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Magnetic susceptibilities of interactingl) electrons in the Hubbard model and the three-band Quadel
are worked out within the Gaussian fluctuations of the functional integral in the slave boson representation. The
normalized Landau Fermi-liquid paramet&j|/a (e=WyN2, N9 the density of states at the Fermi level,
and W, the bare bandwidjhdefined from the susceptibility expression is investigated for the two models as
functions of Coulomb repulsiold, charge-transfer energy, and doping concentratiof It is shown that the
Landau parameter for the three-band model is larger and exhibits different renormalization behaviors than that
for the Hubbard model in both the weak- and strong-coupling regimes except in the Mott-Hubbard weak-
coupling regime, where it takes the same random-phase approximatiorlibfy as the latter. The reasons
for these results are analyzed. The slave-boson Landau parameter for the Hubbard model exactly reproduces
the T-matrix expressionF 3|/ a=U/Wy/(1+U/W,) in the low-density limit, whose renormalization has the
different origin from that in the dilutely doped regin{&60163-18206)01426-9

[. INTRODUCTION the attractive pairing interaction is so dominant that one can
ignore other residual magnetic interactions in the renormal-
Considerable interest is drawn on the unique magnetiézed quasiparticle states. It is naturally difficult to extract

excitations observed in some cuprate superconductors witfiom these theories the microscopic understandings of the

the view that such excitations may be related to the nature dmportant physical processes taking place behind the anoma-
the high-temperature superconductivity in these compound4QUs magnetic excitations. . _

The particularly unique magnetic properties among others Foracolrrectdescrlptlon o_f the magnetic propertles,_there—

are the unusual temperature dependence and enhancemen{Q€: one first needs to obtain a microscopic expression for

the NMR relaxation rate T/, at Cu sites: the spin gap in the the magnetic susceptibility with the renormalized effective

neutron inelastic-scattering intensftyetc. These unusual CCUPIiNg constants. In this paper we will do this within the

phenomena are now well documented with firm experimentaKOtl'ar'RUCkenSte'n(KR) slave-boson schenfeThe main

evidences, for which several theoretical interpretations havgdvantages of employing the slave-boson approach under

) . . : . Strong correlation, in comparison to other methods, lie in that
been proposed: phenomenological antiferromagnetic spin:

. . . it allows to incorporate coupling constant renormalization as
fluctuation theories, a weak-coupling random-phase ap- P Pling

S well as band renormalization in a simplest possible way of
proximation (RPA) treatment of the Hubbard modbla o saddle-point approximation and further permits to take
Fermi-liquid formalism of quasiparticles with the phenom-

| | into account fluctuations beyond thdy 1/N) Gaussian level.
enological exchange-coupling constant for the three-bangyne gifficult point of this functional approach is that to in-

Cu0, model? and a quantum Monte Carlo simulation of the corporate fluctuations beyond the Gaussian level in a sen-
attractiVeU Hubbal‘d mOde‘f.These theories haVe indeed re- sible manner is in fact not so Simp|e because residual inter-
vealed some new aspects of the strong correlation modelgctions generally become nonlocal  strong-coupling
For example, the first three showed that unusual temperatuigteractions. However, the magnetic properties of the Hub-
dependences of the Cu NMR relaxation rafg¥) *and the  bard model as well as the three-band model have not been
neutron inelastic-scattering intensity can arise at low temstudied in any detail along this line even within the Gaussian
peratures by taking into account simple RPA spin fluctua-approximation.
tions using the phenomenological coupling constant. The last In this paper we derive the expression for the renormal-
pointed out that the same attractive interaction that causdsed magnetic susceptibility for the Hubbard mddé! and
the high-temperature superconductivity pairing can lead tdhe three-band CuQmodet* in two dimensiong2D) within
these unique magnetic properties. the Gaussian level of the KR slave-boson apprdaErom
However, these theories are all rather phenomenologicahis result we define the magnetic coupling constants, i.e., the
in that they are not based on a microscopic derivation of th@symmetric Landau Fermi-Liquid parametef. We inves-
expression for the magnetic susceptibility which is used tdigate the renormalization behaviors of this Landau param-
calculate the magnetic properties in the Hubbard model oeter as the system goes from the weak coupling to the strong
the three-band model. For example, the effective magneticoupling regime(i.e., from the itinerant metallic regime to
coupling which enters into the magnetic susceptibility ex-the localized insulator regimeor from the low carrier-
pression is so strongly renormalized under a strong Coulomdensity limit to the dilute doping limit. We will show how
repulsion that the susceptibility expression can be totally difclosely the magnetic susceptibility of the three-band model is
ferent from a simple RPA type formula. It is not clear that related to that of the Hubbard model and compare the Lan-
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dau parameters of the two models. We will then examine theising the slave-boson scheme and by Vollhaitdal > with
reason why the Landau parameter of the three-band model tke Gutzwiller method. LavagAahowed” the renormaliza-
larger than that of the Hubbard model. The Landau paramtion behaviors of the Landau parameter and the formal
eters both at the half-filling and in the low-density limit can equivalence between the magnetic saddle-point approach and
be analytically expressed using the bare physical parametetise Gaussian-fluctuation RPA approximation in deriving the
of the Coulomb repulsiot), the bare bandwidtiV,, doping  magnetic susceptibility for the Hubbard model. So far only
concentratiord, etc. In particular, it is shown that the present very little work has been done on the three-band model ex-
slave-boson scheme can exactly reproduceTimeatrix re-  cept for the brief study of the coupling constants by Schma-
sult for the effective interactidA in the low-density limit of  lian et al!t
5~1. We will defer to a later publication our studies on the
anomalous magnetic properties which are obtained from our
magnetic susceptibility expression.

Earlier studies on the magnetic susceptibility and the Lan- Using the slave-boson formulations of Kotliar and
dau parameteF § have been performed mostly for the Hub- Ruckensteir, the Lagrangian for the two dimension@D)
bard model by Lavagnf,Li etal.® Li and P. Bmard® Hubbard model is written as

Il. MAGNETIC PART OF THE FREE ENERGY

LM(7)= 2 f* (9, +>\<§>—M)fig—<§ tzi*azjofl*gfw+2 e*(9,+\V e,+2 st (9, + A\ V=25,
ij)yo

+> W g, U= x§§)>wi—2 A, (1)
] g 1

and that for the 2D three-band motfels

L£B®(r)= E Fr (0,4 ND = ) fi gt 2 pF (0,4 Ep—m)p) o~ Z tod(Z5 5P o H.C)+ 2 top(P,oPj;o+ H.C)

oo (oo (i)

+Zi er(ar+)\i(l))ei+% Sro(ﬁr—i_)\i(l)_)\i(g'))sio—i_zi Wi

9, +U+ Y- 2 A2 fwi— 2 AP 2
I

In the expressiongl) and (2) the interactingd-electron  &s;,, o\ (2, 8z, etc., bys,,, A2, z., etc., unless they are
Grassman fieldd;, has been projected onto the composneconfusm% The |n|t|aIIy time-independent constraint Bose
fields,d,,=z,f,,, of quasiparticle-fermion Grassman num- fields A () and A (¥} become time-dependent incorporating
berf;, and boson variables the derivatives of other local gauge field§(), etc®®
Furthermore, we define the new spin-dependent fluctuating
boson variables by s.=(s;*s;)/v2 and \{%
=(\B=\®)/v2, resuling in the following replace-

