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Quantum-mechanical derivation of angular and torsional forces in well-bonded systems
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A quantum-mechanically based method of deriving real-space interatomic potential functions for covalently
bonded systems, without broken bonds, is developed. The method focuses on the one-electron energy, which
is modeled via a tight-binding Hamiltonian. The potentials are derived via a general formalism based on
perturbation theory, using a starting state in which the electrons reside in bond orbitals. The perturbing terms
correspond to overlap and Hamiltonian couplings between the bond orbitals and with other occupied and
unoccupied states. The interactions are given in terms of simple trigonometric functions, and the parameters of
the quantum-mechanical Hamiltonian. A major contribution to the angular forces comes from the overlap
between occupied bonding orbitals. Examples are given for model Hamiltonians relevant to phosphorus,
carbon, sulfur, and the ethane molecule. The functional forms of the derived potentials are generally similar in
form to those assumed in simulations. However, the actual appearance of the potentials is sometimes quite
different from that obtained by an empirical fitting to molecular properties. In addition, it is found that the
“improper” torsion terms that are often included in polymer simulations can be replaced by angular terms that
are much more physically transparef$0163-18206)02743-9

[. INTRODUCTION properties of transition metals and covalently bonded mate-
rials.

Recent years have seen tremendous improvements in Several previous studies have treated the decomposition
computing speed and capacity, which have rendered possibté the electronic band energy in tight-binding Hamiltonians
much larger and longer atomic-level simulation runs forinto real-space interactions. Fep®-bonded semiconductors,
properties of molecules and solids. These simulations requirelarrison and Phillipsused a picture based on atom-centered
the use of rapid methods for evaluating the forces that entdrybrid orbitals with “frozen” orientations. In this picture,
Newton’s equations, so that in most large-scale simulationghe interatomic bonding matrix elements are reduced as the
simple parametrized methods based on short-ranged redtond angles change, causing the constituent hybrids to be-
space interatomic forces have been used. For covalent sygome misaligned in the bond, resulting in an angular term in

tems with conformational degrees of freedom, up to fourthe energy. This gives a good description of chemical trends
body or “torsional” interactions are typically used. Even for iN shear elastic constants in diamond-structure semiconduc-

well-bonded systems, in which one does not have the diffitors: Subsequently, Harrisorpresented an analysis for

culties of dealing with broken bonds, the forces are usualljansition-metal compounds based on the “chemical grip.”
derived on the basis of an assumed functional form contain- €€ the angular terms appear in fourth-order perturbation

ing a large number of adjustable parameters. The parametel}g,eory connecting the OCCUpéEig orbitals to unoccupied ones.
which can number up to 1000 or more for a protein, are ore recent_ly, seve_ral analyseshave used_the moments of

. o . ' the electronic density of states, together with an approximate
obtained by fitting to known molecular or solid-state proper-

. . ; dependence of the energy on these moments, to calculate the
ties. Because the functional form is assumed and the numb P ay

Ghgular forces. Bond-order effects have also been calculated

of parameters is large, there is always a lingering uncertaint}ﬁuantum mechanically and invoked in empirical force

