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Oscillatory dephasing is a characteristic signature of non-Markovian relaxation phenomena. From its analy-
sis one can obtain valuable information about the dynamics of the surroundings of a given system. In this paper
we calculate the transient four-wave mixing signal in the short pulse limit from two-level systems coupled to
a bath of harmonic oscillators for arbitrary coupling strengths and in the presence of inhomogeneous broad-
ening. The strong and weak coupling cases having already been analyzed, we focus on the study of the
intermediate case where oscillatory dephasing is observed. We specifically show that even in the presence of
inhomogeneous broadening, information about the surroundings can still be extracted in the intermediate
coupling regime. The formation and the evolution of the photon echo in such experiments are also analyzed.
@S0163-1829~96!05043-6#

I. INTRODUCTION

The last few years have seen an intense activity in the
study of optical line shapes of molecular systems in con-
densed phases. Special attention was paid to the dynamics of
relaxation of vibronic states in complex molecules.1 For such
systems, inhomogeneous broadening is often present so that
linear optical experiments are usually poor tools to extract
dynamical or structural information from these systems. This
broadening results mainly from variations of the local envi-
ronment of the molecules under investigation, as is usually
the case in systems where long range order is absent. How-
ever, numerous nonlinear optical techniques, such as hole
burning experiments,2,3 quantum beat spectroscopy,4–6 or
transient four-wave mixing~TFWM!,7,8 are presently avail-
able to extract information even if inhomogeneous broaden-
ing is present. For example, in the well known classical pho-
ton echo experiments,9–11 three matter-field interactions give
rise to an echo signal due to the presence of an inhomoge-
neously broadened system. This echo is then time integrated
by a detector with a long time response and the integrated
intensity gives us information about the dephasing dynamics.
Theoretically, it is generally assumed that the relaxation pro-
cesses of the media under study can be described using two
broadening mechanisms: inhomogeneous broadening and ho-
mogeneous broadening. The latter is usually described by
using time independent constants, or, in other words, it is
assumed that the relaxation shows a conventional Markovian
exponential decay. In this sense, the works about the dy-
namical effects in spectral hole burning12 or, more recently,
the experimental TFWM studies of dephasing dynamics of
vibronics states,13 keep the basic concept of time indepen-
dent relaxation constants.

With the recent progress in time resolved spectroscopy,
laser pulses in the femtosecond time domain can be used to
probe ultrafast dynamical processes. From a theoretical point
of view, the relaxation on this ultrashort time scale cannot be
simply described by the time independent homogeneous con-
stantsT1 for the relaxation of populations andT2 for the loss
of coherences. Non-Markovian behavior due to memory ef-

fects should be taken into account. As Aihara14 has shown
for a TFWM experiment, in the case of strong coupling be-
tween a two-level system and its surroundings, these
memory effects lead to a photon echo phenomenon. This
echo differs in nature from the former due to the collective
response of an inhomogeneously broadened set of systems.
In fact, on an ultrashort time scale, different physical phe-
nomena may contribute to the relaxation mechanisms and, as
was mentioned by Kayanuma,15 the homogeneous phase re-
laxation should not be confused with the phase relaxation
due to the inhomogeneous distribution of energy. Hence, for
short times, it is crucial to take into account the multiple time
scale nature of the dynamics of the surroundings to suitably
describe the relaxation.

This was done both experimentally and theoretically, us-
ing a stochastic model, by Saikanet al.16,17They studied the
dephasing dynamics in iron free myoglobin in two limiting
cases of slow and fast motion of the surroundings in the
presence of inhomogeneous broadening. They recovered the
predictions given by Yan and Mukamel18 with the Brownian
oscillator model.

However, these models are stochastic in nature.19 They
have been widely used to describe the solvant effects on
electronic dephasing for molecules in solution.20–23 They
consider that the surroundings of the studied material can be
modeled by a frequency modulation of the material levels.
This modulation is treated as a stationary random process so
that the nonequilibrium motion of the surroundings of the
system under optical excitation cannot be described by this
approach.

