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A general HamiltoniarH of electrons in finite concentration, interacting via any two-body coupling inside
a crystal of arbitrary dimension, is considered. For simplicity and without loss of generality, a one-band model
is used to account for the electron-crystal interaction. The electron motion is described in the Hilbert space
Ss, spanned by a basis of Slater determinants of one-electron Bloch wave functions. Electron pairs of total
momentumK and projected spin=0,=1 are considered in this work. The Hamiltonian then reads
H=Hp+2 Hg ., whereHp consists of the diagonal part éf in the Slater determinant basidy , de-
scribes the off-diagonal part of the two-electron scattering process which conBeavely. This Hamiltonian
operates in a subspace $f, where the Slater determinants consist of pairs characterized by theksame
{. It is shown that the whole set of eigensolutiosise of the time-independent Schiimger equation
(H—€)¢=0 divides into two classes; ,e; and i, €,. The eigensolutions of class 1 are characterized by the
property that for each solutioi; ,€; there is a singl& and{ such that Hp+Hy ,— €1) b ,=0 where, in
general,is; # i ., Whereas each solutiof,, e, of class 2 fulfills Hp—€,)#,=0. We prove also that the
eigenvectors of class 1 have off-diagonal long-range order, whereas those of class 2 do not. Finally, our result
shows that off-diagonal long-range order is not a sufficient condition for superconductivity.
[S0163-182696)00743-9

I. INTRODUCTION reciprocal space. Consequently the BCS Hamiltonian, once
Fourier-transformed back to real space, turns out to display
There has been a long-standing interest in the study diour site, interelectron coupling terms which are not present
electron correlations in condensed matter and particularly i the Hubbard Hamiltonian, used to describe electron inter-
the metallic state, because these are regarded as playing2étions in the normal state.
paramount role in cooperative phenomena such as magne- Although the three above classes employ different Hamil-
tism and superconductivity. Although electron correlation istonians, the Hilbert space is in all cases taken to be based on
essentially determined by the Coulomb repulsion effectSlater determinants and is designated her&asOur work
three different classes of models are currently used. investigates the properties of the eigenstates of a general
The first is based on the wide efficiency of the one-many-body HamiltonianH. We present a mathematical
electron picture in metals and alloys, fostered by the succegyoof that the set of eigenstates ldfin S, including, in
of the Fermi liquid theory. The electrons behave like a Pparticular, the ground state, divides in two clasggsand
Fermi gas of independent quasiparticles defined by renormal, which differ by their off-diagonal long-range order prop-
ized parameters and finite lifetimes. erties. These results are valid for any electron concentration
The second concerns the magnetic case. It is the realm @nd arbitrary crystal dimension, and for any interelectron
the repulsive Hubbard modednd its variations, notably the coupling provided it is of a two-body nature. The proof ex-
t-J model® As exact results are available only in one ploits specifically the property of the conservation of the pair
dimensioi=® and for small clusters in two dimensiohghe = momentum in every two-electron scattering event. An ap-
ground state has been approximated by different mean-fielgroximation, consisting of dealing with such pairs as if they
and variational procedures, such as Hartree-Fockwere independent quasiparticléshas already provided the
Gutzwiller, RVB, slave boson state, perturbat?cﬁﬁ and ground-state energy of the one-dimensional Hubbard model
other calculations. These approximations are based on diffei excellent agreement with the exact resulit the general
ent assumptions, and the electron gas is supposed to be eittgg&se of arbitrary dimension and general Hamiltonian inves-
a Fermi liquid of the Landau or Luttinger type%° or a gas tigated in this work, it is necessary to introduce an auxiliary
giving rise to ferromagnetic and antiferromagnetic effectsHilbert spaceS , in order to derive they; or ¢, like prop-
and there is no reliable argument to favor either model.  erties of the eigenstates, , is built over a set of pairs
The last concerns the phenomenon of superconductivitycharacterized by their total momentufnand projected spin
This is usually explained within the BCS picturewhere the . Other authors"***°have also used such sets, nevertheless
electrons condense in a variational state characterized by offhey remained within the framework &, .
diagonal long-range ordéf. The BCS Hamiltonian is ob- The outline is as follows: in Sec. I, the many-body
tained by truncating an attractive Hubbard Hamiltonian inHamiltonianH is presented and the problem to be solved is
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set out; Sec. Il provides the definition of the auxiliary spaceindicates opposite spins on both electrons, before and after
S. 4 as well as its algebraic properties; Secs. IV and V detaikcattering. The commutation rules of such pairs are neither
the proofs of two theorems establishing the eitisgtike and ~ Fermi- nor Bose-like. It is useful to recast the Hamiltonian
W, like properties of the eigenstates ldfin the usual space H of Eg. (1) in terms of the subsidiary Hamiltoniartsp ,

