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A quantum-mechanically based method of deriving real-space interatomic potential functions for covalently
bonded systems, without broken bonds, is developed. The method focuses on the one-electron energy, which
is modeled via a tight-binding Hamiltonian. The potentials are derived via a general formalism based on
perturbation theory, using a starting state in which the electrons reside in bond orbitals. The perturbing terms
correspond to overlap and Hamiltonian couplings between the bond orbitals and with other occupied and
unoccupied states. The interactions are given in terms of simple trigonometric functions, and the parameters of
the quantum-mechanical Hamiltonian. A major contribution to the angular forces comes from the overlap
between occupied bonding orbitals. Examples are given for model Hamiltonians relevant to phosphorus,
carbon, sulfur, and the ethane molecule. The functional forms of the derived potentials are generally similar in
form to those assumed in simulations. However, the actual appearance of the potentials is sometimes quite
different from that obtained by an empirical fitting to molecular properties. In addition, it is found that the
‘‘improper’’ torsion terms that are often included in polymer simulations can be replaced by angular terms that
are much more physically transparent.@S0163-1829~96!02743-9#

I. INTRODUCTION

Recent years have seen tremendous improvements in
computing speed and capacity, which have rendered possible
much larger and longer atomic-level simulation runs for
properties of molecules and solids. These simulations require
the use of rapid methods for evaluating the forces that enter
Newton’s equations, so that in most large-scale simulations,
simple parametrized methods based on short-ranged real-
space interatomic forces have been used. For covalent sys-
tems with conformational degrees of freedom, up to four-
body or ‘‘torsional’’ interactions are typically used. Even for
well-bonded systems, in which one does not have the diffi-
culties of dealing with broken bonds, the forces are usually
derived on the basis of an assumed functional form contain-
ing a large number of adjustable parameters. The parameters,
which can number up to 1000 or more for a protein, are
obtained by fitting to known molecular or solid-state proper-
ties. Because the functional form is assumed and the number
of parameters is large, there is always a lingering uncertainty
with regard to the accuracy of the simulations. In addition,
the large number of adjustable parameters makes the genera-
tion of force laws for new systems time consuming.

The purpose of this paper is to provide a firmer theoretical
foundation for the use of real-space force laws in simulations
of well-bonded covalent systems, by developing a perturba-
tive quantum-mechanical formalism for calculating them. I
focus on the electronic band energy, for two reasons. First,
since it depends on a solution of the Schro¨dinger equation
for the electrons, it is the least well understood of the energy
terms. Second, it is probably the dominant term in the angu-
lar and torsional forces, since electrostatic and fluctuating-
dipole forces are not strongly angular in character. I describe
the electronic-band energy via an electronic Hamiltonian
based on tight-binding theory. This approach has previously
proved of great utility in understanding structural and elastic

properties of transition metals and covalently bonded mate-
rials.

Several previous studies have treated the decomposition
of the electronic band energy in tight-binding Hamiltonians
into real-space interactions. Forsp3-bonded semiconductors,
Harrison and Phillips1 used a picture based on atom-centered
hybrid orbitals with ‘‘frozen’’ orientations. In this picture,
the interatomic bonding matrix elements are reduced as the
bond angles change, causing the constituent hybrids to be-
come misaligned in the bond, resulting in an angular term in
the energy. This gives a good description of chemical trends
in shear elastic constants in diamond-structure semiconduc-
tors. Subsequently, Harrison2 presented an analysis for
transition-metal compounds based on the ‘‘chemical grip.’’
Here, the angular terms appear in fourth-order perturbation
theory connecting the occupied orbitals to unoccupied ones.
More recently, several analyses3–6 have used the moments of
the electronic density of states, together with an approximate
dependence of the energy on these moments, to calculate the
angular forces. Bond-order effects have also been calculated
quantum mechanically7 and invoked in empirical force
methods.8,9 However, there has been no corresponding
analysis of the contribution of one-electron band effects to
torsional forces within simple models such as those used
here, although there have been several calculations for spe-
cific systems using other approaches.10

The approach that is used here, like Ref. 1, uses as a
starting point a Hamiltonian including only couplings be-
tween different ‘‘lobes,’’ whose symmetric linear combina-
tions form bonding orbitals. This was denoted the ‘‘bond-
orbital’’ approximation in Ref. 11. This approximation is
suitable here because the systems of interest are well bonded.
However, rather than using frozen atomic orbitals to con-
struct the bond orbitals, I use bond orbitals that are oriented
from one atom to another. This approach is advantageous for
treating noncrystalline systems, because in these systems the
choice of orientation for the frozen atomic orbitals is not
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clear. Although this choice would not matter in an exact
calculation, it does matter in an approximate calculation. For
example, even in a perfect crystal, if one chooses an orien-
tation for the atomic orbitals that is not suited to the crystal
orientation, the bonds do not match up perfectly, and the
energy in the bond-orbital approximation is found to be
higher than it should be. The use of bond hybrids oriented
according to the neighbor positions eliminates this ambigu-
ity. The price paid for this simplification is that the bond
orbitals emanating from a given atom become nonorthogonal
when the bond angles deviate from their ideal values. A sub-
stantial part of this paper is devoted to treating this nonor-
thogonality, and I find that a major part of the angular inter-
action between bond orbitals may be attributed to the
nonorthogonality. This does not contradict the results of Ref.
1; I believe that the energy of bond-angle deviations is physi-
cally the same in both pictures, but simply looks different
because of the different choice of atomic-orbital basis. How-
ever, the present approach does allow for a very clear, sys-
tematic perturbation theory to be developed, which gives
corrections to the picture of Ref. 1.