An alternate way consists of modeling the surroundings
microscopically.24 This approach allowed Aihara25,26to point
out, in the absence of an inhomogeneous contribution, three
typical kinds of decay according to the values of the TLS-
environment interaction strength. The two preceding limiting
cases of fast and slow modulations have been studied. They
correspond, respectively, to the Markovian regime and to a
situation where a photon echo, due to strong memory effects,
appears. The third kind of decay corresponds to the interme-
diate regime, where the observation time scale is of the same
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order as the correlation time of the system-environment in-
teraction. In this case, the non-Markovian relaxation is char-
acterized both by a nonexponential decay and oscillatory
dephasing. This is not described by the stochastic ap-
proaches. In addition, the situation of intermediate coupling
strength is probably more realistic than the strong or weak
limits usually considered in theoretical treatments. On the
other hand, the samples tested in real experiments generally
show large inhomogeneous broadening. Therefore it is of
practical importance to find out how inhomogeneous broad-
ening affects oscillatory dephasing and whether information
about the surroundings can still be extracted in such experi-
ments. This is the goal of this paper.

The paper is organized as follows. In Sec. II we present
the theoretical model. Section III is devoted to the simula-
tions and discussion. We first recover the two limiting cases
of fast and slow modulation16,18 with our theoretical model.
Then, we analyze the effect of inhomogeneous broadening in
the intermediate regime of modulation. A simulation of the
temporal intensity is presented at the end of the paper in
order to clearly distinguish the different contributions in the
TFWM signal. In the final section we briefly state our con-
clusions.

II. FORMALISM

In this work we consider a statistical ensemble of two-
level systems~TLS!, in interaction with a thermal bath. Each
of these TLS interacts with its local surroundings, which are
described in a microscopic way as a set of harmonic oscilla-
tors. This model applies to various kinds of physical situa-
tions, particularly localized electron-phonon systems.27–32

The Hamiltonian for a given TLS is expressed as

Hm5Hgug&^gu1Heue&^eu, ~2.1!

with

Hg5(
k

\vk~bk
1bk1

1
2 !, ~2.2!

He5Hg1\veg1V, ~2.3!

whereug&, ue& are the electronic eigenstates of the TLS, and
wherebk (bk

1) is the annihilation~creation! operator for the
kth phonon mode with frequencyvk . Hg andHe are thus
operators in the reservoir variables. They describe the bath
Hamiltonian in the ground and excited electronic states, re-

spectively. The electron-phonon interaction HamiltonianV is
given in terms of linear and quadratic parts,33

V5(
k
hLvk~bk1bk

1!

1
1

2(k (
q

hQAvkvq~bk1bk
1!~bq1bq
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wherehL andhQ are the linear and quadratic dimensionless
interaction constants taken to be independent of the bath
modes.

This system interacts with a coherent field, treated classi-
cally here, which induces transitions between the two elec-
tronic levels. In the dipole approximation, the radiation-
matter interaction Hamiltonian is given by

H1~r,t !52m•E~r,t !, ~2.5!

wherem is the dipole-moment operator andE(r,t) is the
electric field:

E~r,t !5(
a

$Ea~ t !exp@ i ~vt2ka•r!#1c.c.%. ~2.6!

In the following, we shall assume that the matrix elements of
the dipole operator are real and independent of the bath vari-
ables and, since this is of no consequence in the study per-
formed here, the electric field and the transition dipole mo-
ments are parallel.

As in many quantum statistical problems, the dynamical
state of the system is best described with the help of the
density operatorr(t), which satisfies the well known Liou-
ville equation of motion

dr

dt
52

i

\
@Hm1H1~r,t !,r#. ~2.7!

We further assume that, at the initial time, the TLS and the
bath are uncorrelated, namely,r(2`)5ug&^gurR , where
rR5exp(2bHg)/Trbath@exp(2bHg)# represents the density
operator of the bath at thermal equilibrium. An approximate
solution of Eq. ~2.7! for the density operator is obtained
by performing a perturbative expansion up to the third order
in the matter-field intraction. Thus, the third order off-
diagonal elements of the reduced density operator,
seg
(3)(t)5Trbath@reg

(3)(t)#, for the collection of TLS, take the
following form:
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whereg(veg) is an inhomogeneous distribution of the tran-
sition energiesveg of the TLS taking into account the varia-
tions in their local environments.

