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The fracture and deformation behavior of the ordered NiAl and FeAl intermetallics were studied on the
basis of full-potential local-density linear-muffin-tin orbital total-energy calculations of the shear and
cleavage decohesion processes. Based onab initio calculations of generalized stacking
fault energetics, the structure of the dislocation core was constructed in the scope of the Peierls-Nabarro model
with a generalized restoring force law. We found that dislocations in FeAl show a strong tendency for splitting
into two superpartials, in contrast with NiAl. Estimates of the Peierls stress yield the correct preferred slip
systems for NiAl~i.e., ^100& $110%! and FeAl~i.e., ^111& $110%!. @S0163-1829~96!00343-8#

I. INTRODUCTION

Aluminides with theB2 structure exhibit a wide range of
interesting physical and mechanical properties, such as high-
ordering temperature, corrosion resistance, and high-
temperature strength. The lack of ductility, however, often
limits the application of these intermetallic alloys. One may
expect many reasons for their low ductility. In accordance
with recent understanding, the poor ductility of FeAl is
caused mainly by environmental factors~hydrogen-induced
embrittlement! ~Ref. 1! in contrast to NiAl, which is consid-
ered to be intrinsically brittle.2 However, a recent
experiment3 illustrated that it is possible to achieve high
~25%! tensile elongation for high-purity monocrystalline
NiAl. It is important to stress that the most intriguing fact
observed in Ref. 3 is that, after substantial plastic deforma-
tion in NiAl, cleavage fracture takes place. This cleavage-
type crack propagation is observed also for FeAl and
CoAl.1,4 Thus these experimental facts demonstrate that the
nature of the brittleness in this type of material is still not
completely understood.

The principal processes that determine brittleness and/or
toughness are dislocation mobility and crack blunting.5 In the
case when the effects of crack shielding can be neglected~for
example when the mobility of the dislocations is low!, the
description of brittle vs ductile behavior in terms of the Rice-
Thomson approach5–7 is based on a comparative analysis of
two competing processes:~i! the opening of the crack, and
~ii ! the emission of a dislocation near the crack tip. Now, the

resistance to dislocation emission at a crack tip may be mea-
sured by the maximum energy associated with the sliding of
atomic planes.6 This parameter, the so-called unstable stack-
ing fault energy (gus), is determined by extremal properties
of theg surface, namely, the energy of the generalized stack-
ing fault ~GSF! associated with a rigid shift of one-half of the
crystal along some direction in the slip plane. The definition
of the GSF was introduced by Vitek8 as an important char-
acteristic for understanding dislocation structure and mobil-
ity.

An essential feature of the GSF is that as a planar fault, it
is not as complicated an object for modeling as is a disloca-
tion, and so it is quite possible to perform accurateab initio
band-structure calculations of its energetics. On the other
hand, what may make it useful is that knowledge of the GSF
energetics allows one to analyze the structure of a dislocation
core in the scope of the Peierls-Nabarro~PN! model9,10 with
general restoring force. Thus the PN model may be consid-
ered as a bridge that brings together information offered by
ab initio band-structure methods and the problem of disloca-
tion core structure. Recently such an approach was used for
an analysis of dislocation structure in fcc metals11 and in
Si.10

To our knowledge there have been no systematic
first-principles calculations ofg surfaces in intermetallic
compounds. There are a number ofab initio calculations of
antiphase boundary energies~APB’s!, associated with
1
2^111&$110% shear in NiAl and FeAl.12–14Recently, the pe-
culiarities of NiAl and FeAl fractures were studied on the
basis of ab initio calculations of cleavage characteristics
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by the full-potential linearized-augmented-plane-wave
~FLAPW! method.15

On the other hand, both theg surface16 and dislocation
structure17 were simulated using an atomistic molecular
static approach with different types of interatomic potentials.
However, there is an open question of whether the potentials
used in these atomistic simulations are good enough to de-
scribe the essential features of the mixed covalent-ionic
bonding in NiAl or FeAl, and whether that type of potential
is transferable for other compounds like TiAl.

In this paper, we attempt to explain some features of the
mechanical behavior of NiAl and FeAl on the basis ofab
initio full-potential linear muffin-tin-orbital~FLMTO! ~Ref.
18! total-energy calculations for both cleavage and planar
shear fault characteristics for possible slip modes. The struc-
ture of the dislocation core was constructed based on the
solution of the Peierls-Nabarro model with general restoring
force determined fromab initio calculations of the energy for
the unrelaxed GSF. Finally, deformation modes are dis-
cussed using results of Peierls stress estimates for NiAl and
FeAl.

