slightly. In seeking a basis
in which to expand the solution of Eq.~2! we must consider
the approximate shape of the potential. The quantum dots
which we model here are lithographically approximately
square in shape. However, the potential at the 2DEG level
and also the effective 2D potentiale(r ,u) ~now in polar
coordinates! are to lowest order azimuthally symmetric. The
radial dependence of the potential is weakly parabolic across
the center. Near the perimeter higher order terms become
important@cf. Fig. 2~b! and Eq.~15!#.

As the choice of a good basis is not completely clear, we
have tried two different sets of functions: Bessel functions

FIG. 2. ~a! Contour plot for density and potential, quiet dot, TF.
Isolines in potential spaced at;0.1 Ry* up to 0.5 Ry* above
Fermi level, after which much more widely. Density isoline spacing
;0.01aB*

22 , maximum density;0.1aB*
22 . Ripples near QPC’s

are finite grid size effect; plottedx-y mesh shows every other grid
line. ~b! Transverse (y direction! half-profiles of density and poten-
tial corresponding to~a!, taken at 3.3aB* intervals from dot center.
Uppermost potential trace, entirely above Fermi surface, is in QPC
@x'54aB* in ~a!#, where density is zero. Density is scaled to nomi-
nal 2DEG value 0.14aB*

22'1.431011 cm22.
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and the so-called Darwin-Fock~DF! states.17 The details of
the solution for the eigenfunctions and eigenvalues differ
significantly whether we use the Bessel functions or the DF
states. The Bessel function case is largely numerical whereas
the DF functions together with polynomial fitting of the azi-
muthally symmetric part of the radial potential allow a con-
siderable amount of the work to be done analytically. Fur-
ther, neither of the two bases comes particularly close to
fitting the somewhat eccentric shape of the actual dot poten-
tial. It is therefore gratifying that comparing the eigenvalues
determined from the two bases when reasonable cut offs are
used, we find for up to the 50th eigenenergy agreement to
three significant figures, or to within roughly 5micro eV.

4. Summary and efficiency

To summarize the calculation, we begin by choosing the
device dimensions such as the gate pattern, the ionized donor
charge density and its location relative to the 2DEG, the
aluminum concentration for the height of the barrier, and the
thickness of the AlxGa12xAs layer. We construct nonuni-
form grids inx, y, andz that best fit the device within a total
of about 105 points. Gate voltages, temperature, source-drain
voltages, and either the electron numberN or the quasi-
Fermi energy of the dot are inputs. The iteration scheme
begins with a guess offW (0). The 1D Schro¨dinger equation is
solved at each point in thex-y plane and an effective 2D
potentiale(x,y) for one or at most two subbands is thereby
determined. Takingujn

xy(z)u2 for the z dependence of the
charge density, we compute the 2D dependence in the leads
using a 2D Thomas-Fermi approximation and in the dot by
solving Schro¨dinger’s equation and filling the computed
states according to a Fermi distribution. We compute
FW (fW (0)), which is a measure of how far we are from self-
consistency, and solve fordfW , the potential increment, using
a mixing parametert. This gives the next estimate for the
potentialfW (1). The procedure is iterated and convergence is
gauged by the norm ofF.

In practice there are many tricks which one uses to hasten
~or even obtain! convergence. First, we use a scheme devel-
oped by Bank and Rose18,10 to search for an optimal mixing
parametert. Repeated calculation of Schro¨dinger’s equation,
which is very costly, is in principle required in the search for
t. Far from convergence the Thomas-Fermi approximation
can be used in the dot as well as the leads. Nearer to con-
vergence we find that diagonalizingtdfW in a basis of about
ten states near the Fermi surface, treating the charge in the
other filled states as inert, is highly efficient. Periodically the
full solution of Schro¨dinger’s equation is employed to update
the wave functions.

The wave-function information is also used to make a
better estimate of]r i /]f i . The 3D Thomas-Fermi method
for estimating this quantity does not account for the fact that
the change in density at a given grid point will be most
strongly influenced by the changes in the occupancies of the
partially filled states at the Fermi surface. Thus use of these
wave functions greatly improves the speed of the calculation.

B. Disorder

Evidence of Coulombicorderingof the donor charge in a
modulation doping layer adjacent to a 2DEG has recently

accumulated.19 When the fractionF of ionized donors
among all donors is less than unity, redistribution of the ion-
ized sites through hopping can lead to ordering of the donor
layer charge.20,6

In this paper we consider the effects of donor charge dis-
tribution on the statistical properties of quantum dot level
spectra, in particular the unfolded level spacings, and on the
connection coefficients to the leadsGp of the individual
states~see below!. These dot properties are calculated with
ensembles of donor charge which range from completely
random ~identical toF51, no ion reordering possible! to
highly ordered (F;1/10). For a discussion of the glasslike
properties of the donor layer and the Monte-Carlo variable
range hopping calculation which is used to generate ordered
ion ensembles, see Refs. 6 and 21.

Note that hopping is assumed to take place at tempera-
tures (;160 K! much higher than the subliquid helium tem-
peratures at which the dot electronic structure is calculated.
Thus the ionic charge distributions generated in the Monte-
Carlo calculation are, for the purposes of the 2DEG elec-
tronic structure calculation, considered fixed space charges
which are specifically not treated as being in thermal equi-
librium with the 2DEG.

The region where the donor charge can be taken as dis-
crete is limited by grid spacing and hence computation time.
In the wide lead regions and wide region lateral to the dot the
donor charge is always treated as ‘‘jellium.’’ Also, to serve
as a baseline, we calculate the dot structure with jellium
across the dot region as well. We introduce the term ‘‘quiet
dot’’ to denote this case.

C. Free energy

To calculate the total interacting free energy we begin
from the semiclassical expression

F~$np%,Qi ,Vi !5(
p
np«p

01
1

2(i
M

QiVi

2 (
iÞdot

E dtVi~ t !I i~ t !, ~3!

wherenp are the occupancies of noninteracting dot energy

levels«p
0 ; Qi andVi are the charges and voltages of theM

distinct ‘‘elements’’ into which we divide the system: dot,
leads, and gates.I i are the currents supplied by power sup-
plies to the elements.

The self-consistentenergy levels for the electrons in the
dot are «p5^cpu2¹21VB(z)1ef(r )ucp&. A sum over
these levels double counts the electron-electron interaction.
Thus, for the terms in Eq.~3! relating to the dot, we make the
replacement

(
p
np«p

01
1

2
QdotVdot→(

p
np«p2

1

2E drrdot~r !f~r !

1
1

2E drr ion~r !f~r !, ~4!

whererdot(r ) refers only to the charge in the dot states and
r ion(r ) refers to all the charge in the donor layer.