X(1—eXe—s* s ,) 12 ments in Egs.(1) and (2: 3,55 (3, +A\P-\P)s;

— 3.8t [0, + xf“—(M)m@]sit—(1/ﬁ)x<2>(s.+s|

wheree;, s;; , s;|, andw; are the slave-boson variables rep- *Si-Si+) and Zw{" (9, +UAAD =S AD)w— 3w (9,
resenting the empty, smgle occupied with up or down spin:+U+\1— 7\(2))W. , and thes;,, in the terms Wlch,g by
and  doubly-occupied interacting  electron = sites,s;: , etc. As we shall see later, the new boson variables allow
respectively:® u is the chemical potential and energy is mea-the boson-propagator matrix to be block diagonal of the
sured from the barel-electron level(¢=0). In the three- charge-charge correlation sector and the spin-spin correlation
band model?2), i sites are the Cu sites of interactidgelec-  sector, being maintained in the expansion up to second order
trons andj , sites(a=x,y) the oxygen sites of noninteracting fluctuations in boson-fermion interactigthe same order as
p electrons, and the external fieldis applied only at Cu  O(1/N) in the 1N expansioh Notice here that boson-
sites to calculate the magnetic susceptibilities ofdCelec-  fermion interactions arise in the hopping term of the inter-
tron. Using the radial gauge, we split out the complex bosoracting fermion and in the terms with the constraint fields in
variables into the saddle-point values (Sy,.Wo.\ &V, A ) the projected Lagrangiart4) and (2).
and the fluctuating real variables such QS—>(€O+ 6e;) Let us perform a functional-integral expansion for the La-
xexpli 7], Sij,— (So,+ 0Si,)eXp[i 6771, w;—(Wy+dow;)  grangianL(7) in the partition function
xexpli 07, N M_\+\ D, and A(Z)_>>\§)22+ O\ (2,

(Accordingly,  z,—2y+dz, and j,=Z,Z,—0o z:J [Df][Dp][D&,]ex —fBE(T)dT
+6q;j,,.) Here we denote again the fluctuating variables 0

=(1-W W, — S\ Si,) VA Eel s + S W)

()
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where{¢,} is a set of the real Bose fields defined abovefirst represent the fermion paﬂsz)(T) of the Lagrangian
{pt={e.s. WAD NP ;s  N®} Here we illustrate this (1) [the first two terms in Eq(1)] using the above split-
expansion for the single-band Hubbard model and make @ings of the boson variables. Integrating out the fermion vari-
brief remark on the expansion for the three-band model. Wep|es fromﬁ(FH)(q-) and then Fourier transforming we obtain

CE70(r) == 20 TOIN{(4 MG = 1) 85 = Qost i}~ {200t(2ig + 02j5) +162107, o} 33y + ONI 7 3y
1]

:_Ig TrIn (/‘LT+q008k+)\E)%t)_M)5q+200(8k+q+8k)5zqo—+zp Ek+p+q0Z-poOZp+qet 5}\557) ) 4
o

using the unrenormalized saddle-point fermion bagret — 2ty with y{")=cosk,a+coska. In Eq.(4) we separate out the
TrIn form of the inverse saddle-point fermion propagat@®(k,7) *=—(9,+ gﬁ';)—,u), and expand the rest in fluctuat-
ing boson variablesz,,, etc., Wheregf(';) is the renormalized bani';)zqogsﬁ )\g%,) with go,=z3,. In the latter boson

terms we keep the self-energy corrections of single fermion line and two fermion lines to boson propagators. Consequently

£xM(7) is written as

LEM(r)= =2 Trin[=GO(k,7) "1+ 2 Tr{ 2 (5AG, + 3BiG) GO (k,7)
ko q ko

1
+5 kz (A + NGO (K, ) (SA g+ NGO (k+0q,7) |, (5)

where we have used the definitionsAl) =z, (& 1
qo 0o\ €k+q 0_ _ — . _
+8k) 6ZQU and 5B(k|;3rzzpsk+p+q52—pu52p+q<,- Fluctua- ‘7:<F - B r% = In ot &nko :U’]' €)

tions 8z, , etc., indA),, etc., are further expanded into the
terms with boson variablelgp,} in bilinear form.
A similar functional-integral expansion is made for the
three-band model using the fermion p#£®(7) (the first ~ F&'=Uw3+\{"
four termg of the Lagrangian2). The standard method to
deal with mixing bands in a functional integral is to first
form hybridized fields out of;, and P o fermion variables
using the saddle-point separation of the Lagrangian
£E®(7), and then integrate out these hybridized fields. One 88s=2, &(—q)D(q) ()
obtains a Lagrangias’ ®®)(7) similar to the expressiotb) a
but with the sum over the three hybridized bargd> (n .,
=1,2,3 in this case. In the case with,,=0, the fermion :% aEﬁ oo —DID(A) " ]apdp(d), 1D
bands are simply given bg(32(n=3,1)=(1/2)}{e,+\{)
+[(ep—ANZ)?+4q,751"% and &5P=¢,, where 7=
2,30, () 2=(F)2+ (432 and H®  and the actiorS=[£L(ndr=5{"+S; is written as the sum
. x y @ f the saddle-point fermionic par8®=aF® and the
=sink,/2), (a=x,y). 0 . P parb e " -
bosonic part Sz, the latter being further divided,
Sg=SY+48Sg, into thec-number free energgV=pFY)
and the fluctuating bosonic-field pa#fg . Hereq, etc., de-
note the four-vector componentg=(q,iw,)] and &(q)
={ha(D)s: Pal®)al={eq g+ Wq A, N{Disq-, APL.
e inverse boson propagators for the Hubbard model are
written as the sum

e2+ >, s2 +w3
(o

- E )\E)ZU?(SS(I—’— WS)’
(10)

As to the boson part(the last four terms of the
Lagrangians in Eqg1) and(2), one obtains only the saddle-
point boson free energfF”) and the noninteracting boson-
propagatof D(q)(® '] terms. Collecting these fermion and
boson terms together and taking the trace, one obtains t
partition functionZ (common for the two models

z2=20962,, (6)

where Dop(@) 1=DY +Z 4+ p(q), (12
Z2O0=exd — B(FY+ F)], )

of the noninteracting teranOg_l, the single-fermion-line
(first orde) self-energy term given by

7o~ | [DH-IDB@IeRi-55],  (®)
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0 2 AH) 4 s-slave-boson energy is brought by inclusion of the
2 ap(q)= 2 GO(K)P*(Algy+Biga)! 9o — Q) ddg(), correlation-bubbldT® (q), which enables a Cu-to-Cu in-
(13 tersite hopping through oxygen sites. We will see later that
due to this term thel-electron magnetic susceptibility of the
three-band model becomes very similar to that of the Hub-
bard model. The correlation-bubble self-energy matrix
1(a)a

and the two-fermion-lingsecond ordercorrelation-bubble
term defined by

1
Map(@)=5 kz {AD A NE) ) 0o (— DHAAT .,

IIs s (q) s \@(q) )

