PHYSICAL REVIEW B VOLUME 54, NUMBER 19 15 NOVEMBER 1996-I

Collective plasmon excitations in graphene tubules
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Due to the inherent simplicity of the graphene tubule systems, it is expected that these systems will become
model systems for the calculation of the mechanical and electronic properties of idealized carbon fibers. In this
paper the collective electronic excitations on graphene tubules are discussed. The frequencies of the plasmons
on graphene tubules are calculated using an empirical infinitely thin cylindrical-shell model within the frame-
work of a two-fluid hydrodynamic description. There are two parameters involved in our calculation which are
calibrated on graphite. The variations of plasmon frequencies and oscillator strength with the size of tube and
longitudinal plasmon wavelength are discus4&0163-18206)08143-X]

The discovery and the large-scale synthésisf carbon In our model, the graphene tubule is viewed as a hollow
nanometer-size tubes have provided a big boost to researclylindrical shell having the same numbeiof carbon atoms
in the area of carbon fiber growth as well as in the productiorper unit area as the hexagonal plane in graphite. Due to the
and characterization of fullerene-related materials. Each catarge aspect ratib the role of caps is ignored. We take the
bon tube comprises coaxial tubes of graphite sheet, rangingylindrical coordinates, z, and 6. The (o) electrons of
in number from 2 up to 56.As shown by Saitet al,’ the ~ graphene tubules are modeled as a continuous fluid with
stacking of graphitic sheets in carbon tubes is turbostraticchargene(3ne) and massiue(3nue) per unit area, super-
That is to say, neighboring graphitic sheets are parallel tédmposed on a uniform, immobile, overall-neutralizing posi-
each other, but translational and rotational correlationdive background, both confined to the surface of a cylinder of
within a sheet plane are random. The concept “graphen&adiusr,. Thus we construct a hydrodynamic model featur-
tubule” is used to refer to a single layer of the honeycombing a 7 fluid and ao fluid. The displacements of the two
graphite structure that is rolled in the form of a cylinder, asfluids from equilibrium are &§,=-V;¢.(t,6) and
mentioned by Dresselhaus, Dresselhaus, and $aience  &,= — V| ¢,(t,6), whereV | differentiates only tangentially.
each carbon tube consists of a set of graphene tubules. Dédl equations are linearized igp. We also introduce phe-
to the inherent simplicity of the graphene tubule systems, inomenologically two frequencies,, and w;,, which pa-
is expected that these systems will become model systentametrize the harmonic restoring forces forand o elec-
for the calculation of the mechanical and electronic properirons, respectively, if both fluids are netur@nd therefore
ties of idealized carbon fibers of interest to both the scienceincoupled. These two parameters are fitted to graphite.
and application of carbon fibers for practical use. The study We first focus on the description of fluid, the result of
of collective excitations is very important in understandingwhich can be generated i@ electrons directly. The netr
the electron interactions in carbon nanotubes. Ever since thurface charge density isneV-§=ner¢7,. In terms of
discovery of carbon nanotubes, a lot of experimentand  the electric fieldE= — V¢, Newton’s second law for modes
theoreticdl ! work has been done to study the collective of circular frequencyw yields
electronic plasma excitations in these systems.

The hydrodynamical model was first introduced by nue(wz—wfw)vu@,: —nevy. @
Bloch'? as a generalization of the hydrostatic Thomas-Ferm
theory. It was initially applied to the energy lost by fast
charged particles to heavy atoms. Through the work of e
Jensert? this model has begun to be used directly in the ba(t,0)=— ————5—(t,1,6). 2)
calculation of normal modes of electron gésr a review of pe @™~ wry)
this model, see Ref. 14This model is based on a very clear The requisite solutions of the Laplace equatiohy=0 are
physical intuition and is considerably simpler than other
methods. It gives a good description of the collective modes, R )
both surface and bulk, without the complication of single- > angm(ar)e™eie?, if r<rg
particle spectra and it describes the observed features in Y= m 3)
electron-energy-loss spectroscopy rather well. Barton and E by K, (qr)e™eidz, if >
Eberlein used this model to propose plasma spectroscopy for g mam q ' 0
Ceo and Gy.° The existence of the giant plasmon resonance - _
predicted by them was verified by the photoionizationWhereln(qr) and Ky(qr) are modified Bessel functions.
spectra® In this paper we use an empirical infinitely thin @ is defined only at =r, which is
cylindrical-shell model to discuss the plasma spectroscopy
for a graphepe tubu'le'within the framework of a two-fluid 4’77,0:2 Cmq(ma)eimf)eiqz, )
hydrodynamic description. m.q

