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A general HamiltonianH of electrons in finite concentration, interacting via any two-body coupling inside
a crystal of arbitrary dimension, is considered. For simplicity and without loss of generality, a one-band model
is used to account for the electron-crystal interaction. The electron motion is described in the Hilbert space
Sf , spanned by a basis of Slater determinants of one-electron Bloch wave functions. Electron pairs of total
momentumK and projected spinz50,61 are considered in this work. The Hamiltonian then reads
H5HD1(K,zHK,z , whereHD consists of the diagonal part ofH in the Slater determinant basis.HK,z de-
scribes the off-diagonal part of the two-electron scattering process which conservesK andz. This Hamiltonian
operates in a subspace ofSf , where the Slater determinants consist of pairs characterized by the sameK and
z. It is shown that the whole set of eigensolutionsc,e of the time-independent Schro¨dinger equation
(H2e)c50 divides into two classes,c1 ,e1 andc2 ,e2. The eigensolutions of class 1 are characterized by the
property that for each solutionc1 ,e1 there is a singleK andz such that (HD1HK,z2e1)cK,z50 where, in
general,c1ÞcK,z , whereas each solutionc2 ,e2 of class 2 fulfills (HD2e2)c250. We prove also that the
eigenvectors of class 1 have off-diagonal long-range order, whereas those of class 2 do not. Finally, our result
shows that off-diagonal long-range order is not a sufficient condition for superconductivity.
@S0163-1829~96!00743-6#

I. INTRODUCTION

There has been a long-standing interest in the study of
electron correlations in condensed matter and particularly in
the metallic state, because these are regarded as playing a
paramount role in cooperative phenomena such as magne-
tism and superconductivity. Although electron correlation is
essentially determined by the Coulomb repulsion effect,
three different classes of models are currently used.

The first is based on the wide efficiency of the one-
electron picture in metals and alloys, fostered by the success
of the Fermi liquid theory.1 The electrons behave like a
Fermi gas of independent quasiparticles defined by renormal-
ized parameters and finite lifetimes.

The second concerns the magnetic case. It is the realm of
the repulsive Hubbard model2 and its variations, notably the
t-J model.3 As exact results are available only in one
dimension4–6 and for small clusters in two dimensions,7 the
ground state has been approximated by different mean-field
and variational procedures, such as Hartree-Fock,
Gutzwiller, RVB, slave boson state, perturbation,2,8,9 and
other calculations. These approximations are based on differ-
ent assumptions, and the electron gas is supposed to be either
a Fermi liquid of the Landau or Luttinger types,1,10 or a gas
giving rise to ferromagnetic and antiferromagnetic effects
and there is no reliable argument to favor either model.

The last concerns the phenomenon of superconductivity.
This is usually explained within the BCS picture,11 where the
electrons condense in a variational state characterized by off-
diagonal long-range order.12 The BCS Hamiltonian is ob-
tained by truncating an attractive Hubbard Hamiltonian in

reciprocal space. Consequently the BCS Hamiltonian, once
Fourier-transformed back to real space, turns out to display
four site, interelectron coupling terms which are not present
in the Hubbard Hamiltonian, used to describe electron inter-
actions in the normal state.

Although the three above classes employ different Hamil-
tonians, the Hilbert space is in all cases taken to be based on
Slater determinants and is designated here asSf . Our work
investigates the properties of the eigenstates of a general
many-body HamiltonianH. We present a mathematical
proof that the set of eigenstates ofH in Sf , including, in
particular, the ground state, divides in two classesc1 and
c2 which differ by their off-diagonal long-range order prop-
erties. These results are valid for any electron concentration
and arbitrary crystal dimension, and for any interelectron
coupling provided it is of a two-body nature. The proof ex-
ploits specifically the property of the conservation of the pair
momentum in every two-electron scattering event. An ap-
proximation, consisting of dealing with such pairs as if they
were independent quasiparticles,13 has already provided the
ground-state energy of the one-dimensional Hubbard model
in excellent agreement with the exact result.5 In the general
case of arbitrary dimension and general Hamiltonian inves-
tigated in this work, it is necessary to introduce an auxiliary
Hilbert spaceS^ f in order to derive thec1 or c2 like prop-
erties of the eigenstates.S^ f is built over a set of pairs
characterized by their total momentumK and projected spin
z. Other authors11,14,15have also used such sets, nevertheless
they remained within the framework ofSf .