of Slater determinant§, (a partial account of Sec. IV has Hk,; as follows:

been published elsewhéfe the physical consequences of

these results are summarized in the concluding Sec. VI. H=Hp+ Hk ¢ 3
K,(=0,%£1
Il. THE MANY-BODY HAMILTONIAN whereHp andHg , may be written as

In the following model, we consider a crystal containing

N sites and 2 itinerant electrons, wherd&N>>1 and HD:% E(k)clyock»‘#
n>>1. The crystal can have arbitrary dimension. These
electrons populate a single band where the one-electron en-
ergy reads€E(k) andk is a vector of the Brillouin zone. To
simplify the discussion and without loss of generality, we
consider thatE(k) is independent of the electron spin —V(k+k' kK Ic] ,Ck oChr Cicr o
o==*1/2. The Pauli principle requires that<N. Let the
\e/le_(lz_tr:ons be coupled via a spin mdependgnt pair po_tentlal Hy o= E V(K,k,k’)bg(k,K—k)bo(k’,K—k’),

. The total system Hamiltoniad can be written in recip- KK £k
rocal space as

> V(k+k' k,k)
k,k’

xclv+cky+cl,ﬁck/,_+ > [V(k+k' k,k)
k,k', o

Hes1= 2 V(KkK)bL,(kK—K)b.y

H=> E(k)c} Co kK #(KK—K)
k,o ’ '
X (k" ,K—=k"). (4)
n VK KK ef o Curr o Cur o The diagonal matrix elements bf in the Slater determinant
K'k,k/;:l , ( )Gy Ok by Ok 750Ky basis are regrouped in the Hamiltoniéfy, . Inversely the

off-diagonal matrix elements oH are regrouped in the
(1) HamiltoniansHy ;. In the Hubbard Hamiltoniart, takes
where the first term denotes the one-electron contributiothe form Ek,aE(k)CE,ng,ﬁ(U/N)Ek,kfcl,+0k,+0lr,_Ckr,—
and the second denotes the most general expression to d&dhy -, =0 for everyK. Note also that the BCS Hamil-
scribe two-body interactions in a periodic crystal. The operatonian reads ablp+Hy_q -0, WhereHp andHy o, are
torsc} , andc, ,, are one-electron creation and annihilation given by their particular expressions in the Hubbard Hamil-

operators on the Bloch stakes. They obey the usual Fermi tonian. _ _
commutation rules. The real coefficient§K ,k,k’) are the The main purpose of this paper is to present and demon-

matrix elements of the two-electron scattering process, corlate tvlvof theorems th?]iCh t.char.atéterize dthet tvquhquasses of
serving the momenturK of each scattered pair. For usual g'glf;tisc?nuéo_nsgll’e_g wh(;rellT?s-m ifgf% eE (1(); a:]nger
pair potentials involving only two-site terms in real space, q € ‘ﬂf ’ 9 Y EG. 4 .

P X , belongs to the Hibert spacg,. These classes are desig-
V(K,k,k") is K independent and depends only do—(Kk’). nated, respectively, ag, e, and i, e
The summations in Eq1) are carried out over all possible ’ Y, 8B, €1 2 =2

. . . . Theorem 1 To each eigensolution 1/ (€1 where
! ’
values ofK,k,k’ in the Brillouin zone under the constraint of (| 1o+ IK,g 61) wK’§ 0, there corresponds an eigensolu—

spin conservationr; + 0, =03+ 0y (cri=1_4= + 1/2). Aspe-  tion U, €, of H such that{H— e;) i, =0.
cial case of Eq(1) is the Hubbard Hamiltonial, which is o ) o
recovered by setting (k) = cosEk), where the components The _characterlstlc property of eaah is that its linear ex-
of k are identified byk;, o+ 0,=0 andV(K,k,k') is a  Pansion over the basis vectors 8f contains at least one
constantU/N for all scattering events. The Hamiltonidsh Slater determinang which can be written as
describes the electron motion in the Hilbert sp&geof di- n
mensiond ,= (3)). Each basis vectop; with i=1,..d,, is a =11 bl(k;,K—k;)|0), (5)
Slater determinant involvingr2 one-electron Bloch states. =1