II. METHODOLOGY AND DETAILS
OF THE CALCULATIONS

The first-principles total-energy calculations were per-
formed using the FLMTO method without any shape ap-
proximation to the effective crystal potential and charge
density.18 We employ the Ceperly-Alder form of the
exchange-correlation potential, a scalar relativistic treatment
of the valence electrons, and the linear tetrahedron method
for integration over the Brillouin zone.

A. Bulk

Calculations for bulk NiAl and FeAl were performed with
a triple-kappa basisk1

2520.01, k2
2521.0, andk3

2522.3
Ry. Muffin-tin radii were chosen to be equal for Ni~Fe! and
Al atoms with a crystal space filling ratio of 66.9%. Integra-
tion overk space was performed using 83838 regular di-
visions of each axis in reciprocal space. We found that the
equilibrium lattice constants for NiAl (aNiAl52.839 Å! and
FeAl (aFeAl52.811 Å! are in reasonable agreement with ex-
periment~2.887 and 2.862 Å , respectively! and in excellent
agreement with results19 of FLAPW calculationsaNiAl52.81
Å, aFeAl52.83 Å ~Ref. 14! and aNiAl52.84 Å, aFeAl
52.817 Å. The underestimation of the equilibrium lattice
constants is typical, and is usually explained by errors of the
local-density approximation itself, and by neglecting the ef-
fect of temperature expansion. All results reported in this
paper were obtained with the theoretical value of the lattice
constants.

B. Generalized stacking fault

The generalized stacking fault energy is determined as the
energy necessary to apply for a rigid shift of one-half the
crystal on the vectoru ~fault vector! in a slip plane.8 Periodic
boundary conditions have to be imposed in order to use
band-structure methods for calculating the GSF energy,
which is then determined as a difference of large total ener-
gies for two supercells designed to simulate faults with

u50 anduÞ 0 vectors. Thus special care has to be taken
regarding convergence and number ofk points to keep the
same precision of the total energy calculated for different
stacking faults vectorsu.

An important factor is the choice of the supercell geom-
etry, since the size of the supercell should be big enough to
exclude interaction of the~periodic! faults; together with the
poor convergence in the case of huge supercells, this makes
such calculations rather expensive. The way to design the
supercell with two constant translation vectorsc1 andc2 and
variable vectorc3 has been described previously.20 The tri-
clinic supercell is considered instead of the base-centered
orthorhombic cell. In this work, we follow the traditional
choice of a supercell as a repeated stacking of some layers
and keep the mirror plane symmetry. Then, the supercell
with tetragonal symmetry consisting of five unit cells~ten
layers! was constructed for the GSF in the$100% plane. In
case of the$110% plane, an orthorhombic supercell with axes
a, b5aA2, andc53aA2 ~six layers! was used. This super-
cell geometry is suitable both for calculations of the shear
and cleavage decohesion processes. In our FLMTO calcula-
tions, a second energy panel was added to account for the
3p semicore states of Fe atoms positioned in the vicinity of
the fault plane, since in this region the MT radii have to be
reduced in order to avoid their overlap.

As a result, we were able to simulate different slip sys-
tems in NiAl and FeAl. Calculations of GSF energies were
performed for the full range of the variation of the fault
vectoru; in all, seven points were calculated for each direc-
tion. No relaxation effects were considered at this stage of
the study. Note that an ‘‘unrelaxed’’g surface is a kind of
model object that nevertheless is very important for the
analysis of the dislocation core in terms of the PN approach.
Thus, our study is based on the suggestion that the ‘‘unre-
laxed’’ g surface allows one to detect essential properties of
the deformation behavior, at least in the scope of the PN
model aproach, and hence to improve the understanding of
mechanical properties.

C. Characteristics of the cleavage fracture

The same type of supercell geometry used for the GSF
was employed for calculations of the cleavage fracture char-
acteristics for two crystallographic planes$100% and $110%.
The cleavage energyGc is defined as the energy required to
cleave an infinite bulk crystal into two semi-infinite parts,
and so is the energy to be applied for the creation of two
surfaces. In the supercell approach,Gc is calculated as the
total-energy difference per unit surface area.

