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The notion of spectral flow has given new insight into the motion of vortices in superfluids and supercon-
ductors. For a BCS superconductor the spectrum of low energy vortex core states is largely determined by the
geometric optics limit of Andreev reflection. We use this to follow the evolution of the states when a stationary
vortex is immersed in a transport supercurrent. If the core spectrum were continuous, spectral flow would
convert the momentum flowing into the core via the Magnus effect into unbound quasiparticles—thus allowing
the vortex to remain stationary without a pinning potential or other sink for the inflowing momentum. The
discrete nature of the states, however, leads to Bloch oscillations which thwart the spectral flow. The momen-
tum can escape only via relaxation processes. Taking these into account permits a physically transparent
derivation of the mutual friction coefficients.@S0163-1829~96!08842-X#

I. INTRODUCTION

Imagine a two-dimensional superfluid, initially in its
ground state, confined to the surface of a torus. Suppose now
that a vortex-antivortex pair is created at some point on the
surface and the vortex is moved slowly round one of the
generators of the torus before being allowed to annihilate
with its antivortex partner. One effect of this process is to
give the superfluid order-parameter phase a unit winding
number around the generator perpendicular to the motion of
the vortex. The associated phase gradient implies that a su-
percurrent has been established in this direction. If no other
momentum-carrying excitations were created along with the
supercurrent, the system as a whole has acquired momentum
perpendicular to the vortex motion. Moving the vortex there-
fore requires us to supply this momentum from an external
source. This is the Magnus effect.1

For a Bose superfluid this is all there is to the story: If
we wish to move a vortex with respect to the background
fluid we must~at least at low temperatures when there is no
normal fluid component! place a wire or other object in the
vortex core to supply the transverse momentum to the fluid.
The reaction force the fluid exerts on the wire is the Magnus,
or Kutta-Joukowski, lift force.2

For a fermionicS-wave superfluid~we consider a neutral
condensate for simplicity; the principal effect of the mag-
netic field in an Abrikosov vortex is to transfer the momen-
tum supplied by the vortex to the positive ion lattice, thus
ensuring that no superflow is induced beyond the penetration
depth; nothing significant changes in the core! the situation is
subtler because the vortex has low-energy bound states3,4

whose role in the momentum balance equation has been
studied for many years.5–7 Recently Volovik8 has cast a new
light on this subject by showing that motion of the vortex
with respect to the stationary condensate induces a spectral
flow among these states. In a cartoon version of his theory
this spectral flow generates, even with adiabatic motion of
the vortex, a stream of unbound quasiparticles which carry
off momentum equal and opposite to that of the induced

superflow. Therefore the vortex can apparently be moved
without any external source of transverse momentum. In this
sense the spectral flow ‘‘cancels’’ the Magnus effect. The
discrete nature of the bound state spectrum, however, com-
plicates the picture. As observed in Ref. 8 and modeled in
Ref. 9, a nonzero temperature is required to broaden the
closely spaced levels so that they may behave as if the spec-
trum were continuous. In the hydrodynamic limit a ‘‘cancel-
lation’’ of sorts still takes place, but only in the sense that all
the incoming momentum is immediately transferred to the
positive ion lattice.

Despite the complicating necessity of level broadening,
the spectral flow mechanism provides a very physical picture
of the processes occuring in the vortex core. Several ques-
tions immediately arise, however. For example: What hap-
pens when a vortex is held stationary in a transport supercur-
rent? By Galilean invariance, this situation is physically
equivalent to a moving vortex and a stationary superfluid,
yet—with no time dependence in the Bogoliubov–de Gennes
equations—it is not immediately clear what drives the spec-
tral flow. A second question is whether the spectral flow
picture requires a modification of the conventional theories
of momentum balance and Hall angle. The aim of the present
paper is to discuss these issues within a simple model for the
core states.