with regard to the accuracy of the simulations. In addition,athod<$:? However, there has been no corresponding
the large number of adjustable parameters makes the geneigalysis of the contribution of one-electron band effects to
tion of force laws for new systems time consuming. torsional forces within simple models such as those used
The purpose of this paper is to provide a firmer theoreticahere, although there have been several calculations for spe-
foundation for the use of real-space force laws in simulationgific systems using other approacfs.
of well-bonded covalent systems, by developing a perturba- The approach that is used here, like Ref. 1, uses as a
tive quantum-mechanical formalism for calculating them. Istarting point a Hamiltonian including only couplings be-
focus on the electronic band energy, for two reasons. Firstween different “lobes,” whose symmetric linear combina-
since it depends on a solution of the Salinmer equation tions form bonding orbitals. This was denoted the “bond-
for the electrons, it is the least well understood of the energprbital” approximation in Ref. 11. This approximation is
terms. Second, it is probably the dominant term in the angusuitable here because the systems of interest are well bonded.
lar and torsional forces, since electrostatic and fluctuatingHowever, rather than using frozen atomic orbitals to con-
dipole forces are not strongly angular in character. | describstruct the bond orbitals, | use bond orbitals that are oriented
the electronic-band energy via an electronic Hamiltoniarfrom one atom to another. This approach is advantageous for
based on tight-binding theory. This approach has previouslyreating noncrystalline systems, because in these systems the
proved of great utility in understanding structural and elasticchoice of orientation for the frozen atomic orbitals is not
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clear. Although this choice would not matter in an exact -
calculation, it does matter in an approximate calculation. For H=2 hyli)(j[+ 2 &li)il. 1)
example, even in a perfect crystal, if one chooses an orien- ! '
tation for the atomic orbitals that is not suited to the crystalHere, theli) are localized basis orbitals, which are pf
orientation, the bonds do not match up perfectly, and théymmetry, or appropriately choseap hybrids, depending
energy in the bond-orbital approximation is found to beon the nature of the bonding. Each atom will contain several
higher than it should be. The use of bond hybrids orienteguch basis orbitals, but they are not explicitly divided up into
according to the neighbor positions eliminates this ambiguatomic groups here. Thig; =(i[H|j) are tight-binding cou-
ity. The price paid for this simplification is that the bond Plings and thes;=(i|H|i) are on-site energies. To obtain a
orbitals emanating from a given atom become nonorthogonaitarting point for calculating the interatomic potenpals via
when the bond angles deviate from their ideal values. A supPerturbation theory, | assume that each basis orhijals
stantial part of this paper is devoted to treating this nonorStrongly bonded to one and only one other basis orbital
thogonality, and | find that a major part of the angular inter-|I _>; this corresponds to t_h,e “bor_1d:,orb|tal approximatih,
action between bond orbitals may be attributed to thét is assumed thalf) and|i") “point” at egch oth_er, so that
nonorthogonality. This does not contradict the results of Ref'_[hey_are actu_ally (_jepgndent on the atomic positions. Then the
) . s ) .Starting Hamiltonian is
1; | believe that the energy of bond-angle deviations is physi-
cally the same in both pictures, but simply looks different _
because of the different choice of atomic-orbital basis. HowHo= > [hii ([i)(i’|+[i")(iD+eili)(i|+ei [i')i'[1, (2
ever, the present approach does allow for a very clear, sys- '
tematic perturbation theory to be developed, which givesvhere the sum includes each pair only once. The eigenvalues
corrections to the picture of Ref. 1. of this Hamiltonian are straightforwardly obtained as
The calculation of the interactions proceeds via perturbaz + \/hZ, + 552, wheres=|g;+s;/|/2 and s =|s;—s;/|/2.
tion theory with respect to a starting Hamiltoniad ) that ~ We denote the corresponding eigenvectorsthy (bonding
contains only noninteracting, orthogonal bond and antiboncnd|a;) (antibonding. In terms of these;l, takes the simple
orbitals oriented between neighbors. The correction termform
include bond-bond, bond-antibond, and antibond-antibond
interactions, and nonorthogonality between different bond
orbitals. Treatment up to fourth order yields both angular and
torsional forces. These are expressed explicitly in terms of

the electronic coupling terms in the Hamiltonian, and simpleI assume that the bonding states are occupied and the anti-

angular factors. This result implies that it may be possible t(pondlng states unoccupied. Thus the total energy of the sys-

develop force laws with much fewer adjustable parametergem at this level is Z;sy,, where the factor of wo that
recedes the summation comes from the occupation of each

than have typically been used, since the number of paranﬁ- di bital b |
eters in the electronic Hamiltonian is much smaller than the onding or Ital by two e gctrons. . .
It is necessary to consider two types of corrections to this

usual nymber of force parameters._l evgluate the forc?s foIﬁamil'[onian. First, there are matrix elements coupling a
some simple model electronic Hamiltonians. The functional iven bonding or éntibonding orbital to other bonding and

form of th_e angular_ depe_ndence is generally similar to tha ntibonding orbitals. This correction has the form
assumed in most simulations. However, the actual plots can

look quite different from the empirical potentials. In addi-

|:|o:2i [ep,ilbi)(bi| +eala)(aill. )

tion, the angular terms have a form which is general enough Heoug= 2 iPIbi)(bj[+hd? b;)(a]

to subsume the effects of the “improper torsion,” or out-of- b

plane terms, which have been included in some previous +hgb|a_><b.|+haala‘><a_| (4)
simulationst? Thus it may be possible to simplify the treat- AT AT

ment of these terms. where the prime denotes that diagonal terms are omitted.

The organization of the remainder of the paper is as fol-Second, the bond orbitals are generally not orthogonal to
lows. Section II describes the general perturbative formaleach other. Hy,,, is treated by perturbation theory,
ism, up to fourth order. Section Ill describes applications toup to fourth order. The nonorthogonality is treated by
simple types of bonding, including bonding,sp® bonding, use of the transformed Hamiltonian matrix
andsp? bonding. Applications are made to the structures 0f(f+§)—1/2(ﬁ0+ I:|COUF)(IA+AS)‘1’2, where the matrix ele-
group V and VI elements, and a comparison is made t0 eXgents ofS ares—b-a=<bi|a->, etc., and the diagonal terms are
isting potentials for carbon. Section IV concludes with a dis-g,5tracted off.(” :

4 . . : . R Note that here the “hat” notation corre-
cussion of prospects for including this basic physics in ary,,nqs to a collection of matrix elements, not the operator
empirically fitted force method.