The outline is as follows: in Sec. II, the many-body
HamiltonianH is presented and the problem to be solved is
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set out; Sec. III provides the definition of the auxiliary space
S^ f as well as its algebraic properties; Secs. IV and V detail
the proofs of two theorems establishing the eitherc1 like and
c2 like properties of the eigenstates ofH in the usual space
of Slater determinantsSf ~a partial account of Sec. IV has
been published elsewhere16!; the physical consequences of
these results are summarized in the concluding Sec. VI.

II. THE MANY-BODY HAMILTONIAN

In the following model, we consider a crystal containing
N sites and 2n itinerant electrons, whereN..1 and
n..1. The crystal can have arbitrary dimension. These
electrons populate a single band where the one-electron en-
ergy readsE(k) andk is a vector of the Brillouin zone. To
simplify the discussion and without loss of generality, we
consider thatE(k) is independent of the electron spin
s561/2. The Pauli principle requires thatn<N. Let the
electrons be coupled via a spin independent pair potential
V. The total system HamiltonianH can be written in recip-
rocal space as

H5(
k,s

E~k!ck,s
† ck,s

1 (
K,k,k8,s i51, . . . ,4

V~K,k,k8!ck,s1
† cK2k,s2

† cK2k8,s3ck8,s4,

~1!

where the first term denotes the one-electron contribution
and the second denotes the most general expression to de-
scribe two-body interactions in a periodic crystal. The opera-
tors ck,s

† andck,s are one-electron creation and annihilation
operators on the Bloch statek,s. They obey the usual Fermi
commutation rules. The real coefficientsV(K,k,k8) are the
matrix elements of the two-electron scattering process, con-
serving the momentumK of each scattered pair. For usual
pair potentials involving only two-site terms in real space,
V(K,k,k8) is K independent and depends only on (k2k8).
The summations in Eq.~1! are carried out over all possible
values ofK,k,k8 in the Brillouin zone under the constraint of
spin conservations11s25s31s4 (s i51,..4561/2). A spe-
cial case of Eq.~1! is the Hubbard Hamiltonian,17 which is
recovered by settingE(k)5cos((ki), where the components
of k are identified byki , s11s250 andV(K,k,k8) is a
constantU/N for all scattering events. The HamiltonianH
describes the electron motion in the Hilbert spaceSf of di-
mensiondf5(2n

2N). Each basis vectorf i with i51,..df is a
Slater determinant involving 2n one-electron Bloch states.

Since this discussion resorts repeatedly to electron pairs,
it is convenient to introduce the following pair creation and
annihilation operatorsbz(k,k8), bz(k,k8):

b61
† ~k,k8!5ck,6

† ck8,6
† , b61~k,k8!5ck8,6ck,6

b0
†~k,k8!5ck,1

† ck8,2
† , b0~k,k8!5ck8,2ck,1 . ~2!

The subscripts1 or 2 in the one-electronc(†) operators
refer to the two possible directions of the electron spin. The
subscriptz50,61 stands for the projection of the total spin
of the pair, wherez561 indicates the same spin andz50

indicates opposite spins on both electrons, before and after
scattering. The commutation rules of such pairs are neither
Fermi- nor Bose-like. It is useful to recast the Hamiltonian
H of Eq. ~1! in terms of the subsidiary HamiltoniansHD ,
HK,z as follows:

H5HD1 (
K,z50,61

HK,z , ~3!

whereHD andHK,z may be written as

HD5(
k,s

E~k!ck,s
† ck,s1(

k,k8
V~k1k8,k,k!

