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The excitation spectra of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO are studied
by developing a local three-body scattering theory within a multiorbital tight-binding model. The self-energy
corrections to the Hartree-Fock solutions are carried out by taking account of local three-body correlations.
Thereby the multiplet structures of three-particle states are fully taken into account. It is shown that the
self-energy correction improves drastically the excitation spectra for FeO, CoO, and NiO, leading to the correct
value of the band gap and the satellite structure, in agreement with photoemission experiments. Quasiparticle
dispersions are obtained in good agreement with the angle-resolved photoemission data of CoO and NiO. The
self-energy correction for MnO is found to be quite small.@S0163-1829~96!07043-9#

I. INTRODUCTION

Much attention was paid in the past to the electronic
structure of narrow-band transition-metal compounds. They
exhibit a variety of electronic and magnetic properties. For
example, the ground state can be insulating, semiconducting,
metallic, superconducting, ferromagnetic, ferrimagnetic, or
antiferromagnetic. Electron correlations due to their mutual
Coulomb repulsions are considered to play an important
role.1 In this paper, we concentrate our attention on the late
transition-metal monoxides MnO, FeO, CoO, and NiO. They
are antiferromagnetic insulators of the second kind with a
rocksalt structure, and can be considered prototypes of ma-
terials with strong electron correlations.

Electronic band-structure calculations for solids are based
in most cases on the local-density approximation~LDA ! to
density functional theory. Calculations of this kind often give
results in agreement with corresponding x-ray photoemission
~XPS! experiments and bremsstrahlung isochromat spectros-
copy ~BIS!. However, when the LDA is applied to strongly
correlated electron systems such as high-Tc cuprates or
transition-metal compounds, it shows a number of weak-
nesses. For transition-metal oxides it underestimates the size
of band gap by an order of magnitude. It may even predict
metallic behavior for large gap materials.2 Magnetic mo-
ments usually came out too small as compared with
experiments.3–8 The satellite intensity below the valence
band observed clearly in XPS experiments on CoO and NiO
is not reproduced.9 It is puzzling, that in spite of these short-
comings, the LDA bands seem to fit well the energy disper-
sions determined from angle-resolved photoemission spec-
troscopy~ARPS!.10–12

Another approach which has been applied is the cluster or
impurity model method,13–16 in which transition-metal ions
are treated like impurities in an O 2p host. By fitting the
free parameters of that model, it is able to explain
the experimental data of XPS,9,13,15,17–24BIS,18,21–23 reso-
nant photoemission,16,20,25–27 and core-level photoabsorp-
tion.14,22,23For NiO and CoO these analyses suggest that the
gap is of charge-transfer type,13,28instead of the conventional
Mott-Hubbard type,1,29 that is, the 3d bands are split into
upper and lower Hubbard bands separated by a Coulomb
energyU, with the oxygen band placed between them. Ac-

cordingly in NiO and CoO the first ionized state is found to
have a strong O 2p character.13,21–23,30This differs from
LDA findings in that the top of the valence band is predomi-
nantly of Ni 3d character, and that the O 2p bands are lo-
cated well below the Ni 3d bands. A major difficulty of the
cluster models is that they are unable to describe the energy
bands which recently were determined by ARPS
experiments.10–12,31–33

Several attempts have been undertaken to improve the
LDA. We especially mention the LDA1U method34 and a
self-interaction correction to the LDA.35–37When applied to
transition-metal oxides, both theories correctly predict an in-
sulating ground state. They tend to overestimate the charge
transfer, however, and do not reproduce the observed photo-
emission results. Another popular approach is based on a
GW approximation, and accounts for electron correlations in
the frame of the LDA scheme.38 For NiO,39 the quasiparticle
energies are considerably improved compared with those of
the LDA, but the satellite structure is not reproduced. This
shortcoming is ascribed to the fact that theGW approxima-
tion takes account of bubble-type diagrams but not of ladder-
type diagrams, giving rise to satellite intensities. Since the
LDA already contains correlations to some extent, it is dif-
ficult to see how one can improve a correlation treatment in
a controlled fashion by starting from that scheme. It seems
preferable to start from a Hartree-Fock~HF! approximation
and then to include the effects of electron correlations. This
is the approach we want to pursue here. Althoughab initio
HF calculations for solids have become feasible,40 the inclu-
sion of self-energy effects on anab initio level is presently
not yet possible. Therefore one has to resort to a multiorbital
tight-binding model with parameters determined either from
a cluster or impurity model analysis of experiments. The
results obtained within the HF approximation resemble those
of the LDA1U and SIC methods.