itself. Thus in the absence of orthogonality, one cannot
square the matrii to obtain the square of the Hamiltonian.
The eigenvalues of the Hamiltonian, including overlap ef-
Il. GENERAL FORMALISM fects, are rigorously given as eigenvalues of this transformed
The Hamiltonian for the electronic-band energy, which | Hamiltonian matrix:* The latter, in turn, is obtained by an
will first give in the absence of overlamonorthogonality, ~ expansion to the first and second orderSinin the second-
has the tight-binding form order part, we keep only the piece that includteg so that
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only terms up to combined second orderHg,,, and S are VP =2[nP%2 (e~ £0) + (i) (11)
included. The end result is that the Hamiltonian matrix to be

diagonalized has the form In the results(8) and (11), one obtains an angular inter-

action ifi andj correspond to different ligand bonds on the
same atom. One obtains a torsional interactiom &nd j
correspond to ligand bonds on different atoms that are con-
nected by an axial bond.
_ We shall see later that the description of some angular and
torsional interactions necessitates the inclusion of “extra”
orbitals in addition to those formally involved in the
qbonding. Their inclusion requires going up to fourth-order
perturbation theory, where the perturbation Us=H g,
[S(Ho+Heoup + (Hot+Heoup SI/2. We defineU to in-
ude only the off-diagonal part of this expression. This is
because it simplifies the calculation, and we have found that
angular dependences obtained using the diagonal part always
show up in higher orders of perturbation theory than in cal-
culations based on the off-diagonal part. Terms of up to
fourth order can also be obtained by treating the second-
order part ofH.; to second order; however, these terms are
found to have the same angular dependence as lower-order
terms.

Fourth-order perturbation theory can become rather un-
wieldy, so | now give a derivation which renders the “book-
keeping” simple. | set up the calculation in terms of a

Green’s functionG defined by

Her=Ho+H coupT H overlaps

©)

where  Hoyerar= —[S(Ho+ Heoup + (Ho+ Heoup SI2+[(3/
8)(S?Ho+ HoS?) + (1/4) (SHS)].

I now show that this expansion yields a real-space de
scription of the bonding energy as a series of interatomic
potential functions. The expansion strategy, at first, is t
keep all terms up to second orderlih,,, and S. Thus the
SHy piece ofHyenapis thus treated up to the second order™
and the remaining pieces are treated to the first order. Th((:e|
first-order contribution to the total energy frokh.,,, van-
ishes, since the orbitals are empty, and interactions be-
tween completely filledo orbitals do not change the total
energy. The first-order contribution froR,ye4, IS given by

EMD= 22 (bi | ﬁoverlaAbi>

bb.bb b b
1]

+22 [(SE)2ep,i+ (314) (S5 %6,
1)

+(14)(s5?) %41, (6) G(z)=1/z—Hy—U).

where, as above, the factor of two that precedes each su
mation comes from the spin degeneracy. In this result, th
diagonal terms are to be included. The energy now has th
form of a sum of interactions between bonds:

NS 1/22‘,1_ ViV+(i=] terms, 7)
where
Vi = —4(hfPsPP+hp2s®) + 2(sP°) 2 (ep i + e )
+(312)[(87?)2ep,i+(S]") ]
+(L2[(s])%ea,+ ()% a,]- 8)

[The second term in Eq7) simply contributes a shift in the
bond energy which does not contribute to the angular o

torsional forced. The second-order treatment of tlé.,,,
and SHy+ H,S terms gives the following result:

y assumption, the filled bonding orbitals are well removed
0 energy from the others. Assume at first that the extra or-
bitals are empty, and thus act only by perturbing the occu-
pied orbitals. Defin€C to be a contour surrounding all of the
occupied bonding orbitals and none of the empty remaining
ones. Then one sees readily from the Cauchy integral
formula  that the total bonding energy s
2(1/2mi)$czTrG(z)dz, where the first “2” accounts for the
spin degeneracy. The point is th&t(z) is well-behaved
along the contour, and can thus be expanded as a power
series_ in the perturbing terms. We writeU
=3, ,h,.lw)(v|, where the stateg comprise the collection
of bonding @), antibonding &), and “extra” (e) orbitals.
By assumption H, is diagonal, so that Gy(2)
=3 ,(z—&,) " *|u){u|. Expanding to fourth order ity, we
bbtain