3ck,1
† ck,1ck8,2

† ck8,21 (
k,k8,s

@V~k1k8,k,k!

2V~k1k8,k,k8!#ck,s
† ck,sck8,s

† ck8,s ,

HK,05 (
k,k8Þk

V~K,k,k8!b0
†~k,K2k!b0~k8,K2k8!,

HK,615 (
k,k8Þ~k,K2k!

V~K,k,k8!b61
† ~k,K2k!b61

3~k8,K2k8!. ~4!

The diagonal matrix elements ofH in the Slater determinant
basis are regrouped in the HamiltonianHD . Inversely the
off-diagonal matrix elements ofH are regrouped in the
HamiltoniansHK,z . In the Hubbard Hamiltonian,HD takes
the form (k,sE(k)ck,s

† ck,s1(U/N)(k,k8ck,1
† ck,1ck8,2

† ck8,2
andhK,6150 for everyK. Note also that the BCS Hamil-
tonian reads asHD1HK50,z50, whereHD andHK50,z50 are
given by their particular expressions in the Hubbard Hamil-
tonian.

The main purpose of this paper is to present and demon-
strate two theorems which characterize the two classes of
eigensolutionsc,e of the time-independent Schro¨dinger
equation (H2e)c50, whereH is given by Eq.~1! andc
belongs to the Hibert spaceSf . These classes are desig-
nated, respectively, asc1 ,e1 andc2 ,e2.
Theorem 1: To each eigensolutioncK,z ,e1 where
(HD1HK,z2e1)cK,z50, there corresponds an eigensolu-
tion c1 ,e1 of H such that(H2e1)c150.

The characteristic property of eachc1 is that its linear ex-
pansion over the basis vectors ofSf contains at least one
Slater determinantf which can be written as

f5)
j51

n

bz
†~kj ,K2kj !u0&, ~5!

whereu0& designates the no-electron state. Note thatcK,z , in
general, is not an eigenvector ofH althoughe1 is indeed an
eigenvalue ofH.
Theorem 2: For everyc2 ,e2, the equation(H2e2)c250
implies that(HD2e2)c250.

Eachc2 is characterized by the property that its linear
expansion over the basis vectors ofSf contains no Slater
determinant such asf in Eq. ~5! for everyK andz.

In the simple case of a two-electron system, that is a
single pair (n51), theorem 1 has been demonstrated
previously.17 This result follows sinceH andHK,z commute
with each other and with the pair number operatorNK,z :
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NK,z5(
k
bz
†~k,K2k!bz~k,K2k!. ~6!

Our aim hence is to generalize the result of reference17 to the
n.1 case. While it is easy to show thatHK,z andNK,z still
commute for anyn, the operatorsH andNK,z , however, no
longer commute in this general case. Therefore then.1
case cannot be dealt with in the Hilbert spaceSf of Slater
determinants. It becomes then necessary to treat the problem
in an auxiliary Hilbert spaceS^ f , which is purposely con-
structed so thatH andNK,z commute in this space, keeping
invariant their definitions as in Eq.~1! and Eq.~6!.

As c1 eigenstates will be shown in addition to have off-
diagonal long-range order whereasc2 eigenstates do not
have off-diagonal long-range order, it is necessary to recall
the definition of the two-body correlation function attached
to this particular kind of long-range order characterizing the
BCS state:

f odlro~ utu!5 (
i , j ,l ,m,sh51, . . . ,4

^fuci ,s1
† cj ,s2

† cl ,s3cm,s4uf&,

~7!