13 770 54M. STOPA



We have demonstrated28,22 that previous investigations3,23

had failed to correctly include the work from the power sup-
plies, particularly to the source and drain leads, in the energy
balance for tunneling between leads and dot in the Coulomb
blockade regime. Here, we assume a low impedance envi-
ronment which allows us to make the replacement

1

2 (
iÞdot

QiVi2 (
iÞdot

E dtVi~ t !I i~ t !→2
1

2 (
iÞdot

QiVi .

~5!

The charges on the gates are determined from the gradient of
the potential at the various surface regions, the voltages be-
ing given. Including only the classical electrostatic energy of
the leads, the total free energy is4

F~$np%,N,Vi !5(
p
np«p2

1

2E drrdot~r !f~r !

1
1

2E drr ion~r !f~r !

2
1

2 (
iP leads

E drr i~r !f~r !2
1

2 (
iPgates

QiVi ,

~6!

where the energy levels, density, potential, and induced
charges are implicitly functions ofN and the applied gate
voltagesVi . Note that the occupation number dependence of
these terms is ignored. In theT50 limit the electrons occupy
the lowestN states of the dot, and the free energy is denoted
F0(N,Vi).

D. Conductance

The master equation formula for the linear source-drain
conductance though the dot, derived by several authors3,2,24

for the case of a fixed dot spectrum, is modified to the self-
consistently determined free energy case as follows:4

G~Vg!5
e2

kBT
(
$ni %

Peq~$ni%!(
p

dnp,0
Gp
sGp

d

Gp
s1Gp

d

3 f „F~$ni1p%,N11,Vg!2F~$ni%,N,Vg!2m…,

~7!

where the first sum is over dot level occupation configura-
tions and the second is over dot levels. The equilibrium prob-
ability distributionPeq($ni%) is given by the Gibbs distribu-
tion,

Peq~$ni%!5
1

Z
exp@2b„F~$ni%,N,Vg!2m…#. ~8!

and the partition function is

Z[(
$ni %

exp@2b„F~$ni%,N,Vg!2m…#. ~9!

Note that the sum on occupation configurations,$ni%, in-
cludes implicitly a sum onN. In Eq. ~7!, f is the Fermi
function,m is the electrochemical potential of the source and
drain, andGp

s(d) are the elastic couplings of levelp to source

~drain!. The notation$ni1p% denotes the set of occupancies
$ni% with the pth level, previously empty by assumption,
filled. In Eq. ~7! it is assumed that only a single gate voltage,
Vg ~the ‘‘plunger gate,’’ cf. Fig. 1!, is varied.

E. Tunneling coefficients

The elastic couplings in Eq. 7 are calculated from the
self-consistent wave functions:25

\Gnp54k2Wn
2~a,b!U E dy fp~xb ,y!xn* ~xb ,y!U2, ~10!

where f p(xb ,y) is the two-dimensional part of thepth wave
function evaluated at the midpoint of the barrier,xb , and
xn* (xb ,y) is thenth channel wave function decaying into the
barrier from the leads,Wn(a,b) is the barrier penetration
factor between the classical turning point in the lead and the
point xb , for channeln computed in the WKB approxima-
tion, andk is the wave vector at the matching point. Though
the channels are 1D we use the two-dimensional density of
states characteristic of the wide 2DEG region.26

F. Capacitance

Quantum dot system electrostatic energies are commonly
estimated on the basis of a capacitance model.27 When the
self-consistent level energies and potential are known, the
total free energy can be computed without reference to ca-
pacitances. However, the widespread use of this model and
the ease with which capacitances can be calculated from our
self-consistent results~see below! encourage a discussion.

For a collection ofN metal elements with chargesQi and
voltages Vj the capacitance matrix, defined by28,29

Qi5( j51
N Ci j Vj , can be written in terms of the Green’s func-

tion GD(x,x8) for Laplace’s equation satisfying Dirichlet
boundary conditions on the element surfaces:

Ci j5
1

4p2E dV iE dV j n̂ j•¹W x@ n̂i•¹W x8GD~x,x8!#, ~11!

where the integrals are over element surfaces withn̂ j the
outward directed normal.

In a system with an element of sizeL not much greater
than the screening lengthls , the voltage of the component,
and hence the capacitance, is not well defined.29,30 In this
case, as discussed in Ref. 29, the capacitance can no longer
be written in terms of the solution of Poisson’s equation
alone, but must take account of the full self-consistent deter-
mination of thei th charge distributionr i(x) from the j th
potentialf j (x) ; i , j . In general the capacitance will then
become a kernel in an integral relation. A relationship of this
kind has recently been derived in terms of the Linhard
screening function by Bu¨ttiker.30

To compute the dot self-capacitance from the calculated
self-consistent electronic structure we have three separate
procedures. In all three cases we vary the Fermi energy of
the dot by some small amount to change the net charge in the
dot. This requires that the QPC’s be closed. For the first
method the total charge variation of the dot is divided by the
change in the electrostatic potential minimum of the dot.
This is taken as the dot self-capacitanceCdd . A second pro-
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cedure for the dot self-capacitance is to divide the change in
the dot charge simply by the fixed, imposed change of the
Fermi energy. This result is denotedCdd8 . Since the change
in the potential minimum of the dot is not always equal to
the change of the Fermi energy, these results are not identi-
cal. Finally, we can fit the computed free energyF(N,Vg) to
a parabola inN at eachVg . If the quadratic term isaN2,
then the final form for the self-capacitance isCdd9 51/(2a)
~primes arenot derivatives here!. This form, which also
serves as a consistency check on our functional for the en-
ergy, is generally quite close to the first form and we present
no results for it.

For the capacitances between dot and gates or leads, the
extra dot charge~produced by increasing the Fermi energy in
the dot! is screened in the gates and the leads so that the net
charge inside the system~including that on the gated bound-
aries! remains zero. The fraction of the charge screened in a
particular element gives that element’s capacitance to the dot
as a fraction ofCdd .

III. RESULTS

We consider only a small subspace of the huge available
parameter space. For the results presented here we have fixed
the nominal 2DEG density to 1.431011 cm22 and the alu-
minum concentration of the barrier to 0.3. The lithographic
gate pattern is shown in Fig. 1, as is the growth profile~in-
cluding our artificial second barrier!. Some results are pre-
sented with a variation of the total thicknesst of the
Al xGa12xAs ~Fig. 1!.

To interpret the results we note the following consider-
ations. Hohenberg-Kohn-Sham theory provides only that the
ground-state energy of an interacting electron system can be
written as a functional of the density.31,32The single-particle
eigenvalues«p have, strictly speaking, no physical meaning.
However, as pointed out by Slater,8 the usefulness of DF
theory depends to some extent on being able to interpret the
energies and wave functions as some kind of single-particle
spectrum. In the Coulomb blockade regime it is particularly
important to be clear what that interpretation is, and what its
limitations are.

A distinction is commonly made between the addition
spectrum and the excitation spectrum for quantum dots.33,34

Differences between our effective single-particle eigenvalues
represent an approximation to the excitation spectrum. As a
specific example, in the absence of depolarization and exci-
tonic effects, the first single-particle excitation from the
N-electron ground state with gate voltagesVi is
«N11(N,Vi)2«N(N,Vi).

