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Early investigations into the weighted spin-density approximation~WSDA! report atomic energies which err
by more than those in the much simpler local-spin-density approximation~LSDA!. More recent work has
refined the WSDA to obtain substantial improvement over the LSDA in atomic energies. These results suggest
that a WSDA may improve quantum-chemistry calculations. The extension of the method from atoms to
molecules is nontrivial, however, and we know of no published work applying a WSDA to molecules. We
develop an energy functional which treats correlation locally, and exchange in the WSDA. The functional
achieves a substantial improvement over the LSDA in atomic energies. We calculate bond lengths, dissociation
energies, and vibrational frequencies for some first-row dimers. In particular, the hydrogen dimer is described
well with this functional. Dissociation energies are also relatively accurate for the heavier dimers. Except for
H2, however, bond lengths tend to be longer than experiments indicate. We discuss features of the WSDA
necessary to improve these findings.@S0163-1829~96!07844-7#

I. INTRODUCTION

The weighted density approximation~WDA! is one of the
earliest attempts to develop an energy density functional
which accounts for nonlocal contributions to the exchange-
correlation energy.1–3 The approximation is applied within
the framework of the density-functional theory of Hohenberg
and Kohn,4,5 which states that the energy of an electronic
system is given by the minimum ofE@r#, a functional of the
electron densityr(r ). The Kohn-Sham method6 of minimiz-
ing E@r# separates the functional into the noninteracting ki-
netic T, electron-nuclear, electron-electron repulsion, and
exchange-correlationExc energies

E@r#5T@r#2(
i
ZiE dr

r~r !

ur2Ri u

1 1
2 E drE dr 8

r~r !r~r 8!

ur2r 8u
1Exc@r#. ~1!

By definition, Exc is the difference betweenE@r# and the
other three terms, and it is the only one which needs to be
approximated. One simple form is the local-density approxi-
mation ~LDA !

Exc
lda@r#5E drr~r !exc

lda
„r~r !…, ~2!

whereexc
lda
„r(r )… depends only on the density atr , and is the

exchange-correlation energy density in a homogeneous
electron-gas of densityr(r ), typically found from Monte
Carlo studies.7 While it is easy to implement, this approxi-
mation suffers from a number of problems such as spurious
self-correlation in hydrogen and over binding in molecules.8

These errors largely arise because of the suppression of non-
locality in exc

lda; the trueexc is not just a function of the local

density r(r ), but rather a functional of the density every-
where. The WDA attempts to correct the problems of the
LDA by incorporating this essential nonlocality.

Early applications of the WDA to atoms found that ex-
change could be treated more accurately2,3 than in the LDA,
although correlation tends not to be improved. Total atomic
energies calculated in the LDA are more accurate than either
the correlation or exchange energies separately, because its
tendency to overestimate correlation is compensated for by
an underestimate of exchange. In earlier applications of the
WDA this compensation typically does not occur, so that the
calculated energies for lighter atoms are poorer than in the
much simpler LDA.8 For this reason, as well as the compu-
tational difficulty in applying a WDA to nonspherical sys-
tems, we know of no published accounts of a WDA tested on
molecules.

A more recent investigation,9 however, finds that a func-
tional which treats exchange in the weighted spin-density
approximation ~WSDA, the spin-polarized extension to
WDA!, but treats correlation in a local-spin-density approxi-
mation ~LSDA! achieves significant improvements over the
LSDA alone in atomic energies. Others10–13 have had suc-
cess using similar variants of the WDA to calculate proper-
ties of solids. These results suggest that such a WSDA-based
functional may be a route to include nonlocal effects in
quantum-chemistry calculations.

In this paper we present a formalism in which we treat
exchange in the WSDA and correlation in the LSDA. Our
formulation is particularly well suited to evaluation in a
Gaussian basis set, and makes molecular calculations fea-
sible. In Sec. II we develop our functional, and in Sec. III we
present the computational details. In Sec. IV we report our
results. We find significant improvements over the LSDA in
atomic energies. However, this functional yields only mixed
success in describing small molecules. Finally, in Sec. V we
interpret these results.
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II. ENERGY FUNCTIONAL

One may splitExc in Eq. ~1! into correlation and exchange
terms. For the present functional, exchange will be treated in
the WSDA. This approximation begins by expressingEx in
terms of a density pair-correlation functiongx

s(r ,r 8),

Ex
WDA@r↑ ,r↓#5 1

2(
s

E drE dr 8rs~r !