11 = 21
DI IEOKGOK+q). (19 Do e, (@ Mo &
[This expansion is equivalent to the ord2¢1/N) in the 1N has the elementd ,4(q) given by
expansion,. It is easy to see that the resulting boson-
propagator matrixD(q) ! under the present expansion B 9z, 2
scheme is maintained to be block diagonal of the55 M5 s (q)=—82| -— o5 | X2 (22)
charge-sector matri®(q) 5 * and the X2 spin-sector matrix
D(a) " 9z,
s \@(q)= 2‘/_Zo X1(Q) 23
D( )1—<D(q);l ° ) (15
| 0 D)yt 1
Ih@y@(a)= =5 xo(a)- (24)

Let us now write down explicitly the elements of the spin-
sector boson matrixD(q); =D ' +3(q).+11(q), for  Herexn(q) (1=0,1,2 are given for the Hubbard model by
the VeCtor ¢,(a) .} ={Sq— AP} since the charge-sector bo-

son propagatoD(q) ; * makes no contribution to the mag- (H)(q — 2 GOk+q)G9(k), (25)

. ey . . -1,
netic susceptibility. The noninteracting matiX®  is the

same for the two models: 1

AD\@  _s K@= 723 (—e0d”(kta)d% k), (26
(0)~1 ( 0 0 0) (16)
—Sp 0
1 k+ K+
The one-fermion-loop self-energy mati¥(q), x5 ()=~ ] Zk q) GO k+q)GV(k),
27)
Se o (@ 0 (
E(q)a=( 0 o)’ A7 usingGO(k)=1/(i w,— £ + 1), wherek=(K,i w,,). For the
three-band model they are written as
has onlyX s (q) element, which is given for the two mod- L
els by WP @=-5 3 GPraddo, (28
9z, \? 9z
& <q>=(—T) wg“>+zo(—5> o, (19 1
S 05* P@=-3 3 o ndlkraghi, @9
k
9z
4% - 3o a9
Xs®(a)= - E {rkg“” K+ Q)G (K)+ 7ymic oy
where k
X (k+a) g“”(k)} (30

dz, 1 [dz; 9z
s 5 8_ST_ &_Sl , Here we have used the propagatord dérmion andp elec-

tron, GAK) =23 1Una(K)Ung(K)/ (i wn— Efo + 1) (@B

2 2 2 2 =f,p), wh|ch are also given more explicitly in Ref. 17, and
Iz 19z I°Z; 9°Z; _ 1 4#(3B) 112
~Z=3 —Q——ZW +— (200 for the t,,=0 model, u,(K) ={d&nk,/ degot < @and unp(K)
0sZ (?ST S$10S) (951 _{0’75(38)/(98 }1/2

wéH)_EszkJrq and wg3B)EE';F{_ TE/[(EP_)\BZ))Z Now that the boson propagat®X(q) ' is set up, we can

+40qy72]Y3. There exists an ei‘()pliciq dependence in the szgf{t; (q)qt(’; @ t?iromr?rr?ealgg?onic b;;?; MSBvaEZbles
- a s Ya a ’ .

one-fermion-loop self-energ.s”s (q) for the Hubbard (11). We obtain the partition functio& represented in terms

model, however, no such dependence arises in B>  of the total free energyF=FO+FO+ 57, :

for the three-band model due to its nature of the on-site hy- 0 o)

bridization term. The latte-dependent dispersion of the Z=exf — B(FP + 7y + 6Fp)], (31)
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1 These treatments naturally lead to the same expressions for

5fs=’§ % In[det(D(q) " H)]. (32 the magnetic susceptibilities.

A. Standard derivation of x*%q)
with magnetic field applied to fermion fields

Ill. DERIVATIONS OF MAGNETIC SUSCEPTIBILITY

In this section we derive the frequency and momentum i ] o
dependent magnetic susceptibility(q,w), of interactingd We_z calculate th_e gener_allzed magnetlc SL!SCGpthlhty _at
electron in several different approaches, which, as we shaff! Sites by applying spatially and time-varying magnetic
see later, help us understand the complicated contributions ##£!d Nqe™'“n" with frequencyw, only to interactingd elec-
the susceptibility expressions in the slave-boson treatment§0ns. This adds the effects of time-varying magnetic field
In subsections A and B, the magnetic susceptibilities for thdnteraction — with  fermions,  Hp=Zghq(f; ;i
two models[x™(q,0),x*®(q,w)] are obtained by applying — fi+q fk)e ", to the free energy term&(” and 675
the RPA approximation to boson propagators which iswhich contain fermion lines. We expand the total free energy
equivalent to theéD(1/N) Gaussian fluctuation treatment for F in terms of magnetic fielth, to second orde@(hé). Then
fermions in the IN expansion. In subsection C, the static taking the second derivatives with respechtg one obtains
uniform susceptibilityy'*®(0,0) for the three-band model is the frequency-dependent longitudinal susceptibif$#(q)
calculated in the spin-dependent saddle-point treatmentg=(qg,w)], of d electrons for the two models:

1 52 1 1 ¢[detD(q,h,) 1]
XA == 5 o {FP(hg) + 8Fa(hg} = X6 + qorma=1 |~ 5 7
2 ohg a d det D(q) 2 ohg
Y4
- Xo(gz , , (33)
1_go(q)X0(Q)_ng1(q)+(? {x2(@)?= xo(@) x2(a)}
|
where we have used the relations " 16x%s? s 1 252 1
: 1 o= 58 o8| e
1 99 detD(q,hy) "]
T3 e X (@) 9o(@xo()+guxa(a) T
o ) 2°3(1-5) | 9 | (1= 83
91
—| 5] fxa(@?=xo(@x2(D}|, X2 —4eqW, 53
2 2 72 2 (39
22 2 2
detD(q) ! 9,12 g5)313)216X 820|w835)|{ l+2§d2_ 14_ i 25d , ]
1-9, 1-9, 16sy; 2 1-69 )’
#=1—go(q>xO<q>—glxl<q>+(§ d (17007 16 27s(1=%)
(—sp) (39
X {x2(a)?= xo(A) x2(D)}, (35) 854
o' =01 =g {120 (40)
R SN A BN ) Here, & is thed-electron dopingy;>0 (or thed-hole doping
9o() Zsﬁ o =" 2s s (A}, (36) 84<0) which, in the present hole-representation, is defined
by 84=1—n" (n'=nY for the Hubbard model and by
0 84=1—n"=5+nP for the three-band model using the total
v Z°\ [ 9z 37) doping concentrations=1—(n’+nP) measured from the
91 So/\ds_)’ half-filling, n'+nP=1. Therefore, =0 in the undoped

and the saddle-point contributiopdi(q) in the numerator
given byx §%(q) = x 55(a)/ g, with the noninteracting suscep-
tibility x 55(q) and the renormalization factay,. The mul-
tiplicative factorsgy(q) and g, for the correlation functions

(6=0) three-band model which corresponds no hybridization
hopping indicates the ord-hole (n%=1) insulating state.

