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The notion of spectral flow has given new insight into the motion of vortices in superfluids and supercon-
ductors. For a BCS superconductor the spectrum of low energy vortex core states is largely determined by the
geometric optics limit of Andreev reflection. We use this to follow the evolution of the states when a stationary
vortex is immersed in a transport supercurrent. If the core spectrum were continuous, spectral flow would
convert the momentum flowing into the core via the Magnus effect into unbound quasiparticles—thus allowing
the vortex to remain stationary without a pinning potential or other sink for the inflowing momentum. The
discrete nature of the states, however, leads to Bloch oscillations which thwart the spectral flow. The momen-
tum can escape only via relaxation processes. Taking these into account permits a physically transparent
derivation of the mutual friction coefficientsS0163-182806)08842-X]

[. INTRODUCTION superflow. Therefore the vortex can apparently be moved
without any external source of transverse momentum. In this
Imagine a two-dimensional superfluid, initially in its sense the spectral flow “cancels” the Magnus effect. The
ground state, confined to the surface of a torus. Suppose noWiscrete nature of the bound state spectrum, however, com-
that a vortex-antivortex pair is created at some point on th@licates the picture. As observed in Ref. 8 and modeled in
surface and the vortex is moved slowly round one of theRef. 9, a nonzero temperature is required to broaden the
generators of the torus before being allowed to annihilat&€losely spaced levels so that they may behave as if the spec-
with its antivortex partner. One effect of this process is tolfum were continuous. In the hydrodynamic limit a “cancel-
give the superfluid order-parameter phase a unit windin tion” of sorts still takes pI.ac.e, but qnly in the sense that all
number around the generator perpendicular to the motion e Incoming momentum s immediately transferred to the
the vortex. The associated phase gradient implies that a ghositive ion lattice. L . .
percurrent has been established in this direction. If no other Despite the compllcat_lng nece_ssny of level br_oade_nmg,
. I . the spectral flow mechanism provides a very physical picture
momentum-carrying excitations were created along with the

. of the processes occuring in the vortex core. Several ques-
supercurrent, the system as a whole has acquired momentyy immediately arise, however. For example: What hap-
perpendicular to the vortex motion. Moving the vortex there ’

X ) “pens when a vortex is held stationary in a transport supercur-
fore requires us to supply this momentum from an externalent> By Galilean invariance, this situation is physically
source. This is the Magnus ef_féCt- _ equivalent to a moving vortex and a stationary superfluid,

For a Bose superfluid this is all there is to the story: Ifyat__with no time dependence in the Bogoliubov—de Gennes
we wish to move a vortex with respect to the backgroundequations—it is not immediately clear what drives the spec-
fluid we must(at least at low temperatures when there is noyral flow. A second question is whether the spectral flow
normal fluid componentplace a wire or other object in the picture requires a modification of the conventional theories
vortex core to supply the transverse momentum to the fluidof momentum balance and Hall angle. The aim of the present
The reaction force the fluid exerts on the wire is the Magnuspaper is to discuss these issues within a simple model for the
or Kutta-Joukowski, lift forcé. core states.

