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Magnetic susceptibilities of interacting (d) electrons in the Hubbard model and the three-band CuO2 model
are worked out within the Gaussian fluctuations of the functional integral in the slave boson representation. The
normalized Landau Fermi-liquid parameteruF 0

au/a ~a[W0NF
0 , NF

0 the density of states at the Fermi level,
andW0 the bare bandwidth! defined from the susceptibility expression is investigated for the two models as
functions of Coulomb repulsionU, charge-transfer energyD, and doping concentrationd. It is shown that the
Landau parameter for the three-band model is larger and exhibits different renormalization behaviors than that
for the Hubbard model in both the weak- and strong-coupling regimes except in the Mott-Hubbard weak-
coupling regime, where it takes the same random-phase approximation formU/W0 as the latter. The reasons
for these results are analyzed. The slave-boson Landau parameter for the Hubbard model exactly reproduces
theT-matrix expressionuF 0

au/a5U/W0/(11U/W0) in the low-density limit, whose renormalization has the
different origin from that in the dilutely doped regime.@S0163-1829~96!01426-9#

I. INTRODUCTION

Considerable interest is drawn on the unique magnetic
excitations observed in some cuprate superconductors with
the view that such excitations may be related to the nature of
the high-temperature superconductivity in these compounds.
The particularly unique magnetic properties among others
are the unusual temperature dependence and enhancement of
the NMR relaxation rate 1/T1 at Cu sites,

1 the spin gap in the
neutron inelastic-scattering intensity,2 etc. These unusual
phenomena are now well documented with firm experimental
evidences, for which several theoretical interpretations have
been proposed: phenomenological antiferromagnetic spin-
fluctuation theories,3 a weak-coupling random-phase ap-
proximation ~RPA! treatment of the Hubbard model,4 a
Fermi-liquid formalism of quasiparticles with the phenom-
enological exchange-coupling constant for the three-band
CuO2 model,

5 and a quantum Monte Carlo simulation of the
attractive-U Hubbard model.6 These theories have indeed re-
vealed some new aspects of the strong correlation models.
For example, the first three showed that unusual temperature
dependences of the Cu NMR relaxation rate (T1T)

21 and the
neutron inelastic-scattering intensity can arise at low tem-
peratures by taking into account simple RPA spin fluctua-
tions using the phenomenological coupling constant. The last
pointed out that the same attractive interaction that causes
the high-temperature superconductivity pairing can lead to
these unique magnetic properties.

However, these theories are all rather phenomenological
in that they are not based on a microscopic derivation of the
expression for the magnetic susceptibility which is used to
calculate the magnetic properties in the Hubbard model or
the three-band model. For example, the effective magnetic
coupling which enters into the magnetic susceptibility ex-
pression is so strongly renormalized under a strong Coulomb
repulsion that the susceptibility expression can be totally dif-
ferent from a simple RPA type formula. It is not clear that

the attractive pairing interaction is so dominant that one can
ignore other residual magnetic interactions in the renormal-
ized quasiparticle states. It is naturally difficult to extract
from these theories the microscopic understandings of the
important physical processes taking place behind the anoma-
lous magnetic excitations.

For a correct description of the magnetic properties, there-
fore, one first needs to obtain a microscopic expression for
the magnetic susceptibility with the renormalized effective
coupling constants. In this paper we will do this within the
Kotliar-Ruckenstein~KR! slave-boson scheme.7 The main
advantages of employing the slave-boson approach under
strong correlation, in comparison to other methods, lie in that
it allows to incorporate coupling constant renormalization as
well as band renormalization in a simplest possible way of
the saddle-point approximation and further permits to take
into account fluctuations beyond thisO(1/N) Gaussian level.
One difficult point of this functional approach is that to in-
corporate fluctuations beyond the Gaussian level in a sen-
sible manner is in fact not so simple because residual inter-
actions generally become nonlocal strong-coupling
interactions. However, the magnetic properties of the Hub-
bard model as well as the three-band model have not been
studied in any detail along this line even within the Gaussian
approximation.

In this paper we derive the expression for the renormal-
ized magnetic susceptibility for the Hubbard model7–10 and
the three-band CuO2 model

11 in two dimensions~2D! within
the Gaussian level of the KR slave-boson approach.7 From
this result we define the magnetic coupling constants, i.e., the
asymmetric Landau Fermi-Liquid parameterF 0

a. We inves-
tigate the renormalization behaviors of this Landau param-
eter as the system goes from the weak coupling to the strong
coupling regime~i.e., from the itinerant metallic regime to
the localized insulator regime! or from the low carrier-
density limit to the dilute doping limit. We will show how
closely the magnetic susceptibility of the three-band model is
related to that of the Hubbard model and compare the Lan-

PHYSICAL REVIEW B 1 JULY 1996-IIVOLUME 54, NUMBER 2

540163-1829/96/54~2!/1342~13!/$10.00 1342 © 1996 The American Physical Society



dau parameters of the two models. We will then examine the
reason why the Landau parameter of the three-band model is
larger than that of the Hubbard model. The Landau param-
eters both at the half-filling and in the low-density limit can
be analytically expressed using the bare physical parameters
of the Coulomb repulsionU, the bare bandwidthW0, doping
concentrationd, etc. In particular, it is shown that the present
slave-boson scheme can exactly reproduce theT-matrix re-
sult for the effective interaction12 in the low-density limit of
d ;1. We will defer to a later publication our studies on the
anomalous magnetic properties which are obtained from our
magnetic susceptibility expression.

Earlier studies on the magnetic susceptibility and the Lan-
dau parameterF 0

a have been performed mostly for the Hub-
bard model by Lavagna,8 Li et al.,9 Li and P. Bénard10

using the slave-boson scheme and by Vollhardtet al.13 with
the Gutzwiller method. Lavagna8 showed14 the renormaliza-
tion behaviors of the Landau parameter and the formal
equivalence between the magnetic saddle-point approach and
the Gaussian-fluctuation RPA approximation in deriving the
magnetic susceptibility for the Hubbard model. So far only
very little work has been done on the three-band model ex-
cept for the brief study of the coupling constants by Schma-
lian et al.11

II. MAGNETIC PART OF THE FREE ENERGY

Using the slave-boson formulations of Kotliar and
Ruckenstein,7 the Lagrangian for the two dimensional~2D!
Hubbard model is written as

L~H!~t !5(
is

f is* ~]t1l is
~2!2m! f is2 (

^ i j &s
tzis* zjs f is* f js1(

i
ei* ~]t1l i

~1!!ei1(
is

sis* ~]t1l i
~1!2l is

~2!!sis

1(
i
wi* S ]t1U1l i

~1!2(
s

l is
~2!Dwi2(

i
l i

~1! , ~1!

and that for the 2D three-band model15 is

L~3B!~t !5(
is

f is* ~]t1l is
~2!2m! f is1(

jas

pjas* ~]t1«p2m!pjas2 (
^ i j a&s

tpd~zis* f is* pjas1H.c.!1 (
^ j xj y8&s

tpp~pj xs
* pj

y8s1H.c.!

1(
i
ei* ~]t1l i

~1!!ei1(
is

sis* ~]t1l i
~1!2l is

~2!!sis1(
i
wi* S ]t1U1l i

~1!2(
s

l is
~2!Dwi2(

i
l i

~1! . ~2!

In the expressions~1! and ~2! the interactingd-electron
Grassman fielddis has been projected onto the composite
fields,dis[zis f is , of quasiparticle-fermion Grassman num-
ber f is and boson variables

zis[~12wi*wi2sis* sis!21/2~ei* sis1si2s* wi !

3~12ei* ei2si2s* si2s!21/2,

whereei , si↑ , si↓, andwi are the slave-boson variables rep-
resenting the empty, single-occupied with up or down spin,
and doubly-occupied interacting electron sites,
respectively.15 m is the chemical potential and energy is mea-
sured from the bared-electron level~« d

050!. In the three-
band model~2!, i sites are the Cu sites of interactingd elec-
trons andj a sites~a5x,y! the oxygen sites of noninteracting
p electrons, and the external fieldh is applied only at Cu
sites to calculate the magnetic susceptibilities of Cud elec-
tron. Using the radial gauge, we split out the complex boson
variables into the saddle-point values (e0 ,s0s,w0 ,l 0

(1) ,l 0s
(2))

and the fluctuating real variables such asei→(e01dei)
3exp[iu i

e], sis→(s0s1dsis)exp[iu i
ss], wi→(w01dwi)

3exp[iu i
w], l i

(1)→l 0
(1)1dl i

(1), and l is
(2)→l 0s

(2)1dl is
(2).

