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Due to the inherent simplicity of the graphene tubule systems, it is expected that these systems will become
model systems for the calculation of the mechanical and electronic properties of idealized carbon fibers. In this
paper the collective electronic excitations on graphene tubules are discussed. The frequencies of the plasmons
on graphene tubules are calculated using an empirical infinitely thin cylindrical-shell model within the frame-
work of a two-fluid hydrodynamic description. There are two parameters involved in our calculation which are
calibrated on graphite. The variations of plasmon frequencies and oscillator strength with the size of tube and
longitudinal plasmon wavelength are discussed.@S0163-1829~96!08143-X#

The discovery1 and the large-scale synthesis2 of carbon
nanometer-size tubes have provided a big boost to research
in the area of carbon fiber growth as well as in the production
and characterization of fullerene-related materials. Each car-
bon tube comprises coaxial tubes of graphite sheet, ranging
in number from 2 up to 50.1 As shown by Saitoet al.,3 the
stacking of graphitic sheets in carbon tubes is turbostratic.
That is to say, neighboring graphitic sheets are parallel to
each other, but translational and rotational correlations
within a sheet plane are random. The concept ‘‘graphene
tubule’’ is used to refer to a single layer of the honeycomb
graphite structure that is rolled in the form of a cylinder, as
mentioned by Dresselhaus, Dresselhaus, and Saito.4 Hence
each carbon tube consists of a set of graphene tubules. Due
to the inherent simplicity of the graphene tubule systems, it
is expected that these systems will become model systems
for the calculation of the mechanical and electronic proper-
ties of idealized carbon fibers of interest to both the science
and application of carbon fibers for practical use. The study
of collective excitations is very important in understanding
the electron interactions in carbon nanotubes. Ever since the
discovery of carbon nanotubes, a lot of experimental5–7 and
theoretical8–11 work has been done to study the collective
electronic plasma excitations in these systems.

The hydrodynamical model was first introduced by
Bloch12 as a generalization of the hydrostatic Thomas-Fermi
theory. It was initially applied to the energy lost by fast
charged particles to heavy atoms. Through the work of
Jensen,13 this model has begun to be used directly in the
calculation of normal modes of electron gas~for a review of
this model, see Ref. 14!. This model is based on a very clear
physical intuition and is considerably simpler than other
methods. It gives a good description of the collective modes,
both surface and bulk, without the complication of single-
particle spectra and it describes the observed features in
electron-energy-loss spectroscopy rather well. Barton and
Eberlein used this model to propose plasma spectroscopy for
C60 and C70.

15 The existence of the giant plasmon resonance
predicted by them was verified by the photoionization
spectra.16 In this paper we use an empirical infinitely thin
cylindrical-shell model to discuss the plasma spectroscopy
for a graphene tubule within the framework of a two-fluid
hydrodynamic description.

In our model, the graphene tubule is viewed as a hollow
cylindrical shell having the same numbern of carbon atoms
per unit area as the hexagonal plane in graphite. Due to the
large aspect ratio,1 the role of caps is ignored. We take the
cylindrical coordinatesr , z, and u. The p(s) electrons of
graphene tubules are modeled as a continuous fluid with
chargene(3ne) and massnme(3nme) per unit area, super-
imposed on a uniform, immobile, overall-neutralizing posi-
tive background, both confined to the surface of a cylinder of
radiusr 0. Thus we construct a hydrodynamic model featur-
ing a p fluid and as fluid. The displacements of the two
fluids from equilibrium are jp52¹ ifp(t,u) and
js52¹ ifs(t,u), where¹ i differentiates only tangentially.
All equations are linearized inf. We also introduce phe-
nomenologically two frequenciesv rp andv rs , which pa-
rametrize the harmonic restoring forces forp and s elec-
trons, respectively, if both fluids are netural~and therefore
uncoupled!. These two parameters are fitted to graphite.

We first focus on the description ofp fluid, the result of
which can be generated tos electrons directly. The netp
surface charge density is2ne¹•j5ne¹ i

2fp . In terms of
the electric fieldE52¹ ic, Newton’s second law for modes
of circular frequencyv yields

nme~v22v rp
2 !¹ ifp52ne¹ ic. ~1!

Integrating Eq.~1!, we get

fp~ t,u!52
e

me~v22v rp
2 !

c~ t,r 0 ,u!. ~2!

The requisite solutions of the Laplace equation¹2c50 are

c5H (
m,q

amqIm~qr !eimueiqz, if r<r 0

(
m,q

bmqKm~qr !eimueiqz, if r.r 0

~3!

where I m(qr) and Km(qr) are modified Bessel functions.
fp,s is defined only atr5r 0, which is

fp,s5(
m,q

cmq~p,s!e
imueiqz, ~4!
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Across the shellc is continuous, which means

amqIm~qr0!5bmqKm~qr0!. ~5!

From Eqs.~2!–~4!, one gets

cmqp52
e

me~v22v rp
2 !

amqIm~qr0!. ~6!

Similarily, we get

cmqs52
e

me~v22v rs
2 !

amqIm~qr0!. ~7!

Gauss’s law reads

«2Er~r 010!2«1Er~r 020!54pne~¹ i
2fp13¹ i

2fs!,
~8!

where«2 and«1 are the dielectric constants outside and in-
side the graphene tubue, respectively.

Substituting Eqs.~5!, ~6!, and~7! into ~8!, it finally yields

15vmq
2 F 1

v22v rp
2 1

3

v22v rs
2 G , ~9!

where

vmq
2 5

4pne2

mer 0
~m21q2r 0

2!I m~qr0!Km~qr0!

2«2I m~qr0!
dKm

dr U
r0

1«1Km~qr0!
dIm
dr U

r0

. ~10!