For a fermionicS-wave superfluidwe consider a neutral We will introduce a quasiclassical picture, based on the
condensate for simplicity; the principal effect of the mag-geometric optics limit of Andreev scatterifgfor the evo-
netic field in an Abrikosov vortex is to transfer the momen-Ilution of the states in a stationary vortex core. This allows us
tum supplied by the vortex to the positive ion lattice, thusto show that the discreteness of the spectrum leads to effects
ensuring that no superflow is induced beyond the penetratioanalogous to those in the one-dimensional Wannier-Stark
depth; nothing significant changes in the gdhe situationis  ladder. Stark ladder resonances occur when a uniform elec-
subtler because the vortex has low-energy bound Sthtestric field is applied to a Bloch electron in a periodic
whose role in the momentum balance equation has begpotential’' The electron initially accelerates but, in the ab-
studied for many years.” Recently Volovik has cast a new sence of dissipation, is eventually Bragg reflected from the
light on this subject by showing that motion of the vortex periodic lattice potential resulting in an oscillatory motion in
with respect to the stationary condensate induces a spectrallocalized region. No net current flows—except that arising
flow among these states. In a cartoon version of his theorfrom the exponentially small interband Zener tunneling. If
this spectral flow generates, even with adiabatic motion ofve describe this process in a gauge whige0, A,= — Et
the vortex, a stream of unbound quasiparticles which carryve have a time-dependent Hamiltonian and explicit spectral
off momentum equal and opposite to that of the inducedlow. In a gauge wheré,= —EXx, A,=0 there is no explicit
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time dependence but the same physics results. In both gaugesThe physical interpretation of the spectral flow depends
dissipation via inelastic collisions allows the electron toon the context. If(2.1) were describing a charge density
avoid Bragg reflection and so permits a finite current. Analowave (CDW) system, the upper and lower componentsPof
gously, relaxation processes in the vortex core allows somgould be the amplitude of left- and right-going particles.

spectral evolution. By keeping track of the resultant momenThen a summation over occupied states gives the local
tum flux we find the consequences of the spectral flow forzharge density and current

the vortex dynamics. These turn out to be the well-known
mutual friction thaj[ couples thg '_superflow to the r_10rma| flow (PTOW (X)) = (LX) r(X) + ] (X) h (X)) ={p(X)),
via the vortex motion. The traditional Green function formal-
;Isorcv?;tlsegiéguigd 7 must therefore tacitly take the spectral m(\l”(x)(rgllf(x))=vf((z,//§{(x) Yr(X) — z,/;[(x) WL(X)))

The organization of this paper is as follows. First, in Sec. =(j(x)). (2.5
II, we exhibit a simple version of spectral flow and show
how momentum entering the vortex core is recycled as qua- In a CDW a time rate of change of the phase of the order
siparticle momentum. In Sec. lll we will review the theory of parameter induces a currefjty~ (1/27) , with the correc-
the core states and its connection with Andreev reflection. Inions being small wherd is small. Consequently the slow
Sec. IV we interpret the core state spectrum in terms of thewisting of 6, relative to 6, tells us that charge is flowing
failure of exact Andreev retroreflection and, in Sec. V, armednto the the gapless region <k<L. Since the time-
with the insight gained from this interpretation, we showdependent version of2.1) implies thatp andj obey the
how the spectral flow is mapped onto the Stark-Wanniekconservation law
problem. Finally, also in Sec. V, we account for the momen-
tum flux to the normal component. Ap(X)+ dyj (x)=0, (2.6

the inflowing charge must be accumulating in the gapless
region!? Each time the relative twist increases by, 2 unit

As a simple model of a vortex core consider the following charge will have accumulated. In the same interval one of the
one-dimensional Bogoluibov—de Gennes eigenvalue proboccupied negative energy bound state levels has adiabati-
lem in the Andreev approximation: cally crossed the zero energy level and taken the place of a
positive energy state. The occupation number of the positive
energy bound states has therefore increased by unity, consis-
tent with the accumulation of unit charge. Eventually, with
i more twisting(the amount depending dr), the filled levels
Here A(x)=0 for 0<x<L (the “core”) while A(X)=A  \yj|l reach the top of the gap and merge with the upper con-
=const elsewhere. We take the phase of the order parametgh,ym. After this point each new unit of charge that flows in
to bed(x)= 6, for x<Q andé(x) = 6y for x>L._We will Use  will appear as a low energy quasiparticle.
m to denote the fermion mass so tikqt= Mo Is the Fermi In a superconductor the upper and lower components of
momentum ande;= 3 mv { is the Fermi energy. W are i, ¢ , respectively. In this case the expressions for

The bound-state so!utionﬁ{:[g], with e<A are easily e cyrrent and charge density are interchanged
found. The wave functions are of the form