In the case of theB2 structure, the supercell geometry is
essentially different for the$100% and$110% planes. The$100%
plane consists of only one type of atom~Al or Ni !, and so
this plane is polar and causes some difficulties in the cleav-
age energy estimates. An analogous problem arises in calcu-
lating polar surfaces and interfaces. These problems are re-
lated to the impossibility, in the framework of periodic
boundary conditions, of constructing a supercell without an
excess of one type of atom, and so such a supercell basically
represents some off-stoichiometric compound.21

We used the following algorithm to calculate the cleavage
energy for the$100% polar plane. Calculations of the total
energies for three types of supercells were performed: the
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first represents bulk, and consists of seven Ni layers and
seven Al layers (E1); another was constructed from four Ni
layers, three Al layers~lack of Al layers!, and seven empty
layers (E2); and a third consists of three Ni layers~lack of Ni
layers!, four Al layers, and seven empty layers (E3). Then
Gc was determined as the total-energy difference of the su-
percell consisting of seven unit cells~seven Ni layers, seven
Al layers! and the sum of the total energies of the last two
supercells,Gc5E12(E21E3). The $110% plane contains
both Ni and Al atoms, i.e., it is nonpolar, and in this case
Gc was calculated in the usual manner. The energy of sepa-
ration of two halves of the crystal as a function of distance
Ecl(u) was then determined by varying the thickness of the
vacuum slab.

III. RESULTS AND DISCUSSIONS

A. Cleavage fracture

The calculated dependence of the separation energy on
the distance between halves of the crystalEcl(u) for NiAl
and FeAl are presented in Fig. 1. As can be seen, at some
separation distance this dependence is saturated, and the as-
ymptotic value is the ideal cleavage decohesion energy
(Gc). The calculated points in Fig. 1 are approximated with
a universal binding energy relation.22 The maximum deriva-
tive of Ecl(u) is the so-called theoretical cleavage strength
(smax). Both the cleavage energyGc and the theoretical
strength,smax, for $100% and $110% planes are presented in
Table I. The FLMTO results for Gc are in good agreement
with both the earlier FLAPW calculations by Yoo and Fu,15

and the more recent relaxed results of Wuet al.19 It is also
important to stress, that as in Ref. 15 the calculated Gc and
smax are similar for NiAl and FeAl.

An analysis of the dislocation emission process in the
scope of the elastic model allows the formulation of criteria5

~known as Rice-Thompson criteria! of the brittle-ductile
transition in the form of the inequalitymb/g,7.5210,

whereg5Gc/2 is the surface energy andb is the magnitude
of the Burgers vector. The process of dislocation emission
was studied in a more consistent way by Shoeck23 with the
use of Peierls-Nabarro model approximations. According to
Ref. 23, if the inequality

v

b
,0.94

~12n cos2f!2mb

8pb2~12n!g
~1!

is true, then brittle propagation of crack should be expected.
Here v is the width of the dislocation core,
b5sin(f)sin(u/2)cos(u/2), whereu is the angle between the
slip plane of the emitted dislocation and the plane of the
crack propagation, andf is the angle between the Burgers
vector and the direction parallel to the tip of the crack. Equa-
tion ~1! is analogous to the Rice-Thomson criterion, but in
addition takes into account the dislocation core width. The
shear modulusmnu with shear vectoru on a plane with nor-
mal vectorn, in the case of̂ 100& slip in $100% or $110%
planes, coincides with thec44 elastic constant. The calculated
ratiomb/g for NiAl and FeAl alloys was found to be similar
and unexpectedly large~see Table I!. This result shows that
in terms of this simple criterion both materials have a ten-
dency for brittle propagation of crack.

As mentioned in the Introduction, it was recently ob-
served for pure NiAl monocrystal samples that cleavage frac-
ture takes place after substantial plastic deformation.3 In ac-
cordance with the results of our calculations, the
cleavagelike type of the crack tip propagation may be ex-
plained by a relatively small value of the surface energy
~Table I!. As seen in Table I, in terms of Rice-Thomson
criteria, one may expect a similar fracture behavior for NiAl
and FeAl.

It is interesting to compare results for NiAl and FeAl with
those for fcc metals. Among fcc metals such a large value of
themb/g ratio is known only for Ir~about 12!, whereas for
Cu and Ni this value is about 5–7.11 Note that, among fcc
metals, only Ir shows a cleavage fracture after substantial
plastic deformation.24 The analysis presented in Ref. 11
shows that this peculiarity of the Ir fracture is mainly related
to the large value ofmb/g.

The segregation of light gas impurities on the crack tip,
especially for H impurities, was found to result in a substan-
tial decrease of the cleavage energy in FeAl.15 However, in
the case when brittle propagation of crack takes place, the
plasticity of materials is governed by conditions of the crack
formation. These conditions are easier to fulfill if gas impu-
rities are segregated or interstitial phases are formed. The
latter is most probably a major factor controlling enviromen-
tal brittleness of the FeAl.