The addition spectrum, on the other hand, depends on the
energy difference between the ground states of the dotinter-
acting with its environmentat two differentN. Thus, in our
formalism, the addition spectrum is given by differences in
F($np%,N,Vi) at neighboringN, possibly further modulated
by excitations, i.e., differences in the occupation numbers
$np%.

In contrast to experiment, the electronic structure can be
determined for arbitraryN and Vi ~so long as the dot is
closed!. This includes both nonintegerN as well as values
which are far from equilibrium~differing chemical potential!
with the leads. The ‘‘resonance curve’’4 is given by theN

which minimizesF0(N,Vg) at eachVg ~gates other than the
plunger gate are assumed fixed!. This occurs when the
chemical potential of the dot equals those of the leads~which
are taken as equal to one another and represent the energy
zero! and gives the most probable electron number. Results
presented below as a function of varying gate voltage, par-
ticularly the spectra in Figs. 10 and 12, are assumed to be
along the resonance curve.

A. Electrostatics

Figure 2~a! shows an example of a potential profile along
with a corresponding density plot for a quiet dot containing
62 electrons. The basic potential and/or density configura-
tion, as well as the capacitances, are highly robust. These
data are computed completely in the 2D Thomas-Fermi ap-
proximation, singlez subband, atT50.1 K. Solution of
Schrödinger’s equation or variation ofT results in only
subtle changes. The depletion region spreading is roughly
100 nm. Figure 2~b! shows a set of potential and density
profiles along they direction~transverse to the current direc-
tion! in steps of 3.3aB* in x, from the QPC saddle point to the
dot center. Note that the density at the dot center is only
about 65% of the ungated 2DEG density. Correspondingly,
the potential at the center is above the floor of the ungated
2DEG (;20.9 Ry* ).

We discuss a simple model for the potential shape of a
circular quantum dot below~Sec. III B 1!. Here we note only
that the radial potential can be regarded as parabolic to low-
est order with quartic and higher order corrections whose
influence increases near the perimeter. In Thomas-Fermi
studies on larger dots22,9 with a comparable aspect ratio we
find that the potential and density achieve only 90% of their
ungated 2DEG value nearly 200 nm from the gate. Regard-
ing classical billiard calculations for gated structures,
therefore,35–38even in the absence of impurities it is difficult
to see how the ‘‘classical’’ Hamiltonian at the 2DEG level
can be even approximately integrable unless the lithographic
gate pattern is azimuthally symmetric.39

The importance of the remote ionized impurity distribu-
tion is demonstrated in Fig. 3, which shows a quantum dot
with randomly placed ionized donors on the left, and with
ions which have been allowed to reach quasiequilibrium via
variable range hopping on the right. In both cases the total
ion number in the area of the dot is fixed. The example

FIG. 3. Contour plots of dot showing ion placement for disor-
dered case~left! and ordered (F51/5) ion distribution, TF. Isolines
at 0.08 Ry* up to Fermi surface, wider thereafter. Gate voltages
and locations identical in the two cases. Note particularly the posi-
tion of the right QPC determined by ions in disordered case.
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shown here for the ordered case assumes, in the variable
range hopping calculation, one ion for every five donors
(F51/5). As in Ref. 6 we have, for simplicity, ignored the
negativeU model for the donor impurities (DX centers!,
which is still controversial.19,40,41If the negativeU model, at
some barrier aluminum concentration, is correct, the most
ordered ion distributions will occur forF51/2, as opposed
to the neutralDX picture employed here, where ordering
increases monotonically asF decreases.42

For these assumptions Fig. 4 indicates that ionic ordering
substantially reduces the potential fluctuations relative to the
completely disordered case, even for relatively largeF.
Here, using ensembles of dots with varyingF we compare
the effective 2D potential with a quiet dot~jellium donor
layer! at the same gate voltages and same dot electron num-
ber. The distribution of the potential deviation is computed
as

P~DV!5
1

SN2(s (
i , j

d$DV2@VF~xi ,yj !2Vqd~xi ,yj !#%,

~12!

wheres labels samples~different ion distributions!, typically
up toS510,N is the total number ofx or y grid points in the
dot (;50), and ‘‘qd’’ stands for quiet dot. The distributions
for all F are asymmetric~Fig. 4!. Although the means are
indistinguishably close to zero, the probability for large po-
tential hills resulting from disorder is greater than for deep
depressions. Also, the distributions for points above the
Fermi surface~dashed lines! are broader by an order of mag-
nitude ~in standard deviation! than below, due to screening.
Finally, saturation asF→0 ~inset Fig. 4! shows that even if

the ions are arranged in a Wigner crystal~the limiting case at
F50), potential fluctuations would be expected in compari-
son with ionic jellium.

The success of the capacitance model in describing ex-
perimental results of charging phenomena in mesoscopic
systems has been remarkable.27 For our calculations as well,
even the simplest formulations for the capacitance tend to
produce smoothly varying results when gate voltages or dot
charge are varied. Figure 5 shows the trend of the dot self-
capacitances withVg . Also shown are the equilibrium dot
electron numberN and the minimum of the dot potential
Vmin as functions ofVg . Note here thatVmin is the minimum
of the 3D electrostatic potential rather than the effective 2D
potential which is presented elsewhere~such as in Figs. 2
and 3!.

ThatCdd generally decreases as the dot becomes smaller
is not surprising and has been discussed elsewhere.43 All
three forms ofCdd are roughly in agreement, giving a value
;2 f F ~the capacitance as calculated from the free energy is
not shown!. The fluctuations result from variations in the
quantized level energies as the dot size and shape are
changed byVg . Note thatnumericalerror is indiscernible on
the scale of the figure. The pronounced collapse ofCdd8 near
Vg521.15 V, which is expanded in the upper panel, shows
the presence of a region where the change ofN with EF is
greatly suppressed. Since the change ofVmin with EF is simi-
larly suppressed, there is no corresponding anomaly in
Cdd . Interestingly, the capacitance computed from the free
energy also reveals no deep anomaly.

The anomaly atVg521.15 V and also the fluctuation in
the electrostatic properties near21.1 V are related to a shell
structure in the spectrum which we discuss below.

A frequently encountered model for the classical charge

FIG. 4. Histograms of deviation of effective 2D potential from
quiet dot values at the samex,y point and the same gate voltages,
for several ion to donor ratiosF, TF. Solid lines are statistics for
points below Fermi surface, dashed lines, showing substantially
more variation, above.F51 is completely random~disordered!
case. Distributions uniformly asymmetric, positive potential devia-
tions from quiet dot case being more likely, but means are very
close to zero. Inset shows standard deviation of histograms versus
F, triangles below, squares above Fermi level.