II. ONE-DIMENSIONAL SPECTRAL FLOW

u
v

—ividy  A(x)e'?™

AX)e ) jpea, -€

ol (2.9

etikoe v (W)W (X)) =0 (PR P00 + L) P (X))
W(X)=| s omige|e <D, X>L, i ; .
O = v (RO YRO) — YL )P (0) = (i (X)),
= baeefiex/yjf , 0<x<L, (2.2 (2.7a
:'fA—i_'ngf'ekx x<0, W) 75 (X) = (YOO YR(X) = L () (X))
e 1

= (RO Pr(X) + () (X)) =(p(X)).
with €+ (vk)?=A2 Matching the solutions at=0, L fixes (R ¥r L)1 (0)=(p(x))
the ratioa/b and requires the eigenvalug to obey (2.70
The conservation law

Ug _
== ((6r— 6)+2mn+2cos Y(e,/A)). (2.3
2L =Rt (b W) + v Wbt ¥l )

For states deep in the gapgA, this simplifies to =0V W 40,000, =0, (2.8
_Ug 1 also changes its physical interpretation as, on multiplication
oL (0r= 6) +2m(n+3)). (2.4 by ki , it becomes the equation of momentum conservaiion.

Now, instead of charge, each occupied bound state carries
We see that if we gradually increase the phase differencemomentum-+k;. The relative twisting of the phases on the
across the cored9=6g— 6_, the entire spectrum moves up two sides of the core represents an inflow of momentum
in energy. By the timé # has increased by2each state has from the condensate, and the spectral flow leads to its recy-
been replaced by the one below it. This is the spectral flowcling as the momentum of low energy quasipartici@his
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one-dimensional spectral flow has consequences for the floky, momenta so that they cannot be dealt with individually. In

of vortices in Josephson junctiofrs'9 the next section we will begin to deal with these deficiencies.
We can make a simplistic model of the consequences of
two-dimensional vortex motion by assuming ttitd a first lll. TWO-DIMENSIONAL BOUND STATES

approximation the process described in the Introduction, the

passage of a vortex around thg generator of arL, X L, In this section we will review the classical results of Refs.

torus, can be mimicked by the breaking and reconnectio@oft';i %S?a?%uigdtos?rrgjv 't?]at?tehecorﬁ ;2:;}"’:;:3':2232223'
after a 2r phase twist of the order parameter in a collection ’ phy

of one-dimensional superfluids, one for each allowedunfring rEduceS the full problem to a collegtion of one-
ky=27mn/L,. From the discussion following2.8) we dimensional problems of the form considered in the previous

see that a single twist accumulates a momentumsecuon' . : .
k= [kP—KZ for each of the one-dimensional systems We wish to solve the Bogoliubov—de Gennes equation
X f y Yy :

This is the same amount of momentum we would get by 1, A(r)e'?

translating thek, value of each particle on the torus by T Ve—Eq

ok,= /L, . If the total number of electrons i, the net A(r)e? >m V2+E;

momentum accumulated in a passage of a vortex around the

L, generator is therefore Herer and @ are polar coordinates with origin at the vortex

center. For the moment we will leave the gap profilg)

unspecified, but the angular dependence of the order param-

eter is such that the superflowasticlockwisewith a single

. . guantum of circulation.

wher(_apfml\_l/(LxLy) is the mass density. L We now separate the radial and angular parts of the wave
This implies a rate of momentum accumulation in thefunction. To do this we must first appreciate that are

=€ (3.1

7l

v

aN  mp

AP, = = by (2.9

core of invariant only under 4 rotations. (The same is true for the
dP. = one-dimensional problem in Sec. Il. There we saw thatra 2
d_tX: — pvy. twist in the order parameter shifts the particle momenta by

ok, = /L. If there were no quasiparticle created along with
Since the circulation in a BCS vortex is=7/m we see that  the twist this would lead to a double valued many-body wave
momentum is accumulating, or being recycled, at a ratéunction. Fortunately thex dependence of the quasiparticle
equal to the Magnus force on the vorté,= xpv, . serves to restore the single valuedness to the total wave func-
This cartoon version of the process is of course overhtion.) Therefore we seek solutions in the form
simplistic. The bound states in the two-dimensional vortex u(r,0)e'? uy(r)eio”2
core are not those of the one-dimensional equagdthough L e PP
we will soon see that they are closely relateahd the varia- v(r.0)e vi(r)e
tion of the order parameter in thedirection will couple the  We find thatu(r), v,(r) obey