where the Wannier operatorci ,sh
(†) destroys~creates! an elec-

tron with spinsh at sitei labeled by the lattice vectorr i and
the sum is done with (r j2r i)5(rm2r l)5r, (r i2r l)5t,
ands11s25s31s4. Equation~7! extends to therÞ0 case
the usual definition of off-diagonal long-range order12 given
in the Hubbard model forr50 and s152s2. A many-
electron statefPSf is said to have off-diagonal long-range
order if f odlro(utu), calculated atr kept fixed, oscillates ver-
susutu without decaying to zero forutu→`. It must be no-
ticed that off-diagonal long-range order differs from real
space long-range order, typical of crystalline matter, mag-
netic materials, spin- and charge-density waves. This latter
type of long-range order is characterized by the following
two-body correlation function:

f rslro~ utu!5 (
i , j ,sh51,..4

~^fuci ,s1
† ci ,s2cj ,s3

† cj ,s4uf&

2^fuci ,s1
† ci ,s2uf&^fucj ,s3

† cj ,s4uf&!, ~8!

where the sum is done with (r i2r j )5t and
s11s35s21s4. Charge and spin fluctuations correspond,
respectively, tos15s2 ands152s2. A statefPSf is said
to have real space long-range order iff rslro(utu) oscillates
versusutu without decaying to zero forutu→`. By compar-
ing the definition in Eq.~7! with that in Eq.~8!, it is realized
that f odlro(utu)Þ f rslro(utu) even if r50. Besides from the
experimental point of view, real space long-range order gives
rise to Bragg difffraction in a neutron or x-ray scattering
experiment while off-diagonal long-range order does not.

III. PROPERTIES OF THE AUXILIARY
HILBERT SPACE S^ f

Any Slater determinantfe of Sf can be written as

fe5)
K,z

S )
j51

nK,z

bz
†~kj ,K2kj !D u0&, ~9!

where all pairsbz
†(kj ,K2kj )u0& having the sameK and z

have been regrouped together. In the product with respect to
the index j , the e dependence ofj has been dropped for
simplicity. The integernK,z>0 designates the total number
of pairs characterized byK,z in fe , and thenK,z’s satisfy
(K,znK,z5n. The basis vectorFe,a of S^ f is defined from
fe as

Fe,a5 ^ K,zfK,z , fK,z5)
j51

nK,z

bz
†~kj ,K2kj !u0&, ~10!

where the tensor product replaces the simple product)K,z of
Eq. ~9! and eachfK,z is a Slater determinant containing
nK,z of pairsK,z. The sequence of integers$nK,z% in Eqs.
~9!, ~10! defines uniquely the pair configurationa of fe .
ThereforenK,z will be denotednK,z,a in the following. The
set of pair configurations offe can be obtained by selecting
m permutations of 2n one-electron Bloch states defining
fe . The number of pair configurationsm5(2n)!/ „2n(n!) …
is smaller than that of permutations (2n)! because many
different permutations correspond to the same pair configu-
ration. The basis vectorsFe,a of S^ f are generated by let-
ting the subscriptse51,..df anda51,..m run over all pos-
sible values, which implies that the dimension ofS^ f is
equal tomdf . The pair number operatorNK,z is taken to act
on Fe,a as follows:

NK,zFe,a5nK,z,aFe,a . ~11!

As theFe,a’s are chosen to be orthonormal, Eq.~11! entails
thatnK,z,a5^Fe,auNK,zuFe,a&.

The subspaceSF,S^ f is then introduced as spanned by
the basis vectorsFe defined by

Fe5 (
a51

m

Fe,a , ~12!

where the sum is carried overm pair configurationsa of
fe . Owing to the one to one correspondence betweenfe
PSf andFePSF , the dimension ofSF is inferred to be
equal todf . AlthoughSF andS^ f obey the Pauli principle
by construction, the vectorsFePSF andFe,aPS^ f do not
exhibit the antisymmetry property typical of Slater determi-
nants with respect to interchanging two electrons. The ques-
tion of redundancy, encountered here, since the dimension of
S^ f is larger than that ofSF , arises as in other works14,15

dealing with electron pairs. However in our treatment this
redundancy does not pose any particular problem. The sig-
nificance ofFe ,Fe,a ,nK,z,a is illustrated in detail in the
Appendix for the exemplifying case of a four electron sys-
tem.