One can also derive the magnetic susceptibility expres-
sion x*4q) by converting the fermion coupling with mag-
netic field, Hy=Sqhq(fl, g fki—fisq fk)e ™', to the

Xo(Q) and x,(q) are the effective coupling constants for the magnetic slave-boson coupling with magnetic fietd;
magnetic interactions and are explicitly given with the =2v2sphss_q-€'“n", where one uses the constraint with

saddle-point parameters by

a partial saddle-point substitution,mizfi‘}fm—fﬂfil
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=5s1—55,—v2%s_ . This approach has been employed
by Wanget al. for thet-J model?® by Li et al. for the Hub-
bard modeP*® and by Schmaliaret al. for the three-band
model!! The slave-boson coupling with magnetic field intro-
duces an additional term for the energy of the
[D(a) 'Is s element as [D(q) ']s s =A§"-AE

+3¢ ¢ (@) +11g ¢ (q)—2s3h2. Now that the coupling of @

magnetic field has been switched onto magnetic slave bosons

Sq-» the magnetic-field dependence of the free enefgy

enters the boson propagath(q,hq)’l only through

[D(a,hg) "*1s_s_in Eq. (32). Then we take the second de- @ 5@

rivatives of 5Fg(h,) with respect tah,: <>N<>
1

220y = — =
X4q)= Zﬁ_hgafB(hq)

2)

2 -1
:detbl(q)—1 ‘%& [detii%’hq) ]] P D X S'/?/ e o s -
I @,@(q) )
=4siD(q)s s =455 detD(q) T (4D
which leads to the result obtained in E¢(33) because s, 3@ s @

—4IT @, @(q) =2x0(q) = x5(a). + OWO + m

B. Diagrammatic derivation of x**(q)

Suppose we represent the Hamiltonians of the two models (b)
as the sum of the saddle-point fermion term, the noninteract-
ing boson term, and the fermion-boson interaction term. FIG. 1. The diagrammatic perturbation expansion for the
Then the interacting Hamiltonians are written as momentum-dependent dynamical longitudinal magnetic susceptibil-
ity x¥*4q) [g=(q,w)] of d electron for the Hubbard and the three-

HHZ oy 9z, 2 8k+8k+q s (fT £l fr1) band models in the Ggussian-ﬂuctuation approximation, i.e., the
int 0 IS+ K- 2 Q=1 Tk+qr kT = Tk+al Tkl RPA self-energy corrections to the boson propagat@sThe un-
perturbed saddle-point contributig®q) of O(1), and(b) the per-
1 turbation series diagrams @(1/N) obtained from the diagram in
+— Z Affi)(quTfk,,Tt fl+q1fkl)' (42 (@) due to fermion fluctuations by bosons. In the three-band model
V2 k= the solid and solid-dashed lines are the saddle-point propagators of
f-fermion G{) and f p-mixed fermiong{?), respectively, while in
HEB_ oy & 2 Tt Tk+q) (E (fT the Hubbard model the solid-dashed lines should be replaced by the
int O9s. &t | 2z a=| 2 Tkra1Pit f-fermion solid linesG®. The double wavy lines are the RPA
renormalized boson propagatofs(q),]y@,@, [D(Q)alr@s._,
et 1 (2) ¢t etc., and the open and solid circles are the vetica® Hnd
—fk+qipki)+H c. +E kq2+ )‘qt(kaqufkT 2zy(d9z4/ds_), respectively, of the fermion-boson interactions

given in Egs.(42) and (43).
1 fk)- (43)

The saddle-pointq,7)-dependent longitudinal magnetic
susceptibility ofd electron is defined by

in Fig. 1(b) for the three-band model. These diagram series
exactly corresponds to the Hubbard model if tiip-
propagator(half-solid and half-dashedines are replaced by

X, 1) =(T,Im_o(7)mg(0)])o ;heff—propagator(solid) Iines. I.Excepft this, all the following
iscussions and expressions including the vertex factors can
=S TALF L (D (D) =T g (D (D] be applied to the two models.
" N Now notice that these correction diagrams are made up of
X[ (0) Fierq1(0) = Fi (0) Fiesq (0) I})o, the two kinds of diagrams involving either the boson propa-

whose Fourier transformg§?(q,w)=x§q) is represented by gator [D(a)aly@\@ or [D(d)aly@s_ which accompanies
the diagram of Fig. (). Starting with this unperturbed sus- the magnetic correlation bubblg,(q) or xi(q). Here we
ceptibility diagram of thef-fermion bubble, the diagram- emphasize that the diagram involving the-boson propaga-
matic expansion including second order corrections in thdor [D(d)a]s s does not appear in this perturbation expan-
fermion-boson interactionHi(,ﬂ) (or Hi(;?tB)) then introduces sion because the unperturbed susceptibility bubblesfq)

the series of the correction terms whose diagrams are showwhich must exist on one end of each diagram cannot be
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connected to this boson line. The absence ofghdoson

Substituting these expressions into E44), one finds the

propagator in the perturbation series is quite natural since thesult for x*%(q) given in Eq.(33).

propagatof D(q),]s s itself is directly related to the renor-

malized susceptibilityy?%(q) as we have seen i@1). The

vertices connecting the bubbles and %@ ands_ boson

lines are W2 and 24(dz,/ds_), respectively. The total of
the diagrams shown in Figs(a) and Xb) then leads to the
sum

1/1 1
XZZ(Q):X(Z)Z(Q)[ 1+3 E) ([’D(Q)a])\(z))\@)(%) 2x0(q)

2 (5 ([D(Q)a]s_x(})

d
+[D<q>ams_)( 22 asi) 2xl<q>} . (e

For the boson propagatof3(q), in (44) we substitute the
RPA propagators obtained by invertii(q) ! in Eq. (15).
The boson propagators are found from Ed$), (17), and
(21), and are rewritten as

)\f)l)— )\532)"_25,5,((:” + HsfS*(Q)
detD(q) *

_2do(q) +2(91/2)%x2(q)
- deD(q) Y(-s5)

[D(d)a]r@r@=

(49)

1 dzy
_2 4ZOK [D(q)a]s_}\(f)

9z, ) So— Hs,)\@)(Q)

(2‘/220 ds_| detD(q)~ T

= 0:11(91/2)°x1(q)
" de() V(- “9

z7_

C. Derivation of x¥**0) from magnetic saddle-point solutions

As Kotliar and Ruckenstelrand Lavagnfshowed previ-
ously for the Hubbard model, one can also derive the uni-
form susceptibilityy*(0) directly from the saddle-point free
energy of fermions under applied magnetic fiald This is
obtained by taking into account the effects of the spin-
dependent band renormalizatiqp and the effective internal
field )\ff,) for q=0. Since the result for the Hubbard model is
available® we will obtain here the saddle-point susceptibility
expression for the three-band model. Using the fermion free
energy F9(m,) with magnetic fieldh, applied to Cu sites
only, the d-electron magnetic moment ismy
= — 9FI(mg)/ dho= Sy ,uz5(K,ho) 2o (£3) and the mag-
netic susceptibilityy*%0)= dmy/dh, is given by

oo [ ur(khg)?
w03 [

X( B af(&i?))) ( - agaif?)
I dho )