FIG. 1. The energy of separation Ecl ~J/m2) and its derivative
s ~GPa! as a function of separation distanceu ~in units of the
interplane distanced) counted relative to the equilibrium interplane
distance for the$100% plane in NiAl and FeAl. Notationsa(a8) and
b(b8) stand for Ecl ~and derivatives) for FeAl and NiAl, respec-
tively.

TABLE I. Cleavage fracture parameters@Gc ~J/m2), smax

~GPa!# and cracking criteriabm/g.

Alloy Plane Gc ~J/m2) smax ~GPa! bm/g

NiAl $100% 5.7 34 11.7
$110% 4.15 22 16.1

FeAl $100% 6.70 42 10.7
$110% 5.57 26 12.9
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Finally, we also calculated the cleavage decohesion en-
ergy Gc

u , which is defined as the cleavage energy in the
presence of a planar fault with shear vectoru, introduced
before separation in a cleavage plane. Results of the calcu-
lated dependences ofGc

u on the fault vector modulus (u) for
NiAl are presented in Fig. 2. As expected, the cleavage en-
ergy is lowered with the appearance of a fault; in particular,
the most pronounced lowering was found foru5a/2^100&
on the $011% plane ~from 4.15 to 3.1 J/m2) and for
u5a/2^100& on the$100% plane~from 5.7 to 4.3 J/m2). This
lowering of thea/2^111&$011% APB is not so pronounced as
for other faults, from 4.15 to 3.95 J/m2. Thus one should not
expect that the APB may be that surface plane in which the
opening of a crack is preferable.

B. Shear strength

Another important parameter of fracture is the shear
strengthssh, and the energy of an unstable stacking fault
gus. In accordance with the recently suggested modification
of the brittle-ductile transition criterion,6 brittle propagation
of the crack should be expected if the inequality

gus, f ~u!g ~2!

is not true; heref (u) is a geometrical factor. The energy
gus is defined as the maximum of the GSF, and scales with
the energy necessary for emission of dislocations from the
crack.

We calculated GSF energies corresponding to the most
important slip modes in NiAl and FeAl. In order to approxi-
mate the calculatedE(u), and to determine theg surface, we
used Fourier expansions over (Kn) vectors in the two-
dimensional lattice which is reciprocal to the slip plane. The
form of this expansion is

E~u!5 (
n51

Cn„12cos~Knu!…, ~3!

where Kn5n1k11n2k2, and n1 and n2 are integers. For
the $110% plane, with X and Y axes along ^100& and
^110& respectively, we have k15(2p/b1)(1,0) and
k25(2p/b2)(0,1), withb15a andb252 A(2a ~wherea is
a lattice constant!. The expansion in Eq.~3! is restricted to
terms with uKnu<2k1, and the coefficients Cn are deter-
mined using a mean least-squares fit to the calculated ener-
gies. Theg surface for the$110% plane in NiAl determined in
this way is presented in Fig. 3, and calculated sections are
presented in Fig. 4. The maximum GSF (gus) energies were
found at a displacementu5b/2 for ^100& and atu50.25b
for NiAl and u50.3b for FeAl in the case of̂ 111& $110%
slip; the corresponding calculatedg/gus ratios are presented
in Table II. Note that for all calculated slip modes this ratio
is small, and typical for materials with intrinsic brittleness.
For example, Ir, which shows cleavage structure, has the
ratio g/gus53.8 according to embedded-atom-method calcu-
lations at the same time that for Cu and Ni this ratio is about
11.8 and 8.4, respectively.7 Thus calculated shear and cleav-
age characteristics show that both for NiAl and FeAl,
cleavage-type crack propagation should be expected. This
conclusion is based on the criterion in Eq.~2!, with unre-
laxed values forgus. The lattice relaxation may result in a
substantial decrease of the corresponding values as demon-
strated by recent FLAPW calculations19 for the $100% slip
plane, which means an easier emission of the dislocations
from the crack tip. However, even for a 2–3 times decrease
of thegus ~Ref. 19! in the case of a noncompact$100% plane,
the ratiog/gus is still small, and the conclusion about cleav-
agelike crack propagation obtained in terms of Eq.~2! re-
mains valid.

The local minimum on curvesc and d in Fig. 4 at 1
2

^111& displacement in the$110% plane corresponds to the
APB. We found an APB energyzAPB51000 mJ/m2 for
NiAl, and 765 mJ/m2 for FeAl is in good agreement with
results for unrelaxed APB energies obtained by Fu and
Yoo14 using the FLAPW method~1000 and 650 mJ/m2). It
should be stressed that, in accordance with Ref. 14, relax-
ation results in a lowering of the APB energy with about a
20% decrease for NiAl and especially for FeAl~from 650 to
300 mJ/m2).

