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We have studied the statics and dynamics of flux lines in a model for YBa2Cu3O72d , using both Monte
Carlo simulations and Langevin dynamics. The lines are assumed to be flexible but unbroken in both the solid
and liquid states. For a clean system, both approaches yield the same melting curve, which is found to be
weakly first order with a heat of fusion of about 0.02kBTm per vortex pancake at a field of 50 kG. The
time-averaged magnetic field distribution experienced by a fixed spin is found to undergo a qualitative change
at freezing, in agreement with NMR and muon spin resonance experiments. The calculations yield, not only the
field distribution in both phases, but also an estimate of the measurement time needed to distinguish these
distributions: We estimate this time as>0.5msec. The magnetization relaxation time in a clean sample slows
dramatically as the temperature approaches the mean-field upper critical field lineHc2(T) from below. Melting
in the clean system is accompanied by a proliferation of free disclinations and a simultaneous disappearance of
hexatic order. Just below melting, the defects show a clear magnetic-field-dependent two- to three-dimensional
crossover from long disclination lines parallel to thec axis at low fields, to two-dimensional ‘‘pancake’’
disclinations at higher fields. Strong point pins produce an energy varying logarithmically with time. This
lnt dependence results from slow annealing out of disclinations in disordered samples. Even without pins, the
model gives subdiffusive motion of individual pancakes in the dense liquid phase, with mean-square displace-
ment proportional tot1/2 rather than tot as in ordinary diffusion. The calculated melting curve and many
dynamical features agree well with experiment.@S0163-1829~96!06626-X#

I. INTRODUCTION

There have been numerous debates about the
superconducting-to-normal transition in a magnetic field.
Abrikosov’s classic mean-field theory predicts a rigid vortex
lattice persisting to the mean-field transition line,Hc2(T).
More recent work suggests that the mean-field Abrikosov
transition is altered by fluctuations in both two and three
dimensions~2D and 3D!. In the 2D case, numerical evidence
suggests a first-order melting transition from a vortex solid to
a vortex liquid,1–3 followed at higher temperatures by a
gradual crossover to a normal state. In 3D, the suggestion of
a first-order fluctuation-induced transition is due to Bre´zin
et al.4 Their argument is based on Landau-level expansion of
the Ginzburg-Landau functional for a conventional super-
conductor.

Much recent work on the 3D flux-lattice melting transi-
tion has been stimulated by the behavior of high-Tc
materials.5–7 Several experiments have convincingly demon-
strated that the transition there is first order in a sufficiently
clean system at sufficiently low fields.8,9 On the theoretical
side, numerical studies of melting have been based on model
pairwise interactions,10–15 the frustratedXY model,16–18and
an expansion of the free energy in lowest Landau levels
~LLL’s !,2,3 among other approaches. Some of these
calculations3,17 also indicate that the melting transition in the
pure 3D system is first order, as suggested by experiment.

However, numerous issues remain unresolved. One such
issue is the effects of disorder on the first-order transition.

Disorder is widely expected to modify the first order transi-
tion to either a vortex-glass19 or Bose-glass transition,20 de-
pending on the type of disorder. Modeling such disorder is
difficult because of problems associated with slow relax-
ation. Much of the modeling has therefore been carried out
within the frustratedXY model,21 a model which introduces
an artificial pinning by a fictitious lattice. Other unresolved
issues center on thedynamicsof the solid and liquid vortex
system, for which only a very limited number of calculations
have been carried out. Dynamical calculations are obviously
necessary to understand many measurable properties of the
high-Tc materials, such as theI -V characteristics, voltage
noise spectra, NMR, and muon spin rotation (mSR!. A com-
mon approach is to model the high-Tc material as a network
of Josephson junctions~a natural dynamical generalization of
the frustratedXY model!.22 But as in the static case, this
model also suffers from the problem of fictitious pinning,
though it is reasonably tractable numerically.

A few dynamical calculations have been carried out using
a time-dependent Ginzburg-Landau~TDGL! model within a
vortex representation. For example, Enomoto and co-
workers have studied various aspects of flux-lattice melting12

using this approach. They focused on the effects of pin den-
sity on the irreversibility line, using as a melting criterion the
onset of flux line diffusion. They also considered the trans-
port properties of pinned systems, but studied only configu-
rations consisting of either a single flux line or a two-
dimensional lattice with point disorder. Reefman and Brom
applied a similar technique to a model for a layered super-
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condtor, neglecting the Josephson coupling between layers
and focusing on the NMR properties.14 Most recently, Prob-
ert and Rae15 have performed a Langevin simulation for a
model YBa2Cu3O72d system, both with and without pins.
Their results shed some light on the dynamical distinctions
between the irreversibility line~found in disordered systems!
and the thermodynamic melting line~characteristic of a clean
system!. Their calculations, however, assume rigid vortex
lines, thereby leaving out some of the most characteristic
three-dimensional behavior associated with flexible lines. All
these results suggest that this approach may be a useful and
quite realistic way to treat the dynamics of flux lines in high-
Tc materials.