)of(gai?HkE uz(k,ho)20

(47)

where ¢52%)=3{e,+ M)~ [(s,—\(3)?+40,7¢]"3 and
u(kho)® = H1+(ep= NN/ (sp— NG+ 40,71
with the d level given byaA@=\ —a(h,—\Z) under ap-
plied magnetic fielch, together with the internal fiele-N 2.
The internal field is calculated as-A@ =—dF%(my)/
omy=3 (- dq,/omy) ¥, where v®® is given by w{*®
=3 (= DT (EGN [ (ep—e£40) >+ 40,7412 and is related
to the energyw;® , =, 0P=w$®, which was defined ear-
lier [see below Eq(20)]. Now to obtain the expression for
X*40) we need to calculate- 9£35)/ah, and duy;(k,ho)%
ohg, and furthermore- A2 /dh,. Substituting these results
into the expressio7) and rearranging the terms, we obtain
the saddle-point uniform susceptibility dfelectron as

zz
X0

X

where y?2= y?438)(0), x,=x58(0), etc., and we have used
the  relation x§*=2y, and the  definitions
q,=(1/2)2 ,09q9,/dmy and q,=3%q,/dm3. As regards the
relationship with the coupling constargs™® and g{®® ob-
tained in Egs(38)—(40), it can be shown using the exglicit
quantities ofg, and q, that {29, (9,/2)%}|wS?|=g5®
and 4q,=g*®. Therefore, the expressiqd8) exactly coin-
cides with that in(33). In relation to the Hubbard model
susceptibilit}/, where only the terrrqglw§H)| alone becomes
equal tog { with the term @,/z0)? w {'| missing, the dif-
ference betweeg$® andg (" in Egs.(38) and(39) comes
from the term (1,/2,)%wS?| by cancelling out the second

1—1{20,— (d1/20)?H 05| xo—4d1x1+ (201)%{(X1)?— x2x0}

(48)

contribution equal toqllzo)zlw§,33)| Xo further arises from the
d-p interband term—(2q,)“x»xo, Which cancels out the
above —(q,/z0)J»®)| term in theg$®, thus reducing the
effective coupling constant of the three-band model multi-
plied b%ﬁ(o to 2q2|w§33)|, which is very similar to the Hub-
bard g{" =2q,|w {"|. For the nonuniform susceptibility
x°4(q) of the three-band model, a similar contribution arises
from the last(g{*®)? term in (33) which has aq dependence
from xo(a), x2(a), ){g(q), and this leads the originally missing
g dependence of B to the g-dependent coupling constant
as theg )(q).

It is a common observation in the linear response theory

term ofg&”’ in (38). In the three-band model a nonvanishing that the response function of the system under an external



54 MAGNETIC SUSCEPTIBILITY AND THE LANDAU FERMI- . .. 1349

field which is derived by treating fluctuations in the RPA
approximation is identically reproduced by expanding the
saddle-point free energy, which implements the internal
field, with respect to that external field. For example, it is
well known that in the Hubbard model the self-consistent
mean-field free energy under magnetic field which incorpo-
rates the internal field-Um(m=n;—n,) leads to the uni-
form susceptibility x(0)= x5(0)/(1—U x,(0)) with the same
enhancement Stoner factor as that of the RPA susceptibility

x(0). Lavagna has pointed out that this feature remains also
in the slave-boson treatment of the Hubbard m&del.

SFH o

IV. EFFECTIVE INTERACTIONS
AND LANDAU FERMI-LIQUID PARAMETERS

In this section we examine the renormalizations of the
magnetic interaction or the Landau Fermi-liquid parameter
F§ as functions of doping concentratighas well as Cou-
lomb repulsionU and charge-transfe(CT) energyA=s,, U/l
(4=0). We define the magnetic Landau parametér by
the Wilson ratioR of the static uniform magnetic suscepti-
bility to the linear specific-heat coefficient=C/T as fol-

FIG. 2. The normalized Landau Fermi-liquid parameter
—F3M)/q as a function ofJ/U, for the Hubbard model. The solid
curvesa, b, ¢ correspond to the doping concentrations &f0,

lows: 6=0.15, §=0.95, respectively. The dashed curve is Thenatrix
z z result,—U .¢/Wo= — (U/Wp)/(1+ U/W,), valid for the low carrier

R= XZZZ(O)/Y = X;(O) = 1 ot (49 density limit, being exact for the two-particle system. The inset
X000/ vo  xo(0) 1+Fg shows the separate contributions of th§"(0)/W (solid) and

H) ; ;
where x55(0) and y, are the bare susceptibility and specific- erg{"VIW (dashegiterms in(51) for these dopings.

heat coefficient of noninteractind electrons, respectively,
and the relationsy 51(0)=x§5(0)v/vo=x§5(0)/q, have

been used. Combining this definitigd9) with the expres-
sion (33) for ¥*40) with g=(q,w)=(0,0) leads to

Using the expression@8) and (40) of g §’(0) andg ("’
given by the saddle-point slave-boson parameters, one can
easily evaluate the Landau parame®éf)/« in the limiting
cases. In the half-filled metallic regime defined &y0 and

= iQ Qi = (H) i
Fa_ _ _ u=U/E.<1 (E, is given byE.=8|w{"|~1.6W, in terms
0=~ 90(0)x0(0) = g1x1(0) of the average kinetic energy per siie{™"|~1.6 for the
g,\? ) half-filling or the unrenormalized bandwidtiW,=8t and
Y {x1(0)*= x0(0)x2(0)}. (500 equals the critical Coulomb repulsiod, for the metal-

insulator transitioh we obtain
We now analyze the renormalization behaviors of the Lan- 9y 9y
dau parameteF 2 of the two models, changing from the F3' )_ 40l

weak coupling to strong coupling regimes. o W, { T (1+u)?

1
o1 )
(52)

So the metallic Landau parameterd™/a goes down to

In the case of the single-band Hubbard model, the suscep-0.6. In particular, in the weak-coupling limi <W, we
tibility functions x{™(0) and x{"(0) for =0 involving one  have F§™M/a~ —1.6u~ —U/W,, reproducing the known
and two slave-boson interaction vertices, respectively, can b&eak-coupling result of the RPA approximation. On the
represented in terms of the transverse susceptibiifi/(0)  other hand, in the dilutely doped insulator regime &#1
with energy factorse, and e, 4 being evaluated on the andu>1, we obtain
Fermi surfacess(=w). This leads to the vanishing of the last
term with (gl)2 in Eq. (50). In the resulting expression &g FS(H) 1+ 6¢
we replaceXE)H)(O) by the density of states per spin at the = _0'8[1_ au
Fermi energyNg, and obtain

A. The Hubbard model

: (53

where {=(1—1/u)*2. In the strong-coupling regime —c,
SEA N (0)) gl therefore,F §*)/a tends to—0.8 from above, which is dif-
=T W TEF W (51)  ferent, due to the lattice structure, from the result
o . . .
(F3M/a——1.0) obtained with a constant density of states.
where we have introduced the normalization faete*WN:  These result$52) and (53) are essentially the same except
and the renormalized bandwid¥ki=8q,t. Herea represents  for the factor 4w {|/W,=0.8 as those obtained earfiet’
the the structural parameter of the model reflecting on thdor the structureless Hubbard model whet@§"|/Wy=1.
density of states, which equals unity if we employ a constantn the intermediate-coupling regime, the behavior of the Lan-
density of states and takes a large value forghelose to  dau parameteF 3/« as a function ofU/U, is calculated
the van Hove singularity of the two-dimensional lattice. numerically and is plotted in Fig. 2 for various dopings,
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which shows a typical crossover renormalization from the We rewrite the Landau parameter of the three-band
weak-coupling to the strong coupling parameter. The insemodel, Eq.(50), as

indicates the individual contributions of thee{l") and g {™
terms. As dopings increases, thg {") term (dashed lines
starts from 0 for5=0 and becomes larger than th§" term.
In the weak coupling regime, however, th§" term always
dominates over thg{™ term.

