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A recently proposed computational scheme based on local increments has been applied to the calculation of
correlation contributions to the cohesive energy of the CaO crystal. Usingab initio quantum-chemical methods
for evaluating individual increments, we obtain;80% of the difference between the experimental and Hartree-
Fock cohesive energies. Lattice constants corrected for correlation effects deviate by less than 1% from
experimental values, in the case of MgO and CaO.@S0163-1829~96!00143-9#

I. INTRODUCTION

Ab initio Hartree-Fock~HF! and configuration interaction
~CI! methods are standard tools in computational chemistry
nowadays and various program packages are available for
accurate calculations of properties of atoms and molecules.
For solids, HF calculations have become possible, on a broad
scale, with the advent of the program packageCRYSTAL.1

However, the problem of an accurate treatment of electron
correlation is not fully settled~for a survey see Ref. 2!.

Although the absolute value of the HF energy is usually
much larger than the correlation energy, the correlation en-
ergy is very important for energy differences. For example,
the O2 ion is not stable at the HF level, and correlations are
necessary in order to obtain even qualitative agreement with
the experimental result for the electron affinity of oxygen. In
solid-state physics, NiO is a well known example of a system
which is insulating due to correlations.

The most widely used method to include correlations in
solids is density-functional theory~DFT!.3 DFT has also re-
cently become quite popular for a computationally efficient
treatment of exchange and correlation in molecules. How-
ever, a systematic improvement towards the exact results is
currently not possible with DFT. Wave-function-based meth-
ods are more suitable for this purpose.

In recent years, quantum Monte-Carlo calculations have
been performed for several systems.4 Correlations are in-
cluded here by multiplying the HF wave function with a
Jastrow factor. An approach more closely related to quantum
chemistry is the local ansatz,5,2 where judiciously chosen lo-
cal excitation operators are applied to HF wave functions
from CRYSTAL calculations. Some years ago, an incremental
scheme was proposed and applied in calculations for
semiconductors,6,7 graphite,8 and for the valence band of
diamond;9 here information on the effect of local excitations
on solid-state properties is drawn from calculations using
standard quantum-chemical program packages. In a recent
paper10 we showed that this method can be successfully ex-
tended to ionic solids; we reported results for the correlation
contribution to the cohesive energy of MgO. In the present
paper, we apply the scheme to the cohesive energy of CaO,
as a second example. In addition, we show how correlations

affect the lattice constants of MgO and CaO. For these sys-
tems, several calculations have been performed at the HF
level with theCRYSTAL code11–16as well as with inclusion of
correlations using DFT.12,14,15,17

II. THE METHOD

The method of increments can be used to build up corre-
lation effects in solids from local correlation contributions
which in term may be obtained by transferring results from
suitably embedded finite clusters to the infinite crystal. It has
been fully described in Refs. 6, 7, 8, and 10, and a formal
derivation has been given within the framework of the pro-
jection technique.18 Thus, we will only briefly repeat the
main ideas.

~a! Starting from self-consistent-field~SCF! calculations
localized orbitals are generated which are assumed to be
similar in the clusters and in the solid.

~b! One-body correlation-energy increments are calcu-
lated: in our specific case these are the correlation energies
e(A), e(B), e(C), . . . of localized orbital groups which can
be attributed toX21 (X5Mg,Ca! or O22 ions at ionic posi-
tionsA, B, C, . . . .Each localized orbital group is correlated
separately.

~c! Two-body increments are defined as nonadditivity cor-
rections:

De~AB!5e~AB!2e~A!2e~B!,

where e(AB) is the correlation energy of the joint orbital
system ofAB.

~d! Three-body increments are defined as

De~ABC!5e~ABC!2@e~A!1e~B!1e~C!#

2@De~AB!1De~AC!1De~BC!#.

Similar definitions apply to higher-body increments.
~e! The correlation energy of the solid can now be ex-

pressed as the sum of all possible increments:

ebulk5(
A

e~A!1
1

2(A,B De~AB!1
1

3! (
A,B,C

De~ABC!1•••.

~1!
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Of course, this only makes sense if the incremental expan-
sion is well convergent, i.e., ifDe(AB) rapidly decreases
with increasing distance of the ions at positionA andB and
if the three-body terms are significantly smaller than the two-
body ones. A prerequisite is that the correlation method used
for evaluating the increments must be size-extensive: other-

wise the two-body incrementDe(AB) for two ionsA and
B at infinite distance would not vanish. In our present work,
we used three different size-extensive approaches, cf. Sec.
II A. Finally, the increments must be transferable, i.e., they
should only weakly depend on the cluster chosen.