~Accordingly, zis→z01dzis and qi j s[zis* zjs→q0
1dqi j s .! Here we denote again the fluctuating variables

dsis , dl is
(2), dzis , etc., bysis , l is

(2), zis , etc., unless they are
confusing. The initially time-independent constraint Bose
fields l i

(1) and l is
(2) become time-dependent incorporating

the derivatives of other local gauge fieldsu i
e~t!, etc.16,8,15

Furthermore, we define the new spin-dependent fluctuating
boson variables by si6[(si↑6si↓)/& and l i6

(2)

[(l i↑
(2)6l i↓

(2))/&, resulting in the following replace-
ments in Eqs. ~1! and ~2!: S issis* (]t1l i

(1)2l is
(2))sis

→ S i6si6* @]t 1 l i
(1)2(1/&)l i1

(2)#si62(1/&)l i2
(2)(si1* si2

1si2* si1) and S iwi* (]t1U1l i
(1)2Ssl is

(2))wi→S iwi* (]t

1U1l i
(1)2&l i1

(2))wi , and thesis in the terms withzis by
si6 , etc. As we shall see later, the new boson variables allow
the boson-propagator matrix to be block diagonal of the
charge-charge correlation sector and the spin-spin correlation
sector, being maintained in the expansion up to second order
fluctuations in boson-fermion interaction@the same order as
O(1/N) in the 1/N expansion#. Notice here that boson-
fermion interactions arise in the hopping term of the inter-
acting fermion and in the terms with the constraint fields in
the projected Lagrangians~1! and ~2!.

Let us perform a functional-integral expansion for the La-
grangianL~t! in the partition function

Z5E @Df #@Dp#@Dfa#expF2E
0

b

L~t!dtG , ~3!
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where $fa% is a set of the real Bose fields defined above
$fa%[$e,s1 ,w,l (1),l 1

(2) ;s2 ,l 2
(2)%. Here we illustrate this

expansion for the single-band Hubbard model and make a
brief remark on the expansion for the three-band model. We

first represent the fermion partLF(H)(t) of the Lagrangian
L(H)(t) @the first two terms in Eq.~1!# using the above split-
tings of the boson variables. Integrating out the fermion vari-
ables fromLF(H)(t) and then Fourier transforming we obtain

LF* ~H!~t !52(
i j

Tr ln@$~]t1l0s
~2!2m!d i j2q0std^ i j &%2$z0st~dzis1dzjs!1tdzisdzjs%d^ i j &1dl is

~2!d i j #

52(
kqs

Tr lnF ~mt1q0s«k1l0s
~2!2m!dq1z0s~«k1q1«k!dzqs1(

p
«k1p1qdz2psdzp1qs1dlqs

~2!G , ~4!

using the unrenormalized saddle-point fermion band«k[22tgk
(H) with gk

(H)[coskxa1coskya. In Eq. ~4! we separate out the
Tr ln form of the inverse saddle-point fermion propagator,G(0)(k,t)21[2(]t1jks

(H)2m), and expand the rest in fluctuat-
ing boson variablesdzqs , etc., wherejks

(H) is the renormalized bandjks
(H)[q0s«k1l0s

(2) with q0s[z0s
2 . In the latter boson

terms we keep the self-energy corrections of single fermion line and two fermion lines to boson propagators. Consequently
LF* (H)(t) is written as

LF* ~H!~t !52(
ks

Tr ln@2G~0!~k,t!21#1(
q

TrH(
ks

~dAkqs
~H ! 1dBkqs

~H ! !G~0!~k,t!

1
1

2 (
ks

~dAkqs
~H ! 1dlqs

~2!!G~0!~k,t!~dAk1qqs
~H ! 1dlqs

~2!!G~0!~k1q,t!J , ~5!

where we have used the definitionsdAkqs
(H) [z0s(«k1q

1«k)dzqs and dBkqs
(H) [Sp«k1p1qdz2psdzp1qs . Fluctua-

tionsdzqs , etc., indAkqs
(H) , etc., are further expanded into the

terms with boson variables$fa% in bilinear form.
A similar functional-integral expansion is made for the

three-band model using the fermion partLF(3B)(t) ~the first
four terms! of the Lagrangian~2!. The standard method to
deal with mixing bands in a functional integral is to first
form hybridized fields out off is andpjas fermion variables
using the saddle-point separation of the Lagrangian
LF(3B)(t), and then integrate out these hybridized fields. One
obtains a LagrangianLF* (3B)(t) similar to the expression~5!
but with the sum over the three hybridized bandsjnks

(3B) ~n
51,2,3! in this case. In the case withtpp50, the fermion
bands are simply given byjnks

(3B)(n53,1)5(1/2)$«p1l0s
(2)

6@(«p2l0s
(2))214qstk

2#1/2% and j2ks
(3B)5«p , where tk[

22tpdgk
(3B) , (gk

(3B))2[(gkx
(3B))21(gky

(3B))2 and gka

(3B)

5sin(ka/2), ~a5x,y!.
As to the boson part~the last four terms! of the

Lagrangians in Eqs.~1! and~2!, one obtains only the saddle-
point boson free energyFB

(0) and the noninteracting boson-
propagator@D(q)(0)21

# terms. Collecting these fermion and
boson terms together and taking the trace, one obtains the
partition functionZ ~common for the two models!:

Z5Z~0!dZB , ~6!

where

Z~0!5exp@2b~FF~0!1FB~0!!#, ~7!

dZB5E @Df~2q!#@Df~q!#exp@2dSB#, ~8!

FF~0!52
1

b (
nks

(
vn

ln@2 ivn1jnks2m#, ~9!

FB~0!5Uw0
21l0

~1!S e021(
s

s0s
2 1w0

2D 2(
s

l0s
~2!~s0s

2 1w0
2!,

~10!

dSB5(
q

f~2q!D~q!21f~q!

5(
q

(
ab

sa~2q!@D~q!21#abfb~q!, ~11!

and the actionS5*0
bL~t!dt5S F(0)1SB is written as the sum

of the saddle-point fermionic partS F(0)[bF F
(0) and the

bosonic part SB , the latter being further divided,
SB5SB(0)1dSB , into thec-number free energySB(0)[bFB

(0)

and the fluctuating bosonic-field partdSB . Hereq, etc., de-
note the four-vector components@q[~q,ivn!# and f(q)
[$fa(q)s ;fa(q)a%[$eq ,sq1 ,wq ,lq

(1) , lq1
(2) ;sq2 , lq2

(2)%.
The inverse boson propagators for the Hubbard model are
written as the sum

Dab~q!215Dab
~0!21

1Sab~q!1Pab~q!, ~12!

of the noninteracting termDab
(0)21

, the single-fermion-line
~first order! self-energy term given by
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Sab~q!5(
ks
G~0!~k!]2~Akqs

~H ! 1Bkqs
~H ! !/]fa~2q!]fb~q!,

~13!

and the two-fermion-line~second order! correlation-bubble
term defined by

Pab~q!5
1

2 (
ks

$]~Ak2qs
~H ! 1l2qs

~2! !/]fa~2q!%$]~Ak1qqs
~H !

1lqs
~2!!/]fb~q!%G~0!~k!G~0!~k1q!. ~14!

@This expansion is equivalent to the orderO(1/N) in the 1/N
expansion.# It is easy to see that the resulting boson-
propagator matrixD(q)21 under the present expansion
scheme is maintained to be block diagonal of the 535
charge-sector matrixD(q) s21 and the 232 spin-sector matrix
D(q) a21:

D~q!215SD~q!s
21 0

0 D~q!a
21D . ~15!

Let us now write down explicitly the elements of the spin-

sector boson matrixD(q)a215Da
(0)21

1S(q)a1P(q)a for
the vector$fa(q)a%5$sq2 ,lq2

(2)% since the charge-sector bo-
son propagatorD(q) s21 makes no contribution to the mag-

netic susceptibility. The noninteracting matrixDa
(0)21

is the
same for the two models:

Da
~0!21

5S l0
~1!2l0

~2! 2s0

2s0 0
D . ~16!