FIG. 5. Dot self-capacitances, equilibrium electron number, and
potential minimum as a function of plunger gate voltage~lower!.
Numericaluncertainty is indiscernible, so variations ofCdd are real
and related to spectrum.Cdd8 calculated usingDEF rather than
DVmin , so strong anomaly near21.15 V due to rigidity ofN.
Upper panel: expanded view of capacitances near anomaly; cf.
spectrum, Fig. 9.
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distribution in a quantum dot is the circular conducting disk
with a parabolic confining potential.44,45 It can be shown
~solving, for example, Poisson’s equation in oblate spheroi-
dal coordinates! that for such a model the 2D charge distri-
bution in the dot goes as

n~r !5n~0!~12r 2/R2!1/2, ~13!

whereR is the dot radius andn(0)53N/2pR2 is the density
at the dot center. The ‘‘external’’ confining potential is as-
sumed to go asV(r )5V01kr2/2 and R is related toN
through

R5
3p

4

e2

kk
N, ~14!

wherek is the dielectric constant.44

To justify this model, the authors of Ref. 44 claim that the
calculations of Kumaret al.10 show that ‘‘the confine-
ment . . . has anearly parabolic form for the external confin-
ing potential~sic!.’’ This is incorrect. What Kumaret al.’s
calculation shows is that~for N&12) theself-consistentpo-
tential, which includes the potential from the electrons them-
selves, is approximately cut off parabolic. Theexternalcon-
fining potential, as it is used in Ref. 44, would be that
produced by the donor layer charge and the charge on the
surface gates only. We introduce a simple model~see Sec.
III B 1 below! wherein this confining potential charge is re-
placed by a circular disk of positive charge whose density is
fixed by the doping density and whose radius is determined
by the number of electronsin the dot. The gates can be
thought of as merely cancelling the donor charge outside that
radius. The essential point, then, is this: adding electrons to
the dot decreases the~negative! charge on the gates and
therefore increases the radius. One can make the assumption,
as in Ref. 44, that the external potential is parabolic, but it is
a mistake to treat that parabolicity,k, as independent ofN.

This is illustrated in Fig. 6, where we have plotted con-
tours for thechangein the 2D density, asEF is incrementally
increased, as determined self-consistently~Thomas-Fermi
everywhere, left panel! and as determined from Eq.~13!. The

white curves display the density change profiles across the
central axis of the dot. The total change inN is the same in
both cases, but clearly the model of Eq.~13! underestimates
the degree to which new charge is added mostly to the pe-
rimeter.

Recently the question of charging energy renormalization
via tunneling as the conductanceG0 through a QPC ap-
proaches unity has received much attention.46–48 In a recent
experiment employing two dots in series a splitting of the
Coulomb oscillation peaks has been observed as the central
QPC ~between the two dots! is lowered.49 Perturbation
theory for smallG0 and a model which treats the decaying
channel between the dots as a Luttinger liquid for
G0→1(e2/h) lead to expressions for the peak splitting
which is linear in G0 in the former case and goes as
(12G0)ln(12G0) in the latter case.

A crucial assumption of the model, however, is that the
‘‘bare’’ capacitance, specifically that between the dots
Cd12d2, remains approximately independent of the height of
the QPC, even when an open channel connects the two dots.
Thus the mechanism of the peak splitting is assumed to be
qualitatively different from a model which predicts peak
splitting entirely on an electrostatic basis when the interdot
capacitance increases greatly.50 The independence of
Cd12d2 from the QPC potential is plausible insofar as most
electrons, even when a channel is open, are below the QPC
saddle points and hence localized on either one dot or the
other. Further, if the screening length is short and if the chan-
nel itself does not accommodate a significant fraction of the
electrons, there is little ambiguity in retainingCd12d2 to de-
scribe the gross electrostatic interaction of the dots, even
when the dots areconnectedat the Fermi level.

In Fig. 7 we present evidence for this theory by showing
the capacitance between a dot and theleads as the QPC

FIG. 6. Gray scale of density change as Fermi energy in dot is
raised relative to leads, Thomas-Fermi~TF!. Total change inN
about 1.4 electrons. Screening charge, white region, in leads is posi-
tive. White curve gives profile along line bisecting dot, scaled to
average change ofN per unit area. Right panel shows model of Ref.
44, where confining potential has fixed parabolicity. Note that this
model drastically underestimates the degree to which charge is
added to perimeter.

FIG. 7. Variation of dot capacitances with QPC voltage. Solid
lines forVL(R) are effective 2D potential for left~right! saddle point
~right-hand scale!. CS(A) andCS(B) are dot self-capacitances~cf.
Fig. 5! computed usingDVmin andDEF , respectively. ‘‘Source’’ is
~arbitrarily! outsideleft saddle point. Note thatVL goes practically
to zero but the dot capacitance to the source only marginally in-
creases relative to dot to drain capacitance. Capacitances for QPC
and plunger are for a single finger only in each case. Anomaly
related to dot reconstruction also visible here as QPC voltage is
changed.
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voltage is reduced. In the the figureVL(R) is the effective 2D
potential of the left~right! saddle point as the left QPC gate
voltagesVQPC only are varied. The dot is nearly open when
the QPC voltages~both pins on the left! reach;21.34 V.
The results here use the full quantum-mechanical solution
~without the LDA exchange-correlation energy!; however,
the electrons in the lead continue to be treated with a 2D TF
approximation. The dot ‘‘reconstruction’’ seen in Fig. 5 is
visible here also aroundVQPC521.365 V. Note that the
right saddle point is sympathetically affected when we
change this left QPC. While the effect is faint,;5% of the
change of the left saddle, the sensitivity of tunneling to
saddle point voltage~see also below! has resulted in this kind
of cross-talk being problematical for experimentalists. The
figure also shows that the capacitance between the dot and
one lead exceeds that to a~single! QPC gate or even to a
plunger gate. However, the most important result of the fig-
ure is to show that the dot to lead capacitance is largely
insensitive to QPC voltage. When the left QPC is as closed
as the right (VQPC;21.375 V! the capacitances to the
source and drain are equal. But even near the open condition
the capacitance to the left lead~arbitrarily the ‘‘source’’!
only exceeds that to the drain~which is still closed! mi-
nutely. Therefore the assumptions of a ‘‘bare’’ capacitance
which remains constant even as contact is made with a lead
~or, in the experiment, another dot! seems to be very well
founded.

As noted above, the interaction between a gate and the
2DEG depends upon the distance of the gates from the
2DEG, i.e., the AlxGa12xAs thicknesst. In Fig. 8 we show
that, as we decreaset, simultaneously changing the gate volt-
ages such thatN and the saddle point potentials remain con-
stant, the total dot capacitance also decreases, but the distri-

bution of the dot capacitance between leads, gates, and~not
shown! back gate change only moderately. That gates closer
to the 2DEG plane should produce dots of lower capacitance
is made clear in the upper panel of the figure, which shows
the potential and density profile~using TF! near a depletion
region at the side of the dot at varyingt and constant gate
voltage. For smallert the depletion region is widened but the
density achieves its ungated 2DEG value~here 0.14aB*

22)
more quickly; a potential closer to hard walled is realized. In
the presence of stronger confinement the capacitance de-
creases and the charging energy increases.