= e’ lez. (3.2

1, 1 (+122 A
~5m (9”+Fﬁr——2—r + ks uj uj

1/, 1 (1-12*>
A om I _(gr__rQ__‘_kf

(3.3

To separate the rapidly varying degrees of freedom from Substituting(3.5) into (3.3 and keeping only the large

the slow, we follow Ref. 3 and write terms we find

| HY(ker)+c.c (3.9 A

vl g ™M o ' o \rZ=p? 5

—lvg
where H (M(k,r) with m=\17+1/4 is a Hankel function, r r [f'}
andf,, g, are slowly varying envelope functions. We may o r2=p? g
approximate the Hankel function by the WKB form A vy r I
HO o) const " fr \/rz—bzd I\ f,
ry~ exp) i re, = e—
m (Kt (rz——bz)l’z‘ 1y r (e W)[gj' (3.6
(3.5

which is valid forr larger than the WKB turning point=Db. We can make3.6) more intelligible by tradingr for a

This turning point is related t&; andl by k¢b=1. variablex defined byr?=x2+b?* We find
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—ivgg, A ]
g/ | €7 2m(x%+b?)

A il)f(?x

f} 3
gl (3.7

This substitution has a geometric meaning: For any
Bessel functionJ,(kr) the turning point distancey, is the
impact parameter of a particle moving past the origin in a
straight line with momentunk and angular momenturh
The quantityx is the distance of the particle from the point
of closest approach to the origin. Along withwe introduce
a polar angle ‘9" by x=b tand. This angle differs only by a
constant from the true polar angkeso we temporarily abuse
notation and make no distinction between the new angle and
the original. We then notice that

I 1 de FIG. 1. A bound state with an electrd¢solid arrow being An-
(3.8 dreev reflected as a holdashed arroyv

2m(xZ+b?) ~ 2 ' dx
so that, defining, order parameter phase at the two ends, is equalyta=ar
states with energy<A the energy eigenvalues are therefore
fi
[., (3.9 V¢
G «()=7r siny

to undo the transformation that removed the angle deperyq.o|=pk ~Rkcosy. For smalll andn=—-1, Eq. (3.11
dence from the order parameter (1), we get reduces tof st R

i6/2
612

f,e
ge

@2x+2m(n+1)). (3.11

fl_ [T
g g

This looks very much like the one-dimensional eigen-Thi_S is'the_ topological branch of low energy excitations
value problem solved in Sec. II. It is not yet identical, how- Which is er;portant for the spectral flow. Note that
ever, In (3.10 the coordinatex=\r?—Db? is restricted to wo=(2mR?)~lis the angular velocity of the superflow at the

positive values. Furthermore boundary conditions have to pBoundary of the core.

imposed orf, , G, atx=0 to ensure that the Hankel functions o The maximum valéje of OCC;J]_rS where the chor? length
can combine to give theJltllz(kr):llz(H I(]:;)llz(kr) ecomes zero ande—A. This maximum value is

+H (3, ,,(kr)) which are finite at the origin. We may none- | max=R k=0 /A = 2E/A~10°-10. This is large enough

theless extend to negative values by regarding the part of th_atl can almost_ be regarde_zd as a continuous parameter. we

(3.4) with the incoming Hankel functiom (2)(kfr) as living will often use this observation to write expressions such as
. m

on the negativex axis, and the outgoing paH (D(k.r) on  9€/dl without further comment.

the positivex axis. With this interpretation the boundary In the(;lext seption we will show tr;athth?j?pend;anﬁe in
conditions atx=0 translate into the requirement of continu- (3-10 @nd(3.12) is a consequence of the failure of the An-
ity of f,, g, there. dreev scattering to be perfectly retroreflectiVe.

