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In a two-dimensional band-structure model, the effect of doping on the Raman electronic background of a
superconductor withdx22y2 gap symmetry is studied. Emphasis is placed near optimum doping and on the role
of the van Hove singularity. The relationship between peaks in the Raman spectrum for three often discussed
photon geometries and the gap is studied. No simple relationship exists, although theB1g mode can show many
of the features of the quasiparticle density of states.@S0163-1829~96!03842-8#

I. INTRODUCTION

The broad featureless background electronic Raman con-
tinuum observed in the high-Tc oxides

1–5 is found to readjust
its intensity as a function of frequency in the superconduct-
ing state leading to the appearance of gaplike features.4–14

Such features have recently been interpreted in terms of a
superconducting energy gap withdx22y2 symmetry.9 The
theory of Raman scattering in metals is well developed.15–25

Klein and Dierker17 showed that the Raman vertices in vary-
ing photon polarization geometries can lead to different Ra-
man spectra in anisotropic superconductors. In a recent
publication,25 the present authors gave results of calculations
of the electronic Raman-scattering susceptibility for theB1g,
B2g, andA1g photon geometries in ad-wave superconductor.
The Raman vertices were calculated from a realistic two-
dimensional band structure used to model the copper-oxide
plane. The electron pairing was assumed to proceed through
the antiferromagnetic spin-fluctuation model of Millis, Mon-
ien, and Pines~MMP!.26 The superconducting state was
characterized through numerical solutions of the BCS gap
equations using fast-Fourier-transform methods. In this ar-
ticle, we follow the same procedure, extending our previous
work to study doping effects. Particular emphasis is placed
on the rule of the van Hove singularity. When the van Hove
singularity falls at the Fermi surface, the critical temperature
will be maximum~optimum doping!. In our work, we fit the
only parameter entering the gap equation, namely the
strength of the electron coupling to the spin susceptibility, so
as to get aTc5100 K at optimum doping which is a value
that can be taken as characteristic of the oxides. Once a band
structure is specified, there remains no adjustable parameters
and the gap follows. In all our numerical solutions, we find
dx22y2 symmetry although many higher-order harmonics are
present besides the lowest one for thedx22y2 irreducible rep-
resentation of the two-dimensional tetragonal point group of
the CuO2 lattice.

In Sec. II, we present the necessary formalism and discuss
results for the quasiparticle density of state. Section III con-
tains our numerical results for the Raman scattering as well
as some discussion of these results. In Sec. IV, we draw
conclusions.

II. FORMALISM AND Tc VALUE

The Raman cross section is related to the Raman response
functionxGg given by15–25

xGg~q; inn!52T(
k

tr$Ĝ~q1k; inn!G~q1k; inn

1 ivm!ĝ~k!G~k; ivm!%, ~1!

where tr stands for trace,vn (nn) is the fermion~boson!
Matsubara frequency given by [2n11]pT (2npT) with T
the temperature in energy units andn50, 61, 62, . . . . In
Eq. ~1!, Ĝ~k;inn! andĝ~k! are, respectively, dressed and bare
Raman vertices which are 232 matrices. In terms of the
Pauli matricest, the bare vertexĝ(k)5g~k!t3 is

g~k!5(
ab

ea
I ]2ek

]ka]kb
eb
s , ~2!

whereeI~es! is the initial ~scattered! photon polarization vec-
tor andek is the electron energy dispersion so that the second
derivative ofek in Eq. ~2! is the inverse of the effective mass
tensor. For a two-dimensional copper-oxide plane, we will
take forek , the form

ek522t̄$@cos~kxa!1cos~kya!#22B cos~kxa!cos~kya!

2~222B2m!%, ~3!

where t̄ is the first-nearest-neighbor hopping andB is the
second-nearest-neighbor in units oft̄. In Eq. ~3!, a is the
lattice parameter in the square lattice and can be taken to be
1 in dimensionless units. Finally,m is the chemical potential.

In Eq. ~1!, G~k;ivn! is the 232 Nambu Green’s function
given by

G~k; ivn!52
ivnt01ekt31Dkt1

ek
21Dk

21vn
2 , ~4!

whereDk is the gap in the superconducting state. Finally, the
dressed Raman vertex in Eq.~1! is to satisfy the equation17

Ĝ~q; inn!5ĝ~q!2T(
m,k

tr$Ĝ~k1q; inn1 ivm!