The profile of the tunnel barriers and the barrier penetra-
tion factors are also dependent ont. However, we postpone a
discussion of this until the section on tunneling coefficients.

B. Spectrum

The bulk electrostatic properties of a dot are, to first ap-
proximation, independent of whether a Thomas-Fermi ap-
proximation is used or Schro¨dinger’s equation is solved. A
notable exception to this is the fluctuation in the capaci-
tances. Figure 9 shows the plunger gate voltage dependence
of the energy levels. The Fermi level of the dot is kept con-
stant and equal to that of the leads~it is the energy zero!.
Hence as the gate voltage increases~becomes less negative!
N increases.

Since the QPC’s lie along thex axis, the dot is never fully
symmetric with respect to interchange ofx and y, however
the most symmetric configuration occurs forVg;21.16 V,
towards the right side of the plot. The levels clearly group
into quasishells with gaps between. The number of states per
shell follows the degeneracy of a 2D parabolic potential, i.e.,
1,2,3,4, . . . degenerate levels per shell~ignoring spin!.
There is a pronounced tendency for the levels to cluster at
the Fermi surface, here given byE50, which we discuss
below.

1. Shell structure

Shell structure in atoms arises from the approximate con-
stancy of individual electron angular momenta, and degen-
eracy with respect toz projection. Since in two-dimensions
the angular momentumm is fixed in thez ~transverse! direc-

FIG. 8. AlxGa12xAs thickness dependence of capacitances
~lower!. Self-capacitance decreases as gates get closer to 2DEG.
Upper panel shows that, for smallert, the potential confinement is
steeper and charge more compact, hence smallerCdd .
t155.25,t257.5,t359, and t4512aB* . Relative capacitance from
dot to gates and leads fairly insensitive tot.

FIG. 9. Electronic spectrum showing level grouping into shells
for quiet dot ~Hartree!, quiet dot with LDA exchange-correlation,
disordered sampleF51, and ordered sampleF51/5. Range of gate
voltage in latter three is fromVg521.142 to21.17 V.
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tion, the isotropy of space is broken and the only remaining
manifest degeneracy, and this only for azimuthally symmet-
ric dots, is with respect to6z. A two-dimensional parabolic
potential, in the absence of magnetic field, possesses an ac-
cidental degeneracy for which a shell structure is recovered.

We have shown above that modeling a quantum dot as a
classical, conducting layer in anexternalparabolic potential
kr2/2, wherek is independent of the number of electrons in
the dot, ignores the image charge in the surface gates form-
ing the dot and therefore fails to properly describe the evolv-
ing charge distribution as electrons are added to the dot. A
more realistic model, whichexplainsthe approximate para-
bolicity of theself-consistentpotential, and hence the appar-
ent shell structure, is illustrated in Fig. 10. The basic electro-
static structure of a quantum dot, in the simplest
approximation, can be represented by two circular disks, of
radiusR and homogeneous charge densitys0, separated by a
distancea. The positive charge outsideR is assumed to be
canceled by the surface gates. This approximation will be
best for surface gates very close to the donor layer~i.e., small
t). Larger AlxGa12xAs thicknesses will require a nonabrupt
termination of the positive charge. In either case, the elec-
tronic charge is assumed in the classical limit to screen the
background charge as nearly as possible. This is similar to
the postulate in which wide parabolic quantum wells are ex-
pected to produce approximately homogeneous layers of
electronic charge.51

A simple calculation for the radial potential~for a,R) in
the electron layer (z50) gives, for the first few terms,

f~r !5
2Ne

kR FA12a/R211
3

8

a2

R2

r 2

R2 2
15

32

a4

R4

r 2

R2

1
45

128

a2

R2

r 4

R4 1••• G , ~15!

whereNe5pR2s0 andk is the background dielectric con-
stant. While the coefficient of the quartic term is comparable
to that of the parabolic term, the dependences are scaled by
the dot radiusR. Hence, the accidental degeneracy of the
parabolic potential is broken only by coupling via the quartic
term near the dot perimeter. This picture clearly agrees with
the full self-consistent results wherein the parabolic degen-
eracy is observed for low-lying states and a spreading of the
previously degenerate states occurs nearer to the Fermi sur-
face.

Comparison~not shown! of the potential computed from
Eq. ~15! and the radial potential profile@lowest curve, Fig.
2~b!# from the full self-consistent structure shows good
agreement for overall shape. However, the former is about
25% smaller~sameN) indicating that the sharp cut off of the
positive charge is, for these parameters, too extreme. How-
ever, Eq.~15! improves for largerN and/or smallert.

The wave-function moduli squared associated with the
Fig. 9 quiet dot levels forVg;21.16 V,N'54 are shown
schematically for levels 1 through 10 in Fig. 11, and for
levels 11 through 35 in Fig. 12.

The lowest level in a shell is, for the higher shells, typi-
cally the most circularly symmetric. When the last member
of a shell depopulates withVg the inner shells expand out-
ward, as can be seen nearVg521.15 V ~Fig. 9! where level
p529 depopulates. Since to begin filling a new shell re-
quires the inward compression of the other shells and hence
more energy, the capacitance decreases in a step when a shell
is depopulated. The shell structure should have two distinct
signatures in the standard~electrostatic! Coulomb oscillation
experiment.27 First, since the self-capacitance drops appre-
ciably ~Fig. 5! when the last member of a shell depopulates,
hereN goes from 57 to 56, a concomitant discrete rise in the
activation energy in the minimum between Coulomb oscilla-

FIG. 10. Schematic for a simple two charge disk model of quan-
tum dot. Positive charge outside radiusR taken to be uniformly
canceled by gates, electric charge in 2DEG mirrors positive charge.
Resultant radial potential in 2DEG plane, Eq.~15!, dominated by
parabolic term insideR.

FIG. 11. Schematic showing the first ten levels of quiet dot.
Shell structure consistent withn1m5 const, wheren andm are
nodes inx andy. Lower energy states show rectangular symmetry.

FIG. 12. Levels 11 through 35~each spin degenerate! of quiet
dot, Hartree. Circular symmetry increases with energy. States elon-
gated inx ~horizontal! most connected to leads.
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tions can be predicted. Second, envelope modulation of peak
heights4 occurs when excited dot states are thermally acces-
sible as channels for transport, as opposed to theT50 case,
where the only channel is through the first open state above
the Fermi surface@i.e., the (N11)st state#. WhenN is in the
middle of a shell of closely spaced, spin degenerate levels,
the entropy of the dot,kBlnV, whereV is the number of
states accessible to the dot, is sharply peaked. For example,
for six electrons occupying six spin degenerate levels~i.e.,
twelve altogether! all within kBT of the Fermi surface, the
number of channels available for transport is 924. For eleven
electrons in the shell, however, the number of channels re-
duces to 12. Consequently, minima and peaks of envelope
modulation~see also Fig. 21 below! of CB oscillations which
are frequently observed are clear evidence of level bunching,
if not an organized shell structure.