Since this discussion resorts repeatedly to electron pairsyhere|0) designates the no-electron state. Note that , in
it is convenient to introduce the following pair creation andgeneral, is not an eigenvector Hf althoughe;, is indeed an

annihilation operator®(k,k"), b.(k,k"): eigenvalue oH.
Theorem 2 For every i,, €5, the equation(H—€,) ,=0
bli(kk)=cf.cl, ., bai(kK)=Cp +Cp implies that(Hp — €,) ¢»,=0.
" Each ¢, is characterized by the property that its linear
bi(k,k)=c] +Cl, . bg(kk')=cp _ccs. (2) €xpansion over the basis vectors $f contains no Slater
’ ’ o determinant such a$ in Eg. (5) for everyK and{.
The subscripts+ or — in the one-electrorc!) operators In the simple case of a two-electron system, that is a

refer to the two possible directions of the electron spin. Thesingle pair 6=1), theorem 1 has been demonstrated
subscript;=0,*+ 1 stands for the projection of the total spin previously!’ This result follows sincé4 andHg , commute
of the pair, wheref= +1 indicates the same spin age-0  with each other and with the pair number operatqr,
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" where all pairsb}(kj ,K—k;)|0) having the sam& and {
NK,ZZEK b, (k,K=k)b,(k,K=k). (6) have been regrouped together. In the product with respect to
the indexj, the e dependence of has been dropped for

Our aim hence is to generalize the result of referéfimethe  simplicity. The integem =0 designates the total number
n>1 case. While it is easy to show thiek , and N, still of pairs characterized bi,{ in ¢, and theny ,'s satisfy
commute for anyn, the operator$l andN ,, however, no =y .ny ,=n. The basis vectod, , of S, is defined from
longer commute in this general case. Therefore ribel ¢e as
case cannot be dealt with in the Hilbert spa&gof Slater
determinants. It becomes then necessary to treat the problem K¢
in an auxiliary Hilbert spacé&, ,, which is purposely con- Do =@k Pk qu,g:_H b}(kj K—k;)[0), (10
structed so thall andNy , commute in this space, keeping =1
invariant their definitions as in Eql) and Eq.(6). )

As i, eigenstates will be shown in addition to have off- Where the tensor product replaces the simple probygt of
diagonal long-range order whereds eigenstates do not EG- (9) and eachgy . is a Slater determinant containing
have off-diagonal long-range order, it is necessary to recaffx.¢ Of pairsK,Z. The sequence of integefs .} in Egs.
the definition of the two-body correlation function attached(9): (10) defines uniquely the pair configuratian of ¢e.

to this particular kind of long-range order characterizing the! hereforeny . will be denotedny ; . in the following. The
BCS state: set of pair configurations ap, can be obtained by selecting

m permutations of B one-electron Bloch states defining
f Lt ¢e. The number of pair configuratioma=(2n)!/(2"(n!))
foairol| 71) = . > (91C1 6,6].0,C1,0,Cm.o,| D) is smaller than that of permutations (2 because many
L lmon=1, 4 @) different permutations correspond to the same pair configu-
ration. The basis vecto®, , of S, , are generated by let-
where the Wannier operatcff,)h destroys(createy an elec-  ting the subscripte=1,..d, ande=1,..m run over all pos-
tron with spinoy, at sitei labeled by the lattice vectof and ~ sible values, which implies that the dimension $f, is
the sum is done withr(—r;)=(r,—r)=p, (ri—r)=r, equal tomd, . The pair number operatdi . is taken to act
ando; + o,= 03+ 04. Equation(7) extends to the #0 case on ®¢, as follows:
the usual definition of off-diagonal long-range ortfegiven
in the Hubbard model fop=0 and o;=—0,. A many- Nk.:Pe =Nk z,aPeq - (11
electron statep e S, is said to have off-diagonal long-range
order if f o] 7|), calculated ap kept fixed, oscillates ver- As the®, ,’s are chosen to be orthonormal, E41) entails
sus|7| without decaying to zero forr|—o. It must be no-  thatny ; ,=(Pe o/ Nk (| Pe o)-
ticed that off-diagonal long-range order differs from real The subspac&,CSg, is then introduced as spanned by
space long-range order, typical of crystalline matter, magthe basis vectord defined by
netic materials, spin- and charge-density waves. This latter

type of long-range order is characterized by the following m
two-body correlation function: D=, Dy, (12)
a=1
frslro(|7|)=ij > (<¢|C;r,<r10i,u2CjT,030j,a4|¢> where the sum is carried oven pair configurationse of
JiOh=1,.4