TABLE I. Atomic ionization potentials Ca→Ca1/Ca1→Ca21

~in eV!.

RHF 5.16/11.35
ACPF 6.01/11.78
CCSD 6.03/11.77
CCSD~T! 6.09/11.80
Expt. ~Ref. 33! 6.11/11.87

TABLE II. Bond lengthRe ~Å!, dissociation energyDe ~eV!,
and vibrational frequencyve ~cm21) of the CaO molecule.

Re De ve

RHF 1.812 0.67 829
CCSD 1.822 3.39 769
CCSD~T! 1.846 3.84 681
Expt. ~Refs. 34 and 35! 1.822 4.1660.07 732.1

TABLE III. Local increments~a.u.! for CaO at a lattice constant of 4.81 Å.

weighta ACPF CCSD CCSD~T!

Ca→Ca21 1 10.047045 10.047359 10.050921
O→O22 1 20.096104 20.097083 20.102340

sum of one-body increments 20.049059 20.049724 20.051419

Ca-O next neighbor 6 20.037704 20.035436 20.040266
Ca-O, second next neighbor 8 20.000880 20.000928 20.001056
Ca-O, third next neighbor 24 20.000288 20.000504 20.000576
Ca-O, fourth next neighbor 30 20.000150 20.000090 20.000120
Ca-Ca, next neighbor 6 20.001002 20.001026 20.001128
Ca-Ca, second next neighbor 3 20.000054 20.000057 20.000063
Ca-Ca, third next neighbor 12 20.000060 20.000072 20.000072
O-O, next neighbor 6 20.006888 20.006402 20.007548
O-O, second next neighbor 3 20.000363 20.000345 20.000402
O-O, third next neighbor 12 20.000324 20.000312 20.000360
O-O, fourth next neighbor 6 20.000066 20.000066 20.000078
O-O, fifth next neighbor 12 20.000060 20.000060 20.000078
O-O, sixth next neighbor 4 20.000016 20.000008 20.000016

sum of two-body increments 20.047855 20.045306 20.051763

O-O-Ob 8 10.000224 10.000176 10.000200
O-O-Oc 12 10.000060 10.000036 10.000048
O-Ca-Cad 12 10.000036 10.000288 10.000276
O-Ca-Cae 3 20.000078 20.000015 20.000030
O-Ca-Of 12 10.000792 10.001092 10.000972
O-Ca-Og 3 20.000180 20.000060 20.000132
O-Ca-Oh 24 20.000048 10.000216 10.000192

sum of three-body increments 10.000692 10.001685 10.001412

total sum 20.096342 20.093445 20.101910

aWeight factor in the incremental expansion of the bulk correlation energy~in a.u. per primitive unit cell! of
CaO.
bIons at~1,0,0!, ~0,1,0!, and~0,0,1!.
cIons at~1,0,0!, ~21,0,0!, and~0,0,1!.
dO at ~0,0,0!, Ca at~0,0,1! and ~0,1,0!.
eO at ~0,0,0!, Ca at~0,0,1! and ~0,0,21!.
fO at ~0,0,0! and ~0,1,1!, Ca at~0,1,0!.
gO at ~1,0,0! and ~21,0,0!, Ca at~0,0,0!.
hO at ~0,0,0! and ~0,1,1!, Ca at~1,0,0!.
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A. Correlation methods

In this section we want to give a brief description of the
correlation methods used. In the averaged coupled-pair func-
tional @ACPF ~Ref. 19!# scheme, the correlation energy is
expressed in the form

Ecorr@Cc#5
^CSCF1CcuH2ESCFuCSCF1Cc&

11gc^CcuCc&
~2!

with CSCFbeing the SCF wave function~usually of the spin-
restricted Hartree-Fock type! andCc the correlation part of
the wave function,

uCc&5(
a
r

ca
r ar

1aauCSCF&1 (
a,b
r,s

cab
rs ar

1as
1aaabuCSCF&;

~3!

gc is chosen as 2/n in order to make the expression~2! ap-
proximately size-consistent (n being the number of corre-
lated electrons!. For more details~and the extension to mul-
tireference cases!, see Ref. 19.

In the coupled-cluster singles and doubles@CCSD ~Ref.
20!# scheme, the wave function is expressed with the help of
an exponential ansatz:

uCCCSD&5expS (a
r

ca
r ar

1aa1 (
a,b
r,s

cab
rs ar

1as
1aaabD uCSCF&.