The one-fermion-loop self-energy matrixS(q)a

S~q!a5S Ss2s2
~q! 0

0 0
D , ~17!

has onlySs2s2
(q) element, which is given for the two mod-

els by

Ss2s2

~H ! ~q!5S ]z↑
]s2

D 2vq
~H !1z0S ]2z↑

]s2
2 Dv0

~H ! , ~18!

Ss2s2

~3B! 5z0S ]2z↑
]s2

2 Dv0
~3B! , ~19!

where

]z↑
]s2

5
1

&
S ]z↑
]s↑

2
]z↑
]s↓

D ,
]2z↑
]s2

2 5
1

2 S ]2z↑
]s↑

2 22
]2z↑

]s↑]s↓
1

]2z↑
]s↓

2 D , ~20!

vq
(H)[(ks

kF«k1q and v0
(3B)[(ks

kF $2tk
2/@(«p2l0

(2))2

14q0tk
2#1/2%. There exists an explicitq dependence in the

one-fermion-loop self-energySs2s2

(H) (q) for the Hubbard

model, however, no suchq dependence arises in theSs2s2

(3B)

for the three-band model due to its nature of the on-site hy-
bridization term. The latterq-dependent dispersion of the

s-slave-boson energy is brought by inclusion of the
correlation-bubblePs2s2

(3B) (q), which enables a Cu-to-Cu in-

tersite hopping through oxygen sites. We will see later that
due to this term thed-electron magnetic susceptibility of the
three-band model becomes very similar to that of the Hub-
bard model. The correlation-bubble self-energy matrix
P(q)a

P~q!a5S Ps2s2
~q! Ps2l

2
~2!~q!

Pl
2
~2!s2

~q! Pl
2
~2!l

2
~2!~q!D , ~21!

has the elementsPab(q) given by

Ps2s2
~q!528z0

2S ]z↑
]s2

D 2x2~q!, ~22!

Ps2l
2
~2!~q!52&z0S ]z↑

]s2
Dx1~q!, ~23!

Pl
2
~2!l

2
~2!~q!52

1

2
x0~q!. ~24!

Herexn(q) ~n50,1,2! are given for the Hubbard model by

x0
~H !~q!52

1

b (
k
G~0!~k1q!G~0!~k!, ~25!

x1
~H !~q!52

1

b (
k

~2«k!G~0!~k1q!G~0!~k!, ~26!

x2
~H !~q!52

1

b (
k

S «k1«k1q

2 D 2G~0!~k1q!G~0!~k!,

~27!

usingG(0)(k)[1/(ivn2jks
(H)1m), wherek[~k,ivn!. For the

three-band model they are written as

x0
~3B!~q!52

1

b (
k
Gf f~0!~k1q!Gf f~0!~k!, ~28!

x1
~3B!~q!52

1

b (
k

1

z0
tkGf f~0!~k1q!Gp f~0!~k!, ~29!

x2
~3B!~q!52

1

b (
k

1

2z0
2 $tk

2Gf f~0!~k1q!Gpp~0!~k!1tktk1qGf p~0!

3~k1q!Gf p~0!~k!%. ~30!

Here we have used the propagators off fermion andp elec-
tron, Gab

(0)(k)[(n51
3 una(k)unb(k)/( ivn2jnks

(3B)1m) ~a,b
5f ,p!, which are also given more explicitly in Ref. 17, and
for the tpp50 model,unf(k)5$]jnks

(3B)/]«ds%1/2 and unp(k)
5$]jnks

(3B)/]«p%
1/2.

Now that the boson propagatorD(q)21 is set up, we can
integrate out the remaining boson variables
f~q![$fa~q!s ;fa~q!a% from the bosonic actiondSB , Eq.
~11!. We obtain the partition functionZ represented in terms
of the total free energy,F[F F

(0)1FB
(0)1dFB :

Z5exp@2b~FF~0!1FB~0!1dFB!#, ~31!
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dFB5
1

b (
q

ln@det~D~q!21!#. ~32!

III. DERIVATIONS OF MAGNETIC SUSCEPTIBILITY

In this section we derive the frequency and momentum
dependent magnetic susceptibility,x~q,v!, of interactingd
electron in several different approaches, which, as we shall
see later, help us understand the complicated contributions to
the susceptibility expressions in the slave-boson treatments.
In subsections A and B, the magnetic susceptibilities for the
two models@x(H)~q,v!,x~3B!~q,v!# are obtained by applying
the RPA approximation to boson propagators which is
equivalent to theO(1/N) Gaussian fluctuation treatment for
fermions in the 1/N expansion. In subsection C, the static
uniform susceptibilityx~3B!~0,0! for the three-band model is
calculated in the spin-dependent saddle-point treatment.

These treatments naturally lead to the same expressions for
the magnetic susceptibilities.

A. Standard derivation of xzz
„q…

with magnetic field applied to fermion fields

We calculate the generalized magnetic susceptibility at
Cu sites by applying spatially and time-varying magnetic
field hqe

2 ivnt with frequencyvn only to interactingd elec-
trons. This adds the effects of time-varying magnetic field
interaction with fermions, Hh5(qkhq( f k1q↑

† f k↑
2 f k1q↓

† f k↓)e
2 ivnt, to the free energy termsF F

(0) and dFB
which contain fermion lines. We expand the total free energy
F in terms of magnetic fieldhq to second orderO(hq

2). Then
taking the second derivatives with respect tohq , one obtains
the frequency-dependent longitudinal susceptibilityxzz(q)
@q[~q,v!#, of d electrons for the two models:

xzz~q!52
1

2

]2

]hq
2 $FF~0!~hq!1dFB~hq!%5x0

zz~q!1
1

detD~q!21 H 2
1

2

]2@detD~q,hq!
21#

]hq
2 J

5
x0
zz~q!

12g0~q!x0~q!2g1x1~q!1S g12 D 2$x1~q!22x0~q!x2~q!%

, ~33!

where we have used the relations

2
1

2

]2@detD~q,hq!
21#

~2s0
2!]hq

2 5x0
zz~q!Fg0~q!x0~q!1g1x1~q!

2S g12 D 2$x1~q!22x0~q!x2~q!%G ,
~34!

detD~q!21

~2s0
2!

512g0~q!x0~q!2g1x1~q!1S g12 D 2
3$x1~q!22x0~q!x2~q!%, ~35!

g0~q!52
1

2s0
2 $l0

~1!2l0
~2!1Ss2s2

~q!%, ~36!

g152&S z0s0D S ]z↑
]s2

D , ~37!

and the saddle-point contributionx 0
zz(q) in the numerator

given byx 0
zz(q)5x 00

zz(q)/q0 with the noninteracting suscep-
tibility x 00

zz(q) and the renormalization factorq0. The mul-
tiplicative factorsg0~q! andg1 for the correlation functions
x0(q) andx1(q) are the effective coupling constants for the
magnetic interactions and are explicitly given with the
saddle-point parameters by

g0
~H !~q!5

16x2s0
2

12dd
2 F uv0

~H !u H 112dd
2

~12dd
2!2

2
1

16s0
4

2
dd
2

2x2s0
2~12dd

2! J 2vq
~H !H dd

2

~12dd
2!2

1
x224e0w0

16x2s0
4 2

dd
2

2x2s0
2~12dd

2! J G , ~38!

g0
~3B!5

16x2s0
2

12dd
2 uv0

~3B!u H 112dd
2

~12dd
2!2

2
1

16s0
42

dd
2

2x2s0
2~12dd

2! J ,
~39!

g1
~H !5g1

~3B!5
8dd
12dd

2 $12z0
2%. ~40!