G(2)=Go(2) + Go(2)UG(2) + Go(2)UGo(2)UGo(2)
AE?=23 (bi|Heou (SHo+HoS)/2a) (o5~ £a,) *Go(2)UGo(2)UGo(2)UGo(2)
i,j A A A A A A A PN
+Go(2)UGo(2)UGo(2)UGo(2)UGy(2),  (13)
_ b
—2;] [h 3% (ep,— 2ay). © it
where
- E@=(zi)"1 h,,h
hD2=hp2—s0%(ep, +24,)/2. (10) (1) ,LE S
The corresponding bond-bond interaction is ><[(z—sﬂ)(z—sv)(z—sﬂ)]‘ldz, (19
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E®=(mi) 1Y ¢ zh,h,,h,.[(z—¢,)(z—¢,) E®=(mi) TrUpeUesUpp 3@ 2[(z—ep)X(z—86)]
m,v, C C
X(z—e,)(z—¢,)] dz, (15) X[2(z—ep) T+ (z—€e6) 1]
o +2(m) 1000000, § (2 e)(2e0)
C

X(Z_Sa)]_l[(z_gb)_1+(z_8e)_l+(Z_Sa)_l]

E(4):(7Ti)_1 E czﬂﬂvﬁvn’ﬁmﬁw[(z_S,u)(z_su) =-2 Trobeoebobb(gb_8'3)_2
My 7Y
+ 0. 0.0 —e) Yen—e )L
X(Z_S,?)(Z_87)(Z_S’u)]ildz. (16) 4TrUbeUeaUab(8b 8e) (Sb 8a) (19)

In terms of an angular potential defined between bonds

. . . . iy and|j) on atomm, we have
| considerE@ first. For the assumed case in which the| ) Iy

e orbitals are empty, the nonvanishing terms are those in- o o
volving ab orbital and are orbital; those not containing any V§j3)=2[ — > hshePhBP(ep— o) "2+22, hisheahaP
b orbitals vanish because the corresponding integrand has no © €

singularities inside the contour. Equati@t¥) then yields

X(ep—ee) ‘(ep—ea) [+ (i) (20)

E@= (i) 1Tr0,Uep jg A(z—ep)(z2—80)] For the case of fille& orbitals, | obtain
c

X[(z-ep) "M+ (2-20) 1] V-2

> i (eemea) 2+ 23 R
=2 Tr0pUen(ep—5e) 1

X(se_sa)il(sb_ga)il +(i<]). (21)

=22 highf(ep—e9) (17
These results will be used to discuss effects of the extra
orbitals on bond angles, in the next section.
which is the usual second-order perturbation theory expres- | now turn toE(). As for E®), the nonzero pieces contain
sion. For the case of fille@ orbitals, we note that by as- someb terms and some of the others as well. For torsional
sumption Tr{Hy+U)=TrH,, sinceU is by assumption off forces to be present, two of the stajesv, », andy must be
diagonal. This means that the sum of all of the eigenvalues igonding or antibonding orbitals between the two axial-bond
unaffected byU. Then we can write the sum of the energy atoms and ligand neighbors. For tago states to come into
changes of the occupied bonding and extra states as min@&ay. it turns out that two of the statgs », 7, andy must
the energy Change of the empty antibonding states. In othé'lso bee states reSiding on the two axial-bond atoms, and the
Wordsy we take the above expression' interchmgﬂ]d b Coupling between these states must be presentl Ed])itals,
everywhere, and put a minus sign in front. Thus, for filledthis is the only way to get sufficiently rapid angular varia-
e states, tions of the torsional potential; fqu orbitals, this is required
to obtain a mediated interaction between the two ligands. In
summary, of the four states, v, %, andy, at least one must
_ be a bonding ligand orbital, another must be a bonding or
E@=2> hih3(g,—g,) L (18)  antibonding ligand orbital, and the remaining two must be
© e orbitals residing on the two atoms.
Using these results in E@16), we obtain

In E®), the nonvanishing pieces are those which contain o
someb terms and some of the others as well. This holdsE'® = (i) TrUpUeeUcUpp fﬁ 27[(z—&p)?
because the pieces which containtterms vanish since the ¢
corresponding integrand has no singularities inside the con- X(z—e0)?] Y (z—ep) 1+ (z—e0) Y]
tour: the pieces which contain only terms vanish because
the integrand is of the fornz(z—e¢,) 3, and one readily
shows that its integral vanishes. For the case of angular in-
teractions influenced by the orbitals, one readily sees that

+2(77i)71TrUbeUeeUeaUab %CZ[(Z_gb)(Z_se)z

one of u, v, and » must be are orbital and the remaining X(z—e)] [(z—ep) t+2(z—ee) T+ (z—2a) M.
two must be either botb orbitals or oneb orbital and one (22)
a orbital.