The calculation of the interactions proceeds via perturba-
tion theory with respect to a starting Hamiltonian (Ĥ0) that
contains only noninteracting, orthogonal bond and antibond
orbitals oriented between neighbors. The correction terms
include bond-bond, bond-antibond, and antibond-antibond
interactions, and nonorthogonality between different bond
orbitals. Treatment up to fourth order yields both angular and
torsional forces. These are expressed explicitly in terms of
the electronic coupling terms in the Hamiltonian, and simple
angular factors. This result implies that it may be possible to
develop force laws with much fewer adjustable parameters
than have typically been used, since the number of param-
eters in the electronic Hamiltonian is much smaller than the
usual number of force parameters. I evaluate the forces for
some simple model electronic Hamiltonians. The functional
form of the angular dependence is generally similar to that
assumed in most simulations. However, the actual plots can
look quite different from the empirical potentials. In addi-
tion, the angular terms have a form which is general enough
to subsume the effects of the ‘‘improper torsion,’’ or out-of-
plane terms, which have been included in some previous
simulations.12 Thus it may be possible to simplify the treat-
ment of these terms.

The organization of the remainder of the paper is as fol-
lows. Section II describes the general perturbative formal-
ism, up to fourth order. Section III describes applications to
simple types of bonding, includingp bonding,sp3 bonding,
andsp2 bonding. Applications are made to the structures of
group V and VI elements, and a comparison is made to ex-
isting potentials for carbon. Section IV concludes with a dis-
cussion of prospects for including this basic physics in an
empirically fitted force method.

II. GENERAL FORMALISM

The Hamiltonian for the electronic-band energy, which I
will first give in the absence of overlap~nonorthogonality!,
has the tight-binding form

Ĥ5(
i j

hi j u i &^ j u1(
i

« i u i &^ i u. ~1!

Here, theu i & are localized basis orbitals, which are ofp
symmetry, or appropriately chosens-p hybrids, depending
on the nature of the bonding. Each atom will contain several
such basis orbitals, but they are not explicitly divided up into
atomic groups here. Thehi j5^ i uHu j & are tight-binding cou-
plings and the« i5^ i uHu i & are on-site energies. To obtain a
starting point for calculating the interatomic potentials via
perturbation theory, I assume that each basis orbitalu i & is
strongly bonded to one and only one other basis orbital
u i 8&; this corresponds to the ‘‘bond-orbital’’ approximation.11

It is assumed thatu i & and u i 8& ‘‘point’’ at each other, so that
they are actually dependent on the atomic positions. Then the
starting Hamiltonian is

Ĥ05(
i

@hii 8~ u i &^ i 8u1u i 8&^ i u!1« i u i &^ i u1« i 8u i 8&^ i 8u#, ~2!

where the sum includes each pair only once. The eigenvalues
of this Hamiltonian are straightforwardly obtained as
«̄6Ahii 8

2
1d«2, where «̄5u« i1« i 8u/2 and d«5u« i2« i 8u/2.

We denote the corresponding eigenvectors byubi& ~bonding!
anduai& ~antibonding!. In terms of these,Ĥ0 takes the simple
form

Ĥ05(
i

@«b,i ubi&^bi u1«a,i uai&^ai u#. ~3!

I assume that the bonding states are occupied and the anti-
bonding states unoccupied. Thus the total energy of the sys-
tem at this level is 2( i«b,i , where the factor of two that
precedes the summation comes from the occupation of each
bonding orbital by two electrons.

It is necessary to consider two types of corrections to this
Hamiltonian. First, there are matrix elements coupling a
given bonding or antibonding orbital to other bonding and
antibonding orbitals. This correction has the form

Ĥcoup5(
i , j

8 hi j
bbubi&^bj u1hi j

baubi&^aj u

1hi j
abuai&^bj u1hi j

aauai&^aj u, ~4!

where the prime denotes that diagonal terms are omitted.
Second, the bond orbitals are generally not orthogonal to
each other. Ĥcoup is treated by perturbation theory,
up to fourth order. The nonorthogonality is treated by
use of the transformed Hamiltonian matrix
( Î1Ŝ)21/2(Ĥ01Ĥcoup)( Î1Ŝ)21/2, where the matrix ele-
ments ofŜ aresi j

ba5^bi uaj&, etc., and the diagonal terms are
subtracted off.~Note that here the ‘‘hat’’ notation corre-
sponds to a collection of matrix elements, not the operator
itself. Thus in the absence of orthogonality, one cannot
square the matrixĤ to obtain the square of the Hamiltonian.!
The eigenvalues of the Hamiltonian, including overlap ef-
fects, are rigorously given as eigenvalues of this transformed
Hamiltonian matrix.13 The latter, in turn, is obtained by an
expansion to the first and second order inŜ. In the second-
order part, we keep only the piece that includesĤ0, so that
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only terms up to combined second order inĤcoup and Ŝ are
included. The end result is that the Hamiltonian matrix to be
diagonalized has the form