3G~q1k; inn1 ivm!V~q; inn!G~k; ivm!%.

~5!

For a static screened Coulomb potentialV~q;inn! to lowest
order inq, i.e., q→0, we can write~a result given by Klein
and Dierker!17
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xGg~q; inn!5xgg~q; inn!2
xg1~q; inn!x1g~q; inn!

x11~q; inn!
, ~6!

wherexgg is given by Eq.~1! with Ĝ replaced byĝ, x1g
with Ĝ replaced by 1,gg1 with Ĝ replaced byĝ and ĝ re-
placed by 1; andx11 with both Ĝ and ĝ replaced by 1. The
response functionxgg~q;inn! can be worked out from the
definition of the Green’s function~4! ~b is the inverse tem-
perature! to be

xgg~q→; inn!52
4

V (
k

ugku2Dk
2

Ek@4Ek
21nn

2#
tanhS bEk

2 D ,
~7!

whereEk[Aek
21Dk

2 andV is the volume. Similar expres-
sions hold forxgg , g1g, andg11 in which one or both factors
of gk in Eq. ~7! are replaced by 1. The Raman-scattering
cross section then follows from the analytic continuation of
Eq. ~6! to the real frequency axis through the analytic con-
tinuation inn→v1 i01. Because of symmetry,xg1 vanishes
for theB1g andB2g modes but is finite for theA1g mode so
Coulomb effects only renormalize theA1g channel. For the
other two channels, the simpler expression~7! applies, and
we are only interested in the imaginary part of
Im xgg~q50;inn5v1 i01! which we will denote by
Im xgg~v!. We will use this same notation even when a Cou-
lomb renormalization@see Eq.~6!# is applied.

To proceed, we need some model for the gapDk as a
function of momentum in the first Brillouin zone of the two-
dimensional copper-oxide plane. Here we will use the same
procedure as in our previous work.25 To be definite, we solve
a BCS gap equation appropriate to the nearly antiferromag-
netic Fermi-liquid model of Millis, Monien, and Pines.26 In
this model, the pairing is thought to occur through the phe-
nomenological electron-spin susceptibility25–33xkk8 given by
MMP as

xMMP~k2k8!5
xQ

11d2~q2Q!2
, ~8!

whered52.25 Å, xQ510 states/eV, and the commensurate
wave vectorQ5(p/a,p/a). The BCS equation is

Dk52
1

V (
k8

g2xMMP~k2k8!
Dk8
Ek8

tanhS bEk8
2 D , ~9!

where the coupling constantg is arbitrary and varied to get
the desired value of the critical temperature. Here we will
takeTc to be 100 K, a value representative of the copper-
oxide superconductors. No parameters remain in Eq.~9! and
a numerical solution by a fast-Fourier-transform technique
gives us the momentum-dependent gap functionDk . For the
model susceptibility given by Eq.~8!, the solutions exhibit
dx22y2 symmetry although they involved a superposition of
lowest and many of the higher-order harmonics in this irre-
ducible representation for the two-dimensional copper-oxide
tetragonal lattice. We refer the reader to our earlier work for
details.26 Once the gap is known, the Raman cross section
Eq. ~7! can be calculated. Of course, the results will depend
on band structure through our choice of dispersion relation
Eq. ~3!. In Eq.~3!, we will take t̄5100 meV and many of our

first results will be forB50.16. Later, we will varyB as
well. The chemical potential is determined for a given filling
^n& through the equation26

^n&5
1

2

1

V (
k

F12
ek
Ek

tanhS Ek

2kBT
D G . ~10!

One of our interests in this paper is an understanding of
the role played in the Raman-scattering cross section of the
van Hove singularity in the electronic density of state. When
the chemical potentialm in Eq. ~3! is such that we are near
the maximum in the normal-state density of states, the value
of the critical temperature is enhanced. This is illustrated in
Fig. 1 whereTc is shown as a function of fillinĝn& given by
Eq. ~10! for t̄5100 meV,B50.16 andg2 in the BCS equa-
tion ~9!, set so that at̂n&50.44 the critical temperature has
a value of 100 K at optimal doping. On either side of opti-
mum doping, under doped with lower value of^n& and over-
doped for higher value of̂n&, the value ofTc drops in quali-
tative agreement with experiment although the precise
relationship between doping and filling is not well known
and our model is certainly too simple to expect quantitative
agreement with experiment. It does, however, allow us to
achieve some understanding of the effect of filling on various
superconducting properties.