~4!

a1 (a) are creation~annihilation! operators of electrons in
orbitals which are occupied (a, b) or unoccupied (r , s) in
the SCF wave function.

Finally, in the CCSD~T! scheme, three-particle excitations
are included by means of perturbation theory as proposed in
Ref. 21.

We used these three methods to compare their quality in
applications to solids. It turns out that ACPF and CCSD give
very similar results, while CCSD~T! yields slighty improved
energies.22 Altogether, the results are not strongly dependent
on the methods and no problem arises, therefore, if only one
method should be applicable@as is the case for low-spin
open-shell systems, where CCSD and CCSD~T! are not yet
readily available#. All calculations of this work were done by
using the program packageMOLPRO.23,24

III. COHESIVE ENERGY OF CAO

A. Basis sets and test calculations

For calculating the correlation contribution to the cohe-
sive energy of CaO, we closely follow the approach of Ref.

TABLE IV. Intraionic correlation of free and embedded oxygen
~in a.u.!.

incr. O→ O2 incr. O→ O22

O and O2 free, O22 embedded 0.062794 0.096460
O, O2, O22 embedded 0.050474 0.100715

FIG. 1. Charge density of embedded O22.

FIG. 2. Van der Waals–like decay of the two-body O-O incre-
ments in CaO.

FIG. 3. Sum of local increments for MgO.
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10. For oxygen we choose a@5s4p3d2 f # basis set.25 Cal-
cium is described by a small-core pseudopotential replacing
the 1s, 2s, and 2p electrons,26 and a corresponding
@6s6p5d2 f1g# valence basis set~from Ref. 26, augmented
with polarization functionsf 150.863 492, f 252.142, and
g51.66! is used. All orbitals are correlated, with the excep-
tion of the O 1s core. In particular, the correlation contribu-
tion of the outer-core Ca 3s and 3p orbitals is explicitly
taken into account. We did not use a large-core (X21)
pseudopotential and a core polarization potential~CPP! for
treating core-valence correlation as was done in the case of
MgO,10 because Ca is close to the transition metals and ex-
citations intod orbitals are important. The influence of the
latter on theX21 core cannot be well represented by a CPP
since the 3d orbitals are corelike themselves~cf. the discus-
sion in Ref. 27!. Correlating the Ca outer-core orbitals ex-
plicitly, using the small-core~Ca101) pseudopotential, we
circumvent this problem.

Using this approach, we performed test calculations for
the first and second ionization potential of the Ca atom
~Table I! and calculated spectroscopic properties of the CaO
molecule~Table II!. In both cases, we obtain good agreement
with experiment.

B. Intra-atomic correlation

We first calculated one-body correlation-energy incre-
ments. For Ca21, the results are virtually independent of the
solid-state surroundings. This was tested by doing calcula-
tions for a free Ca21 and a Ca21 embedded in point charges.
~A cube of 73737 ions was simulated by point charges
62, with charges at the surface planes, edges and corners
reduced by factors 2, 4, and 8, respectively.!

In the case of O22, of course, the solid-state influence is
decisive for stability, and we took it into account by using an
embedding similar to that of Ref. 10: the Pauli repulsion of
the six nearest Ca21 neighbors was simulated by large-core
pseudopotentials,28 while the rest of a cube of 73737 lat-
tice sites was treated in point-charge approximation again. A
NaCl-like structure with a lattice constant of 4.81 Å was
adopted.@The experimental value for the lattice constant is
4.8032 Å at a temperature ofT517.9 K ~Ref. 29!#. We per-

formed similar calculations for various other finite-cluster
approximations of the CaO crystal, in order to insure that the
results are not sensitive to lattice extensions beyond the cube
mentioned above.

The results for the one-body correlation-energy incre-
ments are shown in Table III. It is interesting to note that the
absolute value of the Ca→Ca21 increment is larger than in
the case of Mg, although the electron density in the valence
region of Ca is lower than for Mg. The larger correlation
contribution for Ca can be rationalized by the fact that exci-
tations into low-lying unoccupiedd orbitals are much more
important for Ca than for Mg. This is a result which would
be difficult to explain by density-functional theory: in a
local-density framework, higher density leads to a higher ab-
solute value of the correlation energy.