FIG. 2. Dependence of the cleavage energy ratio Gc
u/Gc

0 on the
fault vector introduced on the cleavage surface in NiAl for the
following: $100% plane andu5a ^100&, solid line with filled circles;
$110% plane andu5a ^100&, long dashed line with filled squares;
and $110% plane andu5a ^111&, short dashed lines with open
circles.

FIG. 3. g surface for the~110! plane in NiAl ~the energy E in
J/m2). TheX axis is taken along thê100& direction, and theY axis
along ^110&.
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The shear modulusmnu can also be determined from the
GSF energies for a plane with normal vectorn and displace-
ment vectoru. Assuming that interactions in the crystal are
restricted to nearest neighbors, a simple relation between
GSF energiesE(u) ~for small u) and corresponding shear
modulimnu can be found. The restoring forcedE(u)/du act-
ing between halves of the crystal can be expressed through
the shear deformation« and shear modulimnu, in accordance
with Hooke’s law

dE~u!

du
52mnu«5mnu

u

d
. ~4!

Then we have the following expression for estimates of the
shear moduli:

mnu5d
d2E~u!

du2
, ~5!

whered is the interplane distance. Thus, Eq.~5! allows a
rough estimate of the shear moduli using the calculated GSF
energies. Results of such estimates are presented in Table III
along with experimental data. As can be seen from Table III,
the theoretical values formnu are in reasonable agreement

with experimental data even if Eq.~5! is very approximate. It
is also important to note that shear moduli estimated in this
way do not reflect the experimentally observed degree of
anisotropy of the elastic response in NiAl. Obviously this
result may be related also with the above-mentioned approxi-
mations.

It is seen in Table II that the results forssh/mnu
exp are

systematically larger than those obtained by molecular dy-
namics calculations for metallic alloys.25 This is undoubtedly
related to the neglect of relaxation in our model, which was
especially clearly revealed in the small value of the ratio
smax/ssh, which was found to be less than 1 for^100& shear.
As is known~see, for example, Ref. 26!, for all metals the
cleavage strength is larger than the shear strength. Neverthe-
less, we assume in this stage of our study that a model with-
out relaxation can correctly reproduce the relation between
ssh for different displacements. The smallest value of the
ideal shear strength was found for NiAl in the case of
^111& $110% shear~see Fig. 1!. Hence one may conclude that
the deformation in NiAl is related mainly tô111& disloca-
tions. However, this conclusion contradicts experimental
results,2 which show that thê111& $110% deformation mode
is most unlikely in this alloy and̂100& are the most prefer-
able modes. The solution of this problem in terms of the PN
model is discussed in Sec. III C.

C. Construction of the dislocation core

We concentrate on the analysis of deformation modes and
dislocation structure in the scope of the PN model. As is
known,27 in terms of the PN model the crystal lattice in both
upper and lower half-spaces~with respect to the slip plane! is
considered as an elastic continuum which is characterized by
elastic displacements. The upper and lower half-spaces are
restricted correspondingly by planesA ~from below! andB
~from above!. Then the distribution of the elastic displace-
ments in the PN model is determined by the balance of the
lattice restoring forces acting between planesA andB, and
elastic stresses of the continuum media represent the rest of
the crystal.

The displacements in theA ~or B) plane parallel to the
Burgers vector are described by the PN equation27

2
mD

p E
2`

` dj

j2x

duA~j!

dj
52

dE~u!

du
, ~6!

whereE is the energy of interaction~per unit area! between
the upper and lower parts of the lattice as a function of
the relative displacementu, which is related to the absolute
displacement uA by the simple relation u52uA

TABLE II. Shear strengthssh ~GPa! and cracking criteria
smax/ssh, g/gus.

Alloy
Plane

and shear vectorssh ~GPa! ssh
exp/mnu smax/ssh g/gus

NiAl $100% ^100& 37.5 0.32 0.8 0.91
$110% ^100& 31.3 0.27 0.96 0.91
$110% ^111& 13.3 0.10 2.25 2.15

FeAl $110% ^111& 18.1 0.33 1.93 1.85

TABLE III. Shear moduli estimated from GSF energies calcu-
lated for NiAl and FeAl.