III. NUMERICAL RESULTS

We begin with a discussion of the quasiparticle density of
stateN(v) as a function of energy in the superconducting
state. It is given by

N~v!5 lim
G→0

1

V (
k

G

~Ek2v!21G2 , ~11!

where the Lorentzian form is just a convenient representation
of a diracd functions useful for numerical work on a lattice
of finite size. In Fig. 2, we show a series of results for the

FIG. 1. The critical temperature~solid squares! is plotted as a
function of filling for a band structure model withB50.16 and
t5100 meV. Also plotted are the frequencies~in meV! for maxima
in the different Raman geometries. The notation is~s! A1g mode,
~L! B1g, ~n! B2g. The solid circles are twice the frequency of the
gap maximum in the quasiparticle density of states as shown in Fig.
2.
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quasiparticle density of state for five different values of fill-
ing in the caset̄5100 meV,B50.16 andTc at optimum
doping equal to 100 K. Frames~a!–~e! are, respectively, for
^n&50.4, 0.42, 0.43, 0.44, and 0.46. In frame~a! for ^n&
50.4, which falls in the under doped region with aTc value
of about 84 K~see Fig. 1!, we note first that the density of
stateN(v) is shown with zero placed right at the Fermi
energy~as will be the case for all other frames! and that it
rises linearly from zero asv increases. The first peak, which
falls around 13 meV, is the gap peak which is followed by
the van Hove singularity peak at about 22 meV.34 Note that
both these features appear on either side ofv50 in the den-
sity of state, but that the figure does not have full inversion
symmetry because forBÞ0 the van Hove singularity is not
atv50. As the filling is increased towards optimum doping,
Tc increases and we see in frame~b! that the gap peak has
also moved up in energy and is now closer to the van Hove
peak than was the case in frame~a!. The absolute value of
the density of state at maximum has also increased. The ef-
fect is even more pronounced in frame~c! for ^n&50.43 in
which case the gap peak and van Hove singularity fall very
near each other and are not resolved within the resolution of
our numerical work. Note that in our numerics,G in Eq. ~11!
is finite. Both gap and van Hove singularity now fall near 20
meV. At optimum dopinĝn&50.44@frame~d!#, the value of

the density of state at maximum has risen to a value of 30 in
our units and gap and van Hove peaks fall at the same en-
ergy. The final frame~e! is for the overdoped situation with
filling ^n&50.46 andTc reduced slightly to about 98 K. We
see that the position of the gap peak has lowered somewhat
from its value in frame~d! for optimum doping and that a
second peak due to the van Hove singularity is now resolved.
Also, the overall height of the density of state at maximum is
reduced in comparison with frame~d!.

We now want to trace the effect of the van Hove singu-
larity on the Raman-scattering cross section Imxgg~v! de-
fined in the previous section and compare this with what we
have just learned about the behavior of the quasiparticle den-
sity of state. Figure 3~a! shows our results for the case of the
B1g channel. As for Figs. 1 and 2,t̄5100 meV,B50.16, and
g2 is fixed by insisting thatTc at optimum doping be 100 K.
The filling is changed through optimum doping from̂n&
50.4 ~solid curve! to ^n&50.41~narrow dashed!, 50.42~in-
termediate dashed dotted!, 50.43 ~short dashed!, 50.44
~dotted!, 50.45~long dashed-triple dotted!, and50.46~long
dashed!. First note that we predict a single peak at approxi-
mately 40 meV for the case of optimum doping~dotted
curve!, exactly as seen in the quasiparticle density of state
@Fig. 2, frame~d!#. The peak is, however, at twice the gap
value seen inN(v). This is expected since the expression for
the Raman cross section can be written in the form@see Eq.
~7!#

Im xgg~v!5
1

V
Im (

k

ugku2Dk
2

Ek
2 tanhS bEk

2 D
3F 1

2Ek1v1 i01 1
1

2Ek2v2 i01G ~12!

