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We have studied the statics and dynamics of flux lines in a model for,€BgO,_ s, using both Monte
Carlo simulations and Langevin dynamics. The lines are assumed to be flexible but unbroken in both the solid
and liquid states. For a clean system, both approaches yield the same melting curve, which is found to be
weakly first order with a heat of fusion of about OkgZ ,, per vortex pancake at a field of 50 kG. The
time-averaged magnetic field distribution experienced by a fixed spin is found to undergo a qualitative change
at freezing, in agreement with NMR and muon spin resonance experiments. The calculations yield, not only the
field distribution in both phases, but also an estimate of the measurement time needed to distinguish these
distributions: We estimate this time &80.5 usec. The magnetization relaxation time in a clean sample slows
dramatically as the temperature approaches the mean-field upper critical figtt}.Ji{ile) from below. Melting
in the clean system is accompanied by a proliferation of free disclinations and a simultaneous disappearance of
hexatic order. Just below melting, the defects show a clear magnetic-field-dependent two- to three-dimensional
crossover from long disclination lines parallel to theaxis at low fields, to two-dimensional “pancake”
disclinations at higher fields. Strong point pins produce an energy varying logarithmically with time. This
Int dependence results from slow annealing out of disclinations in disordered samples. Even without pins, the
model gives subdiffusive motion of individual pancakes in the dense liquid phase, with mean-square displace-
ment proportional ta/? rather than tat as in ordinary diffusion. The calculated melting curve and many
dynamical features agree well with experimgi®0163-18206)06626-X

I. INTRODUCTION Disorder is widely expected to modify the first order transi-
tion to either a vortex-gla3or Bose-glass transitioff, de-

There have been numerous debates about thpending on the type of disorder. Modeling such disorder is
superconducting-to-normal transition in a magnetic field.difficult because of problems associated with slow relax-
Abrikosov’s classic mean-field theory predicts a rigid vortexation. Much of the modeling has therefore been carried out
lattice persisting to the mean-field transition liné.(T). within the frustratedX Y model?! a model which introduces
More recent work suggests that the mean-field Abrikosown artificial pinning by a fictitious lattice. Other unresolved
transition is altered by fluctuations in both two and threeissues center on thgynamicsof the solid and liquid vortex
dimensiong2D and 3D. In the 2D case, numerical evidence system, for which only a very limited number of calculations
suggests a first-order melting transition from a vortex solid tchave been carried out. Dynamical calculations are obviously
a vortex liquid~3 followed at higher temperatures by a necessary to understand many measurable properties of the
gradual crossover to a normal state. In 3D, the suggestion dfigh-T. materials, such as theV characteristics, voltage
a first-order fluctuation-induced transition is due to Bne noise spectra, NMR, and muon spin rotatigrSR). A com-
et al* Their argument is based on Landau-level expansion ofmon approach is to model the high-material as a network
the Ginzburg-Landau functional for a conventional super-of Josephson junctior(& natural dynamical generalization of
conductor. the frustratedXY mode).?? But as in the static case, this

Much recent work on the 3D flux-lattice melting transi- model also suffers from the problem of fictitious pinning,
tion has been stimulated by the behavior of high- though it is reasonably tractable numerically.
materials’>~’ Several experiments have convincingly demon- A few dynamical calculations have been carried out using
strated that the transition there is first order in a sufficientlya time-dependent Ginzburg-LandélDGL) model within a
clean system at sufficiently low fieldsS.On the theoretical vortex representation. For example, Enomoto and co-
side, numerical studies of melting have been based on modalorkers have studied various aspects of flux-lattice meffing
pairwise interaction$?~*°the frustratedX Y model*®*~*8and  using this approach. They focused on the effects of pin den-
an expansion of the free energy in lowest Landau levelsity on the irreversibility line, using as a melting criterion the
(LLL’s),>® among other approaches. Some of theseonset of flux line diffusion. They also considered the trans-
calculationd” also indicate that the melting transition in the port properties of pinned systems, but studied only configu-
pure 3D system is first order, as suggested by experiment.rations consisting of either a single flux line or a two-

However, numerous issues remain unresolved. One sudlimensional lattice with point disorder. Reefman and Brom
issue is the effects of disorder on the first-order transitionapplied a similar technique to a model for a layered super-
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condtor, neglecting the Josephson coupling between layetwortex pancakes” (i.e., 2D vortice$ described by trans-
and focusing on the NMR propertié&Most recently, Prob- verse position coordinates ,. The vortex density is as-
ert and Ra® have performed a Langevin simulation for a sumed to be fixed atssllaézB/qbo, wheregy=hc/2e is
model YBa,Cu;0;_ s system, both with and without pins. the flux quantum. Such pancakes in different layers interact
Their results shed some light on the dynamical distinctions/ia both magnetic and Josephson interactfdné’ Here, we
between the irreversibility lin€found in disordered systems simply assume that these interactions combine to produce
and the thermodynamic melting lifeharacteristic of a clean flexible butunbreakablesortex lines — that is, each pancake
system. Their calculations, however, assume rigid vortexis always associated with two specific pancakes in the adja-
lines, thereby leaving out some of the most characteristicent layers. The justification and possible limitations of this
three-dimensional behavior associated with flexible lines. Allassumption are discussed below. The interlayer coupling
these results suggest that this approach may be a useful agtiength is characterized by a single variable
quite realistic way to treat the dynamics of flux lines in high- y=¢_,(0)/£.(0), where £,,(0) and £,(0) are the zero-
T. materials. temperature superconducting coherence lengths inathe

In this paper, we present a numerical study of both theplane anct direction.y has associated with it a length scale
statics and dynamics of a “layered London model” for ar,=yd. The layered structure becomes important for lengths
three-dimensional flux lattice in YB&u;0;_4, using a  shorter tharrg.28
combination of Monte Carl¢MC) simulation and Langevin Following Ref. 11, we write down the Hamiltonian for the
dynamics(LD) within a vortex representation. Our work ex- system as
tends earlier studies in a number of ways. For example, we

determine the melting line not only by the motion of indi- It — [Fik=rixl Wl Iri k=Tl
vidual vortex lines, but also by changes in equilibrium quan- :g«j Ek: U Nap(T,B) +§|: PINY 2rg :
tities such as the vortex structure factor and a hexatic order )

parameter. We also determine the conditions under which the

vortex lines maintain their integrity, even in the liquid state. Here the in-plane repulsive interaction takes the form
Perhaps of greatest interest, we find a 3D-2D crossover in the

structure of the vortex solid just below melting, at which the U(x)= d¢0 KX (x), 3
characteristic topological defects change from long disclina- SWZAab(T B)Z 0

tions parallel to the axis to short disclination “pancakes.”

