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Properties of a model electron-hole system are studied with a variational Monte Carlo method. Energies of
both the two-component plasma phase and the excitonic insulating phase are calculated. The excitonic insu-
lating phase is stable for all densities studied, exhibiting a strong pairing state even nearr s52.0, the density
where the two-component plasma phase has its minimum energy. Analysis of the pair correlation functions
reveals that the stabilization of the excitonic insulator traces to enhanced short range electron-hole correlations
which are partially offset by reduced electron-electron correlations. In the two-component plasma phase,
significant electron-hole correlation effects remain up to high density, e.g.,r s50.5. @S0163-1829~96!05543-9#

In this paper, we revisit the problem of the electron-hole
liquid1 in three dimensions with a nonperturbative, varia-
tional Monte Carlo~VMC! approach. As a model system, the
electron-hole liquid exhibits~at least! two phases in prin-
ciple: a metallic, two-component plasma~2CP! phase at high
density and an insulating, excitonic~EI! phase at low
density.2 A naive application of the Mott criterion for the
metal-insulator~MI ! transition, equating the Thomas-Fermi
screening length to the exciton Bohr radius, gives a transition
at an average spacing between electron-hole pairs of
r s54(12/p)2/359.8.3,4 We find, as already suggested
earlier,5 that the excitonic insulating phase is stable to much
higher densities, including aroundr s'2 near the minimum
energy for the 2CP phase. We find large many-body corre-
lation effects in an electron-hole plasma even in the high
density ranger s;0.5, which corresponds roughly to the den-
sities at which a typical semiconductor laser operates. The
role of correlation effects continues to be an important issue
in theoretical models for the material gain in semiconductor
lasers.6,7 Finally, pair correlation functions obtained from
VMC wave functions are significantly different from those
reported earlier based on self-consistent local-field theories.8

In the past, the electron-hole liquids have been studied in
indirect gap materials to ensure a long lifetime for ease of
measurement.1 Band degeneracies play an important role in
these systems, stabilize liquid droplet phases of fixed den-
sity, and suppress excitonic pairing.1 Short period GaAs/
AlAs superlattices afford an interesting test case where the
character of the conduction-band minimum depends on the
period. For short periods, the conduction-band minimum is
at theX point and multivalley effects enter, while for longer
periods the conduction-band minimum is at the zone center
giving directly allowed optical transitions. Interestingly, time
resolved luminescence studies on these materials show evi-
dence for electron-hole droplet formation only for the short
period superlattices.9 In our calculations, we find no ten-
dency to phase separation for a direct gap material; the en-
ergy for the excitonic insulator phase is a monotonic function
of r s in the range 2,r s,10, suggesting that the density can

be tuned smoothly throughout this range. At present, electro-
optical experiments are routinely carried out on a time scale
of 10 fs, much faster than the radiative recombination time in
a typical direct gap semiconductor which is on the order of
nanoseconds. Thus it is now possible to directly probe the
photoexcited electron-hole system in a direct gap semicon-
ductor quantum structure, before recombination happens and
after thermal equilibrium is reached on a ps time scale. A
recent proposal for tuning the density of an electron-hole
system in two dimensions has been given.10

We limit ourselves to an equal-mass, two-band model
system.12 The only relevant dimensionless parameter is then
r s . Further, we ignore the small interband exchange between
an electron and a hole. The Hamiltonian reads
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From now on, we takeme5mh5m, and the exciton reduced
mass ism5m/2. All of our results will be reported with
energy in units of the exciton Rydberg and length (r s param-
eter! in units of the exciton Bohr radius.

The metallic 2CP phase of this model system has been
studied extensively in the past, using the random-phase-
approximation ~RPA!,8,3 the Hubbard extension of RPA
~HA!,8,3 and the self-consistent local-field~SCLF! theory.8

Two versions of the SCLF theory have been used:8 one uses
HA for the electron-electron and the hole-hole local-field
factors, and iterates to self-consistency the electron-hole
local-field factor~partial-self-consistency, or PSC!; the other
reaches full self-consistency for all three local-field factors
~full-self-consistency, or FSC!. More recently, the Fermionic
hypernetted-chain~HNC! theory13 has also been applied to
this system.14

However, none of these approaches can be used to study
the EI phase due to the intrinsically inadequate treatment of
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the multiple electron-hole scattering at short distances. In-
deed, when applied to the 2CP phase at relatively low den-
sities where such scattering is crucial, these theories are often
unstable operationally, and no self-consistent solutions can
be obtained.8,14 Arguments have been put forward by No-
zieres and Comte, suggesting that the EI phase is more stable
than the Mott criterion indicates.5 A mean-field theory, simi-
lar to the BCS approach to superconductivity,15 was solved
approximately via a variational ansatz for the pairing wave
function.16,5,17,18However, further correlation effects are dif-
ficult to include.