Here,dd is thed-electron dopingdd.0 ~or thed-hole doping
dd,0! which, in the present hole-representation, is defined
by dd512nf (nf5nd) for the Hubbard model and by
dd512nf5d1np for the three-band model using the total
doping concentrationd512(nf1np) measured from the
half-filling, nf1np51. Therefore,dd50 in the undoped
~d50! three-band model which corresponds no hybridization
hopping indicates the oned-hole ~nd51! insulating state.

One can also derive the magnetic susceptibility expres-
sion xzz(q) by converting the fermion coupling with mag-
netic field, Hh5(qkhq( f k1q↑

† f k↑2 f k1q↓
† f k↓)e

2 ivnt, to the
magnetic slave-boson coupling with magnetic field,Hh

B

5(q&s0hqs2q2e
2 ivnt, where one uses the constraint with

a partial saddle-point substitution,mi[ f i↑
† f i↑2 f i↓

† f i↓
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5si↑
† si↑2si↓

† si↓→&s0si2 . This approach has been employed
by Wanget al. for the t-J model,18 by Li et al. for the Hub-
bard model,9,10 and by Schmalianet al. for the three-band
model.11 The slave-boson coupling with magnetic field intro-
duces an additional term for the energy of the
@D(q)21#s2s2

element as @D(q)21#s2s2
5l 0

(1)2l 0
(2)

1Ss2s2
(q)1Ps2s2

(q)22s0
2hq

2. Now that the coupling of

magnetic field has been switched onto magnetic slave bosons
sq2 , the magnetic-field dependence of the free energyF
enters the boson propagatorD~q,hq!

21 only through
@D(q,hq)21#s2s2

in Eq. ~32!. Then we take the second de-
rivatives ofdFB~hq! with respect tohq :

xzz~q!52
1

2

]2

]hq
2 dFB~hq!

5
1

detD~q!21 H 2
1

2

]2@detD~q,hq!
21#

]hq
2 J

54s0
2D~q!s2s2

54s0
2

Pl
2
~2!l

2
~2!~q!

detD~q!21 , ~41!

which leads to the result obtained in Eq.~33! because
24Pl

2
(2)l

2
(2)(q)52x0(q)5x0

zz(q).

B. Diagrammatic derivation of xzz
„q…

Suppose we represent the Hamiltonians of the two models
as the sum of the saddle-point fermion term, the noninteract-
ing boson term, and the fermion-boson interaction term.
Then the interacting Hamiltonians are written as

H int
~H !52z0

]z↑
]s6

(
kq6

S «k1«k1q

2 D sq6~ f k1q↑
† f k↑6 f k1q↓

† f k↓!

1
1

&
(
kq6

lq6
~2!~ f k1q↑

† f ks↑6 f k1q↓
† f k↓!, ~42!

H int
~3B!52z0

]z↑
]s6

(
kq6

S tk1tk1q

2z0
D H sq6S 12D ~ f k1q↑

† pk↑

6 f k1q↓
† pk↓!1H.c.J 1

1

&
(
kq6

lq6
~2!~ f k1q↑

† f k↑

6 f k1q↓
† f k↓!. ~43!

The saddle-point~q,t!-dependent longitudinal magnetic
susceptibility ofd electron is defined by

x0
zz~q,t!5^Tt@m2q~t!mq~0!#&0

5(k^Tt$@ f k1q↑
† ~t! f k↑~t!2 f k1q↓

† ~t! f k↓~t!#

3@ f k↑
† ~0! f k1q↑~0!2 f k↓

† ~0! f k1q↓~0!#%&0 ,

whose Fourier transformx 0
zz~q,v![x 0

zz(q) is represented by
the diagram of Fig. 1~a!. Starting with this unperturbed sus-
ceptibility diagram of thef -fermion bubble, the diagram-
matic expansion including second order corrections in the
fermion-boson interactionsH int

(H) ~or H int
~3B!! then introduces

the series of the correction terms whose diagrams are shown

in Fig. 1~b! for the three-band model. These diagram series
exactly corresponds to the Hubbard model if thef p-
propagator~half-solid and half-dashed! lines are replaced by
the f f -propagator~solid! lines. Except this, all the following
discussions and expressions including the vertex factors can
be applied to the two models.

Now notice that these correction diagrams are made up of
the two kinds of diagrams involving either the boson propa-
gator @D(q)a#l

2
(2)l

2
(2) or @D(q)a#l

2
(2)s2

which accompanies

the magnetic correlation bubblex0(q) or x1(q). Here we
emphasize that the diagram involving thes2-boson propaga-
tor @D(q)a#s2s2

does not appear in this perturbation expan-
sion because the unperturbed susceptibility bubble ofx 0

zz(q)
which must exist on one end of each diagram cannot be

FIG. 1. The diagrammatic perturbation expansion for the
momentum-dependent dynamical longitudinal magnetic susceptibil-
ity xzz(q) @q[~q,v!# of d electron for the Hubbard and the three-
band models in the Gaussian-fluctuation approximation, i.e., the
RPA self-energy corrections to the boson propagators.~a! The un-
perturbed saddle-point contributionx0

zz(q) of O~1!, and~b! the per-
turbation series diagrams ofO(1/N) obtained from the diagram in
~a! due to fermion fluctuations by bosons. In the three-band model
the solid and solid-dashed lines are the saddle-point propagators of
f -fermion G f f(0) and f p-mixed fermionG f p(0), respectively, while in
the Hubbard model the solid-dashed lines should be replaced by the
f -fermion solid linesG~0!. The double wavy lines are the RPA
renormalized boson propagators@D(q)a#l

2
(2)l

2
(2), @D(q)a#l

2
(2)s2

,

etc., and the open and solid circles are the vetices 1/& and
2z0(]z↑/]s2), respectively, of the fermion-boson interactions
given in Eqs.~42! and ~43!.
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connected to this boson line. The absence of thes2-boson
propagator in the perturbation series is quite natural since the
propagator@D(q)a#s2s2

itself is directly related to the renor-
malized susceptibilityxzz(q) as we have seen in~41!. The
vertices connecting the bubbles and thel2

~2! and s2 boson
lines are 1/& and 2z0(]z↑/]s2), respectively. The total of
the diagrams shown in Figs. 1~a! and 1~b! then leads to the
sum

xzz~q!5x0
zz~q!H 11

1

2 S 1

&
D „@D~q!a#l

2
~2!l

2
~2!…S 1

&
D 2x0~q!

2
1

2 S 1

&
D „@D~q!a#s2l

2
~2!

1@D~q!a#l
2
~2!s2

…S 2z0 ]z↑
]s2

D 2x1~q!J . ~44!

For the boson propagatorsD(q)a in ~44! we substitute the
RPA propagators obtained by invertingD(q)21 in Eq. ~15!.
The boson propagators are found from Eqs.~16!, ~17!, and
~21!, and are rewritten as

@D~q!a#l
2
~2!l

2
~2!5

l0
~1!2l0

~2!1Ss2s2
~q!1Ps2s2

~q!

detD~q!21

5
2g0~q!12~g1/2!2x2~q!

detD~q!21/~2s0
2!

, ~45!

1

&
S 4z0 ]z↑

]s2
D @D~q!a#s2l

2
~2!

5S 2&z0
]z↑
]s2

D s02Ps2l
2
~2!~q!

detD~q!21

5
2g11~g1/2!2x1~q!

detD~q!21/~2s0
2!

. ~46!

Substituting these expressions into Eq.~44!, one finds the
result forxzz(q) given in Eq.~33!.

C. Derivation of xzz
„0… from magnetic saddle-point solutions

As Kotliar and Ruckenstein7 and Lavagna8 showed previ-
ously for the Hubbard model, one can also derive the uni-
form susceptibilityxzz~0! directly from the saddle-point free
energy of fermions under applied magnetic fieldh0. This is
obtained by taking into account the effects of the spin-
dependent band renormalizationqs and the effective internal
field lq2

(2) for q50. Since the result for the Hubbard model is
available,8 we will obtain here the saddle-point susceptibility
expression for the three-band model. Using the fermion free
energyF F

(0)(md) with magnetic fieldh0 applied to Cu sites
only, the d-electron magnetic moment is md

52]FF(0)(md)/]h05(ksu1 f(k,h0)
2s f (j1ks

(3B)) and the mag-
netic susceptibilityxzz(0)5]md/]h0 is given by

xzz~0!5(
ks

S ]u1 f~k,h0!
2

]h0
Ds f ~j1ks

~3B!!1(
ks

u1 f~k,h0!
2s

3S 2
] f ~j1ks

~3B!!