3
@gx

s~r ,r 8;@rs#!21#

ur2r 8u
rs~r 8!, ~3!

wheregx
s(r ,r 8;@rs#) is itself a functional of the densityrs

for each spins. This equation is exact, but requires knowl-
edge ofgx . Except for the homogeneous electron-gas,7,14

exact determination of gx
s(r ,r 8;@rs#) is difficult or

impossible.15–17The hope of the WSDA, however, is that the
functional dependence ofgx

s(r ,r 8) can be determined from
the sum rule

E dr 8†12gx
s~r ,r 8;@as#!‡rs~r 8!51, ~4!

as well as a number of exact conditions18 which suggest the
form of gx . Here the functional dependence of
gx

s(r ,r 8;@rs#) on rs has been formally replaced by some
scalar field as(r ), which parametrizesgx

s(r ,r 8). This
as(r ) is adjusted so that the sum rule~4! is obeyed through-
out space.

Variants of the WSDA differ in the way in which
gx

s(r ,r 8;@as#) is parametrized byas(r ). We choose a form
which is particularly well suited for evaluation in a Gaussian
basis set, namely a Gaussian,

gx
s~r ,r 8;as!512e2as~r !ur2r8u2. ~5!

Unlike many previously used pair-correlation holes,2,3 this
form satisfies the exact conditions thatgx

s(r→r 8)51,
dgx /dr r→r850, and 12gx

s(r ,r 8).0. In addition, it will al-
ways be possible to find someas(r ) to satisfy Eq.~4! since
this integral varies monotonically between zero as
as(r )→`, andNs ~the number of spins electrons! when
a(r )50.

In the limit of constant density, whenrs(r )5rs , Eq. ~4!
gives as(r )5prs

2/3 Figure 1 shows that thisgx
s(r ,r 8) ap-

proximates well the exact homogeneous expression4

gx
hom~r 12;rs!512F3 j 1~r 12~6p2rs!1/3!

r 12~6p2rs!1/3 G2. ~6!

Integrating Eq.~3! in this limit using our approximate form
~5! gives

Ex
hom@r↑ ,r↓#52(

s
E dr @rs~r !#4/3. ~7!

This differs by about 7% from the exact expression obtained
by inserting Eq.~6! into Eq. ~3!. To ensure thatEx properly
reproduces the exact result in the homogeneous limit, a cor-
rectionDEx augments Eq.~3! to arrive at the final form for
the exchange functional used here,

DEx@r↑ ,r↓#5(
s

F12
3

2S 3

4p D 1/3G E dr @rs~r !#4/3, ~8!

Ex@r↑ ,r↓#5Ex
WDA@r↑ ,r↓#1DEx@r↑ ,r↓#. ~9!

Adding this termDEx@r↑ ,r↓# should not be confused
with shell partitioning,2,10 where the WSDA is applied only
to density-density interactions with the same atomic shell
while intershell interactions are treated as in the LSDA. In
the present functional, the termDEx@r↑ ,r↓# is added to en-
sure that the functional reduces to the correct value in the
limit of constant density; core and valence electrons remain
on the same footing. The effects of shell partitioning, which
may provide a more physical description of intershell
interactions,2 are left for future study.

The inclusion ofDEx@r↑ ,r↓# in Ex@r↑ ,r↓# does not in-
terfere with sum rule~4!, since it can be interpreted as the
energy ~3! resulting from the difference of two LDA-type
pair-correlation functions

dgx~r ,r 8!5
rs~r !

rs~r 8!
@gx

hom
„r ,r 8;rs~r !…

2gx„r ,r 8;as~r !5prs
2/3~r !…#. ~10!

Both of thesegx satisfy Eq.~4!, so their difference satisfies a
sum rule integrating to zero. In this sense, this correction
behaves like a correlation term; this analogy appears again
when calculating the energy of hydrogen, since there it
nearly cancels the spurious LSDA self-correlation.

Correlation is treated as in the LSDA, using the Vosko-
Wilk-Nusair ~VWN! parametrization of the homogeneous
electron-gas correlation energy19

Ec@r↑ ,r↓#5E dr r~r !ec
lda
„r↑~r !,r↓~r !…. ~11!

As mentioned above, merely adding this correlation energy
to the WSDA exchange~3! leads to poorer total energies for
lighter atoms.8 The correctionDEx@r↑ ,r↓#, however, in-

FIG. 1. The exact@Eq. ~6!# and approximate@Eq. ~5!# correla-
tion functions gx(r 12) in the limit of constant density. Here
r s5(3/4prs)

1/3.
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cludes enough LSDA-type exchange energy to maintain the
compensation in errors between LSDA correlation and ex-
change needed to obtain the accurate atomic energies pre-
sented in Sec. IV.