The self-energy contributions are evaluated on the basis
of the three-body scattering theory proposed by one of the
present authors.41,42 This theory was originally developed in
order to study the effects of electron correlations on ferro-
magnetic Ni. From the theory of Kanamori,43 the effects of
multiple hole-hole scattering are known. Although that
theory seems particularly valid in the limit of low hole den-
sities, it proved insufficient in order to account for the ob-
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served photoemission spectra of ferromagnetic Ni metal.44

To improve the situation, theories were proposed which also
take into account multiple electron-hole scattering.45,46 The
three-body scattering theory proposed by one of the
authors41,42 is based on Faddeev’s equation,47 and treats si-
multaneously multiple electron-electron, hole-hole, and
electron-hole scattering processes. This theory considerably
improved the results of the low-density approximation, and
successfully described the excitation spectra by using a
simple Hubbard-type model. This success suggests that the
creation of many electron-hole pairs neglected in that theory
is of minor importance except for small excitation energies.

Solving the Faddeev equation is quite difficult for a mul-
tiorbital tight-binding model which has to be used for a
quantitative comparison with experiments. Therefore we
make a local approximation which limits the three-body scat-
tering processes to different transition-metal sites. This ap-
proximation is expected to cover the most important correla-
tion effects, but a future improved theory should also take
into account the local correlations on the O sites. It has been
shown that the local approximation works well for ferromag-
netic Ni, and yields an excitation spectrum in good agree-
ment with photoemission experiments.48 Here we extend the
formulation to unit cells with several atoms and nonvanish-
ing off-diagonal matrix elements of the Coulomb part of the
Fock matrix. A short account of the application of this theory
to antiferromagnetic NiO has already been reported.49 We
shall demonstrate that the self-energy calculated in this way
for transition-metal oxides results in a transfer of spectral
weight, a shift of the 3d levels, and the appearance of satel-
lite structures. The excitation spectra of NiO, CoO, and FeO
are thereby drastically improved, and are found to be in good
agreement with the XPS, BIS, and OKa x-ray emission
spectroscopy~XES! experiments.50 For MnO the self-energy
contribution is found to be small. This is related to the half-
filled 3d shell of Mn. It should be noted that the theory
considered here contains bubble-type diagrams, despite the
restriction to on-site scattering processes.

In Sec. II we formulate a local three-body scattering
theory for the multiorbital tight-binding model. In Sec. III,
the theory is applied to antiferromagnetic MnO, FeO, and
CoO, and NiO. The results are compared with the experi-

ments of XPS, BIS, OKa XES, and ARPS. Section IV
contains concluding remarks.

II. FORMULATION

We employ a multiorbital tight-binding model defined by
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H0 represents the kinetic energy. Operatorsdims and pjl s
denote the annihilation of an electron with spins in the 3d
orbit m of the transition-metal~TM! site i and the annihila-
tion of an electron with spins in the 2p orbit l of the O site
j , respectively. Number operatorsn ims
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dd are evaluated from the
Slater-Koster two-center integrals (pds), (pdp), (pps),
(ppp), (dds), (ddp), and (ddd).51 A point charge crystal-
field splitting (10Dq) is taken into account so that the 3d
orbital energies are split according toEd(eg)5Ed16Dq,
andEd(t2g)5Ed24Dq. Thed-level position relative to the
p levels is given by the charge-transfer energyD defined by
D5Ed2Ep1nU for the dn configuration. HereU is the
multiplet-averagedd-d Coulomb interaction given byU5A
214B/917C/9. HI represents the intra-atomic Coulomb in-
teraction on TM sites. The Coulomb interaction on O sites is
neglected. The interaction matrix elementg~n1n2n3n4! is
written in terms of the Racah parametersA, B, andC, where
the abbreviationn stands for~m,s!.