It should be noted that, at this stage, no assumption re-
garding the explicit form of the fields is made. Hence, Eq.
~2.8! can be applied to any nonlinear optical phenomena in-
volving three matter field interactions. However, in the fol-
lowing, we will restrict ourselves to the particular case of
photon echo experiments~see Fig. 1!, where two short laser
pulsesE1(r,t2t) andE2(r,t) with the same frequency, but
with different wave vectors, are sequentially applied to the
system with a time intervalt. The expression of the third
order polarization,P„3…, responsible for the echo signal emit-
ted in the 2k12k2 direction, reduces to the contribution

P„3…5Trmaterial@ms~3!#5mseg
~3!1c.c. ~2.9!

5P~3!~ t !exp@ i ~vt2~2k12k2!•r#1c.c.
~2.10!

Given the femtosecond time scale for the pulse widths, we
apply the rotating wave approximation and assume that the
time variations of the field envelopesE1(t) andE2(t) are fast
compared to all other characteristic time scales of the dy-
namics of the system. We can apply the approximation of
d pulses and perform all the temporal integrations in relation
~2.8! to calculate the macroscopic polarization.P(3)(t), aside
from unimportant multiplicative factors, takes the form

P~3!~ t,t!5m4E
2`

`

dDg~D!exp@ iD~ t22t!#

3exp@Q~2t,t,t2t!/\2#, ~2.11!

where the quantityD is equal to v2veg2^V&/\ and
Q(2t,t,t2t) is a complex function of its time arguments.
For the evaluation ofQ, the readers should refer to Ref. 33,
where the authors have used the cumulant expansion method
up to second order18 to study the effects of the non-
Markovian oscillations on quantum beats.

The intensity and the integrated intensity of radiation
emitted in the direction 2k12k2 are then given by

I ~t,t !5uP~3!~t,t !u2, ~2.12!

I ~t!5E
2`

`

I ~t,t !dt. ~2.13!

In our calculation we have assumed that the inhomogeneous
broadening stems from a Gaussian distribution of the transi-
tion frequencies with a maximum centered at the field fre-
quency and with the widthgei . The inhomogeneous contri-
bution, as is usually the case, is considered as a static
property of the sample under study. It is taken into account,
in an ad hocway, by the distribution of transition energies.
In addition, the bath is responsible for all the dynamical ef-
fects on the experimental time scale. It is assumed to keep
the same physical characteristics for each TLS and, there-
fore, is independent of the inhomogeneous distribution.
I (t,t) thus becomes

I ~t,t !5m4exp@2~ t22t!2gei
2 #

3exp@2Re„Q~2t,t,t2t!/\2
…#, ~2.14!

where Re denotes the real part. In the case of an infinite
inhomogeneous broadening, Eq.~2.7! can be integrated ana-
lytically, yielding

I ~t!5m4exp@2Re„Q~2t,t,t2t!/\2
…#. ~2.15!

III. SIMULATIONS

In all the simulations presented in this work, we have
assumed that the phonon density of states has a Gaussian
profile with the maximum atvp and with the widthgp .

25

The integration which appears in relations~2.14! and ~2.15!
has been achieved numerically. Moreover, since we restrict
ourselves to a qualitative discussion, all the intensities have
been normalized to unity.

We first test our theoretical model by showing that we
recover the strong and weak coupling situations, already de-
scribed in the literature. These two limiting cases are illus-
trated by Figs. 2 and 3. These figures differ in the value of
the interaction constantshL and hQ but, otherwise, all the
parameters are identical and correspond to the numerical
simulations in Aihara’s work.25

The strong coupling limit corresponds to Fig. 2. As can be

FIG. 1. Experimental configuration of a TFWM experiment.

FIG. 2. Time-integrated intensity as a function of the pulse de-
lay t. The time axis is normalized by the phonon oscillationvp .
b51, gp50.4, andm51, hL55, hQ50.8. Curvea corresponds to
gei5`. Curveb represents the fitting function exp(2at3).
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seen in curvea, the signal does not exhibit an exponential
decay as is the case in the conventional photon echo where
Markovian dephasing occurs. Nevertheless, curveb, repre-
senting exp(2at3), approximates our theoretical results
closely by a proper choice of the parametera. This result is
coherent with the theoretical work of Yan and Mukamel,18

which has already predicted such a dependence in the frame-
work of the Brownian oscillator model and the experimental
work of Saikanet al.16