The overall energy functional developed here is a simpli-
fied version of that in Ref. 9, which produced promising
results for atoms. It differs mainly in that 12gx

s(r ,r 8) is a

Gaussian instead ofe2a(r2r8)3/2 ~which leads to an unphysi-
cal second derivative atr→r 8), Ec@r↑ ,r↓# is just the VWN
functional, and the present functional is correct in the homo-
geneous density limit.

III. COMPUTATIONAL METHODS

We minimize the energy functional~1! by the usual
Kohn-Sham6 scheme using a modified version of theDEFT
computer code.20,21 The spin-density rs is expressed
as a sum over orbitalsrs(r )5( i

Nsuc i(r )u2. The orbitals
themselves are expanded in a set of Cartesian Gaussian
functions,c i(r )5( l cl

i gi(r ), wheregl (r )[ f (r )eb l r
2
and

f (r )[xiyjzk are simple polynomials of degree less than 2.
cl
i are the eigenvectors of the Fock matrixHi j

s for spins,

Hi j
s 5^gi u2

1
2¹22(

i

Zi
ur2Ri u

1(
s8

E dr 8
rs8~r 8!

ur2r 8u
1vx

s~r !

1vc
s~r↑~r !,r↓~r !!ugj&. ~12!

The only part of this matrix which differs from a LSDA
calculation is the functional derivative with respect to ex-
change. This derivative is expandable in four terms,

vx
s~r !5

dEx@r↑ ,r↓#

drs~r !
[v lda

s ~r !1v1
s~r !1v2

s~r !1v3
s~r !,

~13!

where

v lda
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v3
s~r !5 1
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rs~r1!rs~r2!

ur12r2u
dgx

s
„r1 ,r2;as~r1!…

drs~r !
~18!

5 1
2 E dr1dr2rs~r1!rs~r2!ur12r2u

3e2as~r1!ur12r2u2 das~r1!

drs~r !
. ~19!

The fielda depends on the density through the sum rule~4!,
so the functional derivative of this equation yields

drs~r !e2as~r8!ur82r1u2

5da~r 8!E dr1rs~r1!~r12r 8!2e2as~r8!ur82r1u2, ~20!

resulting in

TABLE I. The total ground state energies in hartree calculated with the present functional compared to
those from LSDA~Ref. 19! and similar theory in Ref. 9, and experiment~Ref. 33,34!.

Atom Experiment This work % Error Ref. 9 % Error LSDA % Error

H 20.500 20.502 20.4 20.479 4.2
He 22.904 22.907 20.10 22.909 20.17 22.835 2.4
Li 27.478 27.474 0.05 27.473 0.07 27.344 1.79
Be 214.667 214.645 0.15 214.605 0.42 214.447 1.50
B 224.653 224.636 0.07 224.583 0.28 224.354 1.24
C 237.844 237.839 0.01 237.779 0.17 237.470 0.988
N 254.587 254.593 20.01 254.530 0.10 254.137 0.824
O 275.015 275.108 20.12 275.011 0.00 274.527 0.65
F 299.725 299.812 20.09 299.695 0.03 299.114 0.61
Ne 2128.928 2129.044 20.09 2128.914 0.01 2128.233 0.54
Na 2162.245 2162.386 20.09 2162.270 20.01 2161.444 0.49
Mg 2200.043 2200.230 20.09 2200.108 20.03 2199.135 0.45
Al 2242.336 2242.540 20.08 2242.425 20.04 2241.315 0.42
Si 2289.374 2289.558 20.06 2289.452 20.04 2288.215 0.40
P 2341.240 2341.449 20.06 2341.356 20.03 2339.995 0.36
S 2398.14 2398.33 20.05 2398.23 20.03 2396.73 0.35
Cl 2460.20 2460.39 20.04 2460.29 20.03 2458.66 0.33
Ar 2527.55 2527.77 20.04 2527.68 20.02 2525.94 0.31
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v3
s~r !5 1

2 E dr 8rs~r 8!
m1~r 8!

m2~r 8!
e2as~r8!ur82r u2, ~21!

mn~r ![E dr 8rs~r 8!ur2r 8une2as~r !ur2r8u2. ~22!

The asymptotic behavior of this potential is important to the
discussion in Sec. V. It can be shown2 that at a large distance
r from a neutral charge distribution containing more than
one-electron per spin,v1

s→21/2r , while v2
s and v3

s go to
zero exponentially. This differs from the exact behavior, ob-
tained if if gx

s(r ,r 8) were symmetric on interchange ofr and
r 8, in thatv2

s should also go to21/2r .
In a Gaussian basis set, Eqs.~4!, ~15!, and ~22! may be

evaluated analytically as three center integrals.22 The remain-
ing integrals are performed numerically on a grid.23 By fit-
ting the density to a set of Gaussians, even further simplifi-
cation is achieved in the obvious manner.