Recently experimental evidence has accumulated for the
existence of a shell structure as observed by inelastic light
scattering52 and via Coulomb oscillation peak positions in
transport through extremely small (N;0230) vertical quan-
tum dots.53 Interestingly, aclassical treatment, via Monte-
Carlo molecular-dynamics simulation,54 also predicts a shell
structure. Here, the effect of the neutralizing positive back-
ground is assumed to produce a parabolic confining poten-
tial. A similar assumption is made in Ref. 55, which analyzes
a vertical structure similar to that of Ref. 53. We believe that
continued advances in fabrication will result in further em-
phasis on such invariant, as opposed to merely statistical,
properties of dot spectra.

As noted above, there is a strong tendency for levels at the
Fermi surface to ‘‘lock.’’ Such an effect has been described
by Sun et al.56 in the case of subband levels for parallel
quantum wires. In dots, the effect can be viewed as electro-
static pressure on the individual wave functions, thereby
shifting level energies in such a way as to produce level
occupancieswhich minimize the total energy. Insofar as a
given set of level occupancies is electrostatically most favor-
able, level locking is a temperature-dependent effect which
increases asT is lowered. This self-consistent modification
of the level energies can also be viewed as an excitonic cor-
rection to excitation energies.

The difference between the cases of a quantum dot and
that of parallel wires is one of localized versus extended
systems. It is well known that, unlike Hartree-Fock theory,
wherein self-interaction is completely canceled since the di-
rect and exchange terms have the same kernel 1/ur2r 8u, in
Hartree theory and even density-functional theory in the
LDA, uncorrected self-interaction remains.57 While it is rea-
sonable to expect that excited states will have their energies
corrected downward by the remnants of an excitonic effect,
we expect that LDA and especially Hartree calculations will
generally overestimate this tendency to the extent that cor-
rections for self-interaction are not complete.

The panel labeled ‘‘XC’’ in Fig. 9 illustrates the preced-
ing point. In contrast to the large panel~on the left! these
results have had the XC potential in LDA included. The
differences between Hartree and LDA are generally subtle,
but here the clustering of the levels at the Fermi surface is
clearly mitigated by the inclusion of XC. The approximate
parabolic degeneracy is evidently not broken by LDA, how-
ever, and the shell structure remains intact. Similarly for XC,

the capacitances also show anomalies near the same gate
voltages, where shells depopulate, as in Fig. 4, which is pure
Hartree.

The two remaining panels in Fig. 9 illustrate the effects of
disorder and ordering in the donor layer~XC not included!.
As with the ‘‘XC’’ panel, Vg is varied between21.142 and
21.17 V. The ‘‘disorder’’ panel represents a single fixed
distribution of ions placed at random in the donor layer as
discussed above. Similarly, the ‘‘order’’ panel represents a
single ordered distribution generated from a random distri-
bution via the Monte-Carlo simulation;6,21 hereF51/5 ~cf.
two panels of Fig. 3!.

The shell structure, which is completely destroyed for
fully random donor placement~see also Fig. 14!, is almost
perfectly recovered in the ordered case. In both cases the
energies are uniformly shifted upwards relative to the quiet
dot by virtue of the discreteness of donor charge~cf. also the
discussion of Fig. 4 above!. Closer examination of the disor-
dered spectrum shows considerably more level repulsion
than the other cases.

The application of a small magnetic field, roughly a single
flux quantum through the dot, has a dramatic impact on both
the spectrum, Fig. 13, and the wave functions, Fig. 14, top.
The magnetic field dependence of the levels~not shown! up
to 0.1 T exhibits shell splitting according to azimuthal quan-
tum number as well as level anticrossing. By 0.05 T level
spacing~Fig. 13! is substantially more uniform thanB50,
Fig. 9. Furthermore, while theB50 quiet dot displays recon-
struction due to the depopulation of shells atVg'21.15 and
21.1 V, theB50.05 T results show a similar pattern, a step
in the levels, repeated many times in the same gate voltage
range. The physical meaning of this is clear. The magnetic
field principally serves to remove the azimuthal dependence
of the mod squared of the wave functions~Fig. 14!. In a
magnetic field, the states at the Fermi surface also tend to be
at the dot perimeter. Depopulation of an electron in a mag-
netic field, like depopulation of the last member of a shell for
B50, therefore removes charge from the perimeter of the
dot and a self-consistent expansion of the remaining states
outward occurs.

C. Statistical properties

1. Level spacings

The statistical spectral properties of quantum systems
whose classical Hamiltonian is chaotic are believed to obey
the predictions of random matrix theory~RMT!.58 Argu-
ments for this conjecture, however, invariably treat the
Hamiltonian as a large finite matrix with averaging taken
only near the band center. Additionally, an often unclearly
stated assumption is that the system in question can be
treatedsemiclassically, that is, in some sense the action is
large on the scale of Planck’s constant and the wavelengthof
all relevant statesis short on the scale of the system size.
Clearly, for small quantum dots these assumptions are vio-
lated.

RMT predictions apply to level spacingsS and to transi-
tion amplitudes~for the ‘‘exterior problem,’’ level widths
G).59 RMT is also applied to scattering matrices in investi-
gations of transport properties of quantum wires.60 Ergodic-
ity for chaotic systems is the claim that variation of some
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external parameterX will sweep the Hamiltonian rapidly
through its entire Hilbert space, whereupon energy averaging
and ensemble~i.e.,X) averaging produce identical statistics.
In our studyX is either the set of gate voltages, the magnetic
field, or the impurity configuration and we consider the sta-
tistics of the lowest-lying 45 levels~spin is ignored here!.
Care must also be taken in removing the secular variations of
the spacings or widths with energy, the so-called unfolding.

According to RMT, level repulsion leads to statistics of
level spacings which are given by the ‘‘Rayleigh distribu-
tion’’:

P~S!5
pS

2D
exp~2pS2/4D2!, ~16!

whereD is the mean local spacing.59,61Figure 15 shows the
calculated histogram for the level spacings for the quiet dot
as well as for disordered, ordered, and ordered, with
B50.05 T cases. Statistics are generated from~symmetrical!
plunger gate variation, in steps of 0.001 V, over a range of
0.1 V, employing the spacings between the lowest 45 levels;
thus about 4500 data points. Deviation from the Rayleigh
distribution is evident. An important feature of our dot is
symmetry under inversion through both axes bisecting the
dot. It is well known that groups of states which are un-
coupled will, when plotted together, show a Poisson distri-
bution for the spacings rather than the level repulsion of Eq.
~16!. Thus we have also plotted~white bars! the statistics for
those states which are totally even in parity. While the prob-
ability of degeneracy decreases, ax2 test shows that the
distribution remains substantially removed from the Ray-
leigh form.