Alloy
Plane

and shear vector mnu~exp!,GPa mnu ~theor!,GPa

NiAl $100% ^100& 116 92
$110% ^100& 116 92
$110% ^111& 41 61

FeAl $110% ^111& 55 87

FIG. 4. The energy of the GSF~J/m2) for the slip systems:~a!
^100& $100%; ~b! ^100& $110%; and~c!; ^111& $110%, all for NiAl; and
~d! ^111& $110% for FeAl.
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1sgn(x)•b/2;27 D is a parameter equal to 1 for screw dislo-
cation, and to 1/~1-n) for edge dislocation.

One should point out two problems appearing in the
analysis of the dislocation core structure in the scope of the
PN model:~i! the restoring force law is unknown, and~ii ! the
mainly mathematical problem related to the solution of the
nonlinear integral equation, Eq.~6!. To determine the restor-
ing force law we use results of the GSF total-energy calcu-
lations. Restoring forces determined in this way for NiAl and
FeAl are presented in Fig. 5.

The solution of the PN model Eq.~6! for an arbitrary
restoring force law is unknown. In theoriginal PN model
only the lowest harmonic of the Fourier expansion ofE(u) is
considered, so that the restoring force is taken to be propor-
tional to sin~4puA/b!. In this case the solution is well
known27 as

uA52
b

2p
arctan

x

v0
, ~7!

wherev05dD/2 is the width of the dislocation core. Later
Foreman, Jaswon, and Wood~FJW! proposed a solution for
the more general case.28 An effective method to find the
solution of the PN equation,u(x), for a wide class ofE(u)
functions was proposed by Lejcek.29 In the following analy-
sis we use his formalism.

In accordance with Ref. 29, Eq.~6! is considered as an
example of a Hilbert transformation, so that the density of
the infinitesimal dislocationr(x)5du(x)/dxmay be written
in the form

r~x!5 (
k51

N

(
n51

pk

rnk~x!, ~8!

with restoring force

2

mD

dE„u~x!…

dx
5 (

k51

N

(
n51

pk

gnk~x!, ~9!

where

rnk5
1

2 F Ank

~x2zk!
n 1

Ānk

~x2 z̄k!
nG ~10!

and

gnk52
i

2 F Ank

~x2zk!
n 2

Ānk

~x2 z̄k!
nG ~11!

are real and imaginary parts of some analytic function;N is
the number of the poles of orderpk at the points
zk5xk1 i zk (k51, . . . ,N). If the dislocation is split, then
xk gives the positions of the partial dislocations, andzk gives
the width of the dislocation core.

We consider here two types of dislocations, namely edge
dislocations with Burgers vector^111& and ^100&. It is suf-
ficient to use parametersN51 and pk53 in the case of
^100& dislocations, andN52 andpk52 for ^111& disloca-
tions. Using Eqs.~8!–~11! one can obtain expressions for
displacementsu(x) and restoring forces]E/]u in conve-
nient parametric forms

2pu~u!

b
5
1

2 Fu11u22
a21

a
~sinu11sinu2!G , ~12!

4pv0

mDb

]E

]u
5

1

2a Fsinu11sinu212
a21

a

3S sin2u12 sinu11sin2
u2
2
sinu2D G ~13!

for ^111& dislocations, and

2pu~u!

b
5u2

a21

a
sinu2b sinu, ~14!

4pv0

mDb

]E

]u
5
1

a Fsinu12
a21

a
sin2

u

2
sinu

12 sin3
u

2
b cos3u/2G ~15!

for ^100& dislocations, where

u1~u!52 arccot
x2d

z
, u2~u!52 arccot

x1d

z
,

u52 arccot
x

z
.

Here we assumed that superpartial dislocations are at6d,
and have the same core widthz5av0.

The earlier proposed solutions of the PN equation can be
obtained as limiting cases of Eqs.~12!–~15!. In particular,
for d50 andu15u2 we have expressions equivalent to the
FJW solution, and if, in addition,a51, then expressions
Eqs.~12!–~15! are transformed to the original solution of the
PN model@see Eq.~7!#.

FIG. 5. Restoring forceF @in units of (4pv0 /mDb)(dE/du)#
as a function of displacementu/b for slip systems~a! ^100& $110%;
~b! ^100& $100%; and ~c! ^111& $110% all for NiAl, and ~d! ^111&
$110% for FeAl.
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We now consider only an analysis of the edge disloca-
tions, for which the PN model is expected to be most ad-
equate. The parametersa, b, andd, determined from the fit
to the curves presented in Fig. 4 using Eqs.~12! and~13! or
~14! and ~15!, are presented in Table IV. Dislocations with
b5a^100& have a compact core and are not split into dislo-
cations with a smallerb (d50). The tendency of the split-
ting into two superpartials for the dislocation with
b5a^111& is quite obvious~see Table IV!, and the distribu-
tion of the displacementsuA(x) determined with the use of
Eq. ~12! for NiAl and FeAl are presented as Fig. 6. As is
clearly seen,̂ 111& dislocations in FeAl demonstrate an ap-
preciable tendency for splitting (dFeAl51.64a); at the same
time, in NiAl the distance between superpartials is the order
of the width of their core.