Using this result in Eq(15), we obtain Performing the integrals, we obtain
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A. Angular forces

Consider first the angular forces for the case gf-ype
atom surrounded by three neighbors that are equivalent to it.
As illustrated in Fig. 1, | consider a central aton€™ hav-
ing three p-type basis orbitalgc;) pointing directly at its
neighbors. In turn, each neighbor has a ligand orHital
strongly bonded tdc;). The coupling between the lobes in
each bonding and antibonding orbital ish. Since the
ligands are equivalent to the central atom, the bonding and
antibonding orbitals have amplitudes1/\2 on each bond
hybrid. The overlap and Hamiltonian matrix elements be-
tween the hybrids are readily obtained from the usual Slater-
Koster analysi¢? We ignore direct interactions between
lobes centered on distinct ligand atoms of a central atom,
since the distance between these atoms will generally be
much larger than the bond length. In addition, we ignore
interatomic overlap for simplicity; it changes the magnitude
of the interactions, but not their functional form. Denoting
the overlap between lobes on the same atom by
s(6)=cos, and the intra-atomic Hamiltonian matrix ele-
ments between lobes by(6)=¢g,co8 (where g, is the

FIG. 1. Schematic of central atoi@, with orbitals c;, sur- p-orbital energy, we have

rounded by ligand orbitalk .

Sb,i :8p_ h,
E(4):_4 Trobeoeeoebobb(Sb_Se)73 Sa'i:é‘p‘f‘h, (26)
+4TUpeUedUeUan(ep—2e) " *(ep—54) " (23 Sik}bz(l/Z)S( Hij)ZSibjaZ Sﬁb, (27
The torsional potential between ligand borjdson atom hi°=(1/2)e(6;)—hs(6;), (28)
m and|j) on atomn is then
Vi =4 = X hihheh ey o) 7 and
hi?=(1/2e(6;)=h3". (30)

Tbeleelea.ab _ -2 _ -1 (i, ~
+ze N (6= e)~*(ep—8a) "+ (1)) - Thush(}? [cf. Eq.(10)] vanishes, and so do#$?), accord-

(24 ing to Eq.(11). Then, using Eq(8), we obtain

V(6)=VI(6)=(h/2)s(6)>. (31

Thus the potential has a simple (co$drm, which mini-
—— e~ mizes at 90°. The underlying physics is simply that at 90°,
V=4 =3 hirhihethi(e.—s,) the orbitals can bond independently and each form a full
€ bond, which minimizes the bond energy.
The closest physical realizations of this model are the

For filled e states, | obtain

+ E F?rg’ﬁgenﬁﬁ?’ﬁﬁa(se_Sa)_z(sb_ ea) ! group V elements phosphorus and arsefor nitrogen, the
€ bonding is molecular, and for the elements farther down in
+(ie]). (25) group V, the tight-binding approximation becomes less reli-

able) The geometric properties of the observed structures

This is the result underlying the specific calculations of tor-here and below are taken from Ref. 15, unless otherwise
sional forces in the following section. noted. Both phosphorus and arsenic take on a large variety of
crystal structures. For phosphorus, the observed bond angles
range from 95° to 105°. For arsenic in ita" structure, the
bond angle is 95°. So the basic form of the calculated poten-

In this section, | derive the geometric form of the forcestial seems to be credible. | shall now show that the system-
calculated with the above formalism, for some simple stanatic deviation in the direction of larger bond angles is asso-
dard cases, using a “bare-bones” model of the electroniciated partly with hybridization effects arising from either
structure, intended to exemplify certain ideal types of bond-occupied 3- or unoccupied 4 orbitals, or both. | calculate
ing. These relatively simple calculations illustrate the basichese with the help of the third-order perturbation theory
principles which will be needed for more complex applica-described above. Consider E480) and(21), where the ex-
tions. tra state is ars state residing on the central atom. As men-

Ill. APPLICATIONS
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tioned aboveh)? vanishes, so we only need to consider thethis term of the potential has a quadratic minimum at the
first term in each of these equations. Since interatomic overobserved bond angle. This effect may be thought of as mini-
lap is ignoredhf’n%—h?nf=—(1/\/§)hspg, where —hgp, is mizing the overlap repulsion between the bond orbitals.
the coupling between the appropriately orientestate on a  1uming to the second term, we note that in each of the
neighboring atom and the state on the central atofthe ~ Potentialss(6) is decreasing alp, and[ 1—cosf] is positive.
phases here correspond to a convention in which both th&hen this term has the effect of attempting to open the
bonding and antibonding orbitals have positive phase$®onds. I will call it the “linear” term, since it is linear in
on the central atojn One readily sees thath®PP s(_a). The origin of thls_term may be _un_derstood by consid-
_ _Ra%_ (— h/2)cos. Then the third-order contributiojrll 1o ©ing a pair of the bonding orbitals pointing out of the central
the b(J)Ind-angIe poteﬁtial is atom. Becausé e >0, the wave function built out of these
orbitals will have a lower energy if their interference is such

v® = nh2 —h- 2 as .to maximize thes .component. Since_both of the bond
g 4spr 0O (2 84s) orbitals are formally filled, both symmetric and antisymmet-
+hh§spgcost9/(s3s—h—sp)2. (32 ric combinations of the bonding orbitals will be occupied