Physically the transformation of the two-dimensional ei-
genvalue problent3.1) into the one-dimensiondB.10 oc- IV. ANDREEV REFLECTION AND THE BOUND STATE
curs because each bound quasiparticle is bouncing back and SPECTRUM

forth along a straight line, its direction'of motion peing ' The bound states may be thought of as standing waves set
peatedly reversed by Andreev scattering off the increasing,, p, andreev reflected quasiparticles repeatedly traversing

value of the gap. . _ a chord of a circle. For a bound state of definite angular
The A(r) profile found from a self-consistent solution of \y,omentum|, the orientation of this chord will be indefinite.

the Bogoliubov—de Gennes and gap equations has SCayg nroduce a state localized on a chord with specified orien-

~ 14 i i . . . .
R~v¢/A.™" In order to have analytic expressions for the iiion and impact parameter we must take a linear combina-
bound state eigenvalues, we will not use such a selfy,, o angular momentum states

consistentA(r), but take instead a step functionA(r)=0,

r<R and A(r)=A for r>R. We will also assumé to be .

somewhat larger than/A so that we can ignore, it8.10), |9>=Z ae ), 4.9

the variation ofé in the regions where the wave function is

evanescent. With these assumptions we can directly apphyhere the coefficients, are large only fol~Kk;b. Because

(2.3 and(2.4). of the Rayleigh criterion relating the extent of a plane wave
Each quasiparticle trajectory now coincides with a chordfront and its diffraction spread, there will be an uncertainty

of a circle of radiusR. If this chord subtends an angle of 2 relation between the sharpnessédndb.

at the center of the circle it has lendth= 2R siny (see Fig. We may follow the time evolution of these wave packets

1). Furthermore the quantité=6, — 6, the difference in by using the small approximatione_,(1) = — wyl. We find

—ividy, A€l

—i . — €
Ae " ivea,

: (3.10 e_1()=—wgl, w(,:ﬁ. (3.12
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FIG. 2. Bound state in a SNS junction with superflow. The solid

arrow is the electron trajectory and the dashed arrow the hole. FIG. 3. The electrorsolid arrow and hole(dashed arrowmo-

menta do not lie exactly at on the Fermi surface; consequently
|¢9,t): 2 a|e‘“ ge+i|wot||>: |(0_ wot),t:O). 4.2) their momenta differ in direction by a small anghé.
T

. with some spread ok, . This packet will drift in the+y
The chord is thus seen to precess at the angular frequency direction at the group velocity

in the senseppositeto the superflow. If we use the more

general form(3.11) for the energies, we will need to replace de(k) tan 06k,
—wp by a group angular velocity U drift = K, =T~ m  TUs (4.9
de(l) For trajectories that are at close to normal incidence on the
T (4.3 supercurrent$=0 or k,~0) this velocity is essentially.

This drift can be accounted for by noting that the Andreev
but the same general picture will hold. In this section we will scattering is not perfectly retroreflective. Consider reflection
see that this precession can be understood rather precisely faém the right-hand supercurrent in Fig. 2. Although both the
the combined effect of two processes each of which causégacident electron and the reflected hole have nominal mo-
the Andreev reflection to fail to be perfectly retroreflecthle. mentumk, they in fact have momenta+ &k (see Fig. 3.