We determine most parameter values from a cluster-
model analysis of photoemission spectra.21–23The values for
(dds), (ddp), and (ddd) cannot be determined from the
cluster-model analysis, and therefore we set them close to
Mattheiss’ LDA estimates.52 Among the Racah parameters,
B andC are known to be little screened by solid-state ef-
fects, whileA is known to be considerably screened. ForB
andC we use the atomic values, but regard the value ofA as
an adjustable parameter so as to obtain a reasonable satellite
position. As a result, we find a value ofA which is roughly 1
eV smaller than that obtained from the cluster-model
analysis.23 Table I lists the parameter values used in the
present calculation.

For MnO, FeO, CoO, and NiO we assume an antiferro-
magnetic structure of the second kind, and divide the TM
sites into two sublatticesA andB. In Ref. 49, for NiO, we
described the procedures to make the HF approximation and

TABLE I. Parameter values for the tight-binding model of
MnO, FeO, CoO, and NiO in units of eV.

Parameter MnO FeO CoO NiO

A 3.9 5.5 5.2 5.6
B 0.12 0.13 0.14 0.13
C 0.41 0.48 0.54 0.60
D 8.8 7.0 5.5 5.0
pds 1.3 1.3 1.3 1.4
pdp 20.6 20.6 20.6 20.63
pps 0.55 0.55 0.55 0.60
ppp 20.15 20.15 20.15 20.15
dds 20.23 20.29 20.25 20.23
ddp 0.025 0.030 0.058 0.10
ddd 20.005 20.004 20.006 20.01
10Dq 0.70 0.70 0.70 0.70
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to calculate the self-energy. In the following we mention
mainly the altered points to deal with the complicated situa-
tion of FeO and CoO.

In the HF approximation for NiO, we defined the 3d or-
bits bym5xy, yz, zx, x22y2, and 3z22r 2, with x, y, andz
referring to the crystal axes. In this case only the diagonal
parts of ^gudin

† din8ug& ~with ug& denoting the HF ground
state! remain as nonvanishing elements. For FeO and CoO,
however, the off-diagonal parts do not vanish, complicating
the self-consistent determination of the HF potential. This
requires matrix forms of the on-site HF energies for the later
calculation of the self-energy:

e in,in85 (
n,k¹F̃

~en,k2m0! f n,k* ~ in! f n,k~ in8!, ~2.4!

ē in,in85 (
n,kPF̃

~en,k2m0! f n,k* ~ in! f n,k~ in8!. ~2.5!

Here the HF eigenvalues are classified according to momen-
tum k and band labeln, and are denoted asen,k . The corre-
sponding wave functions aref n,k( ims) and f n,k( j l s). Sym-
bol F̃ represents the Fermi volume, i.e., the volume occupied
by electrons in momentum space, andm0 is the HF chemical
potential. In addition, the density matrixnin,in8 for electrons
and n̄in,in8 for holes are also necessary for the later calcula-
tion of the self-energy. They are defined as

nin,in85 (
n,k¹F̃

f n,k* ~ in! f n,k~ in8!, ~2.6!

n̄in,in85 (
n,kPF̃

f n,k* ~ in! f n,k~ in8!. ~2.7!

The mean energies of an electron and a hole in orbitn at site
i defined asein and ēin in Ref. 49 are now given by
ein5e in,in/nin,in and ēin5 ē in,in/n̄in,in .

The single-particle Green’s functions are introduced in
the same form as before,

Gms,m8s8
dd

~ i ,i 8;t !52 i ^T„dims~ t !di 8m8s8
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where T is the time ordering operator,̂ & denotes the
average over the ground state, anddims(t)5exp[i (H
2mNe)t]dims exp[2 i (H2mNe)t], with m andNe denoting
the chemical potential and the number operator of electrons.
We takeH01HI

HF as the unperturbed Hamiltonian, and cal-
culate only the diagonal part of the self-energy with respect
to TM sites. This gives the main contribution to the self-
energy, since the Coulomb interaction acts only on TM sites.
For calculating the self-energy, we need to introduce the
three-particle statesuR; i ,n1 ,n2 ,n3&,uA; i ,n1 ,n2 ,n3&, which
are defined by Eqs.~2.12! and ~2.13! in Ref. 49. Although
they are orthogonal to each other for NiO, they are not or-
thogonal for FeO and CoO. Their overlap matricesx i