with the denominator vanishing forv562Ek rather than
v56Ek in the density of state expression~11!. When we
move off optimum doping on either side, the peak in the
Raman intensity is reduced in magnitude, see dashed triple
dotted curve with^n&50.45 overdoped case and the short
dashed curve witĥn&50.43 slightly under doped case. No
second peak is resolved in these two curves. For the long
dashed curve witĥn&50.46 and the intermediate dashed-
dotted curve witĥ n&50.42 displaced to either side of opti-
mum doping at̂ n&50.44, a second peak, due to the van
Hove singularity at higher energy, is clearly present as it was
in N(v) and this is even seen more clearly in the last two
curves for which^n&50.40 ~solid! and ^n&50.41 ~narrow
dashed!. In these curves, the intensity of the Raman profile is
lower at the gap maximum than for the other cases and
broader in energy with a second maximum clearly seen at
higher energy. As we have stressed, this peak has its origin
in the van Hove singularity in the electronic density of state
of the two-dimensional tight-binding band. It is clear that the
Raman electronic background, in principle, will give much
the same information as tunneling, a technique which should,
in principle, yieldN(v) although, in practice, there some-
times appears to be severe problems with this method and
unambiguous results are not always obtained. This perhaps
may be because, in the high-Tc oxides, the coherence length
is so short that only a few surface layers are probed and that
these are not completely representative of the bulk. While

FIG. 2. Quasiparticle density of statesN(v) in the supercon-
ducting state as a function of frequencyv in ~meV!. In all frames,
the next-nearest-neighbor hoppingB50.16, nearest-neighbor
t̄5100 meV. The fillinĝ n& is changed and is 0.4, 0.42, 0.43, 0.44,
0.46 for frames~a!–~e!, respectively. The van Hove singularity in
the band structure falls at 22 meV for^n&50.4.
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theB1g Raman spectrum is very similar in appearance to the
density of states, Eq.~12! for Im xgg~v! and Eq.~11! for the
density of states do differ by more than the one having a
two-d, while the other has a one-d gap feature as we have

just described. The Raman profile is further weighted by the
vertex factorugku

2 which does not appear in the density of
states. At zero temperature, the thermal factor in Eq.~12! is,
of course, gone. This vertex factor selectively weights certain
parts of the Brillouin zone.25 For a different Raman channel,
the vertexugku

2 can be quite different and the resulting profile
can have a very different shape as seen in Fig. 3~b! where we
show results for Imxgg~v! for theB2g mode as a function of
doping with ^n& ranging from an under doped sample with
filling 0.4 to an overdoped one with 0.46. As before^n&50.4
~solid line!, 0.41~narrow dashed!, 0.42~intermediate dashed
dotted!, 0.43 ~short dashed!, 0.44 ~dotted! ~near optimum
doping!, 0.45 ~long dashed-triple dotted!, and 0.46~long
dashed!. In this case, the peak in the Raman profile is not
even close to falling at approximately twice the value of the
gap peak in the density of states seen in Fig. 2. Also, the
curves order simply according to increased doping and show
no sign of the decrease inTc and by implication of gap value
for the underdoped and overdoped regime when compared
with optimum doping. The maximum of the intensity in-
creases slightly with increasinĝn& and its position also
shifts very slightly towards higher energies. This behavior is
completely different from that of theB1g mode which, as we
have discussed, reflects much of the properties of the density
of states. TheB2g mode in no way resembles a density of
state curve. For example, there is no trace of the van Hove
singularity in Fig. 3~b! yet it is quite prominent in Fig. 3~a!
for the B1g mode. The only difference between these two
Raman geometries is the vertex factorugku

2 in Eq. ~12! which
obviously can have a profound effect on the resulting profile.

In Fig. 3~c!, we show our results for theA1g mode with
screening included according to Eq.~6!. These profiles,
which would look more like those of Fig. 3 for theB1g mode
if screening was not included, actually look more like those
for the B2g mode except that they are generally lower in
intensity and significant in magnitude over a larger energy
range. They show a second peak at higher energies besides
that around 10–20 meV. As was the case for theB2g mode,
the profiles order according to value of filling and do not
show a reversal of trends about optimum filling as did the
B1g mode of Fig. 3~a!. It is clear then that the only spectrum
that is easily interpretable as a weighted density of states is
theB1g mode.

It is important to note that in our calculations the screen-
ing of theA1g mode has reduced its intensity enormously so
that it is almost three orders of magnitude smaller than the
B1g mode. The screenedA1g response, however, is enor-
mously sensitive to the assumed underlying band structure.38

This suggests that quantitative predictions for a particular
material will need to await reliable band information. Here
we have presented results for a simple generic band structure
and should not be thought of as describing a particular sys-
tem. To illustrate the sensitivity of the screenedA1g to band-
structure effects, we consider dispersion relation Eq.~3! with
an additional term of the formC@cos(2kxa)1cos(2kya)# in
the curly brackets. This has been suggested in band-structure
calculations35,36 and angle-resolved photoemission spectros-
copy experiments for Y-Ba-Cu-O. In Fig. 4, we compare
results for theB1g andA1g modes with filling^n&50.4 for a
case withC50.25. The dashed curves are for comparison
and apply to the caseC50.0 previously presented in Fig. 3.