This crossover may possibly be connected with some recemh'le the interlayer interaction is taken as

experimental work, as discussed further below. _ _ -
The remainder of this paper is organized as follows. The Veo=c,x=1)  (x>1),
next section describes the model and discusses our choice of —c,(2-1) (x=1) (4)

parameters suitable for YB&u;0,_ 5. The following sec-
tion presents our numerical results as obtained by bothvith
Monte Carlo and Langevin simulations. A brief discussion

follows in the final section. _ dég 141 Aap(0) 5)
€= 8N op(T,B)2 d
Il. MODEL - . _—
In order to reduce finite-size effects, we employ periodic
A. Model classical action boundary conditions in all directions. Because of these, the

In our model, interest is confined to fluctuations in the €ffective in-plane interaction becomis (x), which repre-
phasedegrees of freedom of the superconducting order paSents the summatlogn of the modified Bessel functayix)
rametery. The amplitudéy| is assumed not to fluctuate, but OVer Image vortice&?
instead takes the value dictated by minimizing the Ginzburg-

Landau free energy at the given temperaflir@nd magnetic B. Langevin dynamics
inductionB. This resulting| | is related to an effective in- To probe real time dynamics, one can also run LD simu-
plane penetration depthby lations on the same model, assuming that the vortices are
. 2 subject to an overdamped dynamics. Then the equation of
2 __mec motion for a vortex pancake can be written
b(T B)_ 47T|¢|Ze*2
) 7 (O =T (DT O+ T+ 1P(r ). ®)
)\ab(o)

= YT 7r» (1) The first term on the right-hand side is the Brownian force
(= [TTe(OFHA[B/Bea(T]} due to thermal noise. The noise is assumed to be Gaussian-
whereT,(0) is the mean-field transition temperature at zerodistributed white noise with correlation functions
magnetic field,\;5(0) is the in-plane penetration depth at
zero temperature, ari8l.,(T) is the mean-field upper critical <f K1)=0, )
field line. || is normalized so thamn* is twice the electron
massm,, ande* =2e. T oy oA n ,
The model consists dfl, parallel superconducting layers ([ - AaJLf o (8 )'nﬁ]>_2kBTa 3ij Oar pOicc H(1='),
a distancad apart. Each layer contairlé, two-dimensional (8
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wheren, is a unit vector in thew direction, a=x,y. The pected to be determined by the fraction of the core area
second term on the right-hand side of E8§).is the force due within the pinning well. We can achieve this dependence by
to the other pancakes; it is obtained as a negative spatiglssuming a pinning energy per pancakel,(T,B)
gradient of the vortex-vortex interaction term, as Written:apd¢g/[16w27\§b(-r'|3)]_ Thus, the strength of a single
down in Egs(3) and(4). The third term(not studied numeri- iy s controlled by the dimensionless parameter. The
;Z'F'j’iég é:(rareprifsem papeis the Lorentz force due t0 an gffectiveness of the pins is, of course, also influenced by
" st tom 1) descrbes te force due 1 e random "2 2158 408y of e "ecialertfeid 8,y
pinning potential. The pins are modeled as uniformly Cylln'sumed to be directed radially inward towards its certsgr
drical regions of radius, [taken to be Z,,(0) throughout R) F < T itis ai b
this work]. The pinning energy of the vortex pancake is ex- 1)- Forrp>£44(T) it is given by

Un(T,B)
(1 0= T 26.4(T) it rp—Ean(T)<[rix—R[<rp+ &an(T), ©
0 otherwise.
Forr,<&.p(T), it takes the form
U,(T,B) o |2,
£P(r, ) = _rp+§ab(T>(fab(T>) TO<IniucRIl<Tpt as(T), (10

0 otherwise.

This choice includes in the simplest manner the fact that thenent with the experimental data of Ref. 8. For the
vortex core area grows with increasifigwhile the disorder remaining parameters, we use the values appropriate for

is temperature independent. YBa,Cuz0,_5: k=87.5,d=11.1 A, y=5,T,(0)=93 K,
and dH(T)/dT=-1.8x10* Oe/K, where k=\,,(0)/
C. Numerical approach and choice of parameters §an(0) is the Ginzburg-Landau parameter.

To obtain the thermodynamics via MC simulation, we use

the standard Metropolis algorithm with variable step sizes, as D. Calculated quantities

discussed in Ref. 11. Typically, we equilibrate ovex 20* Before discussing our numerical results, we first define a
MC steps and evaluate the thermodynamic averages over d@w important physical quantitiesfR(t) is the transverse
additional 2< 10*—10° steps. root-mean-squargrms) displacement of a pancake vortex

For both MC and Langevin calculations, we use lookupfrom its average position, i.e.,
tables for both the potential and the forces, as well as a
scheme for interpolating between the points in the table. The
time iteration is carried out using a second-order Runge-
Kutta algorithm in time steps akt, where

1 1
—1 2 (i (ri0 D (11

SR(t)=
® ag | Niotik

Here (---); denotes an average over timg and

¢o dy N:oi= NN, is the total number of pancakes. Now in a finite
o=§m system, as in our simulation, the collection of vortex lines
tends to drift as a whole even in the solid phase. This behav-
and ior, seen in both solid and liquid phases, is strictly a finite-
size effect and has no relation to any measurable quantities.
d¢(2) We therefore subtract out the drift by using
€47 87N p(0) FF(1) =i () = Rem(t) instead ofr;  in Eq. (11), Rem(1)

being the instantaneous center-of-mass coordinate of the en-

The choice ofA is dictated by the dominant forces in our tjre |attice. To monitor lateral fluctuations, we also calculate
model [Eq. (6)], which in this paper are the vortex-vortex the “wandering length”l; (Ref. 30 defined by
interactions; in generalA<0O(10). For optimum conver-
gence, we have allowesl to depend somewhat dn B, and , 1 )
J, since different components of the force may dominate at I7= mg (Iri k=il e
different values of these parameters. ’

Finally, we briefly discuss our choice of parameters. Forin addition, we compute the density-density correlation func-
Nap(0), we usel000 A for YBa,CuzO,_; single crystal. tion
This choice is close to the experimentally determined value,
and also places the simulated melting curve in close agree- C(r,2)=(py(r,2)p,(0,0)};_ (13

(12
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and its partial Fourier transform

T T
0.14 0.3 s |
. o]
S(q,z)=J d?rC(r,z)exp(iq-r), (14
0.12F gl ] s
where p,(r,z) is the local vortex number density in each «
planez andqg=(qy,qy). 0-10 ~ ,[%%°° ¢ =018 _ 7
—_ O Monte Carlo
lll. NUMERICAL RESULTS S O kot ]
- .
A. Location of melting curve: heat of fusion 0.06 0-90 ;}30 1.10b
To locate the melting point for a gived by MC simula-
tion, we first make a quick sweep over a wide range of tem- 004 o _soka
peratures €20 K), using 2<10* MC steps for eachT in T=835K
steps ofAT~0.5-1 K. We interpret a discontinuous jump in 0.021-
O6R(t) as well as the vanishing of the intensity of the Bragg
peak$(q,0) atq=G, (whereG, is a 2D reciprocal lattice 0.00% o7 o8 o 1o 1 12
vector of the triangular lattigeas signatures of melting. We
(Utotal(T) - Uhex) / kBT

then repeat more careful sweeps over a narrower temperature
region with up to 16 MC steps.