¢o. Owing to the one to one correspondence betweggn
—<(,b|CiT,glCi,02|¢>(¢|C;r,030j,g4|¢>), (8) €S, and ®.e Sy, the dimension ofS; is inferr'ed .to.be
equal tod, . AlthoughS; andSg, obey the Pauli principle
where the sum is done with ri—r;)=7 and by construction, the vectod.e Sy and®, , € Sy, do not
o1+ 03=0,+ 0, Charge and spin fluctuations correspond,exhibit the antisymmetry property typical of Slater determi-
respectively, tar; =0, ando;=—0,. A statepe S, is said  nants with respect to interchanging two electrons. The ques-
to have real space long-range orderff,(|7|) oscillates tion of redundancy, encountered here, since the dimension of
versus| 7| without decaying to zero fdrr|—o. By compar- Sz is larger than that o8, arises as in other works™
ing the definition in Eq(7) with that in Eq.(8), it is realized  dealing with electron pairs. However in our treatment this
that fogro(|7) # fraro(| 7|) €ven if p=0. Besides from the redundancy does not pose any particular problem. The sig-
experimental point of view, real space long-range order givesificance of ®¢, P, ,nk ;. is illustrated in detail in the
rise to Bragg difffraction in a neutron or x-ray scattering Appendix for the exemplifying case of a four electron sys-
experiment while off-diagonal long-range order does not. tem.
We now introduce the subspacBg ,CSq and S,C Sy,
lIl. PROPERTIES OF THE AUXILIARY where Sy , is defined for eaclK,/ as spanned by the basis
HILBERT SPACE S, vectors@izlwd;, d; being the dimension 0% ,. By defi-

nition eachd; is associated with a Slater determinahitof
S, such as in Eq(5) and thus comprising pairs, all hav-

ing the sameK and {. The dimensiond, of S, is

K. _ (N _(N/2 ; _
¢e=H H b}(kj,K—kj) 10, 9) do_—(n) or dﬂ_— n°) depending o_n_whetheg’ 0 or
K¢ \j=1 {==*1, respectively. The characteristic property of each

Any Slater determinang, of S, can be written as
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@, is that its pair configuration expansion, as given in Eg.have the same spectrum of eigenvaleesnd there is a one
(12), involves a particular valug defined by to one correspondence betwegrand V.
Since H' in Eq. (16) does not display such terms as
il |® . o ){(Pg, gl, Which would mix two different pair configu-
q)izazl Dior Ny =(Pi Nk, i) =n=nr o, rations & and 3, the Schrdinger equation K’ —e)¥ =0,
whereW belongs tdSg,, splits into partial Schidinger equa-

=(®; INk/ ¢|®; ,)=0, tions:
(13 d
[ m
whereK’ and ¢’ take all possible values different frot H—a¥=0, = ad, .= @, -
and{, respectively. Eackb; , of Sg 4 is then written in the & 2 Pe

same expression as the Slater determingnof S, of Eq.
(5), associated withb; of S ., because the tensor product
y|§ld|ng ®; , as in Eq.(10) reduces to a smgle_SIater deter- (H'— )W =0, \IffZ aePe ‘I’=2 V., (17)
minant ofn pairsK, . Inversely the subspac® is spanned e=1

by the basis vector®,_; g, of Sg , d, being the dimension

of S, (S, is named so because it will be shown hereafter tovhere the coefficienta. are real, the sum over is the pair
include all y,-like eigenvectors Each®,, is characterized ~configuration expansion ab, and¥, belongs toSg,.

by

o

IV. PROOF OF THEOREM 1

m
‘Pp=B§1 D 5.0k,6,8=(Pp, Nk [ Pp gy <N, VK., Consider the Schdinger equation K’'—e,)¥,=0,
(14 where the eigenvectoF ; € S;, is assumed to have a nonva-

nishing projection inS¢ , and thus reads
where the inequality holds for evegy value involved in the
pair configuration expansion df,. As the subspaces, and d; d,
Sk,; are disjoint, because their characteristic properties as W =W+, \I,M:z ad, Wvi,= a,,,
expressed by Eqg13), (14) exclude one another, they pro- i=1 p=1
vide a basis foiS : (18