The calculations presented here use an uncontracted
basis,24,25which for atoms boron through neon include eight
s-type functions, 13p-type functions, and two ‘‘diffuse’’
d-type functions. When used for Hartree-Fock calculations,
these basis sets converge the energy to better than 0.01%.26

Our calculations do not use any pseudopotential method
to describe the core electrons, but rather incorporate all the
electrons directly. Therefore, we avoid a subtle issue which
plagues many studies on solids.10–13,27

IV. RESULTS

Table I shows the total energies for a group of lighter
atoms, calculated using the functional developed here. These

energies are comparable to those in Ref. 9, and both improve
significantly on the LSDA energies. The energies from Ref.
9 are better for some of the heavier atoms; however, their
correlation functional did include one parameter which was
adjusted to fit some of these energies.

Noteworthy in Table I is the accurate energy calculated
for hydrogen. For a one-electron system, Eq.~4! gives a
solutionas(r )50, so that Eq.~3! is the exact exchange en-
ergy. The correction added in Eq.~9! to reproduce the ho-
mogeneous limit now almost cancels the LSDA correlation
energy, resulting in a nearly self-interaction-free theory.

In Tables II, III, and IV we present the equilibrium bond
lengths, dissociation energies, and vibrational frequencies for
the first row diatomic molecules. Except for H2, bond
lengths are longer than those measured experimentally, and
err by more than those calculated in either a generalized
gradient approximation~GGA! or LSDA. However, Fig. 2
shows that even for Li2, where the calculated discrepancies
are largest, the total ground-state energy is still more accu-
rate than the LSDA. This more accurate description of the
total energy leads to better dissociation energies for the
heavier dimers.

V. DISCUSSION

The WSDA energy functional developed here clearly im-
proves upon the LSDA for atomic energies. In addition, be-
cause it readily lends itself to evaluation in a basis set of
Gaussian-type orbitals, we are able to extend these results to
small molecules, but with mixed results. Using the functional
presented here, total molecular energies are improved, gen-
erally leading to good dissociation energies, although the
bond lengths are not similarly improved. Much of this error
is due to the behavior of the exchange energy with increasing
separation.

We may understand the observed behavior by examining
the gradient of the exchange energy.20,28 The change inEx ,
caused by displacing one nucleusdR and therefore resulting
in a change in the density,drs(r ), is just

dEx5(
s

E vx
s~r !drs~r !. ~23!

From the form of Eq.~3! as well asvx
s , it is evident that, as

the atoms in a dimer are distantly separated, this change will
result from each atom moving in the asymptotic exchange
potential resulting from the other.29 As mentioned in Sec. III,
this asymptotic potential is half of the exact limit for all the

TABLE II. Equilibrium separations in bohr for first-row dimers
calculated using the functional presented here compared to experi-
mental, LSDA, and GGA values~Ref. 35!. The GGA in Ref. 35
uses the Perdew-Wang exchange~Refs. 36 and 37! with the VWN
correlation~Ref. 19!.

Dimer Experiment This work GGA LSDA

H2
a 1.40 1.39 1.44

Li 2 5.05 6.57 5.11 5.13
N2 2.07 2.14 2.09 2.07
O2 2.28 2.42 2.33 2.29
F2 2.67 2.83 2.71 2.62

aExperimental and LSDA values for H2 are from Ref. 38.

TABLE III. Dissociation energies in eV for first-row dimers
calculated at the equilibrium separation given in Table II. For com-
parison, we also present experimental measurements and these en-
ergies calculated with GGA and LSDA functionals, as well as ex-
perimental results~Ref. 35!.

Dimer Experiment This work GGA LSDA

H2
a 4.75 4.95 4.91

Li 2 1.07 0.42 0.95 1.01
N2 9.86 9.23 10.50 11.34
O2 5.21 5.22 6.00 7.54
F2 1.72 1.69 2.22 3.32

aExperimental and LSDA values for H2 are from Ref. 38.

TABLE IV. Vibrational frequencies in 102 cm21 for first-row
dimers. Also presented are calculations performed using GGA and
LSDA functionals as well as experimental results~Ref. 35!.