We now introduce the subspacesSK,z,SF andS2,SF ,
whereSK,z is defined for eachK,z as spanned by the basis
vectorsF i51,..dz

, dz being the dimension ofSK,z . By defi-

nition eachF i is associated with a Slater determinantf i of
Sf , such as in Eq.~5! and thus comprisingn pairs, all hav-
ing the sameK and z. The dimensiondz of SK,z is
d05(n

N) or d615(n
N/2) depending on whetherz50 or

z561, respectively. The characteristic property of each
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F i is that its pair configuration expansion, as given in Eq.
~12!, involves a particular valueg defined by

F i5 (
a51

m

F i ,a , nK,z,g5^F i ,guNK,zuF i ,g&5n⇒nK8,z8,g

5^F i ,guNK8,z8uF i ,g&50,
~13!

whereK8 and z8 take all possible values different fromK
andz, respectively. EachF i ,g of S^ f is then written in the
same expression as the Slater determinantf i of Sf of Eq.
~5!, associated withF i of SK,z , because the tensor product
yieldingF i ,g as in Eq.~10! reduces to a single Slater deter-
minant ofn pairsK,z. Inversely the subspaceS2 is spanned
by the basis vectorsFp51,..d2

of SF , d2 being the dimension

of S2 (S2 is named so because it will be shown hereafter to
include allc2-like eigenvectors!. EachFp is characterized
by

Fp5 (
b51

m

Fp,b ,nK,z,b5^Fp,buNK,zuFp,b&,n, ;K,z,

~14!

where the inequality holds for everyb value involved in the
pair configuration expansion ofFp . As the subspacesS2 and
SK,z are disjoint, because their characteristic properties as
expressed by Eqs.~13!, ~14! exclude one another, they pro-
vide a basis forSF :

SF5S2 %

K,z
SK,z , df5d21N~d012d61!. ~15!

Consider now the following expression for the Hamil-
tonianH8 in S^ f :

H85(
i , j

^f i uHuf j&uF i ,g&^F j ,gu

1 (
p,q,b

mpq^fpuHufq&uFp,b&^Fq,bu, ~16!

where the sum with respect toi , j is performed on all Slater
determinantsf i and f j associated, respectively, withF i
PSK,z andF jPSK,z , the pair configurationg is defined in
Eq. ~13! and K,z take all possible values. The sum with
respect top,q is carried over allFp andFq such thatFp or
Fq belong to S2. The matrix elementŝ f i uHuf j& and
^fpuHufq& are calculated withH given by Eq. ~1!. As
^fpuHufq&Þ0 requires that the Slater determinantsfp and
fq differ by one pair only, and they read
fp5bz

†(k,K2k)fpqu0& and fq5bz
†(k8,K2k8)fpqu0&,

wherefpq comprises the product of (n21) pairs, the sum
with respect to b is made with mpp51/m and
mpq5(2n21)/m overm/(2n21) pair configurations com-
mon toFp andFq . The definition ofH8 in Eq. ~16! ensures
that the matrix elementŝFeuH8uF f& and ^feuHuf f&, are
equal for alle, f values wherefe ,f f are two Slater determi-
nants ofSf andFe ,F f are the corresponding basis vectors
of SF . It follows that the Schro¨dinger equations
(H2e)c50 and (H82e)C50, wherecPSf andCPSF

have the same spectrum of eigenvaluese and there is a one
to one correspondence betweenc andC.

Since H8 in Eq. ~16! does not display such terms as
uFp,a&^Fq,bu, which would mix two different pair configu-
rationsa and b, the Schro¨dinger equation (H82e)C50,
whereC belongs toSF , splits into partial Schro¨dinger equa-
tions:

~H82e!C50, C5 (
e51

df

aeFe , Fe5 (
a51

m

Fe,a⇒

~H82e!Ca50, Ca5(
e51

df

aeFe,a , C5(
a

Ca , ~17!

where the coefficientsae are real, the sum overa is the pair
configuration expansion ofFe , andCa belongs toS^ f .