In Fig. 2 we have also plotted the Landau paramétes
dashed curvecorresponding to the effective interactibiy,
i.e., —Ug/Wo=—(U/Wp)/(1+U/W,). This is the exact re-

3B

2
1
= ) X520 x5 (0)

Face - _ i gl®)+

g(13|3> 2
—g P (0)+ T) XEPO1% (54

sult for the two-particle system and is identical to that of thewhere the susceptibility expressions fp=0 of the three-
T-matrix approximation valid for low carrier density. As itis Pand model can be \(Aég;ten down, cons(lgBeirmg the contribu-
expected, thiF-matrix curve is quite well fitted by our result tions from the lowergy, ;' and the uppets,,, bands, as

for the high-doping cas&urvec for §=0.95. Not only this

but we can also show that the expressigt) for F3H)/q
exactly reduces to the abovdematrix expression in the low
carrier-density limit with 5~1; g{™"(0)/w=(U/W,)/
(1+U/Wp)2,  ergiM/W=—(U/Wy)?%/(1+U/W,)?, and
FaM/a=—(U/Wp)/(1+U/W,). These two expressions
were obtained by evaluating the slave-boson expressions
(38) and (40) for the high-doping limit 5~1, using the
saddle-point self-consistent equation to determine the slave-
boson parameters. In the weak-coupling regime the Landau
parameter reduces toU .«/Wy— — U/W,, coming from the
first g term, and in the strong-coupling regime it leads to
—U o¢/Wy— —1, arising from the secongl{™ term. The inset
shows that the relative contributions of these two terms de-
pend on the carrier concentration. It is important to notice
that the mechanism of the strong-coupling renormalization of
FaM) s quite different in the two cases of the low carrier-
density limit and the low-doping limit; in the latter case the
strong-coupling renormalizatior 3H)/a~—1 arises from
the g{™ term and corresponds to the coupling constant
Uei~W(<W,) contrary toUs~W, in the former case.
However, the weak-coupling parameter, which is

—Us/Wo~ —U/W, for both the limits, always results from ith

kg 2
[ugs(k)ugp(K)/Z0]
XEP(0) = [pas(ke) 1'Ne+2D g,
k §3kg 1ko
(55

(3B) 2 1
x1 (0)=7 [ugs(ke)] Z_Oulf(kF)Ulp(kF)NF

& Uz(K)ugp(k)?

-2 (56)
k Zy

2 ulf(kF)Zulp(kF)z

(3B) _
2 (0)=m = F
k
1 P [uge(K)upp(K)/z0]?
(e \2)2 2 7
2 (0 NP2 om

(57)

the renormalized Fermi-level density of states

the g§ term. In Sec. V we analyze in a more physically N.=N2/z2 defined by the unrenormalized oh& and

transparent way the processes which take place in the slave-
boson representation to lead to the coupling constg§ts
andg ™.

B. The three-band model

Having studied the behaviors of the Landau parameter for
the Hubbard model, it is now interesting to investigate the
renormalizations of this parameter as the system of the three-
band model goes from a metallic regime to an insulator re-
gime. In this case we treat thig,=0 model and calculatE §
as functions ofJ andA for half-filling in the metallic regime
and for infinitesimal electron and hole doping in the insulator

3B 2
€01

£38_g3e (58)
3ko 1ko

[use(K)]?=

3B
f(lka)_ €p

[ulp(k)]ZZWv (59)

_ Lok
ugs(k)ugp(k) = 58 _ 5 (60)
3ko 1ko

regime. When a system of this model goes into an insulatonye notice here that whery tends to a small value such as
there are two types of insulator regimes; the Mott-Hubbarchear a metal-insulator transition, the susceptibility functions

(MH) insulator and the charge-transf@@T) insulator. We

are all of orderO(1/z3) while the coupling constanigs®

have recently found that these insulators respond quite dif- and g*®® are of order O(z3) because[uy;(k)JP—0(1),
ferently to a dilute electron and hole doping. Therefore, it[u,,(k)*~0(z§), and uy¢(k)u;,(k)—O(zp). Therefore,
would be interesting to examine how the Landau-parametegach term oﬂ:g‘(SB) in the expressiort54) equally contrib-
renormalizations differ in the two insulator regimes for elec-utes a quantity of orde®(1). Furthermore the terms with the

tron and hole dopings.

factor (Ng)2 which come from the interband terms of
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X520 x52(0) and[x¥®(0)]? exactly cancel out each other, U]Y?=[1—1/u*]?, (1=¢(0)=0), whereE(5)=8lwF®(J),

which corresponds to the cancellation of thg)’ terminthe  u==U/E(0™), and sgnj, is the sign ofé, which is 6,>0

Hubbard model fog=0. for electron dopings>0 but can bej;>0 or <0 for hole

We first evaluate=2C®) for the half-filled metallic states doping <0 which depends on the regime in the insulator

(U=U/E <1, E.=8lw$?|) of the Mott-Hubbard regime de- phase, as we clarified earli®hus the Landau parameter in

fined by A=g,>U and A>t,q, where 6=0, §,~0, and the insulator regimes for the infinitesimal dopings-0*

z2~0(1). In this case we find x$®(0)~0O(1) but takes the form

X§3B>(0)<1 and x52P0)<1, g8®~0(1) but gPP<1,

[usr(K)*~1 but [u;,(k)’<1 and uy¢(k)u;p(k)<1. There-  Fa@® 1 1|12

fore, F3*®) can be written simply as 2.1+ 0-7( 1- u_t) —2(sgn 5d)< 1- u_i) ] :
Fas) g® (64)

« W Y

From this we can extract the asymptotic valuesg®)/

in the typical parameter region§; near the boundary but
inside the insulator phase of a metal-insulator transition in
the Mott-HubbardMH) regime wherai™—1+0,[Z(0")—0],

this F3*®)/ o again takes the same value2.1 as that from

using the normalization factonEWNszgNE defined
earlier for the Hubbard model. Evaluatingy® from Eq.
(39 in the half-filled metallic case, one obtains

Face 4P (62) in the metallic side, andi) in the charge-transfdiCT)
=W k - A+ u)? 2_2'8(1_(1+—u)2 , insulator limit of u™— where both infinitesimal electron
« 0 5=0" and hole =0~ dopings give 6;,=0", we obtain

. (62)  FaC®4=—0.8. This hole-doping value, however, changes
where we have used the expressidag”|=5.8let and  very quickly to the valuF2C®/ o= — 4.8 as|d increases to

— ' —+2 2 H H H . . . .
Wo=8teyr with ter=t po/(A—0G) which are valid in the 5 finjte hole doping§<0) becauseay, changes its sign to the
present limit. Therefore, althoudhy/« in the Mott-Hubbard negative (8,<0).5 This CT vaIueFS(SB)/a= —0.8 corre-

regime of the three-band model takes the same form as th@bonds to the asymptotic value of the Hubb&®{"/« for

for the Hubbard model, the magnituﬂé%/a| of the formeris  \J_ . 4t the half-filling. [Note that £(0%)~1 is not ap-
larger than the latter, becoming as large as 2.1 as opposed 10, hed in the MH insulator reginjeTherefore, the struc-
the latter’'s maximum value 0.6 close to the metal-insulato ure of the Landau parametés4) in the insulator phase of
transition. a(38) _ the three-band model is different from tH&B) of the Hub-

We next evaluate theF of Eq. (54 in the  pard model.
infinitesimal-doping Iignits in the insulator regimeg where  other than the extreme MH and CT limits, next we inves-
0=0", ?dzo‘, and z5—0. In these Ilm”(ng[;Jlf(t(s)é)—)l’ tigate the behaviors of the Landau parameter for infinitesimal
[u1p(K)]*=0, and uys(k)u;p(k)—0, and &5 —&, —A  dopings through the parameter set of the high-temperature

—A{?, and therF §/a can be written as superconductors, which is assumed hereJés,4~10 and
Alt,4~9 and exists just inside the insulator phase of CT
pd
FS<3B>__ g® (93P ? |0l +9(138) 63 character, as we showed befdfeln Fig. 3@ we plot
a W 222 Aaw, ' 222 —F3®® a as a function of/U, for Alt,q=9 and in Fig.