(R) and
x i
(A) are given by

x i
~R!
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28n

38
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In the presence of the nonorthogonality, the Hamiltonian ma-
trices expanded within the three-particle states are to be
modified from Eq. ~2.16! in Ref. 49. With the notations
DH[H2^guHug& and DNe[Ne2^guNeug&, the Hamil-
tonian matrix for the retarded part is expressed as

@Ĥ ~R!# in1n2n3 ; in18n
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38
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In Eq. ~2.12!, the second, third and fourth lines come from
the HF on-site excitation energy for two electrons and one
hole. The remaining terms represent interaction contribu-
tions. In Eqs.~2.13! and ~2.14!, the second, third and fourth
terms in the square brackets are given by the first term, ex-
changing the indices as indicated in the round brackets. The
Hamiltonian matrix @Ĥ (A)# in1n2n3 ; in18n

28n
38
for the advanced

part is obtained by exchanging the role of the electron and
hole in the expression for the retarded part. We do not set
down this expression explicitly.

Treating carefully the nonorthogonality between the
three-particle states, and using Eq.~2.12! and the corre-
sponding form for the advanced part for the Hamiltonian
matrix, we calculate the resolvent and thereby the self-
energy. The Green’s functions in the momentum representa-
tion Gtms,t8m8s8

dd (k,v),Gt ls,t8 l 8s8
pp (k,v) are calculated by

inserting the self-energy into the Dyson equation. Here the
indices t and t8 designate the atoms in the unit cell. The
Green’s functions contain the chemical potentialm, which
differs from its HF valuem0. However, the shift of the
chemical potential does not affect the shape of the spectral
function where a large band gap is present. Therefore we do
not determine the shift of the chemical potential, but simply
assume that the Fermi level is located somewhere in the gap.
Note that the Green’s functions consist only of discrete poles
on the realv axis.

The spectral densitiesr s
d~v! projected onto TM 3d orbits

andr s
p~v! projected onto O 2p orbits are evaluated from

rs
d~v!52sgn~v!

1

Np (
km

ImGtms,tms
dd ~k,v!,

~2.15!
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ImGtms,tms
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whereN represents the number of unit cell. Also the local
spin momentMd on TM sites is evaluated from

Md5mBE
2`

m

„r↓
d~v!2r↑

d~v!…dv. ~2.16!

III. RESULTS AND DISCUSSIONS

In this section we present results of calculations based on
the tight-binding model with the parameter values given in
Table I. We carry out the HF calculation self-consistently,
thereby assuming an antiferromagnetic order of the second
kind. We use a rhombohedral unit cell containing two TM
atoms and two O atoms on a fcc lattice. By using 512 sample
points in the first Brillouin zone, we continue the iteration
until the sum of the square root of the HF self-energy con-
verges with an error less than 1027 eV. Then we make the

self-energy correction to the HF solution by following the
procedure given in Sec. II. For the sake of comparison, we
also carry out an LDA calculation with the use of the muffin-
tin Korringa-Kohn-Rostoker method. The results are essen-
tially the same as those obtained by Terakuraet al.2

A. MnO

Table II lists the local spin moment calculated from Eq.
~2.16! in comparison with experiments. The LDA underesti-
mates the size of the local-spin moment. The HF approxima-
tion yields a larger value, leading a good agreement with the
experiment. The calculated value 4.8mB indicates that almost
all five Mn 3d orbits are occupied by electrons with majority
spin, due to Hund’s rule coupling.

Figure 1 shows the spectral density of MnO. It is noticed
that the LDA gives too small a band gap. The HF approxi-
mation increases the size of the band gap to 5 eV, in agree-
ment with experiment. As for the valence band, both the
LDA and the HF approximation give similar results. The

TABLE II. Local-spin moment calculated by means of the
LDA, the HF approximation, and including the self-energy correc-
tion in units ofmB , in comparison with the experiments.

LDA HF HF1S Expt.