To complete the test of our theoretical model, we have
represented in Fig. 3 a situation corresponding to the oppo-
site limit of weak coupling. We recover the well known ex-
ponential decay characteristic of the Markovian regime and
by comparing the homogeneous@Fig. 3 curvea# and the
inhomogeneous@Fig. 3 curveb# cases we also recover the
well known ratio of two between the decay rates.34 From a

theoretical point of view, it should be noted that these two
limiting situations are both well described in the framework
of the stochastic model and we need not resort especially to
a microscopic description of the relaxation mechanism. This
can be explained by the fact that, in the two preceding cases,
the bath induced modulation can be considered either as
static or as ultrafast in comparison with the time scale of the
signal decay for the microscopic characteristics of the bath to
play a significant role in the system’s dynamics.

The simulations in Figs. 4 and 5 correspond to the situa-
tion of intermediate values of the system-bath coupling pa-
rameters. The labelsa andb on these curves correspond to a
situation without and with inhomogeneous broadening, re-
spectively. In Fig. 4, the numerical parameters are chosen to
lead to only one well resolved non-Markovian oscillation in
the integrated signal in order to clearly distinguish the

FIG. 4. Time-integrated intensity as a function of the pulse de-
lay t. The constants are identical to the ones taken in Fig. 3 except
that herehL50.4, hQ50.066, andgei50 for curvea andgei5`
for curveb.

FIG. 5. Time-integrated intensity as a function of the pulse de-
lay t. The constants are identical to the ones taken in Fig. 4, except
that heregp50.05 andgei50 for curvea and gei5` for curve
b.

FIG. 6. Nonintegrated intensity as a function of the timet. The
time delay ist50.5. The constants are identical to the ones taken in
Fig. 4, except that here the inhomogeneous broadening is finite and
gei50.01, 0.1, 0.25, 0.35, 0.5, 0.7, 0.8, and 1 for the curves
taken from the top to the bottom.

FIG. 3. Time-integrated intensity as a function of the pulse de-
lay t. hL50.05,hQ50.008. Curvea corresponds to the case with-
out inhomogeneous broadening (gei50), curveb with an infinite
inhomogeneous broadening (gei5`), otherwise all constants are
identical to the ones taken in Fig. 2.
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non-Markovian part and the Markovian part of the signal.
Comparing curvesa to b, we immediately observe that the
signal has a weaker intensity in the presence of an infinite
inhomogeneous broadening. This fact is not surprising since
this corresponds to a system with a dilute resonance fre-
quency energy distribution. However, we notice that the
presence of an inhomogeneous broadening does not affect
drastically the overall profile of the decay. For short time
delays, the non-Markovian oscillation is still well resolved.
Furthermore, for short delays, the competition between the
rephasing process at time 2t after the first applied pulse, due
to the inhomogeneous contribution, and the non-Markovian
oscillatory dephasing processes accentuates the slope of the
intensity decay, and leads to a better contrast for the non-
Markovian oscillation. This tendency is clearly confirmed in
Fig. 5, where the non-Markovian behavior leads to stronger
oscillations. For that, we have used a sharper phonon density
so as to increase the oscillatory dephasing. In curveb, we
observe a faster damping of the oscillations. The non-
Markovian oscillations not only persist on the whole of the
signal, but are clearly better resolved than they are in curve
a, where the inhomogeneous contribution is absent. There-
fore, and this is the main result of this work, in the interme-
diate case, the presence of an inhomogeneous broadening
does not affect drastically the behavior of the signal detected
as a function of the time delay between pulses. In particular,
we notice that the frequency of the oscillation remains con-
stant. Only the contrast is modified. This point is important
because it means that experimental results, obtained in
TFWM experiments, can still be used to analyzed memory
effects even in the presence of inhomogeneous broadening.

In order to clearly distinguish the different contributions
our model can take into account in the signal decay and to
analyze how the rephasing processes due to inhomogeneous
broadening can act, we have studied the nonintegrated inten-
sity. Given femtosecond light pulse widths, this noninte-
grated intensity is obviously not accessible experimentally.