If the temperature is cycled throudh, using an interval FIG. 1. Probability distributiori°(U) for the total internal en-
of 10*~3X 10* MC steps for each temperature in incrementserdy Uwia(T) per pancake, averaged over two different time win-
AT/T,,=0.0024, we observe hysteresis in most monitoreclows @ and'(b) (_specm_ed in Fig. 2 at the melting temperature
quantities. The width of the loop is typically0.018r,,.  Im- Calculation is carried out for YB&LusO;-, at B=50 kG.
Hysteresis is most pronounced f8R(t) and for the discli- Uhex_ is the corr(_aspondlng_e_nergy for a perfec_t trlan_gular Iat_tlce of
nation density(defined below; but is also quite conspicuous straight vortex linegthe minimum energy configurationThe dis-
for the hexatic order aram'etalso defined belowin the tributions in each window are obtained by dividing the data from

P . . - the Monte Carlo configurations shown in Fig. 2 into 256 energy
same temperature range. From the size of the jump in th

total internal energy seen at melting, we estimate the late 6‘”5’ each of widthAU/ksT=1.4x10"%, The curves are least-
9y 9 nsquares fits of these data to Gaussian distributions. The error bars at
heat per vortex pancake to be about 08840kgT,,. (A

. . . S ) various values ofU,y, are the rms deviations of the values of
pOSS'_b_Iy more precise estimate is given bejovhe melting P(U) inferred from ten bins in the vicinity df. Inset: in-plane rms
transition is calculated to occur affym(B)/Te2(B)  gisplacement, of pancake vortices from their equilibrium lattice
=0.87+0.02, 0.93-0.006, and 0.930.02, forB=90, 50,  positions in units of lattice spacing, as calculated using both Monte
and 10 kG respectively, and lattices with eight layers, incarlo and Langevin techniques.
reasonable accord with experimérftor lattices with 32 lay-
ers and \,,=1400 A, we obtain T,(B)/T.(B) ture fluctuates with MC time. The two curves in the main
=0.86-0.02, 0.92-0.02, and 0.960.02 at the same part of Fig. 1 show the distributions of total internal energy
fields.[HereT.,(B) is the mean-field transition temperature within two different time windows at the melting tempera-
at fieldB.] Since our assumetl dependence of ,,(T,B) is  ture[(a) and(b) in Figs. 1 and 2 On either side off ,,, this
likely to become less accurate @s»T.(0), we mayexpect distribution tends to be independent of the initial time of the
increasing deviations from experiment at lower fields, as inwindow. Precisely af,,, however, the system slowly oscil-
deed we find in our calculations. Note that, for the higherlates between a liquid and a solid phase with a correlation
fields, T,/ T2(B) depends little on either the lattice aspecttime of about 5<10* MC time steps(for this system size
ratio or the value oh . This behavior is consistent with the The oscillation causes the two distributions to differ: The
dimensional crossover discussed below. two distributions shown are the extreme cases that we have
The transverse displacemediR(t), as expected, shows found in the length of time studied. As shown in the insets at
characteristically different behavior in the solid and liquid the bottom of Fig. 2, the density correlation functions in the
phases. In the liquid§R(t) increases with increasing(see “low-energy” and “high-energy” windows do indeed show
below), while in the solid phase, it saturates after a shortsolidlike and liquidlike characteristics. We believe that the
transient period. The inset to Fig. 1 shows the behavior ofveak hexagonal symmetry seemingly present in the “lig-
SR(t) across the melting transition f@=50 kG, as calcu- uid” phase actually results from the presence of a few solid
lated by MC simulation. Also shown are the Langevin re-configurations in the window, and possibly also from the
sults, which agree very well with MC predictions. This con- finite size of the sample.
firms that the two indeed give, as expected, very similar From the average energy difference between the two
predictions for thermodynamic quantities. From the results irphases as read from Fig. 2, and also from the distance be-
the solid phase, we can read off the Lindemann numbetween the peaks in Fig. 1, we estimate the heat of melting to
c.=6R(T,,,B)=0.18, atB=50 kG. We have not, however, be=0.0XgT,, per vortex pancake. This estimate for the heat
confirmed thatc, is constant along the melting curve, as of fusion is in agreement with LLL calculation of Ref. 3, as
would be expected if Lindemann’s law is really valid. well as with experimental estimates at high fields. It is sig-
Another way to display the first-order melting process isnificantly smaller, however, than the value of Heteehl '’
also shown in Fig. 1. The MC energy at any given temperaof 0.3gT,, per vortex pancake, obtained using a frustrated



1324 SEUNGOH RYU AND D. STROUD 54
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0 50 100 150 200x10

FIG. 2. Evolution of the in-plane component of internal enetdy,,nd T), at the melting temperature, f@&=50 kG as calculated via
MC simulation. Insets: density-density correlaticfr,0), averaged over the two different time windo$ and(c). These plots show that
the system is alternating between lattice and liquid phases.

stacked triangulaX'Y model. The reasons for this difference 3 a snapshot of a typical melted configuration in a single
are a matter of speculation. One possibility is that in both outayer which shows bothond lines as identified by the De-
simulations and the LLL mode|z|, which sets the overall launay procedure, antpological defectsThe vortex pan-
energy scale, decreases with increasing temperature, wherezakes are located at the vertices of the triangles. They are
in the XY simulation, the coupling strengthis temperature marked by black and grey dots if their numbgi) of in-
independent. More plausibly, our simulations are carried ouplane neighbors is Tpositive disclination or 5 (negative
at high fields while thexY simulations are more appropriate disclination rather than the 6 expected for a perfect triangu-
at low fields. Yet a third(unlikely) possibility is that our lar lattice. We see characteristic examples of an isolated dis-
simulations allow for anisotropy in the superconductinglocation[i.e., a pair of disclinations, marked lfg)], an iso-
properties, whereas those of Heteglal. do not. lated disclinationb), and a bound pair of dislocatioits). In