In Ref. 10 we argued that the increment in correlation
energye(embedded O22)2e( free O) is not just twice the
incremente~free O2)2e(free O). However, comparing the
increments e ~embedded O22)2e ( embedded O) and
e(embedded O2)2e (embedded O) one finds a factor very
close to 2. This can be seen from Table IV, where we com-
pare the increments in the case of MgO. Thus, for the em-
bedded species linear scaling is appropriate as in the case of
the gas-phase isoelectronic series Ne, Ne1, Ne21: there, the
increments in correlation energy are 0.0608 H~Ne21 →
Ne1) and 0.0652 H~Ne1 → Ne!.30 Table IV also shows
that the correlation contribution to the electron affinity of the
oxygen atom issmallerfor the embedded species than in the
gas phase. This is due to the fact that energy differences to
excited-state configurations become larger when enclosing
On2 in a solid-state cage. Once again, this is at variance with
a LDA description as the electron density in the case of the
embedded O2 is more compressed than in the case of a free
O2.

In Fig. 1 we show the charge density distribution of
O22, again in the case of MgO. We used basis functions on
both O and Mg; the Mg 1s, 2s, and 2p electrons are re-
placed by a pseudopotential. One recognizes the minimum
near the Mg21 cores, where the Pauli repulsion prevents the
oxygen electrons from penetrating into the Mg21 core re-
gion. This way, the solid is stabilized. The sixth contour line,
counting from Mg to O, is the line which represents a density
of 0.002 a.u. This is the density which encloses about 95% of
the charge and was proposed as an estimate of the size of
atoms and molecules.31

The sum of the intraionic correlation-energy increments
discussed in this subsection turns out to yield only;60% of
the correlation contribution of the cohesive energy of CaO.
This percentage is quite similar to that obtained for MgO,10

at the same level. Thus, although MgO and CaO are to a very
good approximation purely ionic solids, the interatomic cor-
relation effects to be dealt with in the next subsection play an
important role.

TABLE V. Correlation contributions to the cohesive energy of
CaO ~in a.u.!.

ACPF CCSD CCSD~T! DFT expt.

0.095 0.092 0.101 0.078, . . . ,0.097~Ref. 12! 0.129

FIG. 4. Sum of local increments for CaO.
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C. Two- and three-body increments

When calculating two-body correlation-energy incre-
ments, point charges or pseudopotentials surrounding a given
ion have to be replaced by ‘‘real’’ ions. In the case of an
additional ‘‘real’’ O22, its next-neighbor shell also has to be
replaced by a cage of pseudopotentials simulating Ca21. This
way the increments shown in Table III are obtained.

It turns out that the Ca-O increments are much more im-
portant than the O-O increments, while Ca-Ca increments are
negligibly small. The changes with respect to MgO~Ref. 10!
can easily be rationalized: On the one hand, the lattice con-
stant is larger than in the case of MgO~4.81 Å vs 4.21 Å!,
which reduces the van der Waals interaction and makes the
O-O increments smaller. On the other hand, the polarizabil-
ity of Ca21 is higher by a factor of more than 6 than that of
Mg21 ~see, for example, Ref. 28!, which leads to large Ca-O
increments. We show the van der Waals–like decay in Fig. 2
by plotting the two-body increments O-O for CaO from
CCSD calculations~without including weight factors!. By
multiplying with the sixth power of the distance, one can
verify the van der Waals law. Plots for the other two-body
increments are qualitatively similar.

Three-body increments contribute with less than 2% to
the correlation piece of the bulk cohesive energy and may
safely be neglected, therefore. A survey of the convergency

pattern of the incremental expansion, for both CaO and
MgO, is given in Figs. 3 and 4.

D. Sum of increments

Adding up the increments of Secs. III B and III C~cf.
Table V!, we obtain between 71% and 78% of the ‘‘experi-
mental’’ correlation contribution to the cohesive energy,
which we define as the difference of the experimental cohe-
sive energy@11.0 eV ~Ref. 32!# plus the zero-point energy
~which is taken into account within the Debye approximation
and is of the order 0.1 eV! minus the HF binding energy~7.6
eV, Ref. 13!. The percentage obtained is slightly less com-
pared to the case of MgO,10 where 79–86% were recovered.
One of the reasons for this difference is that we used a CPP
in the case of MgO which covers nearly 100% of the core-
valence correlation contributions in Mg, while the explicit
treatment of that correlation piece for Ca was less exhaus-
tive. Another reason is that on the Hartree-Fock levelf func-
tions for Ca ~which are not yet implemented in
CRYSTAL! would probably increase the cohesive energy and
lower the ‘‘experimental’’ correlation contribution. Finally,
as in the case of MgO, a significant part of the missing cor-
relation energy should be due to basis set errors for the O
atom. The total cohesive energy recovered in our calcula-
tions is in the range of between 91% and 93% of the experi-
mental value.