We will introduce a quasiclassical picture, based on the
geometric optics limit of Andreev scattering,10 for the evo-
lution of the states in a stationary vortex core. This allows us
to show that the discreteness of the spectrum leads to effects
analogous to those in the one-dimensional Wannier-Stark
ladder. Stark ladder resonances occur when a uniform elec-
tric field is applied to a Bloch electron in a periodic
potential.11 The electron initially accelerates but, in the ab-
sence of dissipation, is eventually Bragg reflected from the
periodic lattice potential resulting in an oscillatory motion in
a localized region. No net current flows—except that arising
from the exponentially small interband Zener tunneling. If
we describe this process in a gauge whereA050, Ax52Et
we have a time-dependent Hamiltonian and explicit spectral
flow. In a gauge whereA052Ex, Ax50 there is no explicit
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time dependence but the same physics results. In both gauges
dissipation via inelastic collisions allows the electron to
avoid Bragg reflection and so permits a finite current. Analo-
gously, relaxation processes in the vortex core allows some
spectral evolution. By keeping track of the resultant momen-
tum flux we find the consequences of the spectral flow for
the vortex dynamics. These turn out to be the well-known
mutual friction that couples the superflow to the normal flow
via the vortex motion. The traditional Green function formal-
ism of Refs. 6 and 7 must therefore tacitly take the spectral
flow into account.

The organization of this paper is as follows. First, in Sec.
II, we exhibit a simple version of spectral flow and show
how momentum entering the vortex core is recycled as qua-
siparticle momentum. In Sec. III we will review the theory of
the core states and its connection with Andreev reflection. In
Sec. IV we interpret the core state spectrum in terms of the
failure of exact Andreev retroreflection and, in Sec. V, armed
with the insight gained from this interpretation, we show
how the spectral flow is mapped onto the Stark-Wannier
problem. Finally, also in Sec. V, we account for the momen-
tum flux to the normal component.

II. ONE-DIMENSIONAL SPECTRAL FLOW

As a simple model of a vortex core consider the following
one-dimensional Bogoluibov–de Gennes eigenvalue prob-
lem in the Andreev approximation:

F 2 iv f]x
D~x!e2 iu~x!

D~x!eiu~x!

iv f]x
GFuv G5eFuv G . ~2.1!

Here D(x)50 for 0,x,L ~the ‘‘core’’! while D(x)5D
5const elsewhere. We take the phase of the order parameter
to beu(x)5uL for x,0 andu(x)5uR for x.L. We will use
m to denote the fermion mass so thatkf5mv f is the Fermi
momentum andEf5

1
2mv f

2 is the Fermi energy.
The bound-state solutions,C5[ v

u], with e,D are easily
found. The wave functions are of the form

C~x!5Fe1 ikv f
De2 iuR Ge2k~x2L !,

5F aei ex/v fbe2 i ex/v f G ,
5Fe2 ikv f

De2 iuL Gekx,

x.L,

0,x,L,

x,0,

~2.2!

with e21(v fk)
25D2. Matching the solutions atx50, L fixes

the ratioa/b and requires the eigenvalueen to obey

en5
v f
2L

„~uR2uL!12pn12 cos21~en /D!…. ~2.3!

For states deep in the gap,e!D, this simplifies to

en5
v f
2L

„~uR2uL!12p~n1 1
2 !…. ~2.4!

We see that if we gradually increase the phase difference
across the core,Du5uR2uL , the entire spectrum moves up
in energy. By the timeDu has increased by 2p each state has
been replaced by the one below it. This is the spectral flow.

The physical interpretation of the spectral flow depends
on the context. If~2.1! were describing a charge density
wave~CDW! system, the upper and lower components ofC
would be the amplitude of left- and right-going particles.
Then a summation over occupied states gives the local
charge density and current

^C†~x!C~x!&5^cR
†~x!cR~x!1cL

†~x!cL~x!&5^r~x!&,

v f^C
†~x!s3C~x!&5v f^„cR

†~x!cR~x!2cL
†~x!cL~x!…&

5^ j ~x!&. ~2.5!