In the case of«25«151, Eq. ~10! becomes8,10

vmq
2 5

4pne2

mer 0
~m21q2r 0

2!I m~qr0!Km~qr0! ~11!

and we will consider this situation.
Before further investigation, let us turn to consider the

plasma spectra of graphite. Crystalline graphite has two
plasma frequencies for electric fields parallel to the hexago-
nal planes,17–20with \vp57 eV and\vs528 eV; they are

ascribed primarily to thep ands electrons, numberingy and
3y per unit volume, respectively. The free-electron theory
predicts plasma peaks at;12 eV and;21 eV for thep and
s bands, respectively. The screening effects of thes elec-
trons in graphite force the two plasma peaks apart, to occur
at the experimentally observed values of 7 eV and 28 eV. To
allow for screening, a hydrodynamic model featuring ap
fluid and as fluid was introduced.15 Similiar to deducing the
eigenmode frequency equation for a graphene tubule, the one
for graphite is obtained,

15vp
2F 1

v22v rp
2 1

3

v22v rs
2 G , ~12!

i.e.,

v42~4vp
21v rp

2 1v rs
2 !v21v rp

2 v rs
2 1~3v rp

2 1v rs
2 !vp

250,
~13!

where vp[A4pye2/me is the free-electron plasmon fre-
quency forp electrons.

Fitting the lower root of Eq.~13! tovp and the higher one
to vs , we find \v rp53.4 eV and\v rs514 eV. The fact
thatv rp is much less thanv rs indicates less localization of
p electrons.

FIG. 1. Variation ofm50 plasmon frequencies with tubule ra-
dius for several differentq’s. The upper part corresponds tos plas-
mon and the lower part corresponds top plasmon.

FIG. 2. Variation ofm51 plasmon frequencies with the radii of
graphene tubules.~a! p plasmon;~b! s plasmon.
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Having gottenv rp andv rs , it is easy to solve Eq.~9!,
which we rewrite in the form

v42~v rp
2 1v rs

2 14vmq
2 !v21v rp

2 v rs
2

1vmq
2 ~v rs

2 13v rp
2 !50. ~14!

The frequencies of the (m,q) p ands plasmon are de-
noted asVmqp andVmqs , respectively.

Figure 1 shows the variation ofm50 plasmon frequen-
cies with the radii of the tubules for differentq’s. When
qr0!1,vmq;q and the plasmon excitations have traditional
one-dimensional~1D! characters.8 Whenqr0@1, vmq;Aq
and the plasmon excitations exhibit 2D behaviors. In such a
case the plasmon frequencies are independent of the dimen-
sions of the tubules as can be seen from this figure. Figures 2
and 3 display the variation of plasmon frequencies with the
radii of tubules for severalq’s with m51 and 2, respec-
tively. From the two figures it is found that whenqr0!1, the
plasmon~bothp ands) frequencies depend strongly on the
radii of the tubules and weakly onq and this is the 1D case.8

When qr0@1, the plasmon frequencies depend weakly on
the radii of tubules and this corresponds to a 2D case. One
can see from Figs. 1–3 a dimensionality crossover as the
radii of tubules increase. Also it is found from Figs. 1–3 that

the plasmon frequencies for differentm’s increase withq,
which indicates the important role of longitudinal momen-
tum transfer.

Now, let us consider the polarizability of the graphene
tubule. From Eq.~2!, we know that atv5v rp there can be
no tangential field and this is also true forv5v rs . The
polarizability at these frequencies in a homogeneous field is
the same as the static polarizability for a perfectly conduct-

FIG. 3. Variation ofm52 plasmon frequencies with the radii of
graphene tubules.~a! p plasmon;~b! s plasmon.

FIG. 4. Variation of the ratio of oscillator strengths betweenp
and s plasmon with the radii of graphene tubules.~a! m50; ~b!
m51; ~c! m52.
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ing cylinder in a homogeneous field, namelyr 0
2/2 per unit

length in thez direction. Hence the dynamic polarizability is

amq~v!5
r 0
2

2 Fgmqp

Vmqp
2

Vmqp
2 2v2 1gmqs

Vmqs
2

Vmqs
2 2v2G ,

~15!

where

gmqp5
~Vmqp

2 2v rp
2 !~v rs

2 2Vmqp
2 !

Vmqp
2 ~Vmqs

2 2Vmqp
2 !

,

gmqs5
~Vmqs

2 2v rp
2 !~Vmqs

2 2v rs
2 !

Vmqs
2 ~Vmqs

2 2Vmqp
2 !

. ~16!

The combined oscillator strength f mq52(me /
e2)limv→`v2amq is

f mq5
r 0
2

2

me

e2
@gmqpVmqp

2 1gmqsVmqs
2 #. ~17!

The ratio of oscillator strengths betweenp ands plasma is

gmq5
gmqpVmqp

2

gmqsVmqs
2 . ~18!

Figure 4 shows the variation of the ratio of oscillator
strengths betweenp and s plasmons with the radii of the
tubules. From Fig. 4 it is found that the ratios decrease with
q for differentm’s. Whenqr0@1, the ratios depend weakly
on the radius of tubules, corresponding to a 2D character.
When qr0!1, the ratios depend strongly on the radii of
tubules and in the case ofm50 the ratios decrease with
r 0, while in the case ofmÞ0 the ratios increase withr 0. In
fact one can obtain from Eqs.~11!, ~16!, and~18! that when
qr0!1, gmq;1/3@1.028pne2q2r 0 /me(v rs

2 2v rp
2 )# in the

case ofm50 and will decrease withr 0, whereasgmq;r 0
2 in

the case ofmÞ0 and will increase withr 0. Therefore it is
expected thatgmq will exhibit different behaviors inm50
andmÞ0 cases.
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