MnO 4.19 4.82 4.80 4.79~Ref. 5!, 4.58 ~Ref. 8!
FeO 3.39 3.78 3.75 3.32~Ref. 3!
CoO 2.31 2.77 2.74 3.35~Ref. 6!, 3.8 ~Refs. 3 and 7!
NiO 0.94 1.75 1.72 1.77~Ref. 5!, 1.64 ~Ref. 4!,

1.90 ~Ref. 8!

FIG. 1. Spectral densities projected onto Mn 3d states~solid
lines! and O 2p states~broken lines!, calculated by means of the
LDA, the HF approximation, and including the self-energy correc-
tion. An imaginary part 0.01 eV is added to the HF energy eigen-
values. An imaginary part 0.01 eV is also added to the energy
eigenvalues ofH (r ) andH (a). The origin of thev axis is set at the
top of the valence band.
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spectral density projected onto Mn 3d states is mainly situ-
ated in the upper part of the valence band. Peaksa1 anda2
come fromeg andt2g states with majority spin, respectively.
On the other hand, the spectral density projected onto O 2p
states is concentrated in the lower part of the valence band.
At the top of the valence band it is smaller than the LDA
value, suggesting an insulator of typical Mott-Hubbard type.
The small O 2p character at the top of the valence band is
due to the large value ofD, which reduces the actual mixing
between O 2p and Mneg orbits~s bonding!. The conduction
band given by the HF approximation is quite different from
the one given by the LDA. Peaksb1 andb2 come fromt2g
andeg states of Mn with minority spin, respectively.

The self-energy correction is found to be very small. It
merely induces a weak satellite structure atv.29 eV below
the valence band, and slightly reduces the size of the band
gap from its HF value. One reason for the small self-energy
is that electron-hole pair creations are much reduced when
minority-spin states are nearly empty, as is the case for Mn.

Figure 2 shows the spectral density projected onto Mn 3d
states in comparison with the XPS~Ref. 20! and BIS
spectra.21 The cross section in XPS experiments with
\v.103 eV is an order of magnitude larger for the 3d orbits
of Mn than for the 2p orbits of O. The XPS spectra consist
of a shoulderA, a peakB, a broad structureC, and a satellite
structureD. These structures are well reproduced in the HF
calculation~no satellites exist in this approximation! and in
the present theory. The experimental intensity around peakC
looks larger than the calculated one, indicating that the con-
tribution from the spectral density projected onto O 2p states
should be added to the calculated XPS intensity in this en-
ergy region~the cross section for O 2p orbits is as much as
about 18% of that for Mn 3d orbits!.21 StructureD corre-
sponds to the excitation of three particles. The BIS spectra
correspond roughly to the calculated spectra of the conduc-
tion band. They should not be directly compared to the cal-
culated one, though, since Mn 4s states contribute substan-
tially to the BIS spectra.

Figure 3 shows the dispersion relation of quasiparticles
with momenta along theG~0,0,0!-X(p/a,0,0) line~a denotes
the lattice constant!. Since the self-energy correction does
not cause any appreciable change, we have omitted the re-
sults. For the valence band, the dispersion curves of the LDA
are quite similar to those of the HF approximation. While the

curves near the upper part of the valence band are rather flat,
they are very disperse at the lower part of the valence band.
The former result mainly from Mn 3d states, while the latter
result from O 2p states.

B. FeO

As shown in Table II, the HF approximation yields a
value of;3.8mB for the local-spin moment, which is larger
than its LDA value. This suggests that each Fe atom is close
to the high-spin state of the 3d6 configuration, a result of
Hund’s-rule coupling. Inclusion of the spin-orbit coupling
may further increase the total magnetic moment by inducing
an orbital moment. The experimental value of the local-spin
moment is smaller than the calculated one. The reason for
the discrepancy is unclear at present.