FIG. 3. Raman-scattering cross section as a function of fre-
quencyv in ~meV! for the ~a! B1g, ~b! B2g, and~c! A1g modes. In
the calculation, the second-nearest-neighbor hoppingB50.16 and
first neighbor t̄5100 meV. The fillings considered arên&50.4
~solid curve!, 50.41 ~narrow-dashed!, 50.42 ~intermediate dashed
dotted!, 50.43 ~short dashed!, 50.44 ~dotted! @near optimum dop-
ing#, 0.45 ~long dashed-triple dotted!, and 0.46~long dashed!.
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The solid curves differ only in thatC50.25 yet the results
are very different. The two upper curves are forB1g. We see
that the curves are different in shape but very similar in
magnitude. The situation for theA1g mode is completely
different. Screening has reduced the intensity of the dashed
curve by a factor of almost 1000, while the solid curve is
reduced by much less, a factor of about 10. It is clear then
that no quantitative predictions37 of screening effects can be
made with confidence at this stage because the details of the
band structure of a particular material are not yet confidently
established.

We now return to our main theme and all calculations
from this point on will be forC50, i.e., the simpler band-
structure model of Eq.~3!. In Fig. 1, we plot the frequency at
the first maximum of the Raman profile as a function of
filling ^n& for the three modes considered in Fig. 3, namely
B1g ~open diamonds!, B2g ~open triangles!, andA1g ~open
circles!. Also, shown for comparison~solid circles! is the
position of twice the frequency at the gap peak in the quasi-
particle density of states of Fig. 2. It is quite clear that only
theB1g mode reflects fairly directly the information on gap
amplitude. The screenedA1g and theB2g profiles weight
portions of the Fermi surface which overlap the nodes in the
dx22y2 gap. These spectra are sensitive to excitation in the
nodal regions but provide no information on gap amplitude.
This is important for the interpretation of data. For complete-
ness, the maximum intensity of Imxgg~v! is plotted as a
function of filling ^n& in Fig. 5 for four cases, namelyB1g
~open diamonds!, B2g ~solid diamonds!, A1g with screening
~solid circles!, and A1g without screening~open circles!.
Note the different scale on right-hand side forA1g screened
andB2g and on the left-hand side forA1g unscreened and
B1g. These two cases have a much larger intensity in our
calculation than do the other two. We note that theB1g case
varies in a similar way to the value of the critical temperature
Tc vs ^n& shown in Fig. 1, while theB2g and screenedA1g
case do not. They show no trace of a peak at optimum dop-
ing and simply increase with increasing value of^n&. So we
can expect no direct correlation between intensity andTc

value in these cases. Again, the general conclusion is that it
is only theB1g profile that behaves similarly to a density of
states. Some of the features predicted here have not yet been
confirmed and some experimental results are in conflict. We
now focus further only on this particular case (B1g).

Based on the dispersion curve of Eq.~3!, the bare Raman
vertex for theB1g mode is independent of second-neighbor
hoppingB and is given by

gk
B1g52t̄@cos~kx!2cos~ky!#, ~13!

which is zero along the two main diagonals and largest at the
four points~0,6p! and~6p,0!. A plot of ugk

B1gu as a function
of k in the first Brillouin zone is shown in Fig. 6~a!, while
the corresponding constantugk

B1gu contours are given in
frame~b! of the same figure. This holds for any value ofB in
contrast to theA1g andB2g case in which instanceB would
enter the Raman vertex. In Fig. 6, we show the Fermi-surface
contours for three different values ofB, namely B50,
B50.3, andB50.45 all at fixed filling set at̂n&50.4. The
integrand in Eq.~12!, of course, strongly weights the Fermi
contour in the sum over the first Brillouin zone of the two-
dimensional copper-oxide plane. ForB50, the Fermi con-
tour does not pass close to the~0,6p!, ~6p,0! points where
the gap is maximum and where the Raman vertex for theB1g
mode is also peaked. AsB is increased, the Fermi surface, of
course, samples more of this important region. AtB50.3 as
shown in the figure, the contours are coming in contact with
the Brillouin-zone boundary but are already receding from
the ~6p,0!, ~0,6p! point and this is even more so for the
B50.45 case.