Ĥeff5Ĥ01Ĥcoup1Ĥoverlap, ~5!

where Ĥoverlap52@Ŝ(Ĥ01Ĥcoup)1(Ĥ01Ĥcoup)Ŝ#/21@(3/
8)(Ŝ2Ĥ01Ĥ0Ŝ

2)1(1/4)(ŜĤ0Ŝ)].
I now show that this expansion yields a real-space de-

scription of the bonding energy as a series of interatomic-
potential functions. The expansion strategy, at first, is to
keep all terms up to second order inĤcoup and Ŝ. Thus the
ŜĤ0 piece ofĤoverlap is thus treated up to the second order
and the remaining pieces are treated to the first order. The
first-order contribution to the total energy fromĤcoup van-
ishes, since thea orbitals are empty, and interactions be-
tween completely filledb orbitals do not change the total
energy. The first-order contribution fromĤoverlap is given by

E~1!52(
i

^bi uĤoverlapubi&

522(
i , j

~hi j
bbsi j

bb1hi j
basi j

ab!

12(
i , j

@~si j
bb!2«b,i1~3/4!~si j

ba!2«b,i

1~1/4!~si j
ba!2«a, j #, ~6!

where, as above, the factor of two that precedes each sum-
mation comes from the spin degeneracy. In this result, the
diagonal terms are to be included. The energy now has the
form of a sum of interactions between bonds:

DEoverlap
~1! 51/2(

iÞ j
Vi j

~1!1~ i5 j terms!, ~7!

where

Vi j
~1!524~hi j

bbsi j
bb1hi j

basi j
ab!12~si j

bb!2~«b,i1«b, j !

1~3/2!@~si j
ba!2«b,i1~si j

ab!2«b, j #

1~1/2!@~si j
ba!2«a, j1~si j

ab!2«a,i #. ~8!

@The second term in Eq.~7! simply contributes a shift in the
bond energy which does not contribute to the angular or
torsional forces.# The second-order treatment of theĤcoup

and ŜĤ01Ĥ0Ŝ terms gives the following result:

DE~2!52(
i , j

^bi uĤcoup2~ŜĤ01Ĥ0Ŝ!/2uaj&2/~«b,i2«a, j !

52(
i , j

@ h̃ i j
ba#2/~«b,i2«a, j !, ~9!

where

h̃ i j
ba5hi j

ba2si j
ba~«b,i1«a, j !/2. ~10!

The corresponding bond-bond interaction is

Vi j
~2!52@ h̃ i j

ba#2/~«b,i2«a, j !1~ i↔ j !. ~11!

In the results~8! and ~11!, one obtains an angular inter-
action if i and j correspond to different ligand bonds on the
same atom. One obtains a torsional interaction ifi and j
correspond to ligand bonds on different atoms that are con-
nected by an axial bond.

We shall see later that the description of some angular and
torsional interactions necessitates the inclusion of ‘‘extra’’
orbitals in addition to those formally involved in the
bonding. Their inclusion requires going up to fourth-order
perturbation theory, where the perturbation isÛ5Ĥcoup

2@Ŝ(Ĥ01Ĥcoup)1(Ĥ01Ĥcoup)Ŝ#/2. We define Û to in-
clude only the off-diagonal part of this expression. This is
because it simplifies the calculation, and we have found that
angular dependences obtained using the diagonal part always
show up in higher orders of perturbation theory than in cal-
culations based on the off-diagonal part. Terms of up to
fourth order can also be obtained by treating the second-
order part ofĤeff to second order; however, these terms are
found to have the same angular dependence as lower-order
terms.

Fourth-order perturbation theory can become rather un-
wieldy, so I now give a derivation which renders the ‘‘book-
keeping’’ simple. I set up the calculation in terms of a
Green’s functionĜ defined by

Ĝ~z!51/~z2Ĥ02Û !. ~12!

By assumption, the filled bonding orbitals are well removed
in energy from the others. Assume at first that the extra or-
bitals are empty, and thus act only by perturbing the occu-
pied orbitals. DefineC to be a contour surrounding all of the
occupied bonding orbitals and none of the empty remaining
ones. Then one sees readily from the Cauchy integral
formula that the total bonding energy is
2(1/2p i )rCzTrĜ(z)dz, where the first ‘‘2’’ accounts for the
spin degeneracy. The point is thatĜ(z) is well-behaved
along the contour, and can thus be expanded as a power
series in the perturbing terms. We writeÛ
5(m,nh̃mnum&^nu, where the statesm comprise the collection
of bonding (b), antibonding (a), and ‘‘extra’’ (e) orbitals.
By assumption Ĥ0 is diagonal, so that Ĝ0(z)
5(m(z2«m)

21um&^mu. Expanding to fourth order inÛ, we
obtain

Ĝ~z!5Ĝ0~z!1Ĝ0~z!ÛĜ0~z!1Ĝ0~z!ÛĜ0~z!ÛĜ0~z!

1Ĝ0~z!ÛĜ0~z!ÛĜ0~z!ÛĜ0~z!