]j1ks
~3B! D S 2

]j1ks
~3B!

]h0
D , ~47!

where j1ks
(3B)5 1

2$«p1l0s
(2)2@(«p2l0s

(2))214qstk
2#1/2% and

u1 f(k,h0)
2 5 1

2$11(«p2l0s
(2))/@(«p2l0s

(2))214qstk
2#1/2%

with the d level given byl0s
~2![l01

~2! 2s~h02l02
~2! ! under ap-

plied magnetic fieldh0 together with the internal field2l02
~2! .

The internal field is calculated as2l02
~2! 52]F F

(0)(md)/
]md5(s(2]qs/]md)vs

~3B! , wherevs
~3B! is given byvs

(3B)

[(k(2tk
2) f (j1ks

(3B))/@(«p2«ds)
214qstk

2#1/2 and is related
to the energyv0

~3B! , (svs
~3B!5v0

~3B! , which was defined ear-
lier @see below Eq.~20!#. Now to obtain the expression for
xzz~0! we need to calculate2]j1ks

(3B)/]h0 and ]u1 f~k,h0!
2/

]h0, and furthermore2]l02
~2! /]h0. Substituting these results

into the expression~47! and rearranging the terms, we obtain
the saddle-point uniform susceptibility ofd electron as

xzz5
x0
zz

12$2q22~q1 /z0!
2%uv0

~3B!ux024q1x11~2q1!
2$~x1!

22x2x0%
, ~48!

wherexzz[xzz(3B)(0), x0[x0
~3B!~0!, etc., and we have used

the relation x 0
zz52x0 and the definitions

q1[(1/2)(ss]qs/]md andq2[]2qs/]md
2. As regards the

relationship with the coupling constantsg0
~3B! andg1

~3B! ob-
tained in Eqs.~38!–~40!, it can be shown using the explicit
quantities ofq1 and q2 that $2q22(q1/z0)

2% uv0
~3B!u5g0

~3B!

and 4q15g1
~3B!. Therefore, the expression~48! exactly coin-

cides with that in~33!. In relation to the Hubbard model
susceptibility, where only the term 2q2uv 0

(H)u alone becomes
equal tog 0

(H) with the term (q1/z0)
2uv 0

(H)u missing, the dif-
ference betweeng0

~3B! andg 0
(H) in Eqs.~38! and ~39! comes

from the term (q1/z0)
2uv0

~3B!u by cancelling out the second
term ofg 0

(H) in ~38!. In the three-band model a nonvanishing

contribution equal to (q1/z0)
2uv0

~3B!ux0 further arises from the
d-p interband term2~2q1!

2x2x0, which cancels out the
above2(q1/z0)

2uv0
~3B!u term in theg0

~3B! , thus reducing the
effective coupling constant of the three-band model multi-
plied by x0 to 2q2uv0

~3B!u, which is very similar to the Hub-
bard g 0

(H)52q2uv 0
(H)u. For the nonuniform susceptibility

xzz~q! of the three-band model, a similar contribution arises
from the last~g1

~3B!!2 term in ~33! which has aq dependence
from x0~q!, x1~q!, x2~q!, and this leads the originally missing
q dependence ofg0

~3B! to theq-dependent coupling constant
as theg 0

(H)~q!.
It is a common observation in the linear response theory

that the response function of the system under an external
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field which is derived by treating fluctuations in the RPA
approximation is identically reproduced by expanding the
saddle-point free energy, which implements the internal
field, with respect to that external field. For example, it is
well known that in the Hubbard model the self-consistent
mean-field free energy under magnetic field which incorpo-
rates the internal field2Um(m[n↑2n↓) leads to the uni-
form susceptibilityx~0!5x0~0!/~12Ux0~0!! with the same
enhancement Stoner factor as that of the RPA susceptibility
x~0!. Lavagna has pointed out that this feature remains also
in the slave-boson treatment of the Hubbard model.8

IV. EFFECTIVE INTERACTIONS
AND LANDAU FERMI-LIQUID PARAMETERS

In this section we examine the renormalizations of the
magnetic interaction or the Landau Fermi-liquid parameter
F 0

a as functions of doping concentrationd as well as Cou-
lomb repulsionU and charge-transfer~CT! energyD[«p ,
~« d

050!. We define the magnetic Landau parameterF 0
a by

the Wilson ratioR of the static uniform magnetic suscepti-
bility to the linear specific-heat coefficientg[C/T as fol-
lows:

R[
xzz~0!/g

x00
zz~0!/g0

5
xzz~0!

x0
zz~0!

[
1

11F0
a , ~49!

wherex 00
zz~0! andg0 are the bare susceptibility and specific-

heat coefficient of noninteractingd electrons, respectively,
and the relationsx 0

zz(0)5x 00
zz(0)g/g05x 00

zz(0)/q0 have
been used. Combining this definition~49! with the expres-
sion ~33! for xzz~0! with q[~q,v!5~0,0! leads to

F0
a[2g0~0!x0~0!2g1x1~0!

1S g12 D 2$x1~0!22x0~0!x2~0!%. ~50!

We now analyze the renormalization behaviors of the Lan-
dau parameterF 0

a of the two models, changing from the
weak coupling to strong coupling regimes.

A. The Hubbard model

In the case of the single-band Hubbard model, the suscep-
tibility functions x 1

(H)~0! andx 2
(H)~0! for q50 involving one

and two slave-boson interaction vertices, respectively, can be
represented in terms of the transverse susceptibilityx 0

(H)~0!
with energy factors«k and «k1q being evaluated on the
Fermi surface«F~5m!. This leads to the vanishing of the last
term with ~g1!

2 in Eq. ~50!. In the resulting expression ofF 0
a

we replacex 0
(H)~0! by the density of states per spin at the

Fermi energy,NF , and obtain

F0
a~H !

a
52

g0
~H !~0!

W
1«F

g1
~H !

W
, ~51!

where we have introduced the normalization factora[WNF
and the renormalized bandwidthW[8q0t. Herea represents
the the structural parameter of the model reflecting on the
density of states, which equals unity if we employ a constant
density of states and takes a large value for the«F close to
the van Hove singularity of the two-dimensional lattice.

Using the expressions~38! and ~40! of g 0
(H)~0! andg 1

(H)

given by the saddle-point slave-boson parameters, one can
easily evaluate the Landau parameterF 0

a(H)/a in the limiting
cases. In the half-filled metallic regime defined byd50 and
u[U/Ec,1 ~Ec is given byEc[8uv 0

(H)u;1.6W0 in terms
of the average kinetic energy per siteuv 0

(H)u;1.6t for the
half-filling or the unrenormalized bandwidthW0[8t and
equals the critical Coulomb repulsionUc for the metal-
insulator transition!, we obtain

F0
a~H !

a
52

4uv0
~H !u

W0
H 12

1

~11u!2 J 520.8H 12
1

~11u!2 J .
~52!

So the metallic Landau parameterF 0
a(H)/a goes down to

20.6. In particular, in the weak-coupling limitU!W0 we
have F 0

a(H)/a;21.6u;2U/W0 , reproducing the known
weak-coupling result of the RPA approximation. On the
other hand, in the dilutely doped insulator regime ofd!1
andu.1, we obtain

F0
a~H !

a
520.8H 12

11dz

4u J , ~53!

where z[~121/u!1/2. In the strong-coupling regimeU→`,
therefore,F 0

a(H)/a tends to20.8 from above, which is dif-
ferent, due to the lattice structure, from the result
~F 0

a(H)/a→21.0! obtained with a constant density of states.
These results~52! and ~53! are essentially the same except
for the factor 4uv 0

(H)u/W050.8 as those obtained earlier8–13

for the structureless Hubbard model where 4uv 0
(H)u/W051.