) ) ] (here “symmetric” is measured with respect to the atom, not
This term will tend to favor larger bond angles, with the ne pond centejsin the symmetric combination, thepart is
equilibrium angle being determined by a combination of thisenhanced, while in the antisymmetric combination it is sup-
potential and that given by E¢31). Assuming that the hy- ressed. Because of the nonorthogonality of the two bond
bridization effects are small, one finds the change in equilibypitals, the symmetric and antisymmetric states are normal-
rium bond angleA 6, induced by this term to be approxi- jzeq by overlap factors [1+(1/2)s(6)] and 11
mately [h45p«r/(8p__h_84s)]2+[h3sp«r/(83s_h_gp)]z- —(1/2)s(6)], respectively. Thus the contribution in the
We do not have precise estimates for all of these parametergonding orbital will be enhanced &(#) is negative, which
However, approximate valuégs,,=2.8 eV anch=4.9 €V,  corresponds to an increased bond angle. This explains in a
as well assp—&3,=8.8 eV can be obtained from the “Solid ough way the origin of the linear term. The third term in
State Table of the Elements,” in Ref. 16. This gives Egs.(33) and(34) is smaller than the others by roughly an
A6=0.04 rac=2.3° for the 3 terms. The effect from the qrder of magnitude, even for the largest valuesothat are

4s states is likely to be larger, since their spatial extent isconsistent with a nonzero band gap.

larger than that of the Sstates, and ,s— ¢, is probably less

The form of this potential is compared with some existing

than thep-binding energy, which is 8.3 eV. Thus the com- potentials for carbon in Fig.(d). The present BG“bond-
bination of these two terms is likely to give a bond-anglegrpital”) potential is calculated with parameters taken from

expansion effect comparable to the observed one.

Ref. 16. The “KS” potential is derived by Khor and Das

Consider now the case of ap® atom surrounded by four Sarma’ from a bond-order analysis using a cosine angular
neighbors that are equivalent to it. Each of the hybrid orbital§orm, and has been used for calculations of condensed-matter
has/1/4 s amplitude and/3/4 p amplitude. As in the above properties. The WKNC potential(Weiner, Kolimann,
case, the coupling between the lobes of the bonding anfiguyen, and Cag8 is a quadratic fit to the vibrational data.
antibonding orbitals is- h, and the bonding and antibonding It has been derived for protein simulations. The main differ-

orbitals have amplitudes:-1/\/2 on each bond hybrid. In
this case we haves(0)=[1/4+(3/4)cog)]] and £(6)
=[e/4+(3/4)e,cosf]. Noting that Epi+e,))/2=¢(0),
we have hﬁa:(1/2)[8(6)—8(0)5(6)]:(—3/16)As(1
—cod), whereAe = (g,— &)/2 (not the same ade). Then,
using Egs(8) and(11), we obtain

V(9)=VH(6)+V?(0)
=(h/2)s(0)%+ (3/4)Aes(6)[1—co]

—2(3/16%(Ae?/h)[1—cosh]?, (33
For the parallel case afp? bonding, we obtain
V(6)=(h/2)s(6)>+ (8/9) Aes(H)[1—coH]
—2(2/9)%(A&?/h)[1—cosh]?, (34
where in this case s(6)=[1/3+(2/3)cod)], &(0)

=[e4/3+(2/3)e,cos], and hf}a= (—2/9)Ae(1—-cos).

ence between the present potential and the others is that in
the present case the minimum is pushed out to 180°. Note
that this is not inconsistent with the observed bond angles of
109.5°, since these are the largest that can be achieved with
fourfold coordination.

Figure 2b) shows the BO potential fasp? carbon. As in
the sp® case, there is an outward force at the observed bond
angle, 120° in this case. This force may be related to the
“improper torsion” terms that have been introduced in some
protein simulationd? These are included because angular
forces that have a minimum at 120° result in vanishing fre-
quencies for the out-of-plane vibrational modes, in the sense
that the distortion energy is proportional 34, where y is
the out-of-plane angle. This may be seen as follows. As il-
lustrated in Fig. 3, the change in the bond angjinduced
by x is an even function of, and therefore must be propor-
tional to x for small y. If the angular potential is minimized
at the observed angle, then the distortion energy is propor-
tional to A 62, or to x*. This has motivated the use of explicit

In both of these potentials, the first term is roughly con-terms associated with the out-of-plane angle. However, the
sistent with what has been assumed in most simulations. Dgresent BO potentials provide a much simpler route to the
pending only orh, it appears to be directly analogous to the out-of-plane energy. Since the angular potential is not mini-
results of Ref. 1(for the case of elemental semiconductors mized at the observed angle, the distortion energy is propor-

In both sp® and sp? configurations,s(6) vanishes at the
stable bond angl#, (109.5 insp® and 120 insp?), so that

tional to A6, or to x?, as it should be. Thus a nonzero out-
of-plane vibrational energy is obtained simply by the form of
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FIG. 2. Angular potentials fosp® () and sp? (b) carbon.
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FIG. 4. lllustration of torsional potential calculation without ex-
tra orbitals.

the angular terms. Note that the magnitude of this effect is
proportional to the difference between ths- and
p-single-site energies in the present mojagl Eq. (34)].