Dimer Experiment This work GGA LSDA

H2
a 44.0 45.9 42.0

Li 2 3.5 1.9 3.4 3.3
N2 23.6 21.3 23.5 24.1
O2 15.8 13.2 15.1 16.1
F2 9.2 8.2 9.9 10.9

aExperimental and LSDA values for H2 are from Ref. 38.
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dimers except H2. Since the rate of decay of2Ex as r in-
creases is less than expected, these dimers achieve lower
energies by increasing the nuclear separation, without suffer-
ing as much increase in the exchange energy as they should.
In the special case of H2, however, there is only one-electron
per spin, so Eq.~4! is satisfied bya(r )50. Consequently,
gx(r ,r 8) possess the the symmetry of the exact correlation
function

gx
exact~r ,r 8!5gx

exact~r 8,r !, ~24!

so bothv1
s and v2

s are identical, leading to the true21/r
decay of the exchange potential. This symmetry explains
why the bond length for H2 was better than for the other
molecules.

It is important to note that thevx which enters into the
energy gradient28 is the true exchange potential, irrespective
of the potential used to calculate the density. Therefore, one

cannot ameliorate these problems by simply using a noncon-
sistentvx , designed to have the correct asymptotic behavior,
in the self-consistent procedure.9,30,31

The contrast between H2 and the other dimers suggests
that a form ofgx having the proper symmetry on interchange
might improve these calculations. Such calculations are
much more difficult. Preliminary investigations on several
forms which incorporate this symmetry, however, produce
atomic energies which are even higher than in the LSDA,
although work is in progress to improve these results.

Some improvement might be obtained by refining the
form of thegx in Eq. ~5!. In WDA studies on solids compar-
ing several hole parametrizations,27 however, no one form
was able to achieve systematic improvement over the LDA
when calculating such parameters as lattice constants and
bulk moduli. It was found there that the behavior ofEx

WDA is
determined by the overall decay length scale ingx , set by
Eq. ~4!, rather than by the detailed structure ofgx . In addi-
tion, only fairly small changes can be made togx if one
retains the exact conditions presented in Sec. II.

The calculations presented here help answer a long stand-
ing question about how well the WSDA will treat molecules.
In summary, we find that the total energies calculated using
the WSDA more accurate than with the LSDA, while the
position and curvature of energy minima are not. Despite the
mixed results, we hope that this work leads to additional
insight into how to describe exchange and correlation accu-
rately.

ACKNOWLEDGMENTS

The authors thank J. P. A. Charlesworth for useful
suggestions as well as a thoughtful critique of the manu-
script. Some of the calculations were done using the Cornell
Material Science Center’s computing facility, partly funded
by NSF Grant No. DMR-9121654. M.S. was supported
by a National Defense Science and Engineering Graduate
Fellowship.

*Electronic address: sadd@msc.cornell.edu.
1J. A. Alonso and L. C. Balba´s, Phys. Lett.81A, 467 ~1981!.
2O. Gunnarsson, M. Jonson, and B. I. Lundqvist, Phys. Rev. B20,
3136 ~1979!; Solid State Commun.24, 765 ~1977!

3J. A. Alonso and L. A. Girifalco, Phys. Rev. B17, 3735~1978!.
4R. M. Dreizler and E. K. U. Gross,Density Functional Theory

~Springer-Verlag, Berlin, 1990!.
5P. Hohenberg and W. Kohn, Phys. Rev.136, B864 ~1964!.
6W. Kohn and L. J. Sham, Phys. Rev.140, A1113 ~1965!.
7D. M. Ceperley and B. J. Alder, Phys. Rev. Lett.45, 566 ~1980!.
8John P. Perdew, inDensity Functional Theory of Molecules,
Clusters, and Solids, edited by D. E. Ellis~Kluwer Academic,
Dordrecht, 1995!.

9O. V. Gritsenkoet al., Phys. Rev. A48, 4197~1993!.
10David J. Singh, Phys. Rev. B48, 14 099~1993!.
11G. Borstel, M. Newmann, and W. Braun, Phys. Rev. B23, 3113

~1981!.
12G. P. Kerker, Phys. Rev. B24, 3468~1981!.
13M. S. Hybertsen and S. G. Louie, Solid State Commun.51, 451

~1984!.

14L. Hedin and B. I. Lundqvist, J. Phys. C5, 1629~1972!.
15James D. Talman and William F. Shadwick, Phys. Rev. A14, 36

~1976!.
16J. B. Krieger, Yan Li, and G. F. Iafrate, Phys. Rev. A45, 101

~1992!.
17C. Filippi, C. J. Umrigar, and M. Taut, J. Chem. Phys.100, 1290

~1994!.
18Mel Levy and John P. Perdew, Int. J. Quantum Chem.49, 539

~1994!.
19S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys.58, 1200

~1980!.
20A. St-Amant, Ph. D. thesis, Universite´ de Montréal, 1992.
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