We find that most of the energy discontinuity at meltingthe present work, we arbitrarily call a pair of disclinations
comes from changes in the interaction energy between dif‘bound” if and only if they reside on neighboring pancakes
ferent pancakes in the same layer, which has a rather cleas in(a) and(c).
jump at melting. By contrast, the interlayer coupling energy For a more quantitative analysis of the defect configura-
has large fluctuations in both the solid and liquid phases butons, we assign “charges’q(i,z)=n(i,z) —6 to theizth
no clear jump. These fluctuations tend to mask the steplikpancake, whera(i,z) is the number of in-plane neighbors

change of the in-plane component. of theizth pancake. Thaveragetotal defect density is de-
fined by
B. Topological defects in clean YBaCuz0,_5
We have carried out a search for topological defects ”d:Wi - ng(i,2),
v'vzl,

above and below melting in our model for
YBa,Cu;07_ ;. Basic building blocks for various kinds of where ny(i,z)=1— 8y 5. (Note that this definition in-
topological defects are disclinations and dislocations. Botltludes defects of both signsSince tightly bound neutral
kinds of defects may be identified by carrying out a De-pairs of disclinations, such gs) and(c), do not influence
launay triangulatio?f for individual layers of each sampled local hexatic ordefi.e., the degree of local sixfold symme-
configuration. To understand this procedure, we show in Figtry), it is also useful to define aisolatedcharge density by
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FIG. 3. Snapshot of disclination distribution in a single layer of

a vortex liquid containing 256 lines, as determined by Delaunay

triangulation. Black dots, fivefold disclinations; gray dots, seven-
fold disclinations.(a) A pair of bound disclinations, equivalent to a
dislocation;(b) an isolated disclination(c) a pair of bound disloca-
tions. The bottom row shows a typical vortex line liquid and its
representation in terms of disclinations of either sign.

q*(i,z)=q(i,z)+2j’q(j,z), where the prime indicates that
j runs over the in-plane neighbors of pancake). This
definition eliminates bound-pair defects such(asand (c).
The averageisolated charge density is then defined by

1
* _ *
nd NUNZE nq(llz)!

i,z

Wheren; (l ,Z) = (1_ 5q*(i,z),0)-
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FIG. 4. Hexatic order paramethypg|? (left scalg and density of
isolated disclinations} (right scale as a function of temperature
in a 64-line system of thickness 8 layers wih-50 kG.

1
Vo= N ni g (SHEI0i(2]), (19

i,Z n(I,Z) J

where 6;;(z) is angle made by the bond between vortices
andj and thex axis. The results are shown in Fig. 4. Evi-
dently, melting is accompanied by a proliferation of isolated
dislocation and disclination lines, as well as by a dramatic
drop in the in-plane hexatic order parameter. N€gr, but
still below it, transient line defects are observed to appear
and disappear, while af,, there is an abrupt decrease in
hexatic order accompanied by an almost discontinuous jump
in n} (cf. Fig. 4. | ¥4 appears to vanish no more than 1%
aboveT,,. While we cannot rule out a “hexatic line phase”
(with hexatic but no long-range crystalline orglaithin this
temperature range, our numerical results are consistent with
a single melting transition where both hexatic and crystalline
order simultaneously disappear.

As the flux line density increases, the interlayer coupling
becomes weaker compared to the in-plane interaction.

Once the charges are identified on each plane, the topdience, one might expect a dimensional crossover in the de-
logical defect configuration associated with a given vortexf€cts associated with the melting transition. Indeed, we find

arrangementlower left in Fig. 3 may be represented as a
“neutral plasma” of line charges of variable lengthgand
both signgcf. Fig. 3, lower right. To quantify the properties
of this plasma, in our simulation, we monitor the distribution
of defect lengths of either sigR(l4), defined as

1
Plo=gr | 2 2 [1-ng(i.20)]

z9+!
X[1—ng(i,zo+1g+1)] 1 nq(i,z)> .
z=2zp+1 t

(15

We also monitor the in-plane hexatic order paramdler,
defined by

such a crossover in the solid phase. In Fig. 5, we show the
length distribution P(1y) for 32 layers at several fields
(B=10, 50, 90 kG and temperatures slightly beloW,,
(T/IT,,=0.997, 0.982, 0.988) selected with the criterion of
6R=0.15 for consistency. In each case, by monitoring
C(r,z) andS(q,z), we verified that the system is solid, but
very near melting. As evidence that the lattice anisotropy
depends on field, we note that for the same value of in-plane
rms fluctuations §R=0.15), | ; is field dependent: At fields
of 10, 50, and 90 kG, it is respectively 0.077, 0.100, 0.114.
The topological defecthave a dramatic crossoveas a
function of field. This is obvious from the right-hand column
of the figure. At the lowest field10 kG), there are line de-
fects penetrating all the way through the sample, which oc-
cur only for temperatures extremely close to melting
(T/T,,>0.99). At higher fields, the defect line segments are
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FIG. 5. Darker symbols: probability distribution of disclinations of lengthat B=10, 50, and 90 kG for a 32-layer system, at
temperatures such thaR(B,T)=0.15, i.e., slightly below melting. Lighter symbols: corresponding probability distributions for the same
fields and system at temperatures deep into the liquid phase. In the right column, snapshots of typical defect configurations in the solid phase
are shown for each field. Black and gray represent disclinations of either sign.

much shorter and occur at somewhat lower values ofntervortex interaction energy. The energy to create a line of
T/T,,. (The latter fluctuations set in at a lower temperatures” such disclinations is therefofaeglecting momentarily the
because they are short and cost less energy to orédse.  interactions between the individual pancgkes the order
shown in gray are the defect length distributions for threeof E(/)~/E.. Since the total number of such defects
temperatures above the melting line, namdlyT,,=1.01, in thermal equilibrium should be proportional to
1.04, and 1.06 foB=10, 50, and 90 kG, respectively. In this exd —E(/)/kgT], this argument will give the kind of expo-
case there is no 3D-2D crossover: The defect length distrinential distribution seen numerically in both the solid and
butions in these line liquid states are similar for all threeliquid phases.
fields, following a simple exponential forrfHowever, at the To further refine this argument, we first note thaaé’ils
still higher temperature$/T,,=1.05,1.07,1.13 respectively proportional to the magnetic inducti@ Hence, for a given
(not shown, 1:>0.2 and the lines begin to break up into area and fixed, the energy to create a 2D disclination in-
pancakes, as cutting and reconnections sefsee Sec. creases as By which implies that the slope of the exponen-
D). tial dependence should becorsieeperasB increases. This