In this paper, we present a numerical study of both the
statics and dynamics of a ‘‘layered London model’’ for a
three-dimensional flux lattice in YBa2Cu3O72d , using a
combination of Monte Carlo~MC! simulation and Langevin
dynamics~LD! within a vortex representation. Our work ex-
tends earlier studies in a number of ways. For example, we
determine the melting line not only by the motion of indi-
vidual vortex lines, but also by changes in equilibrium quan-
tities such as the vortex structure factor and a hexatic order
parameter. We also determine the conditions under which the
vortex lines maintain their integrity, even in the liquid state.
Perhaps of greatest interest, we find a 3D-2D crossover in the
structure of the vortex solid just below melting, at which the
characteristic topological defects change from long disclina-
tions parallel to thec axis to short disclination ‘‘pancakes.’’
This crossover may possibly be connected with some recent
experimental work, as discussed further below.

The remainder of this paper is organized as follows. The
next section describes the model and discusses our choice of
parameters suitable for YBa2Cu3O72d . The following sec-
tion presents our numerical results as obtained by both
Monte Carlo and Langevin simulations. A brief discussion
follows in the final section.

II. MODEL

A. Model classical action

In our model, interest is confined to fluctuations in the
phasedegrees of freedom of the superconducting order pa-
rameterc. The amplitudeucu is assumed not to fluctuate, but
instead takes the value dictated by minimizing the Ginzburg-
Landau free energy at the given temperatureT and magnetic
inductionB. This resultingucu is related to an effective in-
plane penetration depth23 by

lab
2 ~T,B![

m* c2

4pucu2e* 2

5
lab
2 ~0!

$12@T/Tc~0!#4%$12@B/Bc2~T!#2%
, ~1!

whereTc(0) is the mean-field transition temperature at zero
magnetic field,lab(0) is the in-plane penetration depth at
zero temperature, andBc2(T) is the mean-field upper critical
field line. ucu is normalized so thatm* is twice the electron
massme , ande*52e.

The model consists ofNz parallel superconducting layers
a distanced apart. Each layer containsNv two-dimensional

‘‘vortex pancakes’’ ~i.e., 2D vortices! described by trans-
verse position coordinatesr i ,k . The vortex density is as-
sumed to be fixed atnB[1/aB

2[B/f0 , wheref05hc/2e is
the flux quantum. Such pancakes in different layers interact
via both magnetic and Josephson interactions.24–27Here, we
simply assume that these interactions combine to produce
flexible butunbreakablevortex lines — that is, each pancake
is always associated with two specific pancakes in the adja-
cent layers. The justification and possible limitations of this
assumption are discussed below. The interlayer coupling
strength is characterized by a single variable
g5jab(0)/jc(0), where jab(0) and jc(0) are the zero-
temperature superconducting coherence lengths in theab
plane andc direction.g has associated with it a length scale
r g[gd. The layered structure becomes important for lengths
shorter thanr g .

28

Following Ref. 11, we write down the Hamiltonian for the
system as

H5(
iÞ j

(
k
US ur i ,k2r j ,ku

lab~T,B! D1(
i

(
k
VS ur i ,k2r j ,ku

2r g
D .

~2!

Here the in-plane repulsive interaction takes the form

U~x!5
df0

2

8p2lab~T,B!2
K0* ~x!, ~3!

while the interlayer interaction is taken as

V~x!5cJ~x21! ~x.1!,

5cJ~x
221! ~x<1!, ~4!

with

cJ5
df0

2

8p3lab~T,B!2 F11 ln
lab~0!

d G . ~5!

In order to reduce finite-size effects, we employ periodic
boundary conditions in all directions. Because of these, the
effective in-plane interaction becomesK0* (x), which repre-
sents the summation of the modified Bessel functionK0(x)
over image vortices.29

B. Langevin dynamics

To probe real time dynamics, one can also run LD simu-
lations on the same model, assuming that the vortices are
subject to an overdamped dynamics. Then the equation of
motion for a vortex pancake can be written

h ṙ i ,k~ t !5f i ,k
T ~ t !1f i ,k

U ~ t !1fL1fP~r i ,k!. ~6!