Nevertheless, it will allow us to confirm the usual effects
of inhomogeneous broadening on the coherence. To this end,

we have represented the nonintegrated intensity for a fixed
short time delay and for increasing values of the inhomoge-
neous width in Fig. 6. Starting from a well resolved non-
Markovian oscillation, it becomes less and less pronounced
as the width increases. For a sufficiently large value it disap-
pears totally. As expected, the coherence is totally sup-
pressed for a sufficiently large inhomogeneous width.

Moreover, our model enables us to also analyze the evo-
lution and the formation of the echo. This is of interest be-
cause in the case of strong coupling and for a short delay, an
echo due to memory effect occurs. In addition, an echo due
to the inhomogeneous contribution should be observable in
the nonintegrated intensity. Increasing the time delay be-
tween the two applied pulses, we show the formation and the
temporal evolution of these different echoes in the simula-
tions Fig. 7 to Fig. 10. Here, we have considered a finite
inhomogeneous broadening, to clearly distinguish the differ-
ent contributions. The vertical dashed lines show the arrival
time of the second pulse. Moreover, we should keep in mind
that the intensity decreases when the delay time increases
but, for clarity, all the curves, which correspond to the lowest
delay time in each graph, are normalized to unity. Starting
with time delays shorter than the correlation time of the
system-bath interaction, we obtain, in Fig. 7, the echo phe-
nomenon already mentioned and due to memory effects. On
these short time scales, inhomogeneous broadening is not in
competition with the precedent echo because we have con-
sidered a finite width. Notice that larger widths may act on
the same short time scale. Increasingt, we observe in Fig. 8
the oscillatory behavior of the signal emitted after the second
laser pulse and characteristic of the memory effects. It is
responsible for the oscillatory behavior in the integrated sig-
nal. In Fig. 9, the time delay has become of the same order as
the correlation time of the system-bath interaction and we
can observe the non-Markovian oscillation reflecting the bath
dynamics. Due to the particular choice of its width, the in-
homogeneous broadening contributes on this time scale. It
can be observed, in the same figure~Fig. 9!, that an echo
phenomenon due to inhomogeneous broadening appears on

FIG. 7. Nonintegrated intensity as a function of the timet for
time delayst50.0, 0.2, 0.4, 0.6, 0.8, 1.0, indicated by vertical
dashed lines.hL51, hQ50.158, andgei50.5, the other constants
being indentical to those in Fig. 6.

FIG. 8. Nonintegrated intensity as a function of the timet for
time delays t52.5, 2.8, 3.4, 4.0, 4.6, 5.2, 5.8, indicated by
vertical dashed lines.hL51, hQ50.158, andgei50.5, the other
constants being indentical to those in Fig. 6.
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the left and coexists with the oscillation precedently de-
scribed. It becomes well resolved in Fig. 10. This latter cor-
responds to the Markovian regime and the decay of the echo
follows a conventional exponential decay.

IV. CONCLUSION

In this paper, we have analyzed the transient nonlinear
optical response of an inhomogeneously broadened set of
two-level systems. We have used a microscopic description
to model the interaction between the TLS and their environ-
ments, which have been described as a set of harmonic os-
cillators. This model can be applied to various kinds of ma-
terials including localized electron-phonon systems. Our
model enables us to consider arbitrary coupling strengths
between the TLS and the bath. We have recovered the well
known situations corresponding to the strong and weak cou-
pling limits that have already been analyzed with the help of
stochastic models. Here, we have considered the case of in-
termediate couplings and have studied the influence of inho-

mogeneous broadening on the photon echo signal. It has
been found that non-Markovian oscillations, reflecting the
memory effects, are not drastically affected by the rephasing
processes due to a strong inhomogeneous broadening. More-
over, for a situation which leads to strong oscillations in the
signal decay, a better contrast in the oscillatory behavior is
obtained. This result shows that for intermediate TLS-bath
coupling strengths, information on the bath can still be ex-
tracted in such experiments. The frequency of the oscilla-
tions is not modified by the presence of inhomogeneous
broadening. This latter acts only on the contrast of the signal.
In addition, a study of the nonintegrated intensity enabled us
to show the different physical contributions to the dephasing
processes our model can take into account. The formation
and the evolution of the echoes due to memory effects, on
one hand, and inhomogeneous broadening, on the other
hand, have been studied. They enable us to show how the
different physical phenomena can act on different time
scales.
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