Figure 4 shows the spectral density of FeO. Although this
material is an insulator, the LDA predicts a metallic ground
state. The HF approximation leads to a band gap as large as
4 eV. Also it considerably changes not only the conduction-
band but also the valence-band contributions. The spectral
density consists of several peaks. Peaka1 comes from thet2g
minority-spin states of Fe. They hardly mix with O 2p orbits
~p bonding!. On the other hand, peaka2 comes from theeg
majority-spin states of Fe, which mix strongly with O 2p
orbits. Therefore this peak contains a considerable number of
O 2p states. Peaka3 comes from thet2g majority-spin states
of Fe. On the lower part of the valence band~v,24 eV!,
both Fe 3d and O 2p spectral densities are distributed with
nearly equal strength over a wide range. The conduction
band consists mainly of Fe 3d states. Peaksb1 andb2 come
from the t2g andeg minority-spin states, respectively.

FIG. 2. Spectral density projected onto Mn 3d states~solid
lines! in comparison with the XPS and BIS spectra~broken lines!
for MnO. The dotted line shows the contribution of the majority-
spin states.

FIG. 3. Dispersion relation of quasiparticles with momenta
along theG~0,0,0!-X(p/a,0,0) line for MnO, calculated by means
of the LDA, the HF approximation, and including the self-energy
correction. The origin of quasiparticle energies is set at the top of
the valence band.
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The self-energy correction is larger than that for MnO,
and considerably modifies the spectral densities. The band
gap is reduced to;3 eV from its HF value. A small satellite
peakd is induced, and the Fe 3d spectral weight is strongly
reduced in the lower part of the valence band~peakc!. On
the other hand, the peak positionsa1, a2, anda3 are nearly
the same as in the HF approximation. This is a consequence
of the presence of a pole atv521 eV in the self-energy, the
contribution of which cancels the other ones in the upper part
of the valence band. The spectral density projected onto O
2p states shows a reduction of peaka2, and an increase in
the lower part of the valence band. Note that near the top of
the valence band the O 2p contribution is very small, indi-
cating that the system is close to an insulator of the Mott-
Hubbard type. As for the conduction band, a satellite is ob-
tained nearv.6 eV, and peaksb1 and b2 of the HF
approximation are pushed down to lower excitation energies.

Figure 5 shows the spectral density projected onto Fe 3d
states in comparison with the XPS spectra.17 The XPS spec-
tra consist of a broad peakA, a shoulderB, and a satelliteC.
The calculated spectra are in fair agreement with experi-
ments; peakA corresponds well to peaksa1, a2, anda3, and
peaksB andC correspond well to peaksc andd. There exist
no reliable BIS data for FeO.

Figure 6 shows the dispersion relation of quasiparticles
with momenta along theG-X line. The dispersion curves of
the HF approximation differ from those of the LDA.

C. CoO

Within the HF approximation the ground state of CoO is
doubly degenerate. In the real system a crystal distortion of
the Jahn-Teller type or an orbital ordering will lift this de-
generacy. We expect, however, that such a change of the
ground state does not cause any noticeable change in the
excitation spectra, since the spectral densities are nearly in-
dependent for the two possible ground states. In the follow-
ing, for the ground state we choose the one having cubic
symmetry, where threet2g states of Co are equally occupied
by electrons.

The HF approximation gives a local-spin moment as large
as ;2.7mB . The self-energy correction changes this value
very little. This suggests that each Co atom is close to the
high-spin state of the 3d7 configuration. The calculated value
is still smaller than the experimental one. We expect that
inclusion of spin-orbit coupling increases it to a value closer
to the experimental one, since the coupling is known to be
large in CoO.

Figure 7 shows the spectral density of CoO. While the
LDA predicts a metallic ground state, the HF approximation
gives an insulating ground state with a large band gap of;4
eV. Several peaks are found in the upper part of the valence
band; peaka1 results from thet2g minority-spin states of Co,
while peaka2 results fromeg majority-spin states of Co. In
the middle and lower parts of the valence band, both Co 3d

FIG. 5. Spectral density projected onto Fe 3d states~solid lines!
in comparison with the XPS spectra~broken lines! for FeO. The
dotted line shows the contribution of the majority spin states.

FIG. 6. Dispersion relation quasiparticles with momenta along
theG-X line for FeO, by means of the LDA, the HF approximation,
and including the self-energy correction. In the right panel, many
flatbands coming from the poles of the self-energy are omitted
when their intensities are weak. The origin of quasiparticle energies
is set at the top of the valence band.FIG. 4. Spectral density projected onto Fe 3d states~solid lines!

and O 2p states~broken lines!, calculated by means of the LDA, the
HF approximation, and including the self-energy correction. An
imaginary part 0.01 eV is added to the HF energy eigenvalues. An
imaginary part 0.1 eV is also added to the energy eigenvalues of
H (r ) and H (a). The origin of thev axis is set at the top of the
valence band.