In the intermediate-coupling regime, the behavior of the Lan-
dau parameterF 0

a(H)/a as a function ofU/Uc is calculated
numerically and is plotted in Fig. 2 for various dopings,

FIG. 2. The normalized Landau Fermi-liquid parameter
2F 0

a(H)/a as a function ofU/Uc for the Hubbard model. The solid
curvesa, b, c correspond to the doping concentrations ofd50,
d50.15, d50.95, respectively. The dashed curve is theT-matrix
result,2Ueff/W052(U/W0)/(11U/W0), valid for the low carrier
density limit, being exact for the two-particle system. The inset
shows the separate contributions of theg 0

(H)(0)/W ~solid! and
«Fg 1

(H)/W ~dashed! terms in~51! for these dopings.
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which shows a typical crossover renormalization from the
weak-coupling to the strong coupling parameter. The inset
indicates the individual contributions of theg 0

(H) and g 1
(H)

terms. As dopingd increases, theg 1
(H) term ~dashed lines!

starts from 0 ford50 and becomes larger than theg 0
(H) term.

In the weak coupling regime, however, theg 0
(H) term always

dominates over theg 1
(H) term.

In Fig. 2 we have also plotted the Landau parameter~the
dashed curve! corresponding to the effective interactionUeff ,
i.e.,2Ueff/W052(U/W0)/(11U/W0). This is the exact re-
sult for the two-particle system and is identical to that of the
T-matrix approximation valid for low carrier density. As it is
expected, thisT-matrix curve is quite well fitted by our result
for the high-doping case~curvec for d50.95!. Not only this
but we can also show that the expression~51! for F 0

a(H)/a
exactly reduces to the aboveT-matrix expression in the low
carrier-density limit with d;1; g 0

(H)(0)/W5(U/W0)/
(11U/W0)

2, «Fg 1
(H)/W52(U/W0)

2/(11U/W0)
2, and

F 0
a(H)/a52(U/W0)/(11U/W0). These two expressions

were obtained by evaluating the slave-boson expressions
~38! and ~40! for the high-doping limit d;1, using the
saddle-point self-consistent equation to determine the slave-
boson parameters. In the weak-coupling regime the Landau
parameter reduces to2Ueff/W0→2U/W0 , coming from the
first g 0

(H) term, and in the strong-coupling regime it leads to
2Ueff/W0→21, arising from the secondg 1

(H) term. The inset
shows that the relative contributions of these two terms de-
pend on the carrier concentration. It is important to notice
that the mechanism of the strong-coupling renormalization of
F 0

a(H) is quite different in the two cases of the low carrier-
density limit and the low-doping limit; in the latter case the
strong-coupling renormalizationF 0

a(H)/a;21 arises from
the g 0

(H) term and corresponds to the coupling constant
Ueff;W(!W0) contrary toUeff;W0 in the former case.
However, the weak-coupling parameter, which is
2Ueff/W0;2U/W0 for both the limits, always results from
the g 0

(H) term. In Sec. V we analyze in a more physically
transparent way the processes which take place in the slave-
boson representation to lead to the coupling constantsg 0

(H)

andg 1
(H).

B. The three-band model

Having studied the behaviors of the Landau parameter for
the Hubbard model, it is now interesting to investigate the
renormalizations of this parameter as the system of the three-
band model goes from a metallic regime to an insulator re-
gime. In this case we treat thetpp50 model and calculateF 0

a

as functions ofU andD for half-filling in the metallic regime
and for infinitesimal electron and hole doping in the insulator
regime. When a system of this model goes into an insulator,
there are two types of insulator regimes; the Mott-Hubbard
~MH! insulator and the charge-transfer~CT! insulator. We
have recently found15 that these insulators respond quite dif-
ferently to a dilute electron and hole doping. Therefore, it
would be interesting to examine how the Landau-parameter
renormalizations differ in the two insulator regimes for elec-
tron and hole dopings.

We rewrite the Landau parameter of the three-band
model, Eq.~50!, as

F0
a~3B!52H g0~3B!1S g1~3B!

2 D 2x2
~3B!~0!J x0

~3B!~0!

2g1
~3B!x1

~3B!~0!1S g1~3B!

2 D 2@x1
~3B!~0!#2, ~54!

where the susceptibility expressions forq50 of the three-
band model can be written down, considering the contribu-
tions from the lowerj1ks

(3B) and the upperj3ks
(3B) bands, as

x0
~3B!~0!5@m1 f~kF!#4NF12(

k

kF @u1 f~k!u1p~k!/z0#
2

j3ks
~3B!2j1ks

~3B! ,

~55!

x1
~3B!~0!5tkF@u1 f~kF!#2

1

z0
u1 f~kF!u1p~kF!NF

2(
k

kF u1 f~k!2u1p~k!2

z0
2 , ~56!

x2
~3B!~0!5tkF

2 u1 f~kF!2u1p~kF!2

z0
2 NF

1
1

2
~«p2l0

~2!!2(
k

kF @u1 f~k!u1p~k!/z0#
2

j3ks
~3B!2j1ks

~3B! ,

~57!

with the renormalized Fermi-level density of states
NF[NF

0/z0
2 defined by the unrenormalized oneNF

0 and

@u1 f~k!#25
j1ks

~3B!2l0
~2!

j3ks
~3B!2j1ks

~3B! , ~58!

@u1p~k!#25
j1ks

~3B!2«p

j3ks
~3B!2j1ks

~3B! , ~59!

u1 f~k!u1p~k!5
z0tk

j3ks
~3B!2j1ks

~3B! . ~60!

We notice here that whenz0 tends to a small value such as
near a metal-insulator transition, the susceptibility functions
are all of orderO(1/z0

2) while the coupling constantsg0
~3B!

and g1
~3B! are of orderO(z0

2) because@u1 f~k!#2→O~1!,
@u1p~k!#2→O(z0

2), and u1 f~k!u1p~k!→O(z0). Therefore,
each term ofF0

a(3B) in the expression~54! equally contrib-
utes a quantity of orderO~1!. Furthermore the terms with the
factor (NF)

2 which come from the interband terms of
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x2
~3B!~0!x0

~3B!~0! and@x1
~3B!~0!#2 exactly cancel out each other,

which corresponds to the cancellation of the~g1!
2 term in the

Hubbard model forq50.
We first evaluateF0

a(3B) for the half-filled metallic states
~u[U/Ec,1, Ec[8uv0

~3B!u! of the Mott-Hubbard regime de-
fined by D[«p@U and D@tpd , where d50, dd;0, and
z0
2;O(1). In this case we find x0

~3B!~0!;O~1! but
x1

~3B!~0!!1 and x2
~3B!~0!!1, g0

~3B!;O~1! but g1
~3B!!1,

@u1 f~k!#2;1 but @u1p~k!#2!1 and u1 f~k!u1p~k!!1. There-
fore, F0

a(3B) can be written simply as

F0
a~3B!

a
52

g0
~3B!

W
, ~61!

using the normalization factora[WNF[W0NF
0 defined

earlier for the Hubbard model. Evaluatingg0
~3B! from Eq.

~39! in the half-filled metallic case, one obtains

F0
a~3B!

a
52

4uv0
~3B!u

W0
H 12

1

~11u!2 J 522.8H 12
1

~11u!2 J ,
~62!

where we have used the expressionsuv0
~3B!u55.6teff and

W058teff with teff[t pd
2 /~D2l0

~2!! which are valid in the
present limit. Therefore, althoughF 0

a/a in the Mott-Hubbard
regime of the three-band model takes the same form as that
for the Hubbard model, the magnitudeuF 0

a/au of the former is
larger than the latter, becoming as large as 2.1 as opposed to
the latter’s maximum value 0.6 close to the metal-insulator
transition.

We next evaluate theF0
a(3B) of Eq. ~54! in the

infinitesimal-doping limits in the insulator regimes where
d506, dd506, and z0

2→0. In these limits @u1 f~k!#2→1,
@u1p~k!#2→0, and u1 f~k!u1p~k!→0, and j1ks

(3B)2j1ks
(3B)→D

2l0
(2) , and thenF 0

a/a can be written as

F0
a~3B!

a
52

g0
~3B!

W
2S g1~3B!

2z0
2 D 2 uv0

~3B!u
4W0

1
g1

~3B!

2z0
2 . ~63!