We have calculated the Raman cross section for a range
of B values, all with the filling^n& fixed at 0.4 and the
couplingg2 in the BCS equation adjusted so thatTc is 100 K
in all cases so that the maximum gap in the Brillouin should
also be roughly the same in each case. Figure 7 shows our
results for the position of the gap maximum in theB1g Ra-
man cross section as a function of the second-nearest-
neighbor hoppingB from 0 to 0.45. We see that this fre-
quency ranges from 30 meV atB50 to take on a maximum

FIG. 4. Comparison of results for theB1g ~higher curves! and
screenedA1g ~lower curves! for a band structure withC50 ~dashed
curves! andC50.25 ~solid curves! wherec is defined in the text
and multiplies a term of the form cos(2kxa)1cos(2kya) which is
added to the dispersion relation Eq.~3! for the two-dimensional
band structure. Note that for theA1g case~lower curve! the dashed
curve has been multiplied by a factor of 200.

FIG. 5. Intensity of Raman-scattering cross section at maximum
as a function of filling^n&. The notation is~s! A1g mode with no
screening,~L! B1g mode,~d! A1g screened, and~l! B2g. Right-
hand scale applies forA1g screened andB2g, and left-hand scale for
A1g unscreened andB1g. Detail line shapes are found in Figs. 3–5.
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value of about 40 meV reached forB>0.25. At still higher
values ofB, this frequency drops back to about 37 meV a
pattern which is expected from our previous consideration of
Fig. 6. It is quite clear from this figure that the gap maximum
seen in the Raman spectrum is not representative of the
maximum gap in the Brillouin zone and cannot be expected
to scale exactly withTc value. Instead, it is related more to
the values of the gap on or near the Fermi contours. For the

case^n&50.4 andB50, this contour does not pass close to
the region where the gap is maximum in the Brillouin zone
and the frequency of the maximum in the Raman profile is
only 30 meV instead of roughly 40 meV forB50.25 when
the maximum gap is sampled. Thus even data on theB1g
mode require care in interpretation and cannot be taken as
directly related to a quasiparticle density of state curve.

IV. CONCLUSION

Within a BCS model for the pairing in a nearly antiferro-
magnetic Fermi liquid based on the phenomenological
electron-spin susceptibility of Millis, Monien, and Pines26

which gives a gap withdx22y2 symmetry, we have calculated
the Raman susceptibility. Various photon configurations
were considered and the Raman profile compared with the
corresponding quasiparticle density of states. It was found
that theB1g spectrum bares the most resemblance to the
density of state exhibiting a clear gap maximum and also
showing the van Hove singularity usually at higher energies.
By changing the filling from the underdoped regime to the
overdoped case, we have seen the gap maximum merge with
the Van Hove singularity right at optimum doping. At this
point, the intensity of the gap peak is greatest and its position
is very nearly at twice the value of the position of the gap
peak in the density of state. TheB2g and screenedA1g modes
do not allow such a simple and pleasing interpretation be-
cause of the very different weighting provided by the square
of the Raman vertex. This factor strongly determines the
shape of the resulting spectrum.

FIG. 6. The square of the Raman vertex
ugk

B1gu2 as a function of momentum in the first
Brillouin zone of the copper-oxide plane@frame
~a!#. Constant value contours for the same quan-
tity @frame ~b!#, and in frame~c! the Fermi sur-
face for different values of second-nearest-
neighbor hoppingB as labeled. In all cases, the
filling is fixed at ^n&50.4.

FIG. 7. The value of the frequency at the gap maximum in the
B1g Raman cross section as a function ofB, the second-nearest-
neighbor hopping parameter for fixed fillinĝn&50.4 and fixed
value of critical temperatureTc5100 K.
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Depending on the shape of the Fermi surface, the Raman
vertices may be more heavily weighted in different parts of
the Brillouin zone. The vertex peaks may not be located near
the gap maxima ink space, thus the maximum gap in the
Brillouin zone may not be as significantly sampled in the
Raman spectra as it is in the quasiparticle density of states.
Comparison with existing data show agreement with some of
the predicted features and strong disagreements with others.
We have also noted that details of the band structure can

strongly affect the magnitude of theA1g mode when screen-
ing is included.
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