To account qualitatively for these results, we note that théncrease is indeed observed in the solid phase, but it seems to
defects shown in Fig. 5 are line segments of isolated disclibe much more abrupt than the gradual increase suggested by
nations of various lengths. The enerBy to create an iso- this argument. Presumably, the abruptness stems from inter-
lated “pancake” (i.e., 2D disclination defect, as is well actions between the disclination pancakes. If this interaction
known, is proportional to the logarithm of the system area. Iltenergy increases exactly & the exponential form would
may be written approximately aSc%JIn(Lzlaé), wherelL be unaltered. Our numerical results show some deviation
is the system edgey is the lattice constant of the 2D lattice, from strictly exponential behavior at low fields, suggesting
andJ is some appropriate energy, which is of the order of thethat the interaction energy is more complicated. We specu-



54 FIRST-ORDER MELTING AND DYNAMICS OF FLUX ... 1327

late that this interaction energy is stronger at low fields but is
T/T,= 0.96 1.01 1.05

reduced at larger fields, possibly by screening from other .
disclinations, leading to the rather sudden transition to short
defects seen at high fields. But a quantitative theory of this t/t

transition remains to be developed.

Why is there no such transition in the liquid state? A - 10
possible but speculative explanation is that, in the liquid,
there are many disclinatiorief the order of 0.5 per plaquette
per layer of the vortex lattige Hence, they strongly screen
one another, and the effective sample dréan the expres- ] 10°
sion for the creation energy should be replaced by the area of "

P.(B)

a plaquette, which is of orderé. Then the energy to create
a line of 7 disclinations is independent of fiel@xcept pos-
sibly through the prefactad), implying a field-independent
distribution, as observed numerically.

Although the above arguments are certainly speculative,
the principal numerical result, namely, a rather sharp “3D-

2D” crossover in the defect structure, may have an experi-
|.32

mental analog. Obaret al.>* have recently reported a cross-
over in multilayers of DyBsCu;O//(Y1_«Pr)Ba,CusO5, in
which a 3D vortex lattice showed only 2D correlations above -0.01  0.00  0.01

~10 kG. In the experimental sample, of course, the vortex B/B,, -1

lattice is affected by point pins, possibly producing a sharper

crossover than we see her_e. Nqnetheless, these pins _ShOU|dFIG. 6. Dependence of time-averaged magnetic field distribu-
affect the vortex lattice quite differently at low and high 4o 1 (B) on time windowt/t, used for average, at an applied field
f'?ldsv_becggse the defect lines are clearly much less rigid &f 50 kG. The time evolution is calculated at several temperatures
high fields™ Specifically, because of this low rigidityes  from Langevin dynamics using Clem’s prescription for computing
shown inP(l )], the point pins may cause the defect lines tothe magnetic fieldRef. 37. The distribution is plotted as a function
break into short segments rather abruptly at a well-defined¢ B/B,,— 1, whereB,, is the space-averaged magnetic induction.
magnetic field which may be speculatively identified with Successive distributions in each vertical panel are displaced hori-
the transition observed by Ref. 32. zontally by 0.02 units.

5 x10°

C. Distribution of magnetic induction in solid and liquids appropriate foruSR (in a typical uSR, the muons sample
the B field at random points in a sample averaged over a
typical muon lifetime of~ 10 ° seg using either MC or LD
simulation. A similar technique has been recently applied to
obtain the static field distribution in BSr,CaCu,O4 using
MC simulation®® By varying the duratiort over which the

g'r\éigrti'rgﬁ%gefg?f;:%e'\f dco?raLB(as’cl;rll]l(;lfa\t/lgzeL:(SInagncC;ekrgss In local field is accumulated, we also find out how rapidly the
b P P . field distribution approaches the static limit.

the present case, we have an additional complication due to Figure 6 showsP,(B) as calculated using LD simulation

the periodic boundary conditions. This difficulty is again ; .
solved by including the effects of image pancakes botHcor t/to ranging from 16 to 5x 10° _and three dlffere_nt tem-.
e , peratures above and below melting. In the long-time limit,
within the plane and along the axis. . o i :
. . ; ' ... . the solid phase exhibits the characteristically asymmetric
To obtain the dynamic evolution of the field distribution, . o L . S
. . . . . I profile arising from the static triangular lattice. In the liquid,
using LD simulation, we consider tliestantaneous distribu- h file b | and b
tion function the profile becomes nearly symmetfan very narrow e-
cause vortices move around, producing the same time-
1 averaged field everywhere. The distribution in the solid
P(B,t)= Vf dVvé(B(r,t)—B), 17 phase is qualitatively similar to that detected b8R experi-
ments in B} ;:Sr; §sCaC,0g., 5. Our symmetric result in
which will in general depend on time, as the system apthe liquid appears to disagree with the expenment_. The_dls-
proaches equilibrium. For a measurement which probes thérepancy may result from the fact that our simulation

local field averaged over a tinte we obtain the field distri- Sample, in contrast to the experimental one, lacks a bound-
bution functionP,(B) from the following definition: ary. The possible influence of such boundaries on the field

distribution observed by:SR experiments has been noted
1 and discussed by Schneidet al®® For short-time scales
Pt(B)va dVo(B(r,t"))—B), (18)  (t/ty<10%), our distribution retains significant asymmetry
even in the liquid phase, suggesting that the time scale for
where(- - - ), denotes an average over a tinéeither over field relaxation is of this order in the liquid.
real time, for a LD simulation, or Monte Carlo time=rom Figure 7 shows the change in rms width of the field dis-
the limitt— o, we obtain the static field distribution function tribution across the melting point. In the long-time limit, the

Both the static and dynamic magnetic field distributions
are often probed experimentaliy*~2¢using techniques such
as uSR and NMR. To calculate this distribution, we have
evaluated the instantaneous local magnetic figld,t) at a
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D. Relevance of vortex line cutting and reconnection