B. Torsional forces

To isolate the torsional forces, we focus on the case where
the bond orbitals point in orthogonal directions; this corre-
sponds to bond angles of 90° fprbonding, and 109.5° for
sp® bonding. Again, we ignore the interatomic overlap for
simplicity; since the interatomic overlap interactions have
the same angular dependence as the Hamiltonian couplings,
this will not change the angular form of the potentials. Thus,
ViV=0 according to Eg. (8). With all atoms
equivalentV® [cf. Eq.(11)] reduces to

“BO” denotes the potential obtained from the present analysis us- Vi(jz)=4(hﬂa)2/(sb— €a)- (35

ing bond-orbital approximation. Comparisons(a are taken from
Refs. 12 and 17.

O
X

FIG. 3. Schematic of “improper torsion” terms.

Here,i andj correspond to “back” bonds of distinct atoms,
as illustrated in Fig. 4. In terms of the torsional angte
about the central bond axils?ja= —(1/2)h,pcosp for pure

p orbitals and

hi=— (1/8)hgs, + (1/4\3) hgp,— (128N,
—(1/3)hyp,cosp (36)

for sp® orbitals. Here | use the convention that all of the
“Slater-Koster” couplings are positive in sign. In terms of
these parameters, the interaction between the two lobes com-
prising a bond is given by —h=-—(1/4)hgg,
—(\/§/2)hspg—(3/4)hppa. Then the torsional potential has
the form

V(¢)=—(h3,./2h)cose (p orbitals,

V(¢)=—2[(1/8hse,— (1/43)hgpo (11240
+(1/3)hpp,cosp]?/h (sp® orbitaly.  (37)

In the case ofp bonding, the simple cdsbehavior gives
equal energy minima at 0 and 180°. &p® bonding, the
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hsso

FIG. 5. lllustration of calculation of torsional potential using

extra orbitals. . . . .
FIG. 6. lllustration of calculation of torsional potential for sul-

. fur, using lone-pair orbitals.
angular dependence includes both cos and tersns. The

minimum at 0° is deeper than that at 180°.

However, application of these potentials to the group
and IV elements treated in the preceding section gives a va
ishing result for the energy barrier as a function of joint
rotation of all of the bonds on one atom about to the bon

axis. This is because the contributions from different tor- o
sional termdfour in the case of group V and nine in the Casere_ve_als amean value close to 90. i’ with most observed angles
within 10° of the mean. In addition, thel,S, molecule,

of group 1V) interfere, so that their sum is constant as a hich . be thought of " ted bi
function of the rotation angle. Thus we cannot use thesd/NICN May In some ways be thought of as a truncated piece

idealized potentials to explain the observed torsional angle .f sulfur, .has a torspna_l angle_ of 90.6_3’Thus the c.alcu—
It is then necessary to include contributions from other “ex- ated torsional potential is consistent W'th.the experiments..
fra” states that are not formally involved in the bonding. One The case of ethane has received considerable attention in

then needs the fourth-order perturbation theory, as summébe I|teratureE°j19’2°angl I has ggnerglly bee_n susp_ecteql that
rized in Eqs.(24) and (25). some type of interaction involving higher-lyird orbltalls is
Rgcessary to reproduce the observed threefold rotational bar-
rier. Our calculations confirm this belief. Because of the
threefold hydrogen coordination of the carbons, it is neces-
sary to have an angular dependence at least as rapid as
cos3p in order to avoid cancellations of the contributions
rom the nine bond pairs. For the casesgf orbitals inter-
acting with higherd orbitals, this results from the product of
a cosp factor coming from ther part of thebb or ab inter-
) 3 actions, and a cog®factor coming from thed interactions.
V(@)= —2hgp,Nss,NppCOSHL (£~ &) The first piece [from Eq. (36)] is given by
N . | —(1/3)h,,cosp. Thed interactions, in order to obtain the
T(ep=ee) H(epea) - (38) COoS2p bepﬁavior, must havé character with respect to the