1Ĝ0~z!ÛĜ0~z!ÛĜ0~z!ÛĜ0~z!ÛĜ0~z!, ~13!

so that

E~2!5~p i !21(
m,n

R
C
zh̃mnh̃nm

3@~z2«m!~z2«n!~z2«m!#21dz, ~14!
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E~3!5~p i !21 (
m,n,h

R
C
zh̃mnh̃nhh̃hm@~z2«m!~z2«n!

3~z2«h!~z2«m!#21dz, ~15!

and

E~4!5~p i !21 (
m,n,h,g

R
C
zh̃mnh̃nhh̃hgh̃gm@~z2«m!~z2«n!

3~z2«h!~z2«g!~z2«m!#21dz. ~16!

I considerE(2) first. For the assumed case in which the
e orbitals are empty, the nonvanishing terms are those in-
volving ab orbital and ane orbital; those not containing any
b orbitals vanish because the corresponding integrand has no
singularities inside the contour. Equation~14! then yields

E~2!5~p i !21 TrÛbeÛeb R
C
z@~z2«b!~z2«e!#

21

3@~z2«b!
211~z2«e!

21#

52 TrÛbeÛeb~«b2«e!
21

52( h̃im
beh̃mi

eb~«b2«s!
21, ~17!

which is the usual second-order perturbation theory expres-
sion. For the case of fillede orbitals, we note that by as-
sumption Tr(Ĥ01Û)5TrĤ0, sinceÛ is by assumption off
diagonal. This means that the sum of all of the eigenvalues is
unaffected byÛ. Then we can write the sum of the energy
changes of the occupied bonding and extra states as minus
the energy change of the empty antibonding states. In other
words, we take the above expression, interchangea and b
everywhere, and put a minus sign in front. Thus, for filled
e states,

E~2!52(
e
h̃im
aeh̃mi

ea~«e2«a!
21. ~18!

In E(3), the nonvanishing pieces are those which contain
someb terms and some of the others as well. This holds
because the pieces which contain nob terms vanish since the
corresponding integrand has no singularities inside the con-
tour: the pieces which contain onlyb terms vanish because
the integrand is of the formz(z2eb)

23, and one readily
shows that its integral vanishes. For the case of angular in-
teractions influenced by thee orbitals, one readily sees that
one ofm, n, andh must be ane orbital and the remaining
two must be either bothb orbitals or oneb orbital and one
a orbital.

Using this result in Eq.~15!, we obtain

E~3!5~p i !21TrÛbeÛebÛbb R
C
z@~z2«b!

2~z2«e!#
21

3@2~z2«b!
211~z2«e!

21#

12~p i !21 Tr ÛbeÛeaÛab R
C
z@~z2«b!~z2«e!

3~z2«a!#
21@~z2«b!

211~z2«e!
211~z2«a!

21#

522 TrÛbeÛebÛbb~«b2«e!
22

14 TrÛbeÛeaÛab~«b2«e!
21~«b2«a!

21. ~19!

In terms of an angular potential defined between bonds
u i & and u j & on atomm, we have

Vi j
~3!52F2(

e
h̃im
beh̃m j

ebh̃j i
bb~«b2«e!

2212(
e
h̃im
beh̃m j

eah̃j i
ab

3~«b2«e!
21~«b2«a!

21G1~ i↔ j !. ~20!

For the case of fillede orbitals, I obtain

Vi j
~3!52F(

e
h̃im
aeh̃m j

eah̃j i
aa~«e2«a!

2212(
e
h̃im
aeh̃m j

ebh̃j i
ba

3~«e2«a!
21~«b2«a!

21G1~ i↔ j !. ~21!

These results will be used to discuss effects of the extra
orbitals on bond angles, in the next section.

I now turn toE(4). As forE(3), the nonzero pieces contain
someb terms and some of the others as well. For torsional
forces to be present, two of the statesm, n, h, andg must be
bonding or antibonding orbitals between the two axial-bond
atoms and ligand neighbors. For thee to states to come into
play, it turns out that two of the statesm, n, h, andg must
also bee states residing on the two axial-bond atoms, and the
coupling between these states must be present. Ford orbitals,
this is the only way to get sufficiently rapid angular varia-
tions of the torsional potential; forp orbitals, this is required
to obtain a mediated interaction between the two ligands. In
summary, of the four statesm, n, h, andg, at least one must
be a bonding ligand orbital, another must be a bonding or
antibonding ligand orbital, and the remaining two must be
e orbitals residing on the two atoms.

Using these results in Eq.~16!, we obtain

E~4!5~p i!21TrÛbeÛeeÛebÛbb R
C
2z@~z2«b!

2

3~z2«e!
2#21@~z2«b!

211~z2«e!
21#

12~p i!21TrÛbeÛeeÛeaÛab R
C
z@~z2«b!~z2«e!

2

3~z2«a!#
21@~z2«b!

2112~z2«e!
211~z2«a!

21#.

~22!

Performing the integrals, we obtain
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E~4!524 TrÛbeÛeeÛebÛbb~«b2«e!
23

14 TrÛbeÛeeÛeaÛab~«b2«e!
22~«b2«a!

21. ~23!