In contrast to this, the disordered case shows remarkable
agreement with the RMT prediction. As with the spectrum in
Fig. 9, we use a single ion distribution. However, we also
find ~not shown! that fixing the gate voltage and varying the
random ion distributions results in nearly the same statistics.
When the ions are allowed to order, the level statistics again
deviate from the RMT model. This is somewhat surprising
since Fig. 4 shows that, even forF51/5, the standard devia-
tion of the effective 2D potential below the Fermi surface
from the quiet dot case,;0.05 Ry* , is still substantially
greater than the mean level spacing;0.02 Ry* . We have
recently shown that, asF goes from unity to zero, a continu-
ous transition from the level repulsion of Eq.~16! to a Pois-
son distribution of level spacings results.62 Finally, the appli-
cation of a magnetic field strong enough to break time-
reversal symmetry clearly reduces the incidence of very
small spacings, but the distribution is still significantly dif-
ferent from RMT.

FIG. 13. Vg dependence at fixedB ~0.05 T! of level energies,
quiet dot. Multiple reconstructions seen as levels depopulate. Ho-
mogeneous level spacing related to uniformity of Coulomb oscilla-
tion peak heights in a magnetic field.

FIG. 14. Levels 31 through 35 for~from bottom! quiet dot with
LDA for XC, Hartree for disordered dot, Hartree for ordered dot
F51/5, andB50.05 T. XC changes ordering of some levels, but
has very little influence on states. Ordered case recovers much of
quiet dot symmetry. SmallB changes states altogether.

FIG. 15. Histograms of level spacings, normalized to local level
spacing. Dark curve represents Rayleigh distribution. Black bars
~main panel! include all states, white bars only for states that are
completely even underx or y inversion. Insets: disordered panel
recapitulates Rayleigh distribution, both ordered andBÞ0 margin-
ally but significantly different.
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2. Level widths

In Eq. ~10! we definedWn(a,b) as the barrier penetration
factor from the classically accessible region of the lead to the
matching point in the barrier, for thenth channel. The pen-
etration factor completely through the barrier,
Pn[Wn(a,c), wherec is the classical turning point on the
dot side of the barrier, is plotted as a function of QPC volt-
age in Fig. 16.Pn is simply the WKB penetration for a given
channel with a given self-consistent barrier profile, and can
be computed at any energy. Here we have computed it at
energies coincident with the dot levels. Therefore the dashes

recapitulate the level structure, spaced now not in energy but
in ‘‘bare’’ partial width. Theactualwidth of a level depends
upon the wave function for that state@cf. Eq. ~10!#. For en-
ergies above the barrier ln(P)50. The solid lines represent
P at the Fermi surfacecomputed for three different
Al xGa12xAs thicknessest ~as in Fig. 8! and for bothn51
andn52 ~the dashes are computed fort512aB* ). The QPC
voltage is given relative to values at whichP for n51 is the
same for all threet ~hence the top three solid lines converge
at DVQPC50).

Quite surprisinglyt has very little influence on the trend
of P with QPC voltage. Note that the ratio of barrier pen-
etration between the second and first channelsP2 /P1 de-
creases substantially with increasingt since the saddle pro-
file becomes wider for more distant gates. Even for
t57.5aB* , however, penetration via the second channel is
about a factor of 5 smaller than vian51.

Figure 17 shows the partial width for tunneling vian51
through the barrier, now using the full Eq.~10!, for the quiet
dot. The barriers here are fairly wide. While this strikingly
coherent structure is quickly destroyed by discretely local-
ized donors even when donor ordering is allowed, the pattern
is nonetheless highly informative. The principal division be-
tween upper and lower states is based on parity. States which
are odd with respect to the axis bisecting the QPC should in
fact have identically zero partial width~that they do not is
evidence of numerical error, mostly imperfect convergence!.
Note thatthis division is largely preserved for discrete but
ordered ions. The widest states~largestG) are labeled with
their level index for comparison with their wave functions in
Figs. 11 and 12. Comparison shows they represent the states
which are aligned along the direction of current flow. Thus in
each shell there are likely to be a spread of tunneling coef-
ficients, that is, two members of the same shell will not have
the sameG.

Statistics of the level partial widths are shown in Fig. 18,

FIG. 16. Barrier penetration factors from classical turning point
in lead to turning point in dot at same energy, as a function of QPC
voltage offset.P evaluated at energies of states in quiet dot for
Al xGa12xAs thicknesst512aB* . Solid lines indicate barrier pen-
etration at Fermi level. Upper three lines for first channel,
t57.5,9.0,12.0aB* , respectively. Lower three lines for second chan-
nel, samet. DVQPCzero set such that first channel conducts equally
at the Fermi surface for allt.

FIG. 17. Partial widths~through first channel! for tunneling to
the leads, quiet dot. Numbers indicate ordinate of wave functions,
Figs. 11 and 12. Weakly connected states zero by parity~nonzero
only through numerical error!.

FIG. 18. Statistics of unfolded partial level widths, first channel
only, ~a! quiet dot showing large weight near zero due to parity,~b!
and ~c! have B50.05 T, quiet dot and disordered, respectively.
Remnant of peak at small coupling remains. Dark line represents
x2
2 distribution predicted by RMT.~d! and ~e! are ordered and dis-

ordered withB50. Ordered case differs significantly from Porter-
Thomas distribution plotted in black here.
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here normalized to their local mean values. While the statis-
tics for the quiet dot are in substantial disagreement with
RMT, it is clear that discreteness of the ion charge, even
ordered, largely restores ergodicity. The RMT prediction, the
‘‘Porter-Thomas’’~PT! distribution, is also plotted. For non-
zeroB, panels~b! and ~c!, the predicted distribution isx2

2

rather than PT. Even the completely disordered case~e! re-
tains a fraction of vanishing partial width states. Since in our

case the zero width states result from residual reflection sym-
metry, it would be interesting to compare the data from Refs.
63 and 64, which employ nominally symmetric and nonsym-
metric dots, respectively, to see if the incidence of zero width
states shows a statistically significant difference.

One further statistical feature which we calculate is the
autocorrelation function of the level widths as an external
parameterX is varied:

C~DX!5

(
i , j

@G i~Xj !2Ḡ~Xj !#@G i~Xj1DX!2Ḡ~Xj1DX!#

A(
i , j

@G i~Xj !2Ḡ~Xj !#
2A(

i , j

@G i~Xj1DX!2Ḡ~Xj1DX!#2
, ~17!

where Ḡ(X) is again thelocal average, over levels at fixed
X, of the level widths. Note that the sum oni is over levels
and the sum onj is over starting values ofX.