In this work, we study both phases using a nonperturba-
tive, variational method. In addition to the metallic phase, we
are able to treat explicitly both the pairing and the correlation
effects in the EI state. We conclude that the excitonic phase
is more stable than the two-component plasma phase in the
entire density range where our calculations for both can be
reliably carried out. We also remark that the wave function
we use for the EI insulator state evolves continuously to
become a Bose condensate of excitons at low density, such
as has been reported in some recent experiments on excited
semiconductors.11 However, the energy cost of breaking the
phase coherence implied by such a wave function is likely
very small, and we shall not focus here on the possible su-
perfluid nature of an EI state.

The many-body trial wave function for the two-
component plasma phase is a direct generalization of that for
the one-component model:
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where theD ’s are the Slater determinants, composed of
plane waves, filled up to a closed-shell momentum state in
calculations using periodic boundary conditions. The Jastrow
factorsu andv are in the form of
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A, F, cu , cv , r u , andr v are all variational parameters.
For the EI phase, the wave function is written in the ex-

plicit pairing form as15,19
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and the superscripts (1)5(↑,↓) , (2)5(↓,↑) refer to the
spin of electron and hole.20 The pairing wave function
f (r i ,e2r j ,h) is taken as

f ~r !: e2r /Rex

or

e2~r /RG!2, ~7!

whereRex ~or RG) is another variational parameter. System-
atically better choices forf (r ) can be made, a point to which
we shall return at the end of this paper.

In our variational calculations, we first optimizeA which
was found to deviate from that given by the plasmon condi-
tion for the two-component system.21 The optimalF ’s are
found to be given by the cusp-conditions21. When the expo-
nential form is used for the pairing wave function in the EI,
we must reduce the sharpness of the cusp-condition
dv8/drur50 in v8(r ) by 1/Rex . For r s52 in the EI, the
Gaussian pairing wave function yields a slightly lower en-
ergy. Forr s53 and larger, the exponential form is lower in
energy, although the Gaussian form with the appropriate
cusp-conditions in the Jastrow factors is always very close.
We then fix the values ofA, F, Rex ~or RG), and introduce
the additional variational parameterscu , cv , r u , and r v to
further optimize the energy. They yield an additional; 5%
lowering in energy atr s52.

Our results for the total energy are summarized in Fig. 1.
We first make a few qualitative observations. With the VMC
method, the energy of the 2CP has a minimum atr s;2, in
agreement with previous work.8,3,14 At r s52, the 2CP en-
ergy isErs52520.90 Ry, higher than that of a single exci-

ton 21 Ry. It rises sharply on the lowerr s , higher density
side due to the rise of the kinetic energy, and rises much
more slowly on the largerr s , lower density side. We are
unable to resolve if there is a second minimum at a larger
r s , and this remains an important question to be answered.2

Within the range of r s investigated, which is between
r s52 andr s510, the energy of the EI decreases slowly and
monotonically with increasingr s , approaching the isolated
exciton value. Atr s52, we findEex520.95 Ry, which is
lower than that of the 2CP at the same density. Although the
minimized energy of the EI changes relatively little with
r s , the optimal variational parameters change significantly,
with the typical size of a single pair, i.e., the optimal value of
Rex or RG , increasing with decreasingr s .

For the present model system, the two-component plasma
phase always has a weak excitonic instability due to the per-
fect nesting of the Fermi surfaces of the electrons and holes.
The effects on total energy due to such Fermi-surface insta-
bility have been estimated by Brinkman and Rice.22 This
effect is also captured in the HF theory of Comte and
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Nozières,5 and our evaluation of the ground state energy for
this approximation is also shown in Fig. 1.17,18The regime of
weak ~i.e., exponential in coupling constant! instability is in
the high density~small r s) regime. Forr s;2 the EI phase is
already one of strong pairing. Our VMC introduces the cor-
relation effects in the 2CP and EI phases on an equal footing.
These are quantitatively important and determine the sub-
stantial stabilization of the EI phase at this relatively high
density.