The torsional potential between ligand bondsu i & on atom
m and u j & on atomn is then

Vi j
~4!54F2(

e
h̃im
beh̃mn

ee h̃n j
ebh̃j i

bb~«b2«e!
23

1(
e
h̃im
beh̃mn

ee h̃n j
eah̃j i

ab~«b2«e!
22~«b2«a!

211~ i↔ j !G .
~24!

For filled e states, I obtain

Vi j
~4!54F2(

e
h̃im
aeh̃mn

ee h̃n j
eah̃j i

aa~«e2«a!
23

1(
e
h̃im
aeh̃mn

ee h̃n j
ebh̃j i

ba~«e2«a!
22~«b2«a!

21G
1~ i↔ j !. ~25!

This is the result underlying the specific calculations of tor-
sional forces in the following section.

III. APPLICATIONS

In this section, I derive the geometric form of the forces
calculated with the above formalism, for some simple stan-
dard cases, using a ‘‘bare-bones’’ model of the electronic
structure, intended to exemplify certain ideal types of bond-
ing. These relatively simple calculations illustrate the basic
principles which will be needed for more complex applica-
tions.

A. Angular forces

Consider first the angular forces for the case of ap-type
atom surrounded by three neighbors that are equivalent to it.
As illustrated in Fig. 1, I consider a central atom ‘‘C’’ hav-
ing threep-type basis orbitalsuci& pointing directly at its
neighbors. In turn, each neighbor has a ligand orbitalu l i&
strongly bonded touci&. The coupling between the lobes in
each bonding and antibonding orbital is2h. Since the
ligands are equivalent to the central atom, the bonding and
antibonding orbitals have amplitudes61/A2 on each bond
hybrid. The overlap and Hamiltonian matrix elements be-
tween the hybrids are readily obtained from the usual Slater-
Koster analysis.14 We ignore direct interactions between
lobes centered on distinct ligand atoms of a central atom,
since the distance between these atoms will generally be
much larger than the bond length. In addition, we ignore
interatomic overlap for simplicity; it changes the magnitude
of the interactions, but not their functional form. Denoting
the overlap between lobes on the same atom by
s(u)5cosu, and the intra-atomic Hamiltonian matrix ele-
ments between lobes by«(u)5«pcosu ~where «p is the
p-orbital energy!, we have

«b,i5«p2h,

«a,i5«p1h, ~26!

si j
bb5~1/2!s~u i j !5si j

ba5si j
ab , ~27!

hi j
bb5~1/2!«~u i j !2hs~u i j !, ~28!

hi j
aa5~1/2!«~u i j !1hs~u i j !, ~29!

and

hi j
ba5~1/2!«~u i j !5hi j

ab . ~30!

Thush̃i j
ba @cf. Eq.~10!# vanishes, and so doesV(2), accord-

ing to Eq.~11!. Then, using Eq.~8!, we obtain

V~u!5V~1!~u!5~h/2!s~u!2. ~31!

Thus the potential has a simple (cos)2 form, which mini-
mizes at 90°. The underlying physics is simply that at 90°,
the orbitals can bond independently and each form a full
bond, which minimizes the bond energy.

The closest physical realizations of this model are the
group V elements phosphorus and arsenic.~For nitrogen, the
bonding is molecular, and for the elements farther down in
group V, the tight-binding approximation becomes less reli-
able.! The geometric properties of the observed structures
here and below are taken from Ref. 15, unless otherwise
noted. Both phosphorus and arsenic take on a large variety of
crystal structures. For phosphorus, the observed bond angles
range from 95° to 105°. For arsenic in its ‘‘a’’ structure, the
bond angle is 95°. So the basic form of the calculated poten-
tial seems to be credible. I shall now show that the system-
atic deviation in the direction of larger bond angles is asso-
ciated partly with hybridization effects arising from either
occupied 3s- or unoccupied 4s orbitals, or both. I calculate
these with the help of the third-order perturbation theory
described above. Consider Eqs.~20! and~21!, where the ex-
tra state is ans state residing on the central atom. As men-

FIG. 1. Schematic of central atomC, with orbitals ci , sur-
rounded by ligand orbitalsl i .
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tioned above,h̃ j i
ba vanishes, so we only need to consider the

first term in each of these equations. Since interatomic over-
lap is ignored,h̃im

be52h̃im
ae52(1/A2)hsps , where2hsps is

the coupling between the appropriately orientedp state on a
neighboring atom and thes state on the central atom~the
phases here correspond to a convention in which both the
bonding and antibonding orbitals have positive phases
on the central atom!. One readily sees thath̃ j i

bb

52h̃ j i
aa5(2h/2)cosu. Then the third-order contribution to

the bond-angle potential is

Vi j
~3!5hh4sps

2 cosu/~«p2h2«4s!
2

1hh3sps
2 cosu/~«3s2h2«p!

2. ~32!

This term will tend to favor larger bond angles, with the
equilibrium angle being determined by a combination of this
potential and that given by Eq.~31!. Assuming that the hy-
bridization effects are small, one finds the change in equilib-
rium bond angle,Du, induced by this term to be approxi-
mately @h4sps /(«p2h2«4s)#

21@h3sps /(«3s2h2«p)#
2.