In a CDW a time rate of change of the phase of the order
parameter induces a current^ j &'(1/2p) u̇, with the correc-
tions being small whenu̇ is small. Consequently the slow
twisting of uR relative touL tells us that charge is flowing
into the the gapless region 0,x,L. Since the time-
dependent version of~2.1! implies thatp and j obey the
conservation law

] tr~x!1]xj ~x!50, ~2.6!

the inflowing charge must be accumulating in the gapless
region.12 Each time the relative twist increases by 2p, a unit
charge will have accumulated. In the same interval one of the
~occupied! negative energy bound state levels has adiabati-
cally crossed the zero energy level and taken the place of a
positive energy state. The occupation number of the positive
energy bound states has therefore increased by unity, consis-
tent with the accumulation of unit charge. Eventually, with
more twisting~the amount depending onL!, the filled levels
will reach the top of the gap and merge with the upper con-
tinuum. After this point each new unit of charge that flows in
will appear as a low energy quasiparticle.

In a superconductor the upper and lower components of
C arecR , cL

† , respectively. In this case the expressions for
the current and charge density are interchanged

v f^C
†~x!C~x!&5v f^cR

†~x!cR~x!1cL~x!cL
†~x!&

5v f^cR
†~x!cR~x!2cL

†~x!cL~x!&5^ j ~x!&,

~2.7a!

C†~x!s3C~x!5^cR
†~x!cR~x!2cL~x!cL

†~x!&

5^cR
†~x!cR~x!1cL

†~x!cL~x!&5^r~x!&.

~2.7b!

The conservation law

] t~cR
†cR2cL

†cL!1v f]x~cR
†cR1cL

†cL!

5] tC
†C1v f]C†s3C50, ~2.8!

also changes its physical interpretation as, on multiplication
by kf , it becomes the equation of momentum conservation.13

Now, instead of charge, each occupied bound state carries
momentum1kf . The relative twisting of the phases on the
two sides of the core represents an inflow of momentum
from the condensate, and the spectral flow leads to its recy-
cling as the momentum of low energy quasiparticles.~This
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one-dimensional spectral flow has consequences for the flow
of vortices in Josephson junctions.15,16!

We can make a simplistic model of the consequences of
two-dimensional vortex motion by assuming that~to a first
approximation! the process described in the Introduction, the
passage of a vortex around theLy generator of anLx3Ly
torus, can be mimicked by the breaking and reconnection
after a 2p phase twist of the order parameter in a collection
of one-dimensional superfluids, one for each allowed
ky52pn/Ly . From the discussion following~2.8! we
see that a single twist accumulates a momentum
kx5Aukf u22ky

2 for each of the one-dimensional systems.
This is the same amount of momentum we would get by
translating thekx value of each particle on the torus by
dkx5p/Lx . If the total number of electrons isN, the net
momentum accumulated in a passage of a vortex around the
Ly generator is therefore

DPx5
pN

Lx
5

pr

m
Ly , ~2.9!

wherer5mN/(LxLy) is the mass density.
This implies a rate of momentum accumulation in the

core of

dPx
dt

5
p

m
rvy .

Since the circulation in a BCS vortex isk5p/m we see that
momentum is accumulating, or being recycled, at a rate
equal to the Magnus force on the vortex,Fx5krvy .

This cartoon version of the process is of course overly
simplistic. The bound states in the two-dimensional vortex
core are not those of the one-dimensional equation~although
we will soon see that they are closely related!, and the varia-
tion of the order parameter in they direction will couple the

ky momenta so that they cannot be dealt with individually. In
the next section we will begin to deal with these deficiencies.

III. TWO-DIMENSIONAL BOUND STATES

In this section we will review the classical results of Refs.
3 and 4 on bound states in the core of a two-dimensional
vortex. Our aim is to show that the physics of Andreev scat-
tering reduces the full problem to a collection of one-
dimensional problems of the form considered in the previous
section.

We wish to solve the Bogoliubov–de Gennes equation

F2
1

2m
¹22Ef

D~r !e2 iu

D~r !eiu

1

2m
¹21Ef

G F ũṽ G5eF ũṽ G . ~3.1!

Here r andu are polar coordinates with origin at the vortex
center. For the moment we will leave the gap profileD(r )
unspecified, but the angular dependence of the order param-
eter is such that the superflow isanticlockwisewith a single
quantum of circulation.