Sp=S,® S¢;» dg=dy+N(dg+2d.,). (15  where the coefficients; ,a, are real and thé;'s and®’s
K.¢ are basis vectors @ , andS,, respectively. We now apply

. . ) _ EQ.(17) to ¥, for the particular pair configuratiop defined
Consider now the following expression for the Hamil- i, Eq. (13):

tonianH' in Sy 4:

(H'—e)¥,,=0, V¥, =Wy, +V;.. (19
H =2 (dilH| )P NP, )
" As the vectorV'; is inferred from the definition ofb,, in Eq.
S Mmool Hldo) B (D (16) (14) not to contribute to¥', , , it ensues tha¥, ,, reduces to
s PolHI D) | Pp,p) (P gl WYy ¢, Because (_)f(¢i_|H|¢j>=<¢i|HDfrHK'§|¢J-), which
holds for the Hamiltoniansi, andHy . in Eqg. (4) and any
where the sum with respect tgj is performed on all Slater two Slater determinant; , ¢; associated with the basis vec-
determinants¢; and ¢; associated, respectively, witd; tors @; ,®; of S¢ ,, it comes finally
€ Sk, and®; e S¢ ,, the pair configuratiory is defined in
Eqg. (13) and K,g ta'ke all possible values. The sum with (H'— €)W, =0=(Hp+Hy ,— €)Wy ;=0
respect tq,q is carried over altb, and®, such thatb, or
®, belong to S,. The matrix elements(¢;|H|¢;) and
(¢p|H| g are calculated withH given by Eg.(1). As < (HptHg ~€1) iy =0, (20
(¢p|H|dg) #0 requires that the Slater determinagits and
¢, differ by one pair only, and they read whereyy €Sy isin one to one correspondence withy ,
bp=b}(K,K=K)hpgl0) and pa=bl(k',K—k')4l0),  €Ss. Equation(20) means that, if ¢y .+ 1) ande; are
where ¢, comprises the product oh(¢-1) pairs, the sum eigenvector and eigenvalue Hfin S, , the vectoryy , and
with respect to 8 is made with m,,=1/m and ¢, are eigenvector and eigenvalue éf{+Hy ;) in Sy too.
Myq=(2n—1)/m over m/(2n—1) pair configurations com- To complete the proof of theorem 1 it must be shown, in
mon to®, and®,. The definition ofH" in Eq.(16) ensures  addition, that every eigensolutiofk ,,e; of (Hp+Hg )
that the matrix elementé® |H’|®;) and (¢¢/H|p;), are  gives rise to an eigensolutiop, ,e; of H. The latter will be
equal for alle,f values wherep,, ¢; are two Slater determi- proved now by contradiction. Suppose that there is an eigen-
nants ofS, and®.,®; are the corresponding basis vectorsvalue of some HamiltonianHp+H ;) which is not an ei-
of Sp. It follows that the Schrdinger equations genvalue ofH. Then the corresponding , will contribute
(H-€)y=0 and H'—€)¥=0, whereye S, and¥ eS;,  only (d,—1) eigenvalues instead af, to the spectrum of
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H, which will result in an uncomplete diagonal basis fbr (H' —ey)(a; P, +a,P,)=0, <<I>q|HD|<I>q)=62,
and is thus at odds with the property ldf being hermitian.
Q.E.D.
Both ¢, and the BCS variational stdfeconsist of a Vg#12. (24

linear combination of Slater determinants of pairs having the
sameK,¢. They differ, however, by the number of pairs in As seen in Eq(16), (®|H’|®,)#0 requires thatb, and
each determinant, which ranges from 0 ud\Nan the BCS ¢, diffier by one pair only so that they read
state,zwhile itis always equal for gy ;. As forthe BCS ¢, —pT(k, k,)|0)o®,, and @,=bT(ks.ky)|0)@ D,
l . . . 1 1 1
state,” off-diagonal long-range order, as defined in &) \yhere the spin index is dropped for simplicity until the end
is a fingerprint ofyy of this proof, k;+k,=ks+k, and ®,, includes —1)
. pairs. Moreover, due to Eqg.(17), the expression