We do not have precise estimates for all of these parameters.
However, approximate valuesh3sps52.8 eV andh54.9 eV,
as well as«p2«3s58.8 eV can be obtained from the ‘‘Solid
State Table of the Elements,’’ in Ref. 16. This gives
Du50.04 rad52.3° for the 3s terms. The effect from the
4s states is likely to be larger, since their spatial extent is
larger than that of the 3s states, and«4s2«p is probably less
than thep-binding energy, which is 8.3 eV. Thus the com-
bination of these two terms is likely to give a bond-angle
expansion effect comparable to the observed one.

Consider now the case of ansp3 atom surrounded by four
neighbors that are equivalent to it. Each of the hybrid orbitals
hasA1/4 s amplitude andA3/4 p amplitude. As in the above
case, the coupling between the lobes of the bonding and
antibonding orbitals is2h, and the bonding and antibonding
orbitals have amplitudes61/A2 on each bond hybrid. In
this case we haves(u)5@1/41(3/4)cosu# and «(u)
5@«s/41(3/4)«pcosu#. Noting that («bi1«a j)/25«(0),
we have h̃i j

ba5(1/2)@«(u)2«(0)s(u)#5(23/16)D«(1
2cosu), whereD«5(«p2«s)/2 ~not the same asd«). Then,
using Eqs.~8! and ~11!, we obtain

V~u!5V~1!~u!1V~2!~u!

5~h/2!s~u!21~3/4!D«s~u!@12cosu#

22~3/16!2~D«2/h!@12cosu#2, ~33!

For the parallel case ofsp2 bonding, we obtain

V~u!5~h/2!s~u!21~8/9!D«s~u!@12cosu#

22~2/9!2~D«2/h!@12cosu#2, ~34!

where in this case s(u)5@1/31(2/3)cosu#, «(u)
5@«s/31(2/3)«pcosu#, andh̃i j

ba5(22/9)D«(12cosu).
In both of these potentials, the first term is roughly con-

sistent with what has been assumed in most simulations. De-
pending only onh, it appears to be directly analogous to the
results of Ref. 1~for the case of elemental semiconductors!.
In both sp3 and sp2 configurations,s(u) vanishes at the
stable bond angleu0 (109.5 insp3 and 120 insp2), so that

this term of the potential has a quadratic minimum at the
observed bond angle. This effect may be thought of as mini-
mizing the overlap repulsion between the bond orbitals.
Turning to the second term, we note that in each of the
potentialss(u) is decreasing atu0, and@12cosu# is positive.
Then this term has the effect of attempting to open the
bonds. I will call it the ‘‘linear’’ term, since it is linear in
s(u). The origin of this term may be understood by consid-
ering a pair of the bonding orbitals pointing out of the central
atom. BecauseD«.0, the wave function built out of these
orbitals will have a lower energy if their interference is such
as to maximize thes component. Since both of the bond
orbitals are formally filled, both symmetric and antisymmet-
ric combinations of the bonding orbitals will be occupied
~here ‘‘symmetric’’ is measured with respect to the atom, not
the bond centers!. In the symmetric combination, thes part is
enhanced, while in the antisymmetric combination it is sup-
pressed. Because of the nonorthogonality of the two bond
orbitals, the symmetric and antisymmetric states are normal-
ized by overlap factors 1/@11(1/2)s(u)# and 1/@1
2(1/2)s(u)#, respectively. Thus thes contribution in the
bonding orbital will be enhanced ifs(u) is negative, which
corresponds to an increased bond angle. This explains in a
rough way the origin of the linear term. The third term in
Eqs. ~33! and ~34! is smaller than the others by roughly an
order of magnitude, even for the largest values ofd« that are
consistent with a nonzero band gap.

The form of this potential is compared with some existing
potentials for carbon in Fig. 2~a!. The present BO~‘‘bond-
orbital’’ ! potential is calculated with parameters taken from
Ref. 16. The ‘‘KS’’ potential is derived by Khor and Das
Sarma17 from a bond-order analysis using a cosine angular
form, and has been used for calculations of condensed-matter
properties. The WKNC potential~Weiner, Kollmann,
Nguyen, and Case12! is a quadratic fit to the vibrational data.
It has been derived for protein simulations. The main differ-
ence between the present potential and the others is that in
the present case the minimum is pushed out to 180°. Note
that this is not inconsistent with the observed bond angles of
109.5°, since these are the largest that can be achieved with
fourfold coordination.

Figure 2~b! shows the BO potential forsp2 carbon. As in
thesp3 case, there is an outward force at the observed bond
angle, 120° in this case. This force may be related to the
‘‘improper torsion’’ terms that have been introduced in some
protein simulations.12 These are included because angular
forces that have a minimum at 120° result in vanishing fre-
quencies for the out-of-plane vibrational modes, in the sense
that the distortion energy is proportional tox4, wherex is
the out-of-plane angle. This may be seen as follows. As il-
lustrated in Fig. 3, the change in the bond angleDu induced
by x is an even function ofx, and therefore must be propor-
tional tox2 for smallx. If the angular potential is minimized
at the observed angle, then the distortion energy is propor-
tional toDu2, or tox4. This has motivated the use of explicit
terms associated with the out-of-plane angle. However, the
present BO potentials provide a much simpler route to the
out-of-plane energy. Since the angular potential is not mini-
mized at the observed angle, the distortion energy is propor-
tional toDu, or to x2, as it should be. Thus a nonzero out-
of-plane vibrational energy is obtained simply by the form of

54 13 661QUANTUM-MECHANICAL DERIVATION OF ANGULA R . . .



the angular terms. Note that the magnitude of this effect is
proportional to the difference between thes- and
p-single-site energies in the present model@cf. Eq. ~34!#.