We now separate the radial and angular parts of the wave
function. To do this we must first appreciate thatu,v are
invariant only under 4p rotations. ~The same is true for the
one-dimensional problem in Sec. II. There we saw that a 2p
twist in the order parameter shifts the particle momenta by
dkx5p/Lx . If there were no quasiparticle created along with
the twist this would lead to a double valued many-body wave
function. Fortunately thex dependence of the quasiparticle
serves to restore the single valuedness to the total wave func-
tion.! Therefore we seek solutions in the form

F ũṽ G5F u~r ,u!eiu/2

v~r ,u!e2 iu/2G5F ul~r !eiu/2

v l~r !e2 iu/2Geil u, lPZ. ~3.2!

We find thatul(r ), v l(r ) obey

F 2
1

2m S ] rr
2 1

1

r
] r2

~ l11/2!2

r 2
1kf

2D
D

D

1

2m S ] rr
2 1

1

r
] r2

~ l21/2!2

r 2
1kf

2D G Fulv l G5eFulv l G . ~3.3!

To separate the rapidly varying degrees of freedom from
the slow, we follow Ref. 3 and write

Fulv l G5F f lgl GHm
~1!~kfr !1c.c., ~3.4!

whereH m
(1)(kfr ) with m5Al 211/4 is a Hankel function,

and f l , gl are slowly varying envelope functions. We may
approximate the Hankel function by the WKB form

Hm
~1!~kfr !;

const

~r 22b2!1/4
expH ik fE

b

r Ar 22b2

r
drJ ,

~3.5!

which is valid forr larger than the WKB turning pointr5b.
This turning point is related tokf and l by kfb5 l .

Substituting~3.5! into ~3.3! and keeping only the large
terms we find

F 2 iv f
Ar 22b2

r
] r

D

D

iv f
Ar 22b2

r
] r
G F f lgl G

5S e2
l

2mr2D F f lgl G . ~3.6!

We can make~3.6! more intelligible by tradingr for a
variablex defined byr 25x21b2.4 We find
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F2 iv f]x
D

D
iv f]x

GF fgG5S e2
l

2m~x21b2! D F fgG . ~3.7!

This substitution has a geometric meaning: For any
Bessel functionJl(kr) the turning point distance,b, is the
impact parameter of a particle moving past the origin in a
straight line with momentumk and angular momentuml .
The quantityx is the distance of the particle from the point
of closest approach to the origin. Along withx we introduce
a polar angle ‘‘u’’ by x5b tanu. This angle differs only by a
constant from the true polar angleu, so we temporarily abuse
notation and make no distinction between the new angle and
the original. We then notice that

l

2m~x21b2!
5
1

2
v f

du

dx
~3.8!

so that, defining,

F f̃ lg̃l G5F f le
iu/2

gle
2 iu/2G ~3.9!

to undo the transformation that removed the angle depen-
dence from the order parameter in~3.1!, we get

F2 iv f]x
De2 iu

Deiu

iv f]x
GF f̃ lg̃l G5eF f̃ lg̃l G . ~3.10!

This looks very much like the one-dimensional eigen-
value problem solved in Sec. II. It is not yet identical, how-
ever, In ~3.10! the coordinatex5Ar 22b2 is restricted to
positive values. Furthermore boundary conditions have to be
imposed onf̃ l , g̃l at x50 to ensure that the Hankel functions
can combine to give theJl61/2(kr)51/2„H l61/2

(1) (kr)
1H l61/2

(2) (kr)… which are finite at the origin. We may none-
theless extendx to negative values by regarding the part of
~3.4! with the incoming Hankel functionH m

(2)(kfr ) as living
on the negativex axis, and the outgoing partH m

(1)(kfr ) on
the positivex axis. With this interpretation the boundary
conditions atx50 translate into the requirement of continu-
ity of f̃ l , g̃l there.

Physically the transformation of the two-dimensional ei-
genvalue problem~3.1! into the one-dimensional~3.10! oc-
curs because each bound quasiparticle is bouncing back and
forth along a straight line, its direction of motion being re-
peatedly reversed by Andreev scattering off the increasing
value of the gap.

TheD(r ) profile found from a self-consistent solution of
the Bogoliubov–de Gennes and gap equations has scale
R'v f /D.