. I , (b) as a function ofA/A, for U/t,4=10. In these figures we
Here the second term is the contribution from the interban how separatelyi) the contribution of the sum of the first

term.ofX(fB)(O) in (k57) %réd becomes().7l4)(g‘133)(223)2 PEr- and second terms of E¢4) and (ii) the contribution of the
forming the sums F(y{*®)2= 3+ 2/m2~0.7. Using the ex-  third term, which are plotted by the dashed and dash-dotted
pression (37) for g£®, this term can be rewritten as lines, respectivelythe critical values for the metal-insulator
—(1/233)(¢92T/¢957)2|wg33)|. This indicates the recovery of transitions are, respectivel,/t,,=7.89 andA /t,4=8.33.
the originally missingqg-dependent term irg§)3B>, corre- Contrary to the half-filled region in the metallic regime
sponding to the»{") term of the Hubbardy " (q) for q=0, (U/U,<1 and A/A.<1) where the Landau parameter
if we use Eqs(36) and(19). As we already noticed in Sec. — F5©®/a is continuous across the half-filling fé=0" and
Il C, the ng) term of the HubbarqggH)(q) for the general 6=07, it is seen that in the insulator regimesF3(®)/
nonzerog, however, corresponds not only to thé?®(q)  iumps fromé§=0" doping to6=0" doping. The larger hole-
term but to they®®(q) and x?®(q) terms as well. Further- doping value of- F§*®)/« than the electron-doping value is
more, if the last term of(63) is written as [TﬁF/(A explained by)the contributiofi) with this trend while the
NS ELTIYE oo 2 (2 contribution (i) has the opposite but smaller trend. The be-
}\02)]91 /\/2V n -the pr;sent I@ﬂs wherekF./(A M) havior of the contribution(i) is similar to the Hubbard
=433/ (A=) with (¥(>P)>=1 is the effective band en- FaM)/, at half-filing where the second termeeg /W
ergy andw==8z3t3,/(A—\ ), then it is easy to notice that corresponding to the contributiofii) of the three-band
this term corresponds to the Hubbard termgrg{™/W  model vanishes.
(which vanishes though at half-filling and the first two Figures 8a) and 3b) show that, contrary to the Hubbard
terms of(63) to the Hubbard-g {)(0)/W term of theF &) model, the Landau parameter of the three-band model for
in (51). Now let us evaluate each term @?3) in the infini-  dilute doping can increase beyond the critical value of unity
tesimal doping limits; we findg$®/W=2.1 andg{® is  corresponding to a ferromagnetic phase transition, especially
given by g®®/223=2£(0%)sgns, with £(0*)=[1—E(0*)/ even for the value of Coulomb repulsiod or charge-
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indicates that the three-band model is a more magnetic
model than the Hubbard model.

V. DISCUSSION

We showed in subsection IV A that the weak-coupling
Landau parametdt 3(H)/ o~ — U/W, of the Hubbard model
is always dominated by thg{ term in both the low density
limit and the dilute doping limit, whereas the strong-coupling
parameter arises from thgl™) term in the low density case
and from theg {” term in the dilute doping case. In order to
understand these origins we analyze here the physical pro-
cesses leading to the coupling constar§{d andg (™. If we
look at the diagrammatic derivation of the susceptibility
X?4q) given in(44), it is easy to find that thg { andg (™
terms in the denominator gf“%q) are derived by scatterings
of fermions withx ® bosons and mixed®s_ bosons, being
represented by D(Q).]y@y@ and [D(Q)a]s A boson

propagating terms, respectively. These terms give the RPA
contributions ofg " xo(q) andg{"x,(q) in x*%q) as ob-
tained by substituting the expressiqd$) and(46) into (44).
A? boson and\®s_-boson excitations represent the phase
part and the mixed phase-amplitude part of spin fluctuations
from their original definitions, which correspond, respec-
tively, to the spin fluctuation of itinerarquasiparticlesand
to the spin fluctuation ofocal momentf d electrons. Ex-
citations of the latter spin fluctuation wite_ bosons are
suppressed in the strong-coupling dilute-doping regime
where the local moments are strongly renormalized with the
small factorz, which enters the vertex i#2). Let us briefly
look at our result forg " andg (" in the low-density limit
in the light of theT-matrix derivation of the Landau param-
eter —U«/W,. In the T-matrix approximation the effective
interactionU . is formally given as the sum of the single
scattering ternJ and the multiple scattering terdGU (G
is the dressed Green'’s functioid .+=U +UGU. The Lan-
dau parameter-U 4/Wy=—(U+UGU)/W, is calculated
as —Uge/Wy=— U/W,+ (U/W)%/(1+ U/W,) = —(U/
W)/ (1+U/W,). These individual terms have opposite
signs tending to cancel each other when they grow, which is
quite different from the division into the weak-coupling pa-
rameterg " and the strong coupling parametgh") ob-
tained in the low-density limit. It is natural that our slave-
boson terms do not correspond to fhenatrix perturbation
expansion terms.

Another way to understand the two coupling constants
4 98" andg{" is to examine the derivations of these terms in
the saddle-point derivation of*%(0) in Sec. Il C. As we
have seen there, the coupling constants are given by

the parameter sétl/t,q~10 andA/t,q~9 roughly corresponds to g&H)Z)Z 2q5lw§”l, 9fV=4q;, and the internal field by
that of the highT, cuprates.5=0" and §=0 on the curves for _)\O—ZEtrg_aqa/gmd)wa where anE(l/Z)Eg_IO-&qU/&m_d
U/U>1 in (@) andA/A>1 in (b) correspond to infinitesimal elec- and g,=3°q,/om3. Therefore, theg(” and g{™ terms in
tron and hole dopings, respectively, in the M&l and in the CT(b) the Fermi-liquid parameter are related to the internal-field
insulator regimes. effects through the second and first derivatives of the spin-