In Fig. 19 we show the autocorrelation function for vary-
ing magnetic field~cf. Ref. 64, Fig. 3!. The sample is or-
dered,F51/5. Our range ofB only encompasses@0,0.1# T
in steps of 0.005T, so we have here averaged over all levels
~i.e., i51245). The crucial feature, which has been noted in
Ref. 64, and for conductance correlation in open dots in Ref.
65, is that the correlation function becomes negative, in con-
tradiction with a recent prediction based on RMT.66 Indeed,
as noted by Birdet al.,65 an oscillatory structure seems to
emerge in the data. Comparison with calculation here is
hampered since the statistics are less good asB increases.

Nonetheless, the RMT prediction is clearly erroneous. We
speculate that the basis of the discrepancy is in the
assumption66 that C(DX)5C(2DX). Given this
assumption,67 the correlation becomes positive definite.
Physically this means that, regardless of whetherB is posi-

tive or negative, the self-correlation of a level width will be
independent of whetherDB is positive or negative. This im-
plies that the level widths should be independent of the ab-
solute value ofB, or any even powers ofB, at least to lowest
order inDB/B. For real quantum dot systems this assump-
tion is inapplicable.

Similar behavior is observed withX taken as the~plunger!
gate voltage, for which we have considerably more calcu-
lated results, Fig. 20. The upper panel is the analog of Fig.
19, only we have broken the average on levels into separate
groups of fifteen levels centered on the level listed in the
figure @e.g., the ‘‘28’’ denotes a sum in Eq.~17! of
i521,35#. The lower panel shows the autocorrelation as a
grey scale for the individual levels~averaging performed
only over startingVg). The very low-lying levels, up to
;10, remain self-correlated across the entire range of gate

FIG. 19. Autocorrelation function for level partial widths; or-
dered,F51/5, averaged overB starting point and all 45 levels.
Range ofB is only 020.1 T, so statistics are weaker to the right.
Pronounced anticorrelation near 0.03 T in contradiction with RMT.

FIG. 20. Autocorrelation function withVg , averaged over
groups of 15 levels~upper panel!. Number indicates center of~con-
tiguous! range of averaged values. Dashed line is average of all
states. Lower panel is grey scale for autocorrelation of individual
levels averaged only overVg starting point. Black is 1.0 and white
is21.0. Data suggest that behavior of autocorrelation is sensitive to
which levels are averaged.
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voltage. This simply indicates that the correlation field is
level dependent. However, rather than becoming uniformly
gray in a Lorentzian fashion, as predicted by RMT,66 indi-
vidual levels tend to be strongly correlated or anticorrelated
with their original values, and the disappearance of correla-
tion only occurs as an average over levels.

Again we expect that the explanation for this behavior lies
in the shell structure. Coulomb interaction prevents states
which are nearby in energy from having common spatial
distributions. Thus in a given range of energy, when one
state is strongly connected to the leads, other states are less
likely to be. Further, the ordering of states appears to survive
at least a small amount of disorder in the ion configuration.

D. Conductance

The final topic we consider here is the Coulomb oscilla-
tion conductance of the dot. We will focus here on the tem-
perature dependence,4 although statistical properties related
to ion ordering are also interesting.

We have shown in Ref. 4 that detailed temperature depen-
dence of Coulomb oscillation amplitudes can be employed as
a form of quantum dot spectroscopy. Roughly, in the low
T limit the peak heights give the individual level connection
coefficients and, as temperature is raised, activated conduc-
tanceat the peaksdepends on the nearest level spacings at
the Fermi surface. In this regard we have explained envelope
modulation of peak heights, which had previously not been
understood, as clear evidence of thermal activation involving
tunneling through excited states of the dot.4

Figure 21~a! shows the conductance as a function of
plunger gate voltage for the ordered dot atT5250 mK. Note
that the magnitude of the conductance is small because the
coupling coefficients are evaluated with relatively wide bar-
riers for numerical reasons. Over this range the dotN de-
populates from 62~far left! to 39. The level spacings and
tunneling coefficients are all changing withVg . At low tem-
perature a given peak height is determined mostly by the
coupling to the first empty dot level (GN11) and by the spac-
ings between theNth level and the nearest other level~above
or below!. The relative importance of theG ’s and the level
spacings can obviously vary. In this example, Figs. 21~a! and
21~b! suggest that peak heights correlate more strongly with
the level spacings. The double envelope coincides with the
Fermi level passing through two shells. In general, the DOS
fluctuations embodied in the shell structure, and the observa-
tion ~above! that within a shell a spreading of theG ’s ~with a
most strongly coupled level! results from Coulomb interac-
tion, provide the two fundamental bases of envelope modu-
lation.

Finally, we typically find that, when peak heights are plot-
ted as a function of temperature~not shown! some peaks
retain activated conductance down toT510 mK. Since the
dot which we are modeling is small on the scale of currently
fabricated structures, this study suggests that claims to have
reached the regime where all Coulomb oscillations represent
tunneling through a single dot level are questionable.

IV. CONCLUSIONS

We have presented extensive data from calculations on
the electronic structure of lateral GaAs-AlxGa12xAs quan-

tum dots, with electron number in the range of
N5502100. Among the principal conclusions that we reach
are the following.

The electrostatic profile of the dot is determined by metal
gates at fixed voltage rather than a fixed space charge. As a
consequence of this the model of the dot as a conducting disk
with fixed, ‘‘external,’’ parabolic confinement is incorrect.
Charge added to the dot resides much more at the dot perim-
eter than this model predicts.

The assumption of complete disorder in the donor layer is
probably overly pessimistic. In such a case the 2DEG elec-
trostatic profile is completely dominated by the ions and it is
difficult to see how workable structures could be fabricated
at all. The presence of even a small degree of ordering in the
donor layer, which can be experimentally modified by a back
gate, dramatically reduces potential fluctuations at the 2DEG
level.

Dot energy levels show a shell structure which is robust to
ordered donor layer ions, though for complete disorder it
appears to break up. The shell structure is responsible for
variations in the capacitance with gate voltage as well as
envelope modulation of Coulomb oscillation peaks. The

FIG. 21. ~a! Conductance versusVg for ordered dot,T50.25 K.
~b! Fermi surface level spacing and tunneling coefficient at reso-
nance. Conductance in~a! correlates somewhat more strongly with
smaller level spacing than with largerG.
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claims that Coulomb oscillation data through currently fab-
ricated lateral quantum dots show unambiguous transport
through single levels are questionable, though some oscilla-
tions will saturate at a higher temperature than others.

The capacitance between the dot and a lead increases only
very slightly as the QPC barrier is reduced. Thus the electro-
static energy between dot and leads is dominated by charge
below the Fermi surface and splitting of oscillation peaks
through double dot structures49 is undoubtedly a result of
tunneling.

Finally, chaos is well known to be mitigated in quantum
systems where barrier penetration is non-negligible.68 Insofar
as noninegrability of the underlying classical Hamiltonian is
being used as the justification for an assumption of
ergodicity69 in quantum dots, our results suggest that further
success in comparison with real~i.e., experimental! systems

will occur only when account is taken in, for example, the
level velocity,66,70 of the correlating influences of quantum
mechanics.
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