14 In order to have analytic expressions for the
bound state eigenvalues, we will not use such a self-
consistentD(r ), but take instead a step function:D(r )50,
r,R andD(r )5D for r.R. We will also assumeR to be
somewhat larger thanv f /D so that we can ignore, in~3.10!,
the variation ofu in the regions where the wave function is
evanescent. With these assumptions we can directly apply
~2.3! and ~2.4!.

Each quasiparticle trajectory now coincides with a chord
of a circle of radiusR. If this chord subtends an angle of 2x
at the center of the circle it has lengthL52R sinx ~see Fig.
1!. Furthermore the quantityDu5uL2uR , the difference in

order parameter phase at the two ends, is equal to 2x. For
states with energye!D the energy eigenvalues are therefore

en~ l !5
v f

4R sinx
„2x12p~n1 1

2 !…. ~3.11!

Here l5bkf5Rkfcosx. For small l and n521, Eq. ~3.11!
reduces to

e21~ l !52v0l , v05
1

2mR2
. ~3.12!

This is the topological branch of low energy excitations
which is important for the spectral flow. Note that
v05~2mR2!21 is the angular velocity of the superflow at the
boundary of the core.

The maximum value ofl occurs where the chord length
becomes zero ande→D. This maximum value is
lmax5Rkf'v fkf /D52Ef /D'103–104. This is large enough
that l can almost be regarded as a continuous parameter. We
will often use this observation to write expressions such as
]e/] l without further comment.

In the next section we will show that thel dependence in
~3.11! and ~3.12! is a consequence of the failure of the An-
dreev scattering to be perfectly retroreflective.17

IV. ANDREEV REFLECTION AND THE BOUND STATE
SPECTRUM

The bound states may be thought of as standing waves set
up by Andreev reflected quasiparticles repeatedly traversing
a chord of a circle. For a bound state of definite angular
momentum,l , the orientation of this chord will be indefinite.
To produce a state localized on a chord with specified orien-
tation and impact parameter we must take a linear combina-
tion of angular momentum states,

uu&5(
l
ale

2 i l uu l &, ~4.1!

where the coefficientsal are large only forl'kfb. Because
of the Rayleigh criterion relating the extent of a plane wave
front and its diffraction spread, there will be an uncertainty
relation between the sharpness ofu andb.

We may follow the time evolution of these wave packets
by using the smalll approximatione21( l )52v0l . We find

FIG. 1. A bound state with an electron~solid arrow! being An-
dreev reflected as a hole~dashed arrow!.
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uu,t&5(
l
ale

2 i l ue1 i lv0tu l &5u~u2v0t !,t50&. ~4.2!

The chord is thus seen to precess at the angular frequencyv0
in the senseoppositeto the superflow. If we use the more
general form~3.11! for the energies, we will need to replace
2v0 by a group angular velocity

v5
]e~ l !

] l
, ~4.3!

but the same general picture will hold. In this section we will
see that this precession can be understood rather precisely as
the combined effect of two processes each of which causes
the Andreev reflection to fail to be perfectly retroreflective.17

One of these processes is due to the superflow and we will be
able to use this insight to determine the evolution of the
bound states when the vortex is immersed in a transport su-
percurrent.

To begin with we consider a plane superconducting–
normal-superconducting~SNS! junction of widthL having a
supercurrentvs flowing parallel to the junction~see Fig. 2!.

There will be bound states in the junction with momenta
close tok5(kx ,ky)5~kfcosu,kfsinu!. These states are found
from the Andreev Hamiltonian

H5F2 i ~kx]x1ky]y!/m
D~x!e22imvsy

D~x!e2imvsy

i ~kx]x1ky]y!/m
G , ~4.4!

whereD(x)50 for 0,x,L andD(x)5D elsewhere. They
have the form

c5F ei ~dkxx1dkyy!

e2 i ~dkxx1dkyy!G , 0,x,L. ~4.5!

Here dky5mvs and ~for states with e!D!
dkx5(1/2L)[2p(n1 1

2 )]. Their energy is

e5v f~dkxcosu1dkysinu!. ~4.6!

In the figure we have drawn the trajectories of the electron
and hole as if they were at a definite location in the junction.
In reality, specifying ay location requires making a wave
packet

uy&5E dky
2p

a~k!e2 ikyyuk&, ~4.7!

with some spread ofky . This packet will drift in the1y
direction at the group velocity

vdrift5
]e~k!