3.5x10°
I«, Before turning to further dynamical results, we first con-
g 6 T o 10° [LD] sider the validity of neglecting vortex line cutting and recon-
3.0 sk o 10 o) 4 ] neption. In an earlier npmerical study of%BFZCqCLLZQB
Q\Q ® 10° [LD] using a similar modél? it was found that including line-
o5l@ 4 “‘Q\ O A 4x10°MC]] | breakln-g effect§ hadlllttle effect on the calcglated melting
) 3 5 %Y OQG | properties. In simulations of YB&£u;0-,_ s, which has far
0@.& [N stiffer lines, it is reasonable to expect that the approximation
~, 2.0 °® 2r Q@\é QOQ‘Q\ 1 4 is even sounder. Indeed, even in the liquid phase up to
o L 4 o ‘e.\g | T/TC2(I?)~0.97', our num?rical results shqw tha}t the trans-
% | | .RA.?@ B verse “wandering length”ly, measured in units of the
© 1.5 0S50 095 100 1 oms P intervortex separation, is no larger than 0.2.
' ' ' ' ' To check this approximation another way, define a “vor-
1.0 o _ tex cr_)llision I_ength” gz_ by I_%(_gzld)5~1. Presumably
6=1 in the dilute (low-field) limit, where the transverse
B=50kG wandering of a line directed along tleaxis is a random
0.5~ i t/1,=5x10" [LD] — walk with step sizel;. Using 0.2 for I, we obtain
o ° {,1d~25, which exceeds the thickness of our sample. In the
0.0 | A e dense regimed may be smaller than 1 because of the restric-
" 0.90 0.95 1.00 1.05 1.10 tive effects of the repulsive interactions among flux lines,

leading to an even larget,/d.

Cutting and reconnection should occur massively only
when the collision length becomes comparable to the inter-
FIG. 7. Mean-square widthdB)?/B2, of the magnetic field dis- layer spacing, leading to frequent “collisions” of vortex
tribution P(B/B,,), plotted as a function of/T,(B) at an applied lines. By balancing the entropic gain from permutations of
field B=50 kG. The width is calculated from Langevin dynamics vortex connections against the accompanying cost in inter-
for time intervals of varying durationsft,=10°, 10%, 1° (insed,  layer coupling energy, we estimate that this condition should

and 5<10° (main figurd. Also shown in the inset is the mean- be met only wherl+>0.7, which occurs only well above
square width as obtained from a MC simulation sampled oveimelting. To verify this, we did two MC runs, in one of which
4x10" MC steps. we allowed cutting and reconnection according to a Boltz-
mann weight factor obtained from the change in interlayer
temperature dependence of the width as obtained from bot¢Pupling energy that would be produced upon cutting and
MC and LD simulations agrees qualitatively with NMR line- "éconnection. The result shows that §h|s cutting occurs at a
width measurements across meltfgThis agreement sug- nedligible rate untilT/Ty,>1.05, at which point about 12%
gests that the time scale of the NMR measurement is longélf "écombination attempts are acceptedat this tempera-

than (1d-1F)t,. Since the NMR experiments are carried ture was found to be about 0.16, a value which may roughly
out using ac fields of frequency- MHz, this implies be taken as a kind of “Lindemann melting criterion” for flux

10t,<1 usec orty<10 10 sec.(This agrees with another cutting in the liquid state. Thus, over much of the liquid
. . . . regime, we conclude that the thermodynamics of this model
estimate ot given below) Note also that our interpretation

. 4 - can be treated without considering flux line breaking and
qf NMR linewidth neglects the possibility thaF the ac NMR reconnection. This conclusion justifies our treatment of flux
field actually e>§erts a force on the vortex lattice. line dynamics in the same approximation.

Two more pieces of information may be extracted from
these results. First, the inset in the Fig. 7 shows that a MC  E. Langevin dynamics of vortex line liquids and solids:
result taken over % 10* MC steps gives a rms width closely Slow and fast relaxation
matching the LD result obtained wittito=10. This sug-

T/ T,

: ! . ; Having justified our nonbreaking assumption, we return to
gests that a single MC time step using our version of thg,o gvnamics of vortex line liquids and solids. We begin by
Metropolis algorithm with individual step sizx=ag/32 i onsidering the motion of aingle vortex line within the
equivalent to~2.%, of LD time. Also, from the LD results overdamped dynamics of E¢6). In the limit of a very long

with variable t/t;, we can infer that melting has a pro- |ine in which each pancake is subject only to thermal Lange-
nounced effect on the field distribution only when the mea-~in noise and a harmonic interlayer restoring force, &j.
surement is made on time scales longer thal®ty. Infact,  can be solved analytically. The derivation is similar to that of
the required time scale to distinguish solid from liquid may Ref. 5 for more general cases. The result for the mean-square
be somewhat longer than even this value in the thermodydisplacement of a pancake from its initial position at tinie
namic limit. For the LD cell size used in these magnetic field

2
calculations, the individual pancakes may hasfe(t)«t* (I (D=1 (0) D)~k T( t )l/zfm dk(l—e‘k)
with a~1/3 rather thame~1/4 as expected for very long Lk Lk B\ d%peq) ) _w k2
lines (see below. Thus, for these thicker samples, we expect 2
that the relevant time scale for field relaxation should be et (19

closer to (16)*3%,~0.5 usec. which predicts asublineartime dependenc®. By contrast,
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S For T<T,,, vortex excursions are limited to radii smaller
! : ] than the appropriate Lindemann distance of aroun@g.2

] For T>T,,, the rms displacement seems to grow with an
approximatelyt** behavior as expected from the analytic
estimate for a single line. In the case of an eight-layer system
(not shown, we observedsR(t)=t3 possibly indicating
that the system lies between the long-line and 2D limits. In
both cases, the motion of individual pancakes is slower than
in the usual Brownian diffusion. Hence, in the long-time
limit, a diffusion constant defined on the assumption of a

1.04 . ; . . o .
102 | lineart dependence will vanish even in the liquid regime and

)
A
® 0.99 even without pinning. At sufficiently high temperatures, of
o]
b3

g-gg i course, line cutting will eventually set ithough not in the

present approximate modeMith line cutting, the system
L may then cross over to a 2D liquid with ordinary diffusive
0.20 prrr——r—rrrrrr e behavior. Therefore, there is an interesting possibility of two
d . . ° L different types of liquids characterized by different diffusive
behavior, with a smooth crossover between them.