|ntegrating Eq(1), we get

0163-1829/96/54.9)/13487%4)/$10.00 54 13 487 © 1996 The American Physical Society



13488 BRIEF REPORTS 54

200 ———— T T T T 8.0
L S S S S
e e ] — g=0.0
/7
137 2 ~—— q=0.02
i =1 ---- q=0.04
I ——- g=0.06
15.0 F, 70 } g=0.08
o plasmon m=0 = 9=0.10
— q=0.02(1/a,)
N e =0.04(1/8,)
3 q=0.06(1/a,) - N
g 100} -~ q=0.08(1/a,) . 360f N
§ —-— q=0.10(1/a,) =S \?\\\
e . T ]
© plasmon e
50 P sob R
0.0 L L L L 4.0 L ) : L
0.0 20.0 40.0 60.0 80.0 100.0 0.0 20.0 40.0 60.0 80.0 100.0
r/a, (a) r/a,
.. . . 48.0
FIG. 1. Variation ofm=0 plasmon frequencies with tubule ra- 0o
dius for several differeng’s. The upper part correspondsdoplas- J— g;oﬁoz
mon and the lower part correspondsatoplasmon. e gfggg
q:o:oa
Across the shelly is continuous, which means 30 | 9=0.10
amqI m(qro):bqum(qu)- ) s
From Eqs.(2)—(4), one gets °
240
s andn(@r0) ©®)
Cmgr™ — 2 2 Amglm(QTo)-
a Me( (O wl’ 'n') gmee T N
Similarily, weget L T
12.0 L L L L
0.0 20.0 40.0 60.0 80.0 100.0
_ (b) /a
Cmge™ — 2 2 amql m(q ro)- (7) ’

He(@ _wro)
FIG. 2. Variation ofm=1 plasmon frequencies with the radii of

Gauss’s law reads graphene tubulega) 7 plasmon;(b) o plasmon.

E/(ro+0)—&,E(ro—0)=4mne(Vig,+3Vid,),
82E(fo*0) ~21E,(ro—0)=4mne(Vi¢, [¢0) ®) ascribed primarily to ther ando electrons, numbering and

3v per unit volume, respectively. The free-electron theory
wheree, ande; are the dielectric constants outside and in-predicts plasma peaks at12 eV and~21 eV for thew and
side the graphene tubue, respectively. o bands, respectively. The screening effects of éhelec-
Substituting Egs(5), (6), and(7) into (8), it finally yields  trons in graphite force the two plasma peaks apart, to occur
at the experimentally observed values of 7 eV and 28 eV. To
1 + 3 (9) allow for screening, a hydrodynamic model featuringra
w’— i, w’—w,| fluid and ao fluid was introduced?® Similiar to deducing the
eigenmode frequency equation for a graphene tubule, the one

=2
1=wnq

where for graphite is obtained,
4mne? 2, 2.2
ilo (M*+g7rg)lm(are)Km(are) Lo u? 1 . 3 1
e =
wﬁqq: dKp, m| (10 “r wz_wrzrr w2_wr2[r1 (12
_82|m(qro)w +Sle(qro)W _
o o l.e.,

— — 10
In the case ok,=¢,=1, Eq.(10) become w4—(4w§+wr277+ wrzo)werwrzwwr20+(3wr27+wrza)w’2320’
5 47né€? 5. 2.2 (13
Omg= ", (Mg m(dre)Km(aro) (11 .
Kelo where wa\/47Tv82/,u,e is the free-electron plasmon fre-
and we will consider this situation. quency forsr electrons.