]ky
52

tan udkx
m

1vs . ~4.8!

For trajectories that are at close to normal incidence on the
supercurrents~u50 or ky'0! this velocity is essentiallyvs .

This drift can be accounted for by noting that the Andreev
scattering is not perfectly retroreflective. Consider reflection
from the right-hand supercurrent in Fig. 2. Although both the
incident electron and the reflected hole have nominal mo-
mentumk, they in fact have momentak6dk ~see Fig. 3!.

This means that each reflection causes a small change in
the angle of incidence

du52~2dkxsinu1dkycosu!/kf

52
e

Ef
tanu1

2vs
v f

1

cosu
. ~4.9!

Because both particle and hole move with speedv f , it is
easy to see~see Fig. 4! that such a change in angle leads to
the trajectory migrating up the junction with velocity

vdrift5
v f

2 cosu
du. ~4.10!

FIG. 2. Bound state in a SNS junction with superflow. The solid
arrow is the electron trajectory and the dashed arrow the hole.

FIG. 3. The electron~solid arrow! and hole~dashed arrow! mo-
menta do not lie exactly atk on the Fermi surface; consequently
their momenta differ in direction by a small angledu.

FIG. 4. The slight difference between the angle of incidence of
the electron~solid arrow! and the angle of reflection of the hole
~dashed arrow! causes the bound state to migrate up the SNS junc-
tion.
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Inserting~4.9! into ~4.10! precisely reproduces~4.8!.
The same result holds true for the bound states in the

circular core. From Sec. III we know that the bound state
energies are

en~ l !5
v f

4R sinx
@2x12p~n1 1

2 !#, ~4.11!

wherel5kfR cosx. The group angular velocity is therefore

vg5
]e

] l
5

cosx

sin2x

e

kfR
2

1

2mR2sin2x
. ~4.12!

For states with smalle ~i.e., n521, x'p/2! the latter term
dominates.

The geometric optics picture works here also. We can use
the plane interface formula fordu after noting that the angle
of incidence, calledu in ~4.9! is now u5p/22x. Notice,
though, that a positivedu means that the point of impact of
the return trajectory movesbackwardsthrough an angle of
2du ~see Fig. 5!. This is the origin of the minus sign in
e( l )'2v0l . The other information we need is the time be-
tween impacts at the pointsA and C. This is
dt54R sinx/v f . Putting all the ingredients together gives
the precession rate as

vg522
du

dt
5

cosx

sin2x

e

kfR
2

1

2mR2sin2x
~4.13!

as before.
The l dependence of our core-state spectrum is therefore

entirely determined by the geometry of Andreev reflection.
The only role of the wave character of the states is in the
condition thatl be an integer, and in then dependence of the
spectrum. Since only the zero-crossing branch,n521, is of
interest in the spectral flow problem, then dependence is
irrelevant here.

The lesson we learn from this section is that the quasiclas-
sical motion of the chord is governed by two processes
whose effects add. One, proportional to the bound-state en-
ergy is independent of the superflow, and the other, propor-
tional to the superflow, is independent of the energy. The

additivity of the effects also applies when the superflow is
not parallel to the SN interface. We will need this fact in the
next section.

V. FRUSTRATED FLOW AND MUTUAL FRICTION

If we insert our vortex in a transport supercurrent by re-
placing theDeiu gap function byDeiue2imvsx then either
considerations of the group velocity or of the geometry of
Andreev reflection will show that the wave packets will try
to migrate across the core at speedvs , just as in the parallel
sided junction. In the absence of precession, this motion
across the core will cause a monotonic change of (uR2uL)
from 0 ~where e52D! to 2p ~where e51D! leading to a
steady stream of states crossing the gap and becoming un-
bound quasiparticles, just as in Sec. II.

This migration is, however, in competition with the2v0
precession. The competition can be described quantitatively
by writing an effective Hamiltonian governing the evolution
of the wave packets

H52v0l1vs•k, ~5.1!

wherek5~kfcosu,kfsinu!. The observablesl and u are ca-
nonically conjugate and have commutation relations
[u,l ]5 i .