The finite size effects are large, particularly in the two-
component plasma phase. We show in Table I the size de-
pendence of the total energies of both the 2CP and the EI
phases atr s52. The extrapolation to the thermodynamic
limit is done following the approach of Tanatar and
Ceperley23 for the 2CP:

Einf5EN1b1~r s!DTN1b2~r s!/N. ~8!

HereEN is the calculated energy forN electron-hole pairs,
DTN is the correction for the noninteracting system, and the
fitting coefficients depend onr s . We estimate the uncer-

tainty in the extrapolation procedure to be roughly 0.002 Ry.
For the EI phase, the energy is essentially converged within
the range ofN studied. It is clear that the energy difference
between the two phases is well beyond the remaining uncer-
tainties from the finite size effects.

We now compare the variational Monte Carlo results to
previous work for the two-component plasma phase and as-
sess the resulting differences. In Table II, we compare the
correlation energies at several densities. These are calculated
by subtracting from the total energy the Hartree-Fock energy
per pair, given by
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in exciton Rydbergs. The VMC results agree quite well with
the HNC method, but there is no consistently good agree-
ment with other methods. The FSC and the PSC give the
lowest energies, with the latter being still lower than the
single exciton energy. It should be stressed that the FSC and
PSC calculations are not variational, and may overestimate
the binding energy.

The comparison of total energies shows the quantitative
difference between the present nonperturbative and the pre-
vious, mostly perturbative, methods. Qualitative information
is available through differences which appear in the pair-
correlation functions. The pair correlation functiong(r1,r2)
is

g~r1,r2!n
252N~2N21!^r~r1!r~r2!&. ~10!

N is the total number of electrons, or holes, per spin. For the
electron-hole correlation function, the prefactor
2N(2N21) on the right-hand side should be replaced by
(2N)2. In Fig. 2, we show the electron-electron correlation
functions for the 2CP phase calculated in the RPA,8 FSC,8

and HNC~Ref. 14! approximations, in comparison with the
present VMC results, forr s52. The RPA yields negative
results at small distances, similar to its failure in the one-
component system. The FSC corrects this error, but exhibits
very large oscillations, especially at distances shorter than
the exciton Bohr radius which is unphysical. In contrast,
VMC gives an essentially monotonic function, with Friedel
oscillation amplitudes which are too small to be seen on this
scale atr s52. The pair correlation functions found in the
HNC approximation,14 also illustrated in Fig. 2, are in good
agreement with the present VMC results.

TABLE I. Finite size effects for the total energies of an equal-
mass, electron-hole system atr s52 for both the two-component
plasma phase and the excitonic insulating phase. Energies are in
exciton Rydbergs, and the particle number per spin is given sepa-
rately in the parentheses.

Particle number 2CP~Ryd! EI ~Ryd!

~27 27! 20.935 20.957
~33 33! 20.912 20.955
~57 57! 20.894 20.951
~81 81! 20.917 20.946
~93 93! 20.906 20.946
` 20.900~2! 20.946

TABLE II. Comparison of correlation energies~in exciton Ry-
dbergs! from various methods at several values ofr s for the two-
component plasma phase.

r s HAb RPAb PSCa FSCa HNCc VMC

0.5 20.93 20.87
1.0 20.69 20.76 20.76 20.74 20.71 20.68
2.0 20.50 20.55 20.64 20.62 20.56 20.54
3.0 20.41 20.45 20.59 20.55 20.50

aReference 8.
bReference 3.
cReference 14.

FIG. 1. Comparison of the total energy for the two-component
plasma phase~dashed lines! and the excitonic insulator phase~solid
lines! as a function of the density parameterr s . The heavy lines
indicate the mean field calculations while the solid symbols are
calculated within the VMC approach. Part~a! shows an expanded
scale.
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Some insight into the stabilization of the EI is given by
the pair correlation functions. Forr s52, these are compared
in Fig. 3. The explicit pairing incorporated in the wave func-
tion of Eq. ~5! through f (re2rh) dramatically increases the
short range electron-hole correlation out to the range of ap-
proximately an exciton Bohr radius as expected. In fact, the
shape and magnitude ofgeh(r ) are quite similar to expecta-
tions based on the correlation function evaluated in the limit
of a dilute exciton gas:

geh~r !5
4

3
r s
3e22r /aex11. ~11!