As a further means of studying relaxation in the solid and
liquid phases, we have monitored the LD evolution of vari-
ous thermodynamic quantities, such as various components
of internal energy and the defect density, after the system is
initialized in some arbitrary nonequilibrium state. For each
0.05- 4 temperature, we considered five different initial states. Each
initial state was prepared by randomly and rigidly displacing
the individual vortex lines from a perfect triangular lattice by

0,00 best— il il an amount not exceeding a fractiap of the mean intervor-
10 10 10 10 10 tex spacing. In most cases, a rapid exponential relaxation of
energy is observed. By fitting the time-dependent internal
tiy energy to the forma+ bexd —t/7], we find a relaxation time
7, which increases with increasing temperat(cé Fig. 9,

FIG. 8. (a) rms transverse displacemedR(t) of vortex pan-  for which a, =0.31). This increase is once again due mainly
cakes at several temperatures both above and below the melting gp energy scale which diminishgsr a X 4,(T,B) which
temperaturdl,,, as calculated by Langevin dynamicsBat 50 kG increasepwith increasingT.
for N,= 16, and plotted in units odig, the mean vortex separation. Superimposed on this overall trend, there may be a peak
For T.<Tm’ the rms displacement saturates ata Yalue .approaChin% 7, corresponding to enhanced fluctuations precisely at the
the Lindemann numbes, ~0.18 atTy. In the liquid regime, the melting temperaturéalthough there are large uncertainties at

displacement increases roughlyta4, as expected for a long line, . : S . -
and not ast? as expected of diffusing particle) Root-mean- this temperatufe This behavior is (?onsllsten‘t‘ with e”xpecta-
tions for a phase transition with a kinetic or “critical” slow-

square “wandering length'l; at the same temperatures. Note that | d but the f . I led by th
|+ saturates even in the liquid state, though its value continues thg own, but the feature is generally concealed by the steep

increase, primarily because of the reduction of line tension withcrease ofr, with increasing temperatures, and can hardly
increasing temperature. be used to distinguish between possible first-order and con-

tinuous phase transitions. The middle row of Fig. 9 shows

an uncoupled pancake vortex has an ordinary diffusive tranghe progression of the density correlation function from an
verse motion, in whicK|r; ,(t) —r; (0)|?)et. initial random configuration to a well-ordered state over a

To test this behavior, we have examined the long-timeperiod of about 10Q at a temperatur@/T,,=0.9. The lower
behavior of the quantityR(t) defined in Eq(11) from LD  row shows the local instantaneous magnetic field profile for
simulation in the limits of(i) a single pancake vortexij) a  the initial and final configurations in a particular layer. The
single long line(iii) single short line segments, afig) an  cores of the vortices lie at the centers of the bright regions.
ensemble of 64 lines in 8 and 16 layers, at various tempera- In Fig. 10, we show a typical relaxation of total internal
tures both below and abovi,. For the single pancake, we €nergy over time after an initial randomization, this time
observe ordinary diffusive behavior. From the limit with a,=0.63. Also shown is the density of isolated discli-
t/to— 102 we deduceD=1.4x10 3 cm?/sec forT=60 K  nations,ng . In contrast to the internal energy, which relaxes
(usingto=1.2x10"*° sec; see below This diffusion con- exponentially, the disclination density relaxes toward zero
stant seems to agree reasonably well with experimental esti.e., an elastic lattigewith a roughly Irt behavior. The dis-
mates for an extremely anisotropic system such aslinations finally disappeafvia pair annihilation long after
BiSr,Ca,Cu,05.%° A single line of up to 1000 vortices the internal energy has nearly equilibrated. The spikes in
shows SR(t)xtY* as predicted analytically, while lines n¥ on top of the overall logarithmic decay may correspond
shorter than d show behaviors close to a 2D diffusion. to a large-scale rearrangements of vortices, possibly involv-

Figure 8 shows casgv) for B=50 kG and 16 layers of ing activated processes. The energy relaxation itself shows
YBa,Cu;0,_; at five temperatures above and beldy. no obvious signature of any such activated processes.
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FIG. 10. Time dependence of total internal enely,(T) per
pancake(left-hand scalpand the isolated disclination density;
(right-hand scalg as calculated via LD simulation &=50 kG,
T/T,,=0.898, starting from a randomized initial configuration in a
pin-free samplel,,, is the internal energy of an ideal hexagonal
lattice at the same temperature.

ni/ny (lower panel of figurg decreases noticeably for
t/to>3x10% In other words, energy relaxation in this re-
gime is proceeding via a decrease in the number of isolated
defect configurations.

FIG. 9. Top: relaxation time,, describing return of vortex sys- The slow elastic relaxation just described must involve
tem to its equilibrium configuration, following an initial perturba- VOrtex rearrangement. It may therefore affect measurements
tion, as plotted for several temperatures in the flux solid and fluxof the local magnetic field and the total magnetization. In-
liquid state. Calculation is carried out as described in the text. Errofleed, such quantities have long been known to depend
bars are standard deviations from five different initial configura-
tions. Middle: snapshots of density-density correlation function
C(r,z=0) for three representative configurations during relaxation
atT/T,,=0.89. Bottom: evolution of local fiel&(r,t) in a specific
ab plane of the sample, for the first and third configurations of
middle panel.

To understand real materials, we next examine how point
pins influence these general features. In Fig. 11, we show the
relaxation of the in-plane component of the internal energy
for different pinning strengths (Qa,<5) with an areal
density equivalent t@&,=888 kG. The relaxation is qualita-
tively different from the weak-pinning casesy<3), in
which the energy typically decays exponentially as in clean
systems. Ata,=5, for example, the in-plane part of the en-
ergy varies logarithmically with time almost frots=0. 2 3 8
For pins of any strength, we find that the system never 10 0, t 10
relaxes back to the perfect triangular lattice within our simu-

Iatio_n times; a significant fraction of disclination_s always FIG. 11. Relaxation of in-plane portion of internal energy per
SUrVIves even aﬂetr/t0=5x195 (C.f' lower part of '.:'g' 12 . pancake Ui, piane, for point pins of varying strength @a,<5).
Possibly, early-stage relaxation is controlled mainly by pin-rpe injtial configuration is a randomized distribution of straight
ning forces. But once the pinning energy is nearly optimized,ortex lines witha, =0.63 (see text Note the gradual crossover
by this quick relaxation, all driving forces for relaxation be- from an exponential to a logarithmic time dependence as the pin-
come comparable in strengthftert/t,~3x 10%), and relax-  ning strength increases. At the largest valuerpf the relaxation is
ation slows dramatically. Any further relaxation must reducedominated by changes in the pinning energy. Other conditions same
the elastic strain energy without sacrificing pinning energyas in the previous figurdJ, is here the in-plane part of the inter-
To accomplish this, both total and isolated defect densitiesal energy of an ideal hexagonal lattiqeer pancakeat the same
slowly but steadily decreadavith many fluctuations Also,  temperature.

[ Uinplane(T) - Uhex 1/ kBT
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recent spin-echo results on aligned powders of
YBa,Cu3;0,_ s seem to show lack of diffusion even on very
long time scalé®3® These results may indicate the presence
of strong pins in the powder samples, which greatly slow
down the dynamics. Another possibility is that the discrep-
ancy is somehow due to the nondiffusive behavior of long
lines discussed above.