For a supercurrent in the1x direction, the orientation and
impact parameter of a wave packet of bound states evolve
according to the quasiclassical equations

u̇5
]H

] l
52v0 ,

l̇52
]H

]u
5kfvssinu. ~5.2!

The orbits are

l5
kfvs
v0

cosv0t1const. ~5.3!

We see that a packet with an initially positive value of sinu
tries to cross the core from2ulmaxu to 1ulmaxu but, because of
the evolution ofu, it is reflected back. This is not surprising
since the Hamiltonian~5.1! is identical to the Wannier-Stark
Hamiltonian for a tight-binding model. In this interpretation
l would label the atomic site,v0 would be the external elec-
tric field, andu the crystal momentum. The 2p periodicity of
the latter is a direct consequence of the discreteness of the
values ofl—just as in the vortex the discreteness ofl is a
direct consequence of the 2p periodicity ofu. The to-and-fro
motions ofl (t) are therefore Bloch oscillations caused by the
discreteness of the bound state spectrum.

The only way a state can make the journey from2ulmaxu
to 1ulmaxu without being reflected would be forvskf /v0 to be
larger thanlmax. But this is equivalent to the condition that
vs exceed the pair-breaking velocity,vpairkf5D.

Although the spectral flow is thwarted by the Bloch oscil-
lations there are still effects from the evolution of the states.
We can analyze these by writing a Boltzmann equation for
the distribution function,n( l ,u), in the l ,u phase space. We
have

FIG. 5. Andreev reflection from the supercurrent causes the
chord defining the bound state to precess in the opposite sense to
the superflow.
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]n

]t
2v0

]n

]u
1kfvssinu

]n

] l
5I , ~5.4!

whereI is the collision integral. We will use a simple relax-
ation time approximation to~5.4! by setting

I52
1

t
„n~ l ,u!2n̄~ l ,u!…, ~5.5!

where n̄( l ,u) is an equilibrium distribution whose exact
form is determined by the normal velocityvn . ~In a super-
conductor the normal component relaxes to the lattice, so in
this casevn[v lattice.! For example ifvn5vs50 we would
expectn→n0[u( l ) so that all negative energy states are
occupied.

It is actually more convenient to write equations for the
moments ofn that give the total momentum in the core

^kx&5
1

2 E dl
du

2p
„n~ l ,u!2n0~ l ,u!…kfcosu,

^ky&5
1

2 E dl
du

2p
„n~ l ,u!2n0~ l ,u!…kfsinu. ~5.6!

The factor of12 in front of these integrals compensates for the
double counting of particles and holes, andn0( l ,u)5u( l )
reflects the normal ordering which ensures that^k&50 when
everything is at rest.

As an example suppose we fill all the negative energy
states of~5.1! by settingn( l ,u)5u~v0l2vskfcosu!. We find
^ky&50 and

^kx&52
1

4

kf
2vs
v0

52rk
vs
v0

, ~5.7!

wherek5p/m is the quantum of circulation andr5mkf
2/4p

is the equilibrium mass density of the electron fluid. This
would be the appropriate equilibrium distribution for the
casevn50. The nonzero value of̂kx& reflects the reduction
in current through the vortex core because of the nonzero
value of rn there. If vn5vs , on the other hand, we expect
^k&50 because, even thoughrnÞ0 in the core, the total cur-
rent j5rsvs1rnvn is unaffected by the vanishing gap.

Using these definitions and insights we find

d^kx&
dt

5v0^ky&1krvsy2
1

t
~^kx&2^kx&0!,

d^ky&
dt

52v0^kx&2krvsx2
1

t
~^ky&2^ky&0!, ~5.8!

where

^k&05
kr

v0
~vn2vs!. ~5.9!

In the steady state floŵkx,y& will be constant, so the
left-hand side of~5.8! will be zero. We can therefore solve
for ^kx,y& and find the rate at which momentum is being
transferred to the lattice

S d^k&
dt D

lattice

5
1

t
~^k&2^k&0!. ~5.10!

We find

S d^kx&
dt D

lattice

52kr
v0t

11v0
2t2

vnx1kr
1

11v0
2t2

vny ,

S d^ky&
dt D

lattice

52kr
v0t

11v0
2t2

vny2kr
1

11v0
2t2

vnx .