B. Torsional forces

To isolate the torsional forces, we focus on the case where
the bond orbitals point in orthogonal directions; this corre-
sponds to bond angles of 90° forp bonding, and 109.5° for
sp3 bonding. Again, we ignore the interatomic overlap for
simplicity; since the interatomic overlap interactions have
the same angular dependence as the Hamiltonian couplings,
this will not change the angular form of the potentials. Thus,
Vi j
(1)50 according to Eq. ~8!. With all atoms

equivalent,V(2) @cf. Eq. ~11!# reduces to

Vi j
~2!54~hi j

ba!2/~«b2«a!. ~35!

Here,i and j correspond to ‘‘back’’ bonds of distinct atoms,
as illustrated in Fig. 4. In terms of the torsional anglef
about the central bond axis,hi j

ba52(1/2)hpppcosf for pure
p orbitals and

hi j
ba52~1/8!hsss1~1/4A3!hsps2~1/24!hpps

2~1/3!hpppcosf ~36!

for sp3 orbitals. Here I use the convention that all of the
‘‘Slater-Koster’’ couplings are positive in sign. In terms of
these parameters, the interaction between the two lobes com-
prising a bond is given by 2h52(1/4)hsss
2(A3/2)hsps2(3/4)hpps . Then the torsional potential has
the form

V~f!52~hppp
2 /2h!cos2f ~p orbitals!,

V~f!522@~1/8!hsss2~1/4A3!hsps~1/24!hpps

1~1/3!hpppcosf#2/h ~sp3 orbitals!. ~37!

In the case ofp bonding, the simple cos2 behavior gives
equal energy minima at 0 and 180°. Insp3 bonding, the

FIG. 2. Angular potentials forsp3 ~a! and sp2 ~b! carbon.
‘‘BO’’ denotes the potential obtained from the present analysis us-
ing bond-orbital approximation. Comparisons in~a! are taken from
Refs. 12 and 17.

FIG. 3. Schematic of ‘‘improper torsion’’ terms.

FIG. 4. Illustration of torsional potential calculation without ex-
tra orbitals.
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angular dependence includes both cos and cos2 terms. The
minimum at 0° is deeper than that at 180°.

However, application of these potentials to the group V
and IV elements treated in the preceding section gives a van-
ishing result for the energy barrier as a function of joint
rotation of all of the bonds on one atom about to the bond
axis. This is because the contributions from different tor-
sional terms~four in the case of group V and nine in the case
of group IV! interfere, so that their sum is constant as a
function of the rotation angle. Thus we cannot use these
idealized potentials to explain the observed torsional angles.
It is then necessary to include contributions from other ‘‘ex-
tra’’ states that are not formally involved in the bonding. One
then needs the fourth-order perturbation theory, as summa-
rized in Eqs.~24! and ~25!.

In the case of phosphorus, these extra states should be the
occupied 3s shell or the unoccupied 4s shell. This calcula-
tion is illustrated in Fig. 5, for the 4s case. In Eq.~24!,
him
be5hn j

be52him
ae52hn j

ea52(1/A2)hsp ~the relative minus
sign for thea couplings results because of the negative sign
on the orbital on the neighbor atom!, hmn

ee52hsss , and
hji
bb5hji

ba52(1/2)hpppcosf. Then,

V~f!522hsps
2 hssshpppcosf@~«b2«e!

23

1~«b2«e!
22~«b2«a!

21#. ~38!

Thus, since the energy denominators are negative, align-
ments are favored which have larger torsional angles. How-
ever, these give fairly weak contributions to the torsional
potentials; using the above parameter sets, they are estimated
to be on the order of 1022 eV per bond pair. In fact, the
observed crystal structures of phosphorus reveal no well-
defined torsional angles.

Much stronger effects are caused by the unbonded ‘‘lone-
pair’’ ( u) orbitals in sulfur. These are oriented perpendicular
to the occupied bonding orbitals. The effects of these are
seen already at second order in perturbation theory. The
bonding is illustrated schematically in Fig. 6. In Eq.~17!, we
note that h̃im

ae5(1/A2)hpppsinu, where u is the angle be-
tween the two occupied orbitals. Thus the torsional potential
becomes 2hppp

2 sin2u/(«u2«a). This favors 90° torsional
angles. To obtain an approximate magnitude, we take
hppp51.2 eV andhpps54.9 eV from Ref. 16; assuming that

«u2«a52h, we obtain an estimate of about 1/2 eV for the
prefactor. The reasons for the greater strength relative to
phosphorus are that the order in perturbation theory is lower,
and that the energy denominator is smaller. Examination of
the observed torsional angles in the many sulfur structures15

reveals a mean value close to 90°, with most observed angles
within 10° of the mean. In addition, theH2S2 molecule,
which may in some ways be thought of as a truncated piece
of sulfur, has a torsional angle of 90.6°.18 Thus the calcu-
lated torsional potential is consistent with the experiments.