Foard(| 7)) =cosK )4, (H' - &,) (2,0, +2,0,) =0 in Eq. (24) splits in S, , into

(21) partial Schrdinger equations  H'—ey)(a; Py
A:Z ei[(k""”’](w,db}(k,K—k)bg(k’,K—k’)WK,g), +a,®,5)=0, where the pair configuration inde& runs

K.k’ over all values allowed by Eq22). The particular case of
where A is a two-body correlation parameter attached to whe_re the pair numbersi. ., 4= Niy+k, 6= 1, is Of n-
Wi - Actually fogo|7]) results from a sum over ak’,¢’ terest, in order to work out the proof. Then E@6) entails
but the contributions with K',¢")#(K,¢) vanish identi- that
cally. foqro(| 7|) oscillates without decaying fdrr| —c pro-

V|/ded A+#0. It will be shown in the following section that (H' = e)(a101 gt a,B, ) =06
W, [see Eq.(18)] contributes nothing tof ,q.o(|7|) for
|7|—, so thatyy , and ¢; have the same off-diagonal

long-range order parameter. In the Hubbard model, the va- {(H'—€e)[a;b™ (kq,k)|0)
lidity of theorem 1 has been confirmédor a large class of .
many-electron eigenstat¢¥ = (,,7),{=0], built with +azb” (ks k)| 0)]} & P 1,=0. (29
help of thex- pairing mechanism, for arbitrary interelectron
couplingU and electron concentration. Because ofd,#0, Eq. (25 implies that each eigenvalue
€, 0f H' in S, is also an eigenvalue &f’ in the subspace of
V. PROOF OF THEOREM 2 Slater determinants made up of a single pair, the dimension

L _ ds of which is equal toN or N/2 according to{=0 or
We twm mnow to the Schdinger —equation ,— .3 |t ensues that the dimensiah of S, is such that
(H'—€)W,=0, whereH’ is given by Eq.(16) and the g <d_, which is in contradiction with the inequality

eigenvector¥’, belongs to the subspa& of Sy : d.< <d, resulting from the fact tha®, is spanned by Slater
dy m determinants made up af pairs withn>>1. In addition,
_ _ Eq. (24) yields (®,|Hp|P,) =€, for every ®, making up
vz pzl APp. Py ;;2::1 Prop the linear expansion o, in Eq. (22). Q.E.D.

As every off-diagonal ternd® ,|H'|®,) vanishes for the
®,,P, states coming up in the linear expansionj in
V5= 2 apPp 5, Eq. (22), the off-diagonal and real space long-range order

p=1 parameters in Eqg(7), (8) reduce both fory, to a two-
particle distribution function:

d;

Wo=2 Vop, (22
where thea,'s are real and the pair configuration expansion  foarol(| 7)) = 2 {cog (k+k")T]—cog(k+k')r
of ®, is done with respect t@. To demonstrate the validity kKoo
of theorem 2 it is sufficient to show that the matrix element +(k—k')p]}<l//2|Cl,+Ck,+CI,,,,Ckr,o| )

(®,|H'|Dg) vanishes for alib, and®,, in the linear expan-
sion giving¥, in Eq. (22) if p#q. The proof proceeds by

contradiction. Suppose thatb,|H’|®)#0 for p=1 and Xffs'r°(|7|):k§ cog (k—k")7]
q=2, whereag® |H'|®,)=0 for p#1,2, q+#1,2, andp e
#qg. This implies for the Schdinger equation ><<¢2|cly+ck,+cl,’gckrla| o). (26)
(H’_Ez)llfzzo:
(H' = ) (a,®;+a,d,) As a consequence of Riemann-Lebesgue’s theorem due to

the oscillating character of ca&=k')7], f.go(/7]) and
foars(| 7). calculated withp kept fixed, decay towards zero
+q;2 (<q’q|HD|q’q>_ €2)8q®q=0. 23 for | 7] — <0 so thaty, has neither off-diagonal nor real space
' long-range order. Furthermore they may behave like power
As the basis vectord, are linearly independent, EG23)  laws for large| 7| in similarity with previous results worked
implies that: out in one dimensiof®
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VI. CONCLUSION mension ofSy . is much smaller than that &, . At last they
provide useful constraints on the variational states currently
used in the many-body problem such as those quoted in Sec.
I. Indeed any variational state within the frame of reference
of this work which is recognized to be neither- nor