In the scope of continuum elastic theory, the width of the
splitting is proportional tod;mbsp

2 /zAPB, i.e., it increases
with lowering of the APB energy. On the other hand, the
calculated unrelaxed APB energyzAPB for FeAl is slightly
smaller that for NiAl, but the splitting of â111& dislocation
in FeAl is two times larger~see Table IV!. Hence, in contrast
to elastic theory, in terms of the PN model the splitting is
determined not only by the APB energy, but also by the
shape of corresponding section of theg surface.

Let us now consider the Peierls stresssP for different
types of dislocations. Following Nabarro,30 the magnitude of
sP may be determined if one assumes that the field of the

displacementsu(x2 l ) does not depend on the position of
the center of the dislocationl . Then, by calculating the so-
called ‘‘misfit energy’’ per unit length of dislocation

FP~ l !5S0(
n

E„u~xn2 l !… ~16!

~where the sum is performed for the positions of atomic ar-
raysxn , which are parallel to the dislocation axis andS0 is
the area per atom!, we have

sp5
1

b FdFP~ l !

dl G
max

. ~17!

The sum overn can be simplified using the Poisson formula

FP~ l !5S0 (
s52`

s5` E
2`

`

E„u~ht2 l !…exp~2p ist!dt

5S0 (
s52`

s5`

exp2p isl/hJ~s!, ~18!

where

J~s!5
21

2p isE2`

` ]E~u!

]u

]u

]x
exp~2p isx/h!dx, ~19!

andh is the period of the lattice in the direction perpendicu-
lar to the dislocation line in the slip plane. In Eq.~18! it is
sufficient to consider lowest harmonic contributions. Then, if
the parity properties ofdE/du and du/dx are taken into
account, we have

FP~ l !5FP
~0!12S0cos~2p l /h!J~1! and

sp5
4pS0
bh

J~1!, ~20!

and the problem is reduced to integrating products of ana-
lytic functions@Eqs.~10! and~11!#. The values ofsP deter-
mined in this way are given in Table IV. For NiAl, the low-
est value ofsP corresponds to the slip system̂100& $011%.
Note that thê 111& $011% dislocations, for which GSF energy
barriers are minimal~see Fig. 6!, have large values ofsP .
The latter is easy to understand on the basis of the analysis
performed above. Naturally, the magnitude ofsP is con-
trolled not only by the energy barrier for homogeneous
shear, but also by the size of the area where most appreciable
lattice distortions are taking place and by the character of the
distribution of the distortions. Sincea^111& dislocation in
NiAl is almost not split, distortions in the area of the core are
large and it is hard to move this dislocation over the lattice.
For FeAl, since thea^111& dislocation is split intoa/2
^111&, with a smaller dislocation Burgers vector than the
original, the Peierls stress in FeAl is controlled by the mo-
bility of those superpartial dislocations.

The displacement of atoms in a direction perpendicular to
the slip plane is not treated in the PN model. Thus the effect
of relaxation on the mobility of dislocations cannot be ana-

TABLE IV. Dislocation core structure parameters (a, b1, d)
and Peierls stresssP .

Alloy
Slip plane

and Burgers vector a b d, a sP
(edge)/m

sP
(edge)

MPa

NiAl $100% ^100& 1.0 -0.3 0.0 0.057 5240
$110% ^100& 1.47 -0.71 0.0 0.0075 690
$110% ^111& 1.86 0.0 0.84 0.072 4800

FeAl $110% ^111& 1.81 0.0 1.64 0.0058 510

FIG. 6. Structure of the dislocation core; distribution of dis-
placements,uA(x)/b and the density of infinitesimal dislocation
r(x) for NiAl ~curvesa anda8) and for FeAl~curvesb andb8).
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lyzed by a simple replacement of the unrelaxedE(u) depen-
dence by the relaxed one. The role of the relaxation can be
qualitatively estimated by a comparison of the difference
DE5Eunrelaxed2Erelaxed, with the energy of the elastic dis-
tortion m« rel