The case of ethane has received considerable attention in
the literature,10,19,20and it has generally been suspected that
some type of interaction involving higher-lyingd orbitals is
necessary to reproduce the observed threefold rotational bar-
rier. Our calculations confirm this belief. Because of the
threefold hydrogen coordination of the carbons, it is neces-
sary to have an angular dependence at least as rapid as
cos3f in order to avoid cancellations of the contributions
from the nine bond pairs. For the case ofsp3 orbitals inter-
acting with higherd orbitals, this results from the product of
a cosf factor coming from thep part of thebb or ab inter-
actions, and a cos2f factor coming from thed interactions.
The first piece @from Eq. ~36!# is given by
2(1/3)hpppcosf. Thed interactions, in order to obtain the
cos2f behavior, must haved character with respect to the
bond axis. It is convenient to choose the coordinates so that
the bond is along the (001) axis and the right-hand (j )
ligand bond points in the (111) direction. Then thed orbital
of d character that couples to this bond is the ‘‘xy’’ orbital.
From Ref. 14, we find that the coupling between thes state
on the neighboring hydrogen and thexy d orbital is
2(1/A3)hsds , so that hn j

eb52hn j
ea52(1/A6)hsds . Then,

because of the angular behavior of thexy d orbital, the ma-
trix elements on the left-hand ligand~i! are him

be

52him
ae52(1/A6)hsdscos2f. Furthermore,hmn

ee52hddd .
Assembling these pieces in Eq.~24!, we obtain the following
effective bond-bond interaction~keeping only the cos3f
part!:

V~f!52~2/9!hsds
2 hddshpppcos~3f!~«b2«d!

22

3@~«b2«d!
211~«b2«a!

21#. ~39!

FIG. 5. Illustration of calculation of torsional potential using
extra orbitals.

FIG. 6. Illustration of calculation of torsional potential for sul-
fur, using lone-pair orbitals.
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Because the energy-denominator terms are negative, this
potential minimizes at a staggered configuration, consistent
with the known geometry.18 To obtain an estimate of the
magnitude, we have from Ref. 16hppp52.6 eV and
h514.0 eV. We do not have a reliable way of estimating
hsds , hdds , and«d in this case. However, since thed state is
higher in energy than the valence states, we can assume its
spatial extent to be fairly large, probably larger than that of
the p state. To obtain a reasonable estimate, we will then
take thes couplings involving thisd state to equal those of
the p state at a corresponding distance. We then have
hsds5hsps511.8 eV; the large value comes from the short
hydrogen-carbon spacing~1.09 Å!. To get thed couplings,
we will use the ‘‘canonical band theory’’ rule21 that
hddd5hdds/6, so thathddd5hpps/651.8 eV. For«d , we as-
sume that the unoccupiedd state is not too different in en-
ergy from the antibonding states, so that«b2«d
5«b2«a528.0 eV. Then the prefactor of the cos3f term is
0.013 eV. Since all of the torsional bond interactions
contribute equally, the energy difference between the stag-
gered and eclipsed conformations is 93@12~21!#30.013 eV
50.24 eV, in comparison with the experimental value22 of
0.13 eV. This indicates it is possible to get a sensible value
of the torsional barrier with physically reasonable values of
the parameters in the model. However, since previous analy-
ses based on electrostatics19,20had obtained results of similar
magnitude, we cannot definitely conclude that we have iso-
lated the dominant piece here.

IV. CONCLUSION

The focus of this work has been on obtaining the basic
theoretical underpinnings for the calculation of angular and
torsional forces in well-bonded covalent systems. The ex-
amples of the preceding section show that the methodology

yields potential-energy functions that are physically sensible,
and that differ in important respects from some empirical
potentials. It should be possible to use these results to obtain
force fields suitable for simulations of real molecules and
solids. This will require addition of both ‘‘nonbonded’’ in-
teractions, such as electrostatic terms, hydrogen bonding,
and van der Waals interactions. Several procedures for doing
this have already been worked out; see, for example, Ref. 12.
In addition, it will be necessary to develop a way of obtain-
ing detailed values of the coupling parameters in the Hamil-
tonian. The best procedure for doing this is probably to add
some empirical fitting freedom, while using well-established
properties of electronic structure to control the number of
fitting parameters. Probably the first point to introduce fitting
parameters would be in the overall strength of the electronic
couplings, as given, for example, byhpps . Using this as a
fitting parameter, one could obtain the remainings-p param-
eters by standard universal dimensionless ratios as given, for
example, in Ref. 16. This would introduce one parameter for
each type of elemental bond that is present. To treat hetero-
atomic bonds, one could use one of several approximations
in which the heteroatomic bond strength is given as an aver-
age of the homoatomic ones, or one could simply introduce
extra fitting parameters for each heteroatomic bond. Even for
a complex polymer such as a protein, this would introduce
less than 20 adjustable parameters, which is much fewer than
are typically used.
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