IV. DISCUSSION AND CONCLUSIONS.

We have presented a detailed numerical study of the vor-
tex structure in a model for YB&u3;0-_ 5, both above and
below the flux lattice melting temperature, using Monte
Carlo and Langevin simulations. Our results indicate that in
clean YBgCu305_ 5, there is a weakly first-order melting
transition, with a very small heat of fusion which agrees the
calculations of Ref. 3 at similar fields.

We also find that there is a striking change in distribution
of local magnetic fields at melting: The time-averaged mag-
netic field sensed by a fixed particle in the sample has a very
narrow distribution in the liquidbecause the vortices move
around in the liquigl but acquires an asymmetric distribution
of finite and temperature-dependent width in the solid phase.
This behavior agrees with bofaSR and NMR experiments
in YBa,CuzO;_s. Although some previous MC
calculation® have suggested a similar transition, our LD

FIG. 12. Time dependence of interlayer part of internal energyg;mations provide more information. In particular, because

U,(T), pinning energyJ;i,(T), in-plane component of elastic en-

ergy Uinpiand T), and ratio of isolated disclination densityj to
total disclination densityg, for strong pinning &,=5), at a tem-
perature ofT/T,,=0.898 whereT ,, is the melting temperature for a
pin-free sample.

strongly on the time scale over which they are measure
Thus, our model can help to explain such slow relaxation o
magnetization, in disordered samples. The calculations al

the time constant of the Langevin simulations can be ex-
tracted from measurements of the liquid-state resistivity, we
can estimate the measurement time necessary to distinguish
the solid and liquid field distributions. This time appears to
be about 0.5usec in YBgCu;0-_ ;5 at a field of 50 kG.

Our calculations show that there is a qualitative change in
he structure of the topological defects in the crystalline

ase just below melting. Namely, even in clean

suggest that the slow relaxation results predominantly fron¥Ba,CusO5_ s, there are long lines of disclinations parallel
the rearrangement and annealing-out of topological defectsto the c axis at relatively low fields B<10 kG), but these

Next, we briefly discuss the value tf, which is crucial

break up into short‘2D” ) disclinations at higher fields. We

in connecting our numerical results to experiments on reapelieve that this breakup may be an essential ingredient in

materials. The friction coefficieny is related to the flux-
flow resistivity py by the equatiomg=B¢q/ 7c?. Assuming
a flux-flow resistivitypsz (B=50 kG, T/T,,=0.9)~0.16p,,

wherep,, is the normal-state resistivity, and estimatisngas
its value atT.(0), pn(T:(0))~100 ) cm (Ref. 4] for a

single crystal of YBaCuzO;_5, we obtain
pr~1.6x10 1" sec. The corresponding value tgf, assum-
ing the time step in Sec. Il C, ig~10"1*-10 ® sec. Since

the  “3D-2D”  transition  recently reported in
Bi-Sr-Ca-Cu-?%23n clean systems, we find numerically
that the distribution of defect line lengths is approximately
exponential in the liquid, but deviates from exponential in
the solid phase. We account for these forms by a simple
model of topological defects in the vortex lattice of a layered
superconductor.

A remarkable result of our Langevin simulations is that

our value of pi is probably an overestimate, this value the vortex lines move nondiffusively even in the liquid state

should be taken as the lower bound fgr*

— that is, the rms displacements of the vortex pancakes vary

Finally, we briefly return to the influence of pins on the like t*, wherea<<0.5. This agrees with the exact result de-

dynamics of flux lines, in light of this value fdg. In real

rived for a single long liné€? that the rms displacement of a

materials, such pins will strongly affect flux line dynamics, sufficiently long vortex line subject to thermal noise varies as
typically slowing down their motion by several orders of t*4 Our simulations suggest that the behavior is also found
magnitudegas we have noted abovelhis has some impli- in a dense line liquid with strong short-range repulsive inter-
cations for interpreting the experimental results which areactions. While the full transport implications remain to be

sensitive to the time evolution of local magnetic field. Oneexplored, this result is consistent with recent NMR measure-

such experiment is the spin-echo NMR préb¥ in the

ments on YBaCu;0-_5,% which also suggest that in the

highly anisotropic Tl-based compounds. This has been intefliquid state vortex lines move subdiffusively.

preted as implying a vortex diffusion constar®? of
10 4~10° cm?/sec at temperatured<T,,, and of
~103-10 % cm?/sec forT>T,,. On the other hand, more

The LD calculations also reveal that the vortices relax
much more slowly a—T.,(B). Such slow relaxation is
actually built into the TDGL equation, whose time constant
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is proportional to the deviation of the Ginzburg-Landau freeation, and identifies it with a particular type of topological
energy from its minimum value. Since the minimum be-defect dynamics.
comes ever shallower as J(B) is approached, the relax- In summary, we have presented a detailed study of the
ation time constant should become ever longer. It would béature of the flux line melting based on the vortex represen-
most interesting to have experimental confirmation of thistation of the Lawrence-Doniach model, using both Monte
behavior. The Langevin results also suggest that the tim&arlo and Langevin simulations in a consistent way. We cal-
constant may increase as tfiiest-ordey melting transition is ~ culate a wide range of properties of both the vortex solid and
approached from either side. Iquld phaseg which are consistent with experiment, a_nd
A final conclusion has to do with the influence of point which shed light on the topological defects which underlie

pins on the dynamics. Our Langevin results show that, afte?h?. meltlndg procesfs, ?Slévﬁl.l ?_sbtr;_e tlmi-:jhependentt m?gnet"
any disturbance, the energy relaxes nearly exponentiall§a lon and magnetc field distribution, of these matenals.

back to equilibrium in a pin-free sample. With strong pins
present, however, the energy relaxation is close to logarith-
mic in time. At even longer time scales, there is a crossover We are grateful for valuable discussions with Professor C.
to a logarithmic relaxation with a different slope. We iden- H. Pennington and C. Recchia. This work was supported by
tify this slower relaxation with the logarithmically slow DOE Grant No. DE-FG02-90 ER45427 through the Midwest
annealing-out of topological defects in the disorderedSuperconductivity Consortium at Purdue University, by NSF
sampleqthese same defects are also slow to disappear in thdo. Grant DMR94-02131. D.S. thanks the Department of
pin-free casg It has long been known that many properties Applied Physics at Stanford University and Professor S.
of the highT. materials vary logarithmically slowly with Doniach for their kind hospitality during the completion of
time (most notably, the sample magnetizajio®ur model, this work. Calculations were carried out, in part, with the use
which treats in a fairly realistic manner a disorderedof the computational facilities of the Ohio Supercomputer
YBa,Cu;0,_s sample, clearly produces such slow relax- Center.
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