This is also shown in Fig. 3~a!, for comparison. The close
agreement is indicative of the strong pairing character of the
state even atr s52. These short range correlations lower the
energy. Since they are already incorporated at the mean field
level, the mean field energy for the EI phase is substantially
lower than the HF result for the 2CP, as seen in Fig. 1. These
short range electron-hole correlations impede the electron-
electron short range repulsion generated by correlation ef-
fects, as seen in Fig. 3~b!. The balance favors the excitonic
correlations.

Figure 4 shows both the electron-electron and the
electron-hole pair distribution functions for the 2CP phase at
r s50.5, calculated with the VMC method. Thegeh(r ) at
r50 shows a factor of 1.8 enhancement over the noninter-
acting value even at such a high density. The value of
geh(r50) is a measure of the correlation-induced enhance-
ment of the luminescence ratet21. For non-k-conserving
optical transitionst21/to

215geh(r50), where t0
21 is the

spontaneous emission rate in the absence of interactions.1

For k-conserving transitions, the necessary correlation func-
tion is somewhat different and less intuitive. Nevertheless,
geh(r50) should still be indicative of the relative impor-
tance of excitonic correlations. The results in Fig. 4 indicate
the importance of electron-hole correlations, even at rather
high densities.

In Fig. 5, we show the calculatedgeh(r ) in the 2CP phase
for the range of densities studied. The degree of short range
electron-hole correlation changes dramatically with density

over this range. The value ofgeh(r50) must be obtained by
extrapolation, which has increased uncertainties for larger
r s . Nevertheless, the rapid increase at larger s is as expected;
for a dilute exciton gasgeh(r50)5(4/3)r s

3 Our VMC esti-
mate ofgeh(r50) is compared to other theories in the inset.
We find the best overall agreement with HNC calculations. It
is noteworthy that the HA underestimates the excitonic cor-
relations. The HA is most closely related to the many-body
treatments most widely applied to study spectra and material
gain in semiconductors.1,6 Recall that the relevant density
range for semiconductor lasers is typicallyr s,0.5. While the
RPA or HA underestimate the correlations, this is a regime
in which the density dependence of those correlations is rela-
tively weak.

Before closing, we note that a conceptually more appeal-
ing choice of the pairing wave function can be made by use
of the BCS-like mean-field theory of the excitonic phase for
the pairing wave functionf in Eq. ~7!.5 The complete nu-
merical solution to the resultant coupled-equations that one
encounters in the mean-field theory is straightforward.17,18

Qualitatively, the result in the low density limit approaches
the exponential form in Eq.~7!. In the high density limit, the
pairing wave function approaches a Fermi function~in k
space! and smoothly approaches the 2CP case. This continu-
ous evolution from the EI to the 2CP is mimicked in our
simple form @Eq. ~7!# by an increase inRex or RG as r s
decreases. It is also consistent with our finding that an expo-
nential form gives a slightly lower energy in the EI phase for
lower density while forr s52 the Gaussian form is better.
For the gross quantities studied in this paper, our simple
variational ansatz with exponential or Gaussian should suf-

FIG. 2. Electron-electron pair distribution function for the two-
component plasma atr s52.0 from RPA~dotted line!, FSC~dashed
line!, HNC ~Ref. 14! ~dash-dot line!, and from the VMC~solid
line!.

FIG. 3. Electron-electron~b! and electron-hole~a! pair distribu-
tion functions for the two-component plasma~dashed lines! and the
excitonic insulator~solid lines! phases atr s52.0 from the VMC.
The distribution function derived assuming a dilute exciton gas is
shown in part~a! for reference~short dashed line!
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fice. However, the incorporation of a better approximation to
the pairing wave function, e.g., from the mean-field solution
for the EI, in the VMC calculations might lower the energy
for the intermediate density regime. One should note that the
mean-field solution allows for no extra variational param-
eters in the pairing wave function. The screening effect
~equivalent physically to the variation inRex) could be in-
corporated phenomenologically through a screened Coulomb
interaction in the mean-field equations. Also, other effects
such as band anisotropy and nonparabolicity can be readily
incorporated into the mean-field theory.

To summarize, we have studied the model system of an
equal mass, electron-hole system with a variational Monte
Carlo approach. Ground state total energies for both the two-
component plasma phase and the excitonic insulating phase
have been calculated on an equal footing. The energy and the
pair-correlation functions of the 2CP phase found in the

present calculations differ significantly from those found in
the random-phase approximation and self-consistent local-
field approaches. The Mott criterion for the metal-insulator
transition does not apply to the two-component system. The
EI phase is found to be lower in energy over the whole range
of density.
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