Before further investigation, let us turn to consider the Fitting the lower root of Eq(13) to w,, and the higher one
plasma spectra of graphite. Crystalline graphite has tw@o w,, we find%w,,=3.4 eV andfiw,,=14 eV. The fact
plasma frequencies for electric fields parallel to the hexagothat w, . is much less thaw,, indicates less localization of
nal planes,?°with iw,=7 eV andfiw,=28 eV; they are = electrons.
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Having gottenw,, and w,,, it is easy to solve Eq(9), 0.30 | 9=0.08

. . . = =0.10
which we rewrite in the form ¢

4 2 2 2 2 2 2 < 020
"= (or,+ or, T 4onl) 0+ of or, >

+w2mq(wr20+ Swrzq,):O. (14

0.10

The frequencies of thenf,q) = and o plasmon are de-
noted as() g, and g, , respectively.

Figure 1 shows the variation ogh=0 plasmon frequen- 0.00 . : : .
cies with the radii of the tubules for differemt's. When © - 200 00 tia, 600 800 1000
qro<l, wmg~qand the plasmog excitations have traditional
223 ,?r:?E?:é%lgélgcﬁgzgiiegxh\{ggeZantr)%i;\}i g:*g_q In\/sau ch a FIG. 4. Variatic_)n of the re_t_tio of oscillator strengths between
case the plasmon frequencies are independent of the dime%r—'fI 7 plasm_on with the radii of graphene tubuléa) m=0; (b)

. . . =1;(c) m=2.
sions of the tubules as can be seen from this figure. F|guresr5
and 3 display the variation of plasmon frequencies with the

radii of tubules for severaf|'s with m=1 and 2, respec- the plasmon frequencies for different's increase withq,
tively. From the two figures it is found that whemy<1, the  which indicates the important role of longitudinal momen-
plasmon(both 7= and o) frequencies depend strongly on the tum transfer.
radii of the tubules and weakly apand this is the 1D cage. Now, let us consider the polarizability of the graphene
When gry>1, the plasmon frequencies depend weakly ontubule. From Eq(2), we know that atw= w, , there can be
the radii of tubules and this corresponds to a 2D case. Oneo tangential field and this is also true far=w,,. The
can see from Figs. 1-3 a dimensionality crossover as thpolarizability at these frequencies in a homogeneous field is
radii of tubules increase. Also it is found from Figs. 1-3 thatthe same as the static polarizability for a perfectly conduct-
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ing cylinder in a homogeneous field, namelSIZ per unit
length in thez direction. Hence the dynamic polarizability is

2 2 2
_ r0 quﬂ' qua'
a’mq(w)_§ gmqwﬂz _w2+gmqrr92 I
mqm mdo

(15
where

. (Qrznq»rr_ wrzﬂ-)(wrza_nzmqw)

Imgr™=
T 00ae( Qg O

)
mdo mqw)

(Qrznqcr_ wrzn-)(szqo_ C')rer)
Q00 Vinge— Qi

mdo mqﬂ—)

strength f,q= —(xe/

Omge ™ (16

The combined oscillator

e)lim,, .w?amgis

2
Fo m
fquz e_ze[gmqwﬂzmqw+gmqoﬂﬁ1qo]- (17
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The ratio of oscillator strengths betweenand o plasma is

Yma= o 2 - (18)

Figure 4 shows the variation of the ratio of oscillator
strengths betweem and o plasmons with the radii of the
tubules. From Fig. 4 it is found that the ratios decrease with
g for differentm’s. Whenqry>1, the ratios depend weakly
on the radius of tubules, corresponding to a 2D character.
When qry<<1, the ratios depend strongly on the radii of
tubules and in the case oh=0 the ratios decrease with
ro, while in the case o+ 0 the ratios increase with,. In
fact one can obtain from Eq§ll), (16), and(18) that when
Aro<1, ymq~1/31.0-8mN€*q%r o/ pe(w?,— w?,)] in the
case ofm=0 and will decrease withy, whereaSqu~r§ in
the case oim#0 and will increase wittry. Therefore it is
expected thaty,,q will exhibit different behaviors irm=0
andm=#0 cases.
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