Thus, since the energy denominators are negative, aligrp-ond axis.-lt is convenient to Chogse the coordinates S0 that
ments are favored which have larger torsional angles. Howih€ bond is along the (001) axis and the right-hanyi (
ever, these give fairly weak contributions to the torsionalll9and bond points in the (111) direction. Then }"‘rb'ta'
potentials; using the above parameter sets, they are estimatBfd character that couples to this bond is they” orbital.
to be on the order of I¢ eV per bond pair. In fact, the From Ref. 14, we find that the coupling between thetate
observed crystal structures of phosphorus reveal no welP" the neighboring hydbrogen and they d orbital is
defined torsional angles. —(1N3)hsq,, so thathiP=—he?= —(1/\6)hsq,. Then,
Much stronger effects are caused by the unbonded “lonebecause of the angular behavior of the d orbital, the ma-
pair” (u) orbitals in sulfur. These are oriented perpendiculartrix elements on the left-hand ligandi) are hiy
to the occupied bonding orbitals. The effects of these arc———h?n‘f=—(1/\/€)hsd(,cosz;5. Furthermore,h:S = —hgqs-
seen already at second order in perturbation theory. ThAssembling these pieces in Eg4), we obtain the following
bonding is illustrated schematically in Fig. 6. In E47), we  effective bond-bond interactiotkeeping only the cosB
note thathf‘nﬁz(ll\/i)hppﬂsina, where 0 is the angle be- pard:
tween the two occupied orbitals. Thus the torsional potential

VEu Ea= —h, we obtain an estimate of about 1/2 eV for the
rp_refactor. The reasons for the greater strength relative to
phosphorus are that the order in perturbation theory is lower,
nd that the energy denominator is smaller. Examination of
he observed torsional angles in the many sulfur structtres

In the case of phosphorus, these extra states should be t
occupied 3 shell or the unoccupiedsishell. This calcula-
tion is illustrated in Fig. 5, for the € case. In Eq.(24),
hie=hp=—hfe=—h5?= — (1/y2)h, (the relative minus
sign for thea couplings results because of the negative sig
on the orbital on the neighbor atgmhi:=—hsg,, and

hiP=hp2= — (1/2)h,p.cosp. Then,

2 . . o .
becomes Bppﬂ5|n?6/(su—sa). T_hls favors 9_0 torsional V(¢>)=—(2/9)hgdghddghppﬁ005{3¢)(sb—sd)_z
angles. To obtain an approximate magnitude, we take
hppr=1.2 eV anch,,,=4.9 eV from Ref. 16; assuming that X[(ep—eq) T+ (ep—ea) 1] (39
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Because the energy-denominator terms are negative, thygelds potential-energy functions that are physically sensible,
potential minimizes at a staggered configuration, consisterand that differ in important respects from some empirical
with the known geometr}® To obtain an estimate of the potentials. It should be possible to use these results to obtain
magnitude, we have from Ref. 16,,,=2.6 eV and force fields suitable for simulations of real molecules and
h=14.0 eV. We do not have a reliable way of estimatingsolids. This will require addition of both “nonbonded” in-
hsao» Nags» @Ndeg in this case. However, since thestate is  teractions, such as electrostatic terms, hydrogen bonding,
higher in energy than the valence states, we can assume asd van der Waals interactions. Several procedures for doing
spatial extent to be fairly large, probably larger than that ofthis have already been worked out; see, for example, Ref. 12.
the p state. To obtain a reasonable estimate, we will therin addition, it will be necessary to develop a way of obtain-
take theo couplings involving thisd state to equal those of ing detailed values of the coupling parameters in the Hamil-
the p state at a corresponding distance. We then havéonian. The best procedure for doing this is probably to add
hsds=hspo=11.8 €V; the large value comes from the shortsome empirical fitting freedom, while using well-established
hydrogen-carbon spacing.09 A). To get thes couplings, properties of electronic structure to control the number of
we will use the “canonical band theory” rddé that  fitting parameters. Probably the first point to introduce fitting
hgas=hado/6, SO thathygs=hy,,/6=1.8 eV. Forey, we as- parameters would be in the overall strength of the electronic
sume that the unoccupietdi state is not too different in en- couplings, as given, for example, thy,,. Using this as a
ergy from the antibonding states, so that,—e, fitting parameter, one could obtain the remaingag param-
=g,—£,=28.0 eV. Then the prefactor of the casBrmis  €ters by standard universal dimensionless ratios as given, for
0.013 eV. Since all of the torsional bond interactionse€xample, in Ref. 16. This would introduce one parameter for
contribute equally, the energy difference between the staggach type of elemental bond that is present. To treat hetero-
gered and eclipsed conformations ig[d—(—1)]x0.013 eV atomic bonds, one could use one of several approximations
=0.24 eV, in comparison with the experimental vafuef in which the heteroatomic bond strength is given as an aver-
0.13 eV. This indicates it is possible to get a sensible valu@ge of the homoatomic ones, or one could simply introduce
of the torsional barrier with physically reasonable values ofextra fitting parameters for each heteroatomic bond. Even for
the parameters in the model. However, since previous analy@ complex polymer such as a protein, this would introduce
ses based on electrostatit®’ had obtained results of similar less than 20 adjustable parameters, which is much fewer than
magnitude, we cannot definitely conclude that we have isoare typically used.
lated the dominant piece here.

IV. CONCLUSION
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