54 13 571LOCAL APPROACH TO ELECTRONIC EXCITATIONS IN . . .



and O 2p states are well mixed up, constituting a broad peak.
The conduction band consists mainly of Co 3d states; peaks
b1 and b2 result from thet2g and eg minority-spin states,
respectively.

The self-energy correction strongly modifies the spectral
densities. The band gap is reduced to;3 eV from its HF
value. A satellite peakd is induced below the valence band,
and another peakc emerges with strong three-particle char-
acter. The latter originates from a pole atv.23 eV in the
self-energy. The spectral density projected onto Co 3d states
is reduced in the lower part of the valence band, due to a
transfer of spectral weight to the satellite and the upper part
of the valence band. The O 2p states dominate the intensity
in the lower part of the valence band, but their contribution is
reduced at the top of the valence band. Thereby the system
approaches an insulator of the Mott-Hubbard type. As re-
gards the conduction band, the peaksb1 andb2 are shifted to
lower excitation energies, and a satellite appears atv.6.5
eV.

Figure 8 shows the spectral density projected onto Co 3d
states in comparison with the XPS and BIS spectra.22 The
XPS spectra consist of a peakA, a shoulderB, a broad struc-
tureC, and a satellite structureD. They correspond well to
the peaks found in the present calculation. Around peakC,
however, the XPS intensity looks larger than the calculated
spectral density, as was the case for FeO. The difference may
come from the contribution of O 2p states~the cross section
of O 2p orbits is about 6% that of Co 3d orbits!.22 The BIS
spectra correspond roughly to the calculated spectra for the
conduction bands.

Figure 9 shows the dispersion relation of quasiparticles
with momenta along theG-X line in comparison with the
ARPS data.11 In the ARPS data, a very flat dispersion is
found around the top of the valence band, while in the

middle and lower parts of the valence band the curves are
dispersive. In spite of the above-mentioned failures, the dis-
persion curves of the LDA fit the ARPS data rather well, as
pointed out by Shen and co-workers.10,11 This agreement is
spoiled in the HF approximation. The self-energy correction
again improves the agreement with experiments. The flat-
bands have strong Co 3d character, while the dispersive
bands have strong O 2p character.

D. NiO

As shown in Table II, the local spin moment is underes-
timated in the LDA. The HF approximation improves the
value, leading to good agreement with experiments. The self-
energy correction changes this value little.

The spectral density has already been discussed in Ref.
49. We summarize that results and add a few details in the
following. Within the LDA, the band gap is found to be very
small. The spectral density projected onto Ni 3d states is
concentrated in the upper part of the valence band, while that
projected onto O 2p states is concentrated in the lower part

FIG. 7. Spectral densities projected onto Co 3d states~solid
lines! and O 2p states~broken lines!, calculated by means of the
LDA, the HF approximation, and including the self-energy correc-
tion. Imaginary parts are added in the same way as for FeO. The
origin of thev axis is set at the top of the valence band.

FIG. 8. Spectral density projected onto Co 3d states~solid lines!
in comparison with the XPS and BIS spectra~broken lines! for
CoO. The dotted line shows the contribution of the majority-spin
states.

FIG. 9. Dispersion relation of quasiparticles with momenta
along theG-X line for CoO, calculated by means of the LDA, the
HF approximation, and including the self-energy correction. ARPS
data are shown by symbols,, n, s, andh. In the right panel,
many flatbands coming from the poles of the self-energy are omit-
ted when their intensities are weak. The origin of quasiparticle en-
ergies is set at the top of the valence band.
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of the valence band. On the other hand, the HF approxima-
tion leads to a band gap of;4 eV. At the top of the valence
band, the weight of O 2p states is larger than that of Ni 3d
states, implying an insulator of the charge-transfer type. The
self-energy correction changes the spectrum obtained in the
HF approximation drastically. It yields a satellite atv.29
eV. The spectral density projected onto Ni 3d states is re-
duced in the lower part of the valence band because the
spectral density is transferred to the satellite and to the upper
part of the valence band. The spectral density projected onto
O 2p states is reduced in the upper part of the valence band,
and enhanced in the lower part of the valence band. The
weight of O 2p states is somewhat reduced at the top of the
valence band, but still comparable to that of Ni 3d states.
The system is close to an insulator of the charge-transfer
type. See Fig. 4~a! in Ref. 49 for the spectral densities by
means of the LDA, the HF approximation, and including the
self-energy correction.