Here the second term is the contribution from the interband
term ofx2

~3B!~0! in ~57! and becomes~0.7/4!~g1
~3B!/2z0

2!2 per-
forming the sum(k

kF(gk
(3B))25 1

212/p2;0.7. Using the ex-
pression ~37! for g1

~3B! , this term can be rewritten as
2(1/2s0

2)(]z↑/]s2
)2uv0

(3B)u. This indicates the recovery of
the originally missingq-dependent term ing0

~3B! , corre-
sponding to thevq

(H) term of the Hubbardg 0
(H)~q! for q50,

if we use Eqs.~36! and ~19!. As we already noticed in Sec.
III C, the vq

(H) term of the Hubbardg0
(H)(q) for the general

nonzeroq, however, corresponds not only to thex2
~3B!~q!

term but to thex0
~3B!~q! andx1

~3B!~q! terms as well. Further-
more, if the last term of~63! is written as @tkF

2 /(D

2l0
(2))#g1

(3B)/W in the present limits wheretkF
2 /(D2l0

(2))

54tpd
2 /(D2l0

(2)) with (gkF
(3B))251 is the effective band en-

ergy andW58z0
2t pd

2 /(D2l 0
(2)), then it is easy to notice that

this term corresponds to the Hubbard term,2«Fg 1
(H)/W

~which vanishes though at half-filling!, and the first two
terms of~63! to the Hubbard2g 0

(H)(0)/W term of theF 0
a(H)

in ~51!. Now let us evaluate each term of~63! in the infini-
tesimal doping limits; we findg0

~3B!/W52.1 and g1
~3B! is

given by g1
~3B!/2z0

252z~06!sgndd with z~06![[12E(06)/

U] 1/25[121/u6] 1/2, ~1>z~06!>0!, whereE~d![8uv0
~3B!~d!u,

u6[U/E(06), and sgndd is the sign ofdd which is dd.0
for electron dopingd.0 but can bedd.0 or dd,0 for hole
doping d,0 which depends on the regime in the insulator
phase, as we clarified earlier.8 Thus the Landau parameter in
the insulator regimes for the infinitesimal dopingsd506

takes the form

F0
a~3B!

a
52H 2.110.7S 12

1

u6D22 ~sgndd!S 12
1

u6D 1/2J .
~64!

From this we can extract the asymptotic values ofF0
a(3B)/a

in the typical parameter regions;~i! near the boundary but
inside the insulator phase of a metal-insulator transition in
the Mott-Hubbard~MH! regime whereu6→110,@z~06!→0#,
this F0

a(3B)/a again takes the same value22.1 as that from
~62! in the metallic side, and~ii ! in the charge-transfer~CT!
insulator limit of u6→` where both infinitesimal electron
d501 and hole d502 dopings give dd501, we obtain
F0
a(3B)/a520.8. This hole-doping value, however, changes

very quickly to the valueF0
a(3B)/a524.8 asudu increases to

a finite hole doping~d,0! becausedd changes its sign to the
negative ~dd,0!.15 This CT valueF0

a(3B)/a520.8 corre-
sponds to the asymptotic value of the HubbardF 0

a(H)/a for
U→` at the half-filling. @Note that z~06!;1 is not ap-
proached in the MH insulator regime.# Therefore, the struc-
ture of the Landau parameter~64! in the insulator phase of
the three-band model is different from that~53! of the Hub-
bard model.

Other than the extreme MH and CT limits, next we inves-
tigate the behaviors of the Landau parameter for infinitesimal
dopings through the parameter set of the high-temperature
superconductors, which is assumed here asU/tpd;10 and
D/tpd;9 and exists just inside the insulator phase of CT
character, as we showed before.15 In Fig. 3~a! we plot
2F0

a(3B)/a as a function ofU/Uc for D/tpd59 and in Fig.
3~b! as a function ofD/Dc for U/tpd510. In these figures we
show separately~i! the contribution of the sum of the first
and second terms of Eq.~64! and~ii ! the contribution of the
third term, which are plotted by the dashed and dash-dotted
lines, respectively~the critical values for the metal-insulator
transitions are, respectively,Uc/tpd57.89 andDc/tpd58.33!.
Contrary to the half-filled region in the metallic regime
~U/Uc,1 and D/Dc,1! where the Landau parameter
2F0

a(3B)/a is continuous across the half-filling ford501 and
d502, it is seen that in the insulator regimes2F0

a(3B)/a
jumps fromd501 doping tod502 doping. The larger hole-
doping value of2F0

a(3B)/a than the electron-doping value is
explained by the contribution~ii ! with this trend while the
contribution ~i! has the opposite but smaller trend. The be-
havior of the contribution~i! is similar to the Hubbard
F 0

a(H)/a at half-filling where the second term2«Fg 1
(H)/W

corresponding to the contribution~ii ! of the three-band
model vanishes.

Figures 3~a! and 3~b! show that, contrary to the Hubbard
model, the Landau parameter of the three-band model for
dilute doping can increase beyond the critical value of unity
corresponding to a ferromagnetic phase transition, especially
even for the value of Coulomb repulsionU or charge-
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transfer energyD less than the critical valueUc or Dc . Here
the value of2F0

a(3B)/a beyond unity is not itself physically
meaningful, but our analyses beyond this value help under-
stand the origins of this Landau parameter in the more real-
istic cases also because these infinitesimal doping behaviors
persist even in finite doping concentrations. The fact that
2F0

a(3B)/a is larger than2F 0
a(H)/a in the same MH regime

indicates that the three-band model is a more magnetic
model than the Hubbard model.

V. DISCUSSION

We showed in subsection IV A that the weak-coupling
Landau parameterF 0

a(H)/a;2U/W0 of the Hubbard model
is always dominated by theg 0

(H) term in both the low density
limit and the dilute doping limit, whereas the strong-coupling
parameter arises from theg 1

(H) term in the low density case
and from theg 0

(H) term in the dilute doping case. In order to
understand these origins we analyze here the physical pro-
cesses leading to the coupling constantsg 0

(H) andg 1
(H). If we

look at the diagrammatic derivation of the susceptibility
xzz(q) given in ~44!, it is easy to find that theg 0

(H) andg 1
(H)

terms in the denominator ofxzz(q) are derived by scatterings
of fermions withl2

~2! bosons and mixedl2
~2!s2 bosons, being

represented by@D(q)a#l
2
(2)l

2
(2) and @D(q)a#s2l

2
(2) boson

propagating terms, respectively. These terms give the RPA
contributions ofg 0

(H)x0(q) andg 1
(H)x1(q) in xzz(q) as ob-

tained by substituting the expressions~45! and~46! into ~44!.
l2

~2! boson andl2
~2!s2-boson excitations represent the phase

part and the mixed phase-amplitude part of spin fluctuations
from their original definitions, which correspond, respec-
tively, to the spin fluctuation of itinerantquasiparticlesand
to the spin fluctuation oflocal momentsof d electrons. Ex-
citations of the latter spin fluctuation withs2 bosons are
suppressed in the strong-coupling dilute-doping regime
where the local moments are strongly renormalized with the
small factorz0 which enters the vertex in~42!. Let us briefly
look at our result forg 0

(H) andg 1
(H) in the low-density limit

in the light of theT-matrix derivation of the Landau param-
eter2Ueff/W0. In theT-matrix approximation the effective
interactionUeff is formally given as the sum of the single
scattering termU and the multiple scattering termUGU ~G
is the dressed Green’s function!, Ueff5U1UGU. The Lan-
dau parameter2Ueff/W052(U1UGU)/W0 is calculated
as 2Ueff/W0 5 2 U/W0 1 (U/W0)

2/(11 U/W0) 5 2(U/
W0)/(11U/W0). These individual terms have opposite
signs tending to cancel each other when they grow, which is
quite different from the division into the weak-coupling pa-
rameterg 0

(H) and the strong coupling parameterg 1
(H) ob-

tained in the low-density limit. It is natural that our slave-
boson terms do not correspond to theT-matrix perturbation
expansion terms.