IV. PROOF OF THEOREM 1

Consider the Schro¨dinger equation (H82e1)C150,
where the eigenvectorC1PSF is assumed to have a nonva-
nishing projection inSK,z and thus reads

C15CK,z1C18 , CK,z5(
i51

dz

aiF i , C185 (
p51

d2

apFp ,

~18!

where the coefficientsai ,ap are real and theF i ’s andFp’s
are basis vectors ofSK,z andS2, respectively. We now apply
Eq. ~17! to C1 for the particular pair configurationg defined
in Eq. ~13!:

~H82e!C1,g50, C1,g5CK,z,g1C1,g8 . ~19!

As the vectorC18 is inferred from the definition ofFp in Eq.
~14! not to contribute toC1,g , it ensues thatC1,g reduces to
CK,z,g . Because of̂ f i uHuf j&5^f i uHD1HK,zuf j&, which
holds for the HamiltoniansHD andHK,z in Eq. ~4! and any
two Slater determinantsf i ,f j associated with the basis vec-
torsF i ,F j of SK,z , it comes finally

~H82e1!C1,g50⇒~HD1HK,z2e1!CK,z,g50

⇔~HD1HK,z2e1!cK,z50, ~20!

wherecK,zPSf is in one to one correspondence withCK,z

PSF . Equation~20! means that, if (cK,z1c18) and e1 are
eigenvector and eigenvalue ofH in Sf , the vectorcK,z and
e1 are eigenvector and eigenvalue of (HD1HK,z) in Sf too.
To complete the proof of theorem 1 it must be shown, in
addition, that every eigensolutioncK,z ,e1 of (HD1HK,z)
gives rise to an eigensolutionc1 ,e1 of H. The latter will be
proved now by contradiction. Suppose that there is an eigen-
value of some Hamiltonian (HD1HK,z) which is not an ei-
genvalue ofH. Then the correspondingSK,z will contribute
only (dz21) eigenvalues instead ofdz to the spectrum of
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H, which will result in an uncomplete diagonal basis forH
and is thus at odds with the property ofH being hermitian.
Q.E.D.

Both cK,z and the BCS variational state11 consist of a
linear combination of Slater determinants of pairs having the
sameK,z. They differ, however, by the number of pairs in
each determinant, which ranges from 0 up toN in the BCS
state, while it is always equal ton for cK,z . As for the BCS
state,12 off-diagonal long-range order, as defined in Eq.~7!,
is a fingerprint ofcK,z :

f odlro~ utu!5cos~Kt!D,
~21!

D5(
k,k8

ei [ ~k2k8!r]^cK,zubz
†~k,K2k!bz~k8,K2k8!ucK,z&,

where D is a two-body correlation parameter attached to
cK,z . Actually f odlro(utu) results from a sum over allK8,z8
but the contributions with (K8,z8)Þ(K,z) vanish identi-
cally. f odlro(utu) oscillates without decaying forutu→` pro-
vided DÞ0. It will be shown in the following section that
c18 @see Eq. ~18!# contributes nothing tof odlro(utu) for
utu→`, so thatcK,z and c1 have the same off-diagonal
long-range order parameter. In the Hubbard model, the va-
lidity of theorem 1 has been confirmed12 for a large class of
many-electron eigenstates@K5(p,p,p),z50#, built with
help of theh- pairing mechanism, for arbitrary interelectron
couplingU and electron concentration.