-like is unphysical even though it may fortuitously ap-
denoted ¢ .. This latter is_responsible for off-diagonal pwrzoximate th?a ):;]round—state engrgy. In yparticular, );s F:he
long-range o,rder and fulfills Hp+Hk ~ €)%k =0,  ground-state energies of the one- and two-dimensional Hub-
whereas thel,'s obey Hp — €;) =0 and do not have off- 514 Hamiltonians are smalfefthan the lowest eigenvalue
diagonal long-range order. These results are valid for arbig¢ Hp, the respective ground states are inferred to be
trary crystal d!mension., eleqtron concentration, a_nd tWO'zpl—Iike. Since the spectrum of eigenvalues téfhas been
electron coupling provided it conservés and { in @  gnown to include all eigenvalues of evetly ., and the BCS
scattering process. . Hamiltonian is equal toHk_o,—o in the particular case

To realize that off-diagonal long-range order and rea?Iwhere the Hubbard Hamiltonian is equalkig the Hubbard

space long-range order have different properties, it is llumiy, yiionian, currently used to study the normal state, turns
hating to d'SCL.‘SS the simple case .Of two elgctrons coupled bBut to account for the properties of the superconducting state
a one-dimensional Hubbard Hamiltoni&hThis system sus-

) . . too. Finally, this work provides a unified picture for the elec-
tains a single band of bound eigensta§gs;—o. As ¥k o y b b

. . . X tron interaction in solids, valid for normal, magnetic and
is i-like, its off—d_lagonal Iong—ran_ge order parameter superconducting metals as well.

foaro(|7]) Oscillates like cod(7), while its real space long-

range order parametéy (| 7|) decays likee™|"", wherel ACKNOWLEDGMENTS

represents the size of the bound electron pair. Bach. o is _ )

thus seen to have off-diagonal long-range order but no real We are greatly indebted to J. Hlinka, P. Laurent, Pdie
space long-range order. Note also that the theorem dffer, M. Lewenstein, H. Moudden, A. Oleand S. Petit for
Mermin-Wagner which rules out that the possibility of real helpful comments.
space long-range order in one and two dimensions is not

relevant to theorems 1 and 2, because this statement is based

actually on a thermal average which fails to say anything |n the four-electron casen&2), a Slater determinant
upon the correlation properties of the many-body eigenstategeads p=c! c! c! c!f |0) wherek; k. ks.k, are four vec-
Thus if an eigenstate happens to have long-range order of 12 "8 4

any kind, the theorem of Mermin-Wagner merely says thal ors of the Brilloqir} zone gnd the spin indicer;g’ are
its statistical weight in the thermal average is too weak tocEir(;)Spp(eldo)for(lszl)rn F;/li'g;gys ";nt_hg,s Z);]a(\jmgle. Ainb?(?(phﬁa;i%r; of
. ’ - a=1"" 1:R2

give rise to long-range order at finite temperature in the_ % _
whole electron system. Anyhow as the eigenstates of all in-®b (k_?“k,r4)|0>’ c!r)a=2—bJr(k17|<3)|0>_® bT(k4'k2)|o>’ .
teracting electron systems, thus including metals with Iong—.q)a.:?'_b (k1 k)b (kp,ks) |0), and = (D + -+ Bg), if
range magnetic order but finite resistivity, have been showtf 1S assumed thatki+k,#Ks+ks, ki+ke#ketky,
to be eithery- or ¢,-like, theorem 1 ensures that off- k1+k.4=k2+k3' The pair configurationg=1,2,3 are char-
diagonal long-range order is not a sufficient criterion for Su_actenzed by the pair numberakﬁk?a:l: nk3~_+k4va=l
perconductivity. =Nk +ky a=27 Nk, +ky a=2= LNk +k, a=3=2. Notice that
As far asi;-like solutions are concerned, the results of®,,®,,®; are three linearly independent vectors R, ,
this work enable one to diagonaliz¢ on a cluster of size all associated with the same vectbrof S;, or equivalently

considerably larger than currently reached, because the di of S,,.

The general Hamiltoniahl of Eq. (1) has been shown to
have two types of eigenstates and eigenvaljiese; and
5, €, in the space of Slater determinants. Thgs are char-
acterized by a nonvanishing projection in the sp&ge;,
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