TABLE VI. Local increments~in a.u.! for MgO at a lattice constant of 4.18 Å.

ACPF CCSD CCSD~T!

Mg→ Mg21 10.046897 10.046897 10.046897
O→ O22 20.094833 20.095808 20.100867

one-body increments 20.047936 20.048911 20.053970

Mg-O increments 20.019750 20.019798 20.019804
O-O increments 20.018516 20.017229 20.020154

two-body increments 20.038266 20.037027 20.039958

three-body increments 10.000847 10.000818 10.000862

sum at 4.18 Å 20.085355 20.085120 20.093066
sum at 4.21 Å 20.085233 20.084909 20.092983

TABLE VII. Local increments~in a.u.! for CaO at a lattice constant of 4.864 Å.

ACPF CCSD CCSD~T!

Ca→ Ca21 10.047046 10.047359 10.050921
O→ O22 20.097060 20.098043 20.103456

one-body increments 20.050014 20.050684 20.052535

Ca-O increments 20.037258 20.035258 20.040126
O-O increments 20.007527 20.006984 20.008263
Ca-Ca increments 20.001038 20.001059 20.001179

two-body increments 20.045823 20.043301 20.049568

three-body increments 10.000632 10.001662 10.001484

sum at 4.864 Å 20.095205 20.092323 20.100619
sum at 4.81 Å 20.096342 20.093445 20.101910
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Our results are compared in Table V to those from
density-functional calculations. We choose the results from
Ref. 12, where a correlation-only functional was used and
0.078 to 0.097 H of the correlation contribution to the cohe-
sive energy were obtained, depending on the specific corre-
lation functional used.

IV. LATTICE CONSTANTS

At the Hartree-Fock level, the lattice constant is in good
agreement with experiment for MgO,11,12,14–16whereas there
is a deviation of 0.05 Å in the case of CaO.13 It is interesting,
therefore, to study the influence of correlation effects on lat-
tice constants. In Tables VI and VII, we give the necessary
increments for MgO and CaO, respectively. We find two
main effects of correlations. On the one hand, the van der
Waals interaction leads to a reduction of the lattice spacing
since the attractive interaction is of the form21/r 6 and ob-
viously stronger at shorter distance. On the other hand, we
find that the intraionic correlation of the O22ion forces a
larger constant. This can be understood from the argument
that excited configurations are lower in energy and mix more
strongly with the ground-state determinant if the O22 is less
compressed, as explained in Sec. III B.

Adding up all these contributions~cf. Table VIII!, they
are found to nearly cancel in the case of MgO and to lead to
a reduction of only 0.01 Å . For obtaining this result, we
applied a linear fit to the correlation energy and superim-
posed it on the HF potential curve of Refs. 16 and 13. We
checked the validity of the linear approximation by calculat-
ing selected increments at other lattice constants.

In the case of CaO, the van der Waals interaction is more
important and the lattice constant is reduced to 4.81 Å,
which is in nice agreement with the experimental value. The
lattice constants seem to be in better agreement with the
experimental values than those calculated from density-
functional theory for MgO~Refs. 14 and 15! and CaO,14

where deviations of62% are found. This is similar to earlier
findings for semiconductors.7

V. CONCLUSION

We determined the correlation contribution to the cohe-
sive energy of CaO using an expansion into local increments
recently applied to MgO. Making use of quantum-chemical
ab initio configuration-interaction calculations for evaluating
individual increments, we obtain;80% of the expected
value. The missing energy is probably mainly due to the lack
of g and higher polarization functions in our one-particle
basis set. The computed lattice constants show deviations of
less than 1% from the experimental values. We found two
correlation effects on the lattice constants: the interatomic
van der Waals force leads to a reduction, whereas intra-
atomic correlations of the O22 ions lead to an increase of the
lattice constant.

The main difference between CaO and MgO is the re-
duced importance of the interatomic O-O correlations in
CaO ~due to the larger lattice constant! and the higher im-
portance of the Ca-O correlations~due to the higher polariz-
ability of Ca21).

Compared to DFT, the numerical effort of our scheme is
significantly higher. However, we feel that the advantage of
the present approach is the high quality and stability of the
results both for atoms, ions, as well as for solids. Another
advantage is the possibility of a systematic improvement by
using larger basis sets.

We think that the method of local increments is capable
now of being routinely applied to ionic systems, and a sys-
tematic study on alkali halides is underway. An extension to
open-shell systems such as NiO is also a project currently
under investigation.
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