One of these processes is due to the superflow and we will be This means that each reflection causes a small change in
able to use this insight to determine the evolution of thethe angle of incidence
bound states when the vortex is immersed in a transport su-
percurrent. 60=2(— dk,sing+ 6k, cos)/ks

To begin with we consider a plane superconducting—
normal-superconductingENS junction of widthL having a __ € tano+ 2_”8 i (4.9
supercurrent ; flowing parallel to the junctiorisee Fig. 2 E; vi co’ '

There will be bound states in the junction with momenta
close tok=(ky,k,) =(k¢cosg,k;sin¢). These states are found
from the Andreev Hamiltonian

Because both particle and hole move with speed it is
easy to seésee Fig. 4 that such a change in angle leads to
the trajectory migrating up the junction with velocity

—i(kedytkydy)m  A(x)e?™
A(x)e™2msY i (K,dy+kydy)/m)’

(4.4 Ut
Udrift = —2 cod

o0. (4.10

where A(x) =0 for 0<x<L and A(x)=A elsewhere. They
have the form

In the figure we have drawn the trajectories of the electron
and hole as if they were at a definite location in the junction.
In reality, specifying ay location requires making a wave
packet

ei(&kxx+ kyy) ~N
Y= g-itokextskyy) [ O<x<L. (4.9 §
N
Here ok,=mvgs and (for states with €<A)
Sk, = (L/2)[2(n+ 1)]. Their energy is N
_ Vs § Vs
e=v(Sk,cosh+ Sk,sind). (4.6 \\\\
N
N

FIG. 4. The slight difference between the angle of incidence of
dk the electron(solid arrow and the angle of reflection of the hole
|y)= j 2_7;’ a(k)efikyy|k>' 4.7 Eiocl)ert]shed arroyvcauses the bound state to migrate up the SNS junc-
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additivity of the effects also applies when the superflow is
not parallel to the SN interface. We will need this fact in the
next section.

V. FRUSTRATED FLOW AND MUTUAL FRICTION

If we insert our vortex in a transport supercurrent by re-
placing theAe'? gap function byAe'%e?™sX then either
considerations of the group velocity or of the geometry of
Andreev reflection will show that the wave packets will try
to migrate across the core at speed just as in the parallel
sided junction. In the absence of precession, this motion
across the core will cause a monotonic changefaf~6,)
from O (where e=—A) to 27 (where e=+A) leading to a

, steady stream of states crossing the gap and becoming un-
FIG. 5. Andreev reflection from the supercurrent causes thebound quasiparticles, just as in Sec. Il

chord defining the bound state to precess in the opposite sense to This migration is, however, in competition with thew,
the superflow. . . - D
precession. The competition can be described quantitatively

by writing an effective Hamiltonian governing the evolution
gf the wave packets

Inserting(4.9) into (4.10 precisely reproducegt.8).

The same result holds true for the bound states in th
circular core. From Sec. Ill we know that the bound state H=—wol + gk, (5.1)
energies are

where k=(k;cos9,k;sinf). The observables and 6 are ca-
oy ) nonical_ly conjugate and have commutation relations
m[zx+2w(n+ 5)1, (411  [6,1]=i.
For a supercurrent in thex direction, the orientation and
impact parameter of a wave packet of bound states evolve
according to the quasiclassical equations

en(l)=
wherel =Kk;R cosy. The group angular velocity is therefore

de COSy € 1

- - - _ . OH
PeT9 T SirPx kR 2mRBsirPy (4.12 0=~ =~ wo.
For states with smalt (i.e., n=—1, y~«/2) the latter term _ JH
dominates. _ o | = — —=ksvsing. (5.2
The geometric optics picture works here also. We can use a0

the plane interface formula fa¥¢ after noting that the angle ;

of incidence, calledd in (4.9 is now 6=m/2—y. Notice, The orbits are

though, that a positivéd means that the point of impact of Kevq

the return trajectory movesackwardsthrough an angle of | = —— coswgt + const. (5.3
250 (see Fig. 5 This is the origin of the minus sign in ®o