2 L induced by displacement of atoms in the dis-
location core. The second parameter« rel

2 is the lattice defor-
mation in a process of relaxation andL;b is a typical size
of the area with considerable relaxation in direction perpen-
dicular to the slip plane. In caseDE!m« rel

2 L, the role of
relaxation is neglegible; if those parameters are of the same
order, one may expect that value ofsp to decrease rather
considerably as a result of such a relaxation. However, we do
not expect this to change the qualitative conclusions, since a
substantial decrease of thezAPB in FeAl ~Ref. 14! only would
increase the width of the splitting and, correspondingly, a
further lowering of the Peierls stresssp in FeAl should be
expected. On the other hand, the lowering of thezAPB for
NiAl is too small for a splitting of the dislocation and so the
Peierls stress is expected to remain rather high.

Our analysis supports a suggestion that the APB energy is
a very important parameter that controls the slip mode be-
havior ofB2-ordered alloys.31 However, the particular value
of sP for different slip systems depends on details of the
restoring force law which is itself controlled by details of the
chemical bonding, or even more importantly by anisotropy
of the chemical bonding. This conclusion can also be illus-
trated by the fact that estimates ofsP performed in the scope
of the analysis described above differ from the original PN
approximations estimates by an order of magnitude.

IV. SUMMARY AND CONCLUSIONS

For NiAl and FeAl ordered alloys, all-electronab initio
local-density calculations of theg-surface sections and cor-
responding characteristics of the shear and cleavage decohe-
sion processes were performed. We found that the cleavage
energies (Gc) determined with the FLMTO method are in a
good agreement with earlier FLAPW results by Fu and
Yoo.14 The results of our calculations of cleavage character-
istics show that both in NiAl and FeAl the habit crack plane
is $110% which agrees with experimental observations for
NiAl. It was shown for a Fe60Al 40 alloy that the$100% cleav-
age plane is preferable.4 Possible reasons for such a contra-
diction were discussed by Yoo and Fu,15 and related to a
mutual orientation of crack and operative slip planes. The
calculated ratiomb/g is fairly large~greater than 10!, which,
according to the simple Rice-Thomson criterion, indicates a
tendency to brittle propagation of the crack in both materials
~cf. Sec. III A!. The same conclusion was also drawn~cf.
Sec. III B! on the basis of an analysis of the theoretical shear
strengthssh and unstable stacking faultgus data. Thus first-

principles calculations show that the mechanism of the in-
trinsic brittleness both for NiAl and FeAl is likely to be
related with cleavage-type crack propagation. This is consis-
tent with recent experimental studies of the fracture in these
intermetallics at room temperature.4,3 However, to under-
stand the physical mechanisms driving the difference in ten-
sile ductility of those two alloys, one has to address ques-
tions not only about crack propagation but also about crack
nucleation processes, which depends on many factors, first of
all on the mobility of dislocations.

Based onab initio calculations, the structure of the dislo-
cation cores were determined using solutions of the PN
model for a general restoring force. We found that~i! the
core of a^100& dislocation is compact, in agreement with
high-resolution transmission electron microscopy measure-
ment by Mills and Miracle;32 and ~ii ! a ^111& dislocation is
split into two superpartiala/2 ^111& dislocations. The dis-
tance of the splitting in NiAl is about the width of the dislo-
cations, but is much larger in FeAl. Estimates of the Peierls
stress in terms of this approach allowed us to reproduce cor-
rectly the relation between slip systems (^100& $100% in
NiAl, and ^111& $110% in FeAl!. Our calculations and analy-
sis show, in agreement with the original work of Rachinger
and Cottrell,31 that the main factor making unlikely the ap-
pearance of̂111& $110% slip in NiAl is the high APB energy
in this alloy, although the shape of theg surface also con-
tributes considerably to the structure of the dislocation core.
In accordance with our results, compared with NiAl, the rela-
tively low Peierls stress in FeAl, and the correspondigly
higher mobility of the dislocations, is likely to be the main
intrinsic factor why FeAl shows a better tensile ductility than
NiAl. 4 We expect that a proper treatment of relaxation will
result in some lowering of the Peierls stress, but will not
change the qualitative conclusions obtained here.

Finally, our results show that first-principles total-energy
calculations of theg surface and shear characteristics in
combination with the PN model analysis provide a reason-
able basis for a theoretical study of the dislocation structure
and operative slip modes inB2 intermetallic compounds. We
conclude that this approach would be especially useful in the
study of materials for which models of interatomic interac-
tions are not accurate enough or justified, e.g., forg-TiAl.
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