Another way to understand the two coupling constants
g 0
(H) andg 1

(H) is to examine the derivations of these terms in
the saddle-point derivation ofxzz~0! in Sec. III C. As we
have seen there, the coupling constants are given by
g 0
(H)52q2uv 0

(H)u, g 1
(H)54q1 , and the internal field by

2l02
~2! 5(s(2]qs/]md)vs where q1[(1/2)(ss]qs/]md

and q2[]2qs/]md
2. Therefore, theg 0

(H) and g 1
(H) terms in

the Fermi-liquid parameter are related to the internal-field
effects through the second and first derivatives of the spin-
dependent band renormalizationqs , respectively, while the
spin-independent renormalizationq0 yields the mass en-
hancement of the numeratorx 0

zz5x 00
zz(0)/q0 .

Figure 2 shows that the Landau parameter2F 0
a(H)/a of

the Hubbard model first decreases~curve b! and then in-
creases~curvec! with increase in doping from the half-filling
d50 ~curve a!. This nonmonotonous variation is the result
from the two competing terms ofg 0

(H) andg 1
(H), the former

FIG. 3. The normalized Landau Fermi-liquid parameter
2F0

a(3B)/a ~solid curves! for the three-band model.~a!
2F0

a(3B)/a as a function ofU/Uc for D/tpd59 in the Mott-Hubbard
regime~Uc/tpd57.89!, and~b! 2F0

a(3B)/a as a function ofD/Dc for
U/tpd510 in the charge-transfer regime~Dc/tpd58.33!. The dashed
and dot-dashed curves are the contributions~i! @the first two terms
of ~64!# and ~ii ! @the last term of~64!#, respectively. In~a! and ~b!
the parameter setU/tpd;10 andD/tpd;9 roughly corresponds to
that of the high-Tc cuprates.d501 and d502 on the curves for
U/Uc.1 in ~a! andD/Dc.1 in ~b! correspond to infinitesimal elec-
tron and hole dopings, respectively, in the MH~a! and in the CT~b!
insulator regimes.
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decreasing and the latter increasing with dopingd. The
strong correlation regime (U@Uc) near half-filling ~d;0!
does not necessarily lead to the largest Landau parameter.

We have noticed in Sec. IV B that the contribution~i! of
the first two terms of the expression~63! ~and ~64! for
2F0

a(3B)/a in the Mott-Hubbard insulator is very similar to
2F 0

a(H)/a of the Hubbard model. In fact, the sum of these
two terms exactly reproduces theg 0

H(0)/W expression of the
Hubbard model. However, there is some difference from the
Hubbard model; in the insulator regime (U@Uc) the contri-
bution ~i! shows a jump on going fromd501 to d502 dop-
ing. This is due to the existence of the two different values of
z~06! for d501 andd502. The differentz~06! values in turn
result from the different average kinetic energies
E~06![8uv0

~3B!~06!u because the quasiparticle fermion level
l0

~2! which entersv0
~3B! jumps acrossd50 corresponding to

the jump in the chemical potential.
We have seen in Sec. IV that while the Landau parameter

defined by2F 0
a(H)/a of the Hubbard model does not exceed

the value of unity for arbitrary value ofU and doping~Fig.
2!, 2F0

a(3B)/a of the three-band model can exceed this value
@Figs. 3~a! and 3~b!#. Particularly, this is true even for the
expression~61! for the half-filled metallic region and the first
two terms of ~63! for the insulating region in the Mott-
Hubbard regime which precisely correspond to the Hubbard
model expression2F 0

a(H)/a. To understand this large Lan-
dau parameter of the three-band model it will suffice basi-
cally to show why the metallic half-filling of the Mott-
Hubbard regime leads to the larger prefactor 2.8 in~62! as
compared to the corresponding prefactor 0.8 for the Hubbard
model. The average kinetic energyuv0

~3B!u of the three-band
model is the value calculated taking the nonhopping level
l0

~2! ~the top of the lowest band! as the energy zero, as op-
posed to the valueuv 0

(H)u of the Hubbard model calculated
with the center of the band as the nonhopping energy zero.
This difference leads to the kinetic energy
uv0

~3B!u55.6teff5~5.6/8!W0 for the three-band model and
uv 0

(H)u5(1.6/8)W0 for the Hubbard model. This also means
that the critical Coulomb repulsion for metal-insulator tran-
sition is larger for the former,Uc;Ec58uv0

~3B!u;5.6W0,
than for the latter,Uc5Ec58uv 0

(H)u;1.6W0 . For the weak
coupling limit U!Uc , however, both the three-band model
and the Hubbard model give the same Landau parameter
value, F0

a(3B)a;25.6u52U/W0 and F 0
a(H)/a;21.6u

;2U/W0 .
We have noticed that our results~52! and ~53! for the

Landau parameter of the structureless Hubbard model repro-
duce those obtained by Lavanga10 and Li et al.11 within the
same Kotliar-Ruckenstein slave-boson scheme and by Voll-
hardtet al.13 in the Gutzwiller approximation. This indicates
that our results for the three-band model are also valid at the
same approximation level. The Landau parameters for the
lattice Hubbard and three-band models can be evaluated
from these expressions by simply multiplying the normaliza-
tion factor a[W0NF

0 using the unrenormalized bandwidth
W0 and density of statesNF

0 at the Fermi levelNF
0. Recently,

Li and Bernard10 have performed an extensive numerical
study of several Landau parameters includingF 0

a(H) for the
structureless Hubbard model, from which they deduced the
pressure dependences of the effective-mass enhancement
m* /m, the compressibilityk, the magnetic susceptibilityx,

etc., of normal liquid3He, being in reasonable agreement
with the experimental results.19,20 We therefore expect that
our results obtained for the three-band model can also ex-
plain the similar physical quantities of the normal states of
the high-Tc compounds to the same extent.

As we have seen above, in contrast to other theoretical
approaches the slave-boson Gaussian-fluctuation scheme can
easily take into account coupling-constant renormalizations
as well as bandwidth renormalization in the magnetic sus-
ceptibility expression as functions of Coulomb repulsion and
doping concentration. Studies on the magnetic properties in-
cluding these renormalization effects have just been started
and we would therefore expect in near future to obtain fur-
ther new information on the magnetic properties of the Hub-
bard and the three-band models. Our slave-boson approach
fot the three-band CuO2 model has revealed the different
renormalization behaviors for the Fermi-liquid parameter
~also for other magnetic properties described below! than for
the 2D Hubbard model, which seems to be quite reasonable
in view of the presence of the intervening oxygen ions.

Here we have only discussed the uniform Landau param-
etersF 0

a/a for qÞ0 and defined them by introducing the
normalization factora[WNF5W0NF

0 in order to avoid the
particular model-dependent density-of-states effect. It would
be interesting to examine theq-dependent Landau param-
eters for the study of the magnetic instabilities and magnetic
properties of these models, for which we have to consider
explicitly the band-structure effect ofa. We have recently
derived the phase diagrams for the paramagnetic-to-
antiferromagnetic and the paramagnetic-to-ferromagnetic in-
stabilities in the 2D three-band model, which are compared
with those in the 2D Hubbard model. The results will be
published in a separate forthcoming paper.

In summary, we have derived the magnetic susceptibili-
ties of the Hubbard model and the three-band CuO2 model in
several different methods within the Gaussian fluctuations of
the functional integral in the slave-boson approach. We have
analyzed the relationships between the two magnetic suscep-
tibilities and the uniform Landau Fermi-liquid parameters
uF 0

au/a ~a[W0NF
0, NF

0 the density of states at the Fermi
level andW0 the bare bandwidth! defined from the suscepti-
bility expressions. It has been found that the Landau param-
eter for the three-band model becomes larger than that for the
Hubbard model, indicating a more magnetic model. The rea-
son for this is due to the fact that a larger kinetic energy is
stabilized for quasiparticles in the three-band model, which
leads to the larger effective magnetic-coupling constants.
The Landau parameters in the doped strong-coupling insula-
tor regime of the three-band model are found such that it is
always larger for a hole doping than for an electron doping.
We have given the explanation for this result using the in-
finitesimal doping cases. Furthermore, we have found that
our Landau parameter expression for the Hubbard model re-
produces the T-matrix expression of uF 0

au/a5U/W0/
(11U/W0) for the highly doped low-density limit where the
renormalization mechanism is different from that in the di-
lutely doped high-density regime.
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