€(l)~— wol. The other information we need is the time be-\ye see that a packet with an initially positive value ofésin
tween impacts at the pointsA and C. This is  tres to cross the core from|l . to + |l mad but, because of
ot=4Rsiny/v. Putting all the ingredients together gives the evolution ofé, it is reflected back. This is not surprising
the precession rate as since the Hamiltoniaif5.1) is identical to the Wannier-Stark
Hamiltonian for a tight-binding model. In this interpretation
00 coy € | would label the atomic sitay, would be the external elec-
©@gT Zﬁ_ sify kiR 2mResirfy @13 yic field, and@ the crystal momentum. Then2periodicity of
the latter is a direct consequence of the discreteness of the
as before. values ofl—just as in the vortex the discretenessldé a

Thel dependence of our core-state spectrum is therefordirect consequence of therderiodicity of 6. The to-and-fro
entirely determined by the geometry of Andreev reflection.motions ofl (t) are therefore Bloch oscillations caused by the
The only role of the wave character of the states is in thaliscreteness of the bound state spectrum.
condition thatl be an integer, and in thedependence of the The only way a state can make the journey fre .,
spectrum. Since only the zero-crossing bramch—1, is of  to +|l ,,.d without being reflected would be fork;/w, to be
interest in the spectral flow problem, tmedependence is larger thanl,,,,. But this is equivalent to the condition that
irrelevant here. vs exceed the pair-breaking velocityp,Ki=A.

The lesson we learn from this section is that the quasiclas- Although the spectral flow is thwarted by the Bloch oscil-
sical motion of the chord is governed by two processedations there are still effects from the evolution of the states.
whose effects add. One, proportional to the bound-state etWe can analyze these by writing a Boltzmann equation for
ergy is independent of the superflow, and the other, proporthe distribution functionn(l, 8), in thel,é phase space. We
tional to the superflow, is independent of the energy. Théave
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on an+k '0&n—l 5.4 ddko ! k k 5.1
E_woﬁ fUgSIN ﬁ_ s ( ) W . —;(< >—< >0) ( . O)
attice
wherel is the collision integral. We will use a simple relax- We find
ation time approximation t¢5.4) by setting
(d(kx>) woT n 1
1 _ At TTKP T T 2 2 UnxTKP 275 Unys
l=-- (n(l,6)—n(l,0)), (5.5 lattice 1+ wpT 1+ wor?
WoT 1

where n(l,6) is an equilibrium distribution whose exact (M)
form is determined by the normal velocity,. (In a super- dt /e
conductor the normal component relaxes to the lattice, so in (5.1)
this casev ,=vaice-) FOr example ifv,=v,=0 we would
expectn—ny=6(l) so that all negative energy states are
occupied.

It is actually more convenient to write equations for the
moments ofn that give the total momentum in the core

=—KPp 735 Uny— KP 77535 Unx-
pl—l—onz ny pl+wo7'2 nx

Notice thatvg does not occur irf5.11).

These calculations have been made with the vortex sta-
tionary. Because of the Galilean invariance of the overall
system, we may replace, by (v,—v,) when the vortex is
moving at velocityv, . The rate of loss of momentum from
the core to the lattice is then

1 deo
(ky)= > f dl > (n(l,6)—ny(l,0))k;coss, a(k)

=D(v,—V,)+D'ZX(v,—V,). (5.12

lattice

1 de _
<ky>:§ f di E(n(l,e)—no(l,a))kfsma. (5.6 The quantitiesD,D’' are the mutual friction coefficients.

Their values
The factor of} in front of these integrals compensates for the
double counting of particles and holes, ang(l,6)=6(l) woT
reflects the normal ordering which ensures tthat=0 when D=«p 1+ w2r2’
everything is at rest. 0
As an example suppose we fill all the negative energy 1
states 0f5.1) by settingn(l, ) = 6(wgl — v k;cosd). We find D'=kp—>> (5.13
(k,)=0 and 1+wor
2 are the same as found, for example, in Ref. 18. For the pur-
- 1 Kivs - Us poses of making comparisons with other work we must point
(k)= =—pKk —, (5.7 . S .
4 wq o%) out that in deriving these expressions we have assumed that