N dependent band renormalizatigy, respectively, while the
transfer energﬁ IeSS than the Cr|t|Ca.| Valuﬁc or AC . Here Spin_independent renorma”zatiaqb y|e|ds the mass en-
the value of—F§®®/a beyond unity is not itself physically hancement of the numeratg?= y 24(0)/q,.
meaningful, but our analyses beyond this value help under- Figure 2 shows that the Landau parametd 3/« of
stand the origins of this Landau parameter in the more reakhe Hubbard model first decreasé@sirve b) and then in-
istic cases also because these infinitesimal doping behavioggeasegcurvec) with increase in doping from the half-filling
persist even in finite doping concentrations. The fact thals=0 (curve a). This nonmonotonous variation is the result
—F3G®) o is larger than—F 3"/« in the same MH regime  from the two competing terms af{") andg{™, the former

FIG. 3. The normalized Landau Fermi-liquid parameter
—F3®B/q (solid curves for the three-band model.(a)
—F3®®/a as a function otJ/U,; for Alt,4=9 in the Mott-Hubbard
regime(U o/t,q=7.89, and(b) — F3®®/« as a function of\/A, for
U/t,4q=10 in the charge-transfer regini& /t,4=8.33. The dashe
and dot-dashed curves are the contributiGin$the first two terms
of (64)] and (ii) [the last term 0f64)], respectively. In@) and(b)
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decreasing and the latter increasing with dopifigThe etc., of normal liquid®He, being in reasonable agreement
strong correlation regimeU>U,.) near half-filling (5~0)  with the experimental result$:?® We therefore expect that
does not necessarily lead to the largest Landau parameterour results obtained for the three-band model can also ex-
We have noticed in Sec. IV B that the contributith of plain the similar physical quantities of the normal states of
the first two terms of the expressioi®3) (and (64) for  the highdT, compounds to the same extent.
_Fg(33)/a in the Mott-Hubbard insulator is very similar to As we have seen above, in contrast to other theoretical
—F 8™/ of the Hubbard model. In fact, the sum of these@pproaches the slave-boson Gaussian-fluctuation scheme can
two terms exactly reproduces tgg'(0)/W expression of the easily take into account coupling-constant renormalizations
Hubbard model. However, there is some difference from thés well as bandwidth renormalization in the magnetic sus-
Hubbard model; in the insulator regime&U,) the contri- ceptibility expression as functions of Coulomb repulsion and
bution (i) shows a jump on going frod=0" to =0 dop-  doping concentration. Studies on the magnetic properties in-

ing. This is due to the existence of the two different values ofcluding these renormalization effects have just been started
£(0%) for =0" ands=0". The differentz(0%) values in turn ~ and we would therefore expect in near future to obtain fur-

result from the different average kinetic energiesther new information on the magnetic properties of the Hub-
E(0%)=8lw$®(07)| because the quasiparticle fermion level bard and the three-band models. Our slave-boson approach

)\82) which enterSwg?’B) jumps across=0 Corresponding to fot the three-band CUmedel has revealed the different
the jump in the chemical potential. renormalization behaviors for the Fermi-liquid parameter

We have seen in Sec. IV that while the Landau parametel@lso for other magnetic properties described belthan for
defined by—F &)/« of the Hubbard model does not exceed the 2D Hubbard model, which seems to be quite reasonable

the value of unity for arbitrary value df and doping(Fig.  in view of the presence of the intervening oxygen ions.

2), —F2®B) 4 of the three-band model can exceed this value Here we have only discussed the uniform Landau param-
[Figs. 3a) and 3b)]. Particularly, this is true even for the €tersFg/a for q#0 and defined them by introducing the
expressior(61) for the half-filled metallic region and the first normalization factor=WNg=W,N £ in order to avoid the
two terms of (63) for the insulating region in the Mott- particular model-dependent density-of-states effect. It would

Hubbard regime which {)recisely correspond to the Hubbard® interesting to examine thg-dependent Landau param-
model expression_FS(H /a. To understand this large Lan- eters fo_r the study of the magnetic |_nstab|I|t|es and magnetic
dau parameter of the three-band model it will suffice basiPProperties of these models, for which we have to consider
cally to show why the metallic halffiling of the Mott- €XPlicitly the band-structure effect af. We have recently
Hubbard regime leads to the larger prefactor 2.868) as  derived the phase diagrams for the paramagnetic-to-
compared to the corresponding prefactor 0.8 for the Hubbar@ntiferromagnetic and the paramagnetic-to-ferromagnetic in-
model. The average kinetic energ%m)\ of the three-band Stabilities in the 2D three-band model, which are compared
model is the value calculated taking the nonhopping levelVith those in the 2D Hubbard model. The results will be
A2 (the top of the lowest bandas the energy zero, as op- PuPlished in a separate forthcoming paper. .
posed to the valugw{"| of the Hubbard model calculated In summary, we have derived the magnetic susceptibili-

with the center of the band as the nonhopping energy zerdi€s of the Hubbard model and the three-band Cuodel in
This difference leads to the kinetic energy several different methods within the Gaussian fluctuations of

|w§)35)|=5.6t «—(5.6/9W, for the three-band model and the functional integral in the slave-boson approach. We have
Lo Y] =(1.§/8)W0 for the Hubbard model. This also means &nalyzed the relationships between the two magnetic suscep-
that the critical Coulomb repulsion for metal-insulator tran—t'b'ell't'es and theo unn;orm Landau Fermi-liquid parameters
sition is larger for the formerl ~E,=8|w®|~5.6W,, [Fél/a (a=WNE, NE the density of states at the Fermi
than for the latterlJ .= EC=8|w5H)|~1.bWO. For the weak level andW, the bare bandwidihdefined from the suscepti-
coupling limit U<U,, however, both the three-band model bility expressions. It has been found that the Landau param-

and the Hubbard model give the same Landau paramet&terforthe three-band model becomes larger than that for the
value F8(3B)a~ —5.60=—U/W, and FS(H)/QN —1.6u Hubbard model, indicating a more magnetic model. The rea-

VY son for this is due to the fact that a larger kinetic energy is
We hg\./e noticed that our results2) and (53) for the stabilized for quasiparticles in the three-band model, which

Landau parameter of the structureless Hubbard model repr gads to the larger effeptive magnetic-coupling constants.
duce those obtained by Lavar§and Li et al! within the he Landau parameters in the doped strong-coupling insula-

same Kotliar-Ruckenstein slave-boson scheme and by Volfr regime of the three—band. model are found such that Itis
hardtet al13in the Gutzwiller approximation. This indicates always larger for a hole doping than for an electron doping.

that our results for the three-band model are also valid at thévi have Igcljven the eXpIanlft'?Q for this resuhlt US'?g thde tlr?_t
same approximation level. The Landau parameters for th nitesimal doping cases. Furthermore, we have toun a
lattice Hubbard and three-band models can be evaluated'’ Landau parameter expression for the Hubbard model re-

; ; a
from these expressions by simply multiplying the normaliza-pmdlm(:“S the T-mqtrlx expression Of'.FO!/q:U/WO/
tion factor aEQNON(F’ usiné thept}lnrenofn}{aliged bandwidth (1-+UJW,) for the highly doped low-density limit where the

W, and density of state 2 at the Fermi leveN 2. Recently, renormalization mecha_nism i; different from that in the di-
Li and Bernard® have performed an extensive numericalIUter doped high-density regime.

study of several Landau parameters includm@(H) for the
structureless Hubbard model, from which they deduced the
pressure dependences of the effective-mass enhancementThe authors are truly indebted to Professor Peter Fulde
m*/m, the compressibilityk, the magnetic susceptibility, = who has suggested the important problem: how the slave-
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