~5.11!

Notice thatvs does not occur in~5.11!.
These calculations have been made with the vortex sta-

tionary. Because of the Galilean invariance of the overall
system, we may replacevn by ~vn2vL! when the vortex is
moving at velocityvL . The rate of loss of momentum from
the core to the lattice is then

S d^k&
dt D

lattice

5D~vL2vn!1D8ẑ3~vL2vn!. ~5.12!

The quantitiesD,D8 are the mutual friction coefficients.
Their values

D5kr
v0t

11v0
2t2

,

D85kr
1

11v0
2t2

~5.13!

are the same as found, for example, in Ref. 18. For the pur-
poses of making comparisons with other work we must point
out that in deriving these expressions we have assumed that
we are at sufficiently low temperatures that there are very
few quasiparticles outside the vortex core. We have therefore
made no distinction betweenr andrs . Similarly the linear-
ization inherent in our use of the Andreev equations makes it
difficult to distinguish betweenr and the constantC0 which
is defined as the electron mass times number of states within
the Fermi sphere, and so coincides with the normal-state
density. This distinction may be connected with the change
of sign of the Hall effect nearTc .

19

Equation~5.13! determines the Hall angle. While the task
of finding a solution to the full dynamical gap equations for
a vortex immersed in a superflow is rather daunting, we do
know that such a solution must satisfy the law of momentum
conservation. The vortex core velocityvL must therefore sat-
isfy the momentum balance equation

05kr ẑ3~vL2vs!2D~vL2vn!2D8ẑ3~vL2vn! ~5.14!

as a consistency condition. The first term is the Magnus force
which gives the rate at which momentum enters the core.
The terms withD andD8 give the rate at which momentum
is being lost from the core to the lattice by mutual friction.

There are two extreme cases. In the collisionless regime,
v0t@1, the vortex has no choice but to move with the super-
flow. In the opposite, hydrodynamic, regimev0t is small.
Then thevL part of theD8 term almost cancels thevL part of
the Magnus force term. This allows the vortex to move at
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right angles to the superflow, unwinding the order parameter
phase gradient and dissipating the superflow.

It is worth pointing out that the cancellation between the
two vL terms in the hydrodynamic limit shouldnot be re-
garded as a ‘‘cancellation’’ of the Magnus force. To claim
that it is is akin to saying that the ‘‘F ’’ cancels the ‘‘ma’’ in
F5ma. This may seem a mere quibble, but an inappropriate
choice of language has caused confusion in the literature. It
is also worth stressing that while the reactive term
D8ẑ3~vL2vn! does not cause any dissipation of energy, its
presence is entirely due to quantum incoherent, entropy-
generating relaxation processes.

VI. CONCLUSION AND DISCUSSION

We have seen that a quasiclassical geometric optics model
gives a good description of the processes in the core of a
vortex immersed in a transport current. Even though there is
no explicit time dependence in the Bogoliubov–de Gennes
equations, spectral flow would still occur were it not sup-
pressed by an analogue of Bloch oscillations originating in
the discrete nature of the spectrum. The spectral evolution
does, however, lead to a nonequilibrium occupation of
momentum-carrying core states. When we account for the
processes by which the occupation distribution attempts to
relax, we find expressions for the mutual friction parameters
which coincide with those obtained by traditional Green

function methods.6,7,18 It is therefore clear that the Green
functions tacitly include the physics of spectral flow. The
new method of explicitly following the evolution of the
states does however have the advantage of being much more
physical.

Our general conclusions are consistent with recent work
by Kopninet al.which is briefly reviewed in Ref. 20. Some
other recent discussions of the Magnus force and momentum
balance are by Hoffmann and Ku¨mmel,21 Gaitan,22 Ao,23 and
Šimánek.24 The first of these papers has much in common
with the present approach. In particular these authors focus
on the role Andreev scattering plays in transferring momen-
tum from the condensate to the core states. The next two use
the Berry phase approach to confirm that the Magnus force
correctly gives the momentum flow into the vortex core. The
last combines effects of external and core states to find an
effective ‘‘Magnus’’ force that is a combination of the true
Magnus force and the mutual friction terms.
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