Figure 10 shows the spectral density projected onto Ni 3d
states in comparison with the XPS~Ref. 23! and BIS
spectra.18 Shouldera1 at the top of the valence band comes
mainly from theeg majority-spin states, which mix consid-
erably with O 2p orbits ~s bonding!. Peaksa2 anda3 come
mainly from the t2g minority and majority-spin states, re-
spectively. In the conduction band, a satellite structure is
generated atv;5 eV, and a peak is shifted to lower energies.
These structures are in good agreement with the experiments.
Note that the calculated spectral density projected onto O 2p
states agrees also quite well with OKa XES,50,53 as shown
in Fig. 4~b! in Ref. 49.

Finally we mention the dispersion relation of quasiparti-
cles in comparison with the ARPS data.12 As in the case of
CoO, the calculated curves show a number of nearly disper-
sionless bands and rather dispersive ones along theG-X line.
The agreement between the experimental data and the calcu-
lated curves obtained in the LDA is partly reproduced by the
self-energy correction, as shown in Fig. 3 in Ref. 49.

IV. CONCLUDING REMARKS

We developed a many-body theory by taking account of
three-body correlations within a multiorbital tight-binding

model for MnO, FeO, CoO, and NiO. In order to deal with
the complexity of the multiorbital model, we used a local
approximation for the three-particle scattering processes
which are assumed to take place only on the transition-metal
sites. The theory does not only contain ladder-type diagrams
but also bubble-type ones. It is obviously insufficient to ter-
minate a perturbation expansion inU after second order,
because of large values ofU.54 We showed that the self-
energy correction due to three-particle correlations greatly
improves the excitation spectra obtained in the LDA and the
HF approximation. It describes the itinerant character of qua-
siparticles as well as the localized one, and induces satellite
structure with sufficient intensities. The results agree quite
well with the experimental data of XPS, BIS, OKa XES,
and ARPS.

In spite of the successes mentioned above, the present
theory also has some drawbacks. One is that three-particle
states are restricted within transition-metal sites. This ne-
glects the corresponding correlations on O sites. It may also
become inappropriate with decreasing values of the charge-
transfer energy, since holes created in the intermediate states
can move easily to neighboring O sites. Including such pro-
cesses may enhance the spectral density projected onto O 2p
states at the top of the valence band. Another drawback is
that the present theory is unable to describe the lifetime
broadening of spectral peaks. This is due to the restriction of
the number of three-particle states in the local approxima-
tion. The original three-body scattering theory is able to de-
scribe such spectral widths.41

Recently Manghi, Calandra, and Ossicini55 proposed a
three-body scattering theory applying a ‘‘local approxima-
tion’’ directly to Faddeev’s equation. Considering local
three-body correlations, they obtained an excitation spectra
for NiO which is similar to the present ones. An important
difference is that in their calculation the self-energy correc-
tion is implemented on the quasiparticle energies of the
LDA, not on those of the HF approximation. This may cause
ambiguities, since the LDA already contains some parts of
electron correlations. The three-body correlations result in an
increase of the band gap in their theory, while in the present
theory the gap isreducedfrom its HF value.

The present theory is related to a projection approach,
which uses local operators for the description of electron
correlations.56 Both approaches give similar results for ferro-
magnetic Ni.48,57 A quite different approach, which aims at
the low-energy sector, is based on a strong-coupling theory
of a generalized spin-fermion model.58 It describes ARPS
data for Ni semiquantitatively.
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FIG. 10. Spectral densities projected onto Ni 3d states in com-
parison with the XPS and BIS spectra for NiO. The dotted line
shows the contribution of the majority-spin states.
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