V. PROOF OF THEOREM 2

We turn now to the Schro¨dinger equation
(H82e2)C250, whereH8 is given by Eq.~16! and the
eigenvectorC2 belongs to the subspaceS2 of SF :

C25 (
p51

d2

apFp , Fp5 (
b51

m

Fp,b ,

C2,b5 (
p51

d2

apFp,b ,

C25(
b

C2,b , ~22!

where theap’s are real and the pair configuration expansion
of Fp is done with respect tob. To demonstrate the validity
of theorem 2 it is sufficient to show that the matrix element
^FpuH8uFq& vanishes for allFp andFq in the linear expan-
sion givingC2 in Eq. ~22! if pÞq. The proof proceeds by
contradiction. Suppose that^FpuH8uFq&Þ0 for p51 and
q52, whereaŝ FpuH8uFq&50 for pÞ1,2, qÞ1,2, andp
Þq. This implies for the Schro¨dinger equation
(H82e2)C250:

~H82e2!~a1F11a2F2!

1 (
qÞ1,2

~^FquHDuFq&2e2!aqFq50. ~23!

As the basis vectorsFq are linearly independent, Eq.~23!
implies that:

~H82e2!~a1F11a2F2!50, ^FquHDuFq&5e2 ,

;qÞ1,2. ~24!

As seen in Eq.~16!, ^F1uH8uF2&Þ0 requires thatF1 and
F2 differ by one pair only so that they read
F15b†(k1 ,k2)u0& ^ F12 and F25b†(k3 ,k4)u0& ^ F12,
where the spin indexz is dropped for simplicity until the end
of this proof, k11k25k31k4 and F12 includes (n21)
pairs. Moreover, due to Eq.~17!, the expression
(H82e2)(a1F11a2F2)50 in Eq. ~24! splits in S^ f into
partial Schro¨dinger equations (H82e2)(a1F1,b
1a2F2,b)50, where the pair configuration indexb runs
over all values allowed by Eq.~22!. The particular case of
b, where the pair numbersnk11k2 ,b

5nk31k4 ,b
51, is of in-

terest, in order to work out the proof. Then Eq.~16! entails
that

~H82e2!~a1F1,b1a2F2,b!50⇔

$~H82e2!@a1b
1~k1 ,k2!u0&

1a2b
1~k3 ,k4!u0&] % ^ F1250. ~25!

Because ofF12Þ0, Eq. ~25! implies that each eigenvalue
e2 of H8 in S2 is also an eigenvalue ofH8 in the subspace of
Slater determinants made up of a single pair, the dimension
ds of which is equal toN or N/2 according toz50 or
z561. It ensues that the dimensiond2 of S2 is such that
d2<ds , which is in contradiction with the inequality
ds,,d2 resulting from the fact thatS2 is spanned by Slater
determinants made up ofn pairs with n..1. In addition,
Eq. ~24! yields ^FpuHDuFp&5e2 for everyFp making up
the linear expansion ofC2 in Eq. ~22!. Q.E.D.

As every off-diagonal term̂FpuH8uFq& vanishes for the
Fp ,Fq states coming up in the linear expansion ofC2 in
Eq. ~22!, the off-diagonal and real space long-range order
parameters in Eqs.~7!, ~8! reduce both forc2 to a two-
particle distribution function:

f odlro~ utu!5 (
k,k8,s

$cos@~k1k8!t#2cos@~k1k8!t

1~k2k8!r#%^c2uck,1
† ck,1ck8,s

† ck8,suc2&

3 f rslro~ utu!5 (
k,k8,s

cos@~k2k8!t#

3^c2uck,1
† ck,1ck8,s

† ck8,suc2&. ~26!

As a consequence of Riemann-Lebesgue’s theorem due to
the oscillating character of cos@(k6k8)t#, f rslro(utu) and
f odlro(utu), calculated withr kept fixed, decay towards zero
for utu→` so thatc2 has neither off-diagonal nor real space
long-range order. Furthermore they may behave like power
laws for largeutu in similarity with previous results worked
out in one dimension.18
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VI. CONCLUSION

The general HamiltonianH of Eq. ~1! has been shown to
have two types of eigenstates and eigenvaluesc1 ,e1 and
c2 ,e2 in the space of Slater determinants. Thec1’s are char-
acterized by a nonvanishing projection in the spaceSK,z ,
denotedcK,z . This latter is responsible for off-diagonal
long-range order and fulfills (HD1HK,z2e1)cK,z50,
whereas thec2’s obey (HD2e2)c250 and do not have off-
diagonal long-range order. These results are valid for arbi-
trary crystal dimension, electron concentration, and two-
electron coupling provided it conservesK and z in a
scattering process.