) . ) ) we are at sufficiently low temperatures that there are very
wherex=m/m is the quantum of circulation ang=mk§/4m  fa\y quasiparticles outside the vortex core. We have therefore
is the equilibrium mass density of the electron fluid. This jage no distinction betweenand p,. Similarly the linear-
would be the appropriate equilibrium distribution for the jzation inherent in our use of the Andreev equations makes it
casev,=0. The nonzero value dfk,) reflects the reduction gjsficult to distinguish betweep and the constart, which
in current through the vortex core because of the nonzergy yefined as the electron mass times number of states within
value of p, there. Ifv,=v, on the other hand, we expect the Fermi sphere, and so coincides with the normal-state
(k)=0 because, even though+0 in the core, the total cur- gensity. This distinction may be connected with the change

rentj=psVs+pnV, is unaffected by the vanishing gap. of sign of the Hall effect neaf .1
Using these definitions and insights we find Equation(5.13 determines the Hall angle. While the task
of finding a solution to the full dynamical gap equations for
M_ )t 1 KV — (K a vortex immersed in a superflow is rather daunting, we do
dt = wolky) T xpusy T (k= (ko). know that such a solution must satisfy the law of momentum

conservation. The vortex core velocity must therefore sat-

d(ky) 1 isfy the momentum balance equation
dt :_w0<kx>_Kpst_; (<ky>_<ky>0)y (5.9

0=kpzX (V. —Vs)—D (v —V,) —D'ZX (v —V,) (5.19

where as a consistency condition. The first term is the Magnus force
which gives the rate at which momentum enters the core.
_kp The terms withD andD’ give the rate at which momentum
(K)o=— (Vy—Vs). 5.9 . . . -
g is being lost from the core to the lattice by mutual friction.
There are two extreme cases. In the collisionless regime,
In the steady state flowk,,) will be constant, so the w71, the vortex has no choice but to move with the super-
left-hand side of(5.8) will be zero. We can therefore solve flow. In the opposite, hydrodynamic, regimer is small.
for (kyy) and find the rate at which momentum is being Then thev, part of theD’ term almost cancels thg part of
transferred to the lattice the Magnus force term. This allows the vortex to move at
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right angles to the superflow, unwinding the order parametefunction method$:"8 It is therefore clear that the Green

phase gradient and dissipating the superflow.

functions tacitly include the physics of spectral flow. The

It is worth pointing out that the cancellation between thenew method of explicitly following the evolution of the

two v terms in the hydrodynamic limit shouldot be re-

states does however have the advantage of being much more

garded as a “cancellation” of the Magnus force. To claim physical.

that it is is akin to saying that theF”” cancels the ‘ma” in

Our general conclusions are consistent with recent work

F=ma. This may seem a mere quibble, but an inappropriatdy Kopnin et al. which is briefly reviewed in Ref. 20. Some

choice of language has caused confusion in the literature.

tither recent discussions of the Magnus force and momentum

is also worth stressing that while the reactive termbalance are by Hoffmann and Kumel?! Gaitan?? Ao,%% and
D'zX(v_—V,) does not cause any dissipation of energy, itsSimanek?2* The first of these papers has much in common
presence is entirely due to quantum incoherent, entropywith the present approach. In particular these authors focus

generating relaxation processes.

VI. CONCLUSION AND DISCUSSION

on the role Andreev scattering plays in transferring momen-
tum from the condensate to the core states. The next two use
the Berry phase approach to confirm that the Magnus force
correctly gives the momentum flow into the vortex core. The

We have seen that a quasiclassical geometric optics modglst combines effects of external and core states to find an

gives a good description of the processes in the core of gffective “Magnus” force that is a combination of the true
vortex immersed in a transport current. Even though there ig1agnus force and the mutual friction terms.

no explicit time dependence in the Bogoliubov—de Gennes
equations, spectral flow would still occur were it not sup-
pressed by an analogue of Bloch oscillations originating in
the discrete nature of the spectrum. The spectral evolution This work was supported by the National Science Foun-
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