To realize that off-diagonal long-range order and real
space long-range order have different properties, it is illumi-
nating to discuss the simple case of two electrons coupled by
a one-dimensional Hubbard Hamiltonian.17 This system sus-
tains a single band of bound eigenstatescK,z50. As cK,z50
is c1-like, its off-diagonal long-range order parameter
f odlro(utu) oscillates like cos(Kt), while its real space long-
range order parameterf rslro(utu) decays likee2utu/ l , wherel
represents the size of the bound electron pair. EachcK,z50 is
thus seen to have off-diagonal long-range order but no real
space long-range order. Note also that the theorem of
Mermin-Wagner,3 which rules out that the possibility of real
space long-range order in one and two dimensions is not
relevant to theorems 1 and 2, because this statement is based
actually on a thermal average which fails to say anything
upon the correlation properties of the many-body eigenstates.
Thus if an eigenstate happens to have long-range order of
any kind, the theorem of Mermin-Wagner merely says that
its statistical weight in the thermal average is too weak to
give rise to long-range order at finite temperature in the
whole electron system. Anyhow as the eigenstates of all in-
teracting electron systems, thus including metals with long-
range magnetic order but finite resistivity, have been shown
to be eitherc1- or c2-like, theorem 1 ensures that off-
diagonal long-range order is not a sufficient criterion for su-
perconductivity.

As far asc1-like solutions are concerned, the results of
this work enable one to diagonalizeH on a cluster of size
considerably larger than currently reached, because the di-

mension ofSK,z is much smaller than that ofSf . At last they
provide useful constraints on the variational states currently
used in the many-body problem such as those quoted in Sec.
I. Indeed any variational state within the frame of reference
of this work which is recognized to be neitherc1- nor
c2-like is unphysical even though it may fortuitously ap-
proximate the ground-state energy. In particular, as the
ground-state energies of the one- and two-dimensional Hub-
bard Hamiltonians are smaller5,7 than the lowest eigenvalue
of HD , the respective ground states are inferred to be
c1-like. Since the spectrum of eigenvalues ofH has been
shown to include all eigenvalues of everyHK,z , and the BCS
Hamiltonian is equal toHK50,z50 in the particular case
where the Hubbard Hamiltonian is equal toH, the Hubbard
Hamiltonian, currently used to study the normal state, turns
out to account for the properties of the superconducting state
too. Finally, this work provides a unified picture for the elec-
tron interaction in solids, valid for normal, magnetic and
superconducting metals as well.
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APPENDIX

In the four-electron case (n52), a Slater determinant
readsf5ck1

† ck2
† ck3

† ck4
† u0& wherek1 ,k2 ,k3 ,k4 are four vec-

tors of the Brillouin zone and the spin indicess,z are
dropped for simplicity in this example. An application of
Eqs. ~10!, ~12! yields m53 and Fa515b†(k1 ,k2)u0&
^b†(k3 ,k4)u0&, Fa525b†(k1 ,k3)u0& ^b†(k4 ,k2)u0&,
Fa535b†(k1 ,k4)b

†(k2 ,k3)u0&, andF5(F11F21F3), if
it is assumed that k11k2Þk31k4, k11k3Þk41k2 ,
k11k45k21k3. The pair configurationsa51,2,3 are char-
acterized by the pair numbersnk11k2 ,a515nk31k4 ,a51

5nk11k3 ,a525nk41k2 ,a5251,nk11k4 ,a5352. Notice that

F1 ,F2 ,F3 are three linearly independent vectors ofS^ f ,
all associated with the same vectorF of SF or equivalently
f of Sf .
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