The first term on the right-hand side is the Brownian force
due to thermal noise. The noise is assumed to be Gaussian-
distributed white noise with correlation functions

^ f i ,k
T ~ t !&50, ~7!

^@ f i ,k
T ~ t !•n̂a#@ f j ,k8

T
~ t8!•n̂b#&52kBT

h

d
d i jda,bdkk8d~ t2t8!,

~8!
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where n̂a is a unit vector in thea direction,a5x,y. The
second term on the right-hand side of Eq.~6! is the force due
to the other pancakes; it is obtained as a negative spatial
gradient of the vortex-vortex interaction term, as written
down in Eqs.~3! and~4!. The third term~not studied numeri-
cally in the present paper! is the Lorentz force due to an
applied current.

The last term in~6! describes the force due to the random
pinning potential. The pins are modeled as uniformly cylin-
drical regions of radiusr p @taken to be 2jab(0) throughout
this work#. The pinning energy of the vortex pancake is ex-

pected to be determined by the fraction of the core area
within the pinning well. We can achieve this dependence by
assuming a pinning energy per pancake,Up(T,B)
5apdf0

2/@16p2lab
2 (T,B)#. Thus, the strength of a single

pin is controlled by the dimensionless parameterap . The
effectiveness of the pins is, of course, also influenced by
their areal densitynp or the ‘‘equivalent field’’Bp[f0np .

For simplicity, the force due to thel th point pin is as-
sumed to be directed radially inward towards its center~at
Rl). For r p.jab(T) it is given by

f l
P~r i ,k!5H 2

Up~T,B!

2jab~T!
if r p2jab~T!,ur i ,k2Rl u,r p1jab~T!,

0 otherwise.

~9!

For r p,jab(T), it takes the form

f l
P~r i ,k!5H 2

Up~T,B!

r p1jab~T! S r p
jab~T! D

2

if 0,ur i ,k2Rl u,r p1jab~T!,

0 otherwise.

~10!

This choice includes in the simplest manner the fact that the
vortex core area grows with increasingT while the disorder
is temperature independent.

C. Numerical approach and choice of parameters

To obtain the thermodynamics via MC simulation, we use
the standard Metropolis algorithm with variable step sizes, as
discussed in Ref. 11. Typically, we equilibrate over 23104

MC steps and evaluate the thermodynamic averages over an
additional 231042105 steps.

For both MC and Langevin calculations, we use lookup
tables for both the potential and the forces, as well as a
scheme for interpolating between the points in the table. The
time iteration is carried out using a second-order Runge-
Kutta algorithm in time steps ofDt0 where

t05
f0

B

dh

~32!2ed

and

ed5
df0

2

8p2lab~0!2
.

The choice ofD is dictated by the dominant forces in our
model @Eq. ~6!#, which in this paper are the vortex-vortex
interactions; in general,D<O(10). For optimum conver-
gence, we have allowedD to depend somewhat onT, B, and
J, since different components of the force may dominate at
different values of these parameters.

Finally, we briefly discuss our choice of parameters. For
lab(0), we use1000 Å for YBa2Cu3O72d single crystal.
This choice is close to the experimentally determined value,
and also places the simulated melting curve in close agree-

ment with the experimental data of Ref. 8. For the
remaining parameters, we use the values appropriate for
YBa2Cu3O72d : k587.5, d511.1 Å ,g55, Tc(0)593 K,
and dHc2(T)/dT521.83104 Oe/K, where k[lab(0)/
jab(0) is the Ginzburg-Landau parameter.

D. Calculated quantities

Before discussing our numerical results, we first define a
few important physical quantities.dR(t) is the transverse
root-mean-square~rms! displacement of a pancake vortex
from its average position, i.e.,

dR~ t ![
1

aB
H 1

Ntot
(
i ,k

Š~r i ,k2^r i ,k& t!
2
‹t
1/2J . ~11!

Here ^•••& t denotes an average over timet, and
Ntot5NzNv is the total number of pancakes. Now in a finite
system, as in our simulation, the collection of vortex lines
tends to drift as a whole even in the solid phase. This behav-
ior, seen in both solid and liquid phases, is strictly a finite-
size effect and has no relation to any measurable quantities.
We therefore subtract out the drift by using
r i ,k* (t)5r i ,k(t)2Rc.m.(t) instead ofr i ,k in Eq. ~11!, Rc.m.(t)
being the instantaneous center-of-mass coordinate of the en-
tire lattice. To monitor lateral fluctuations, we also calculate
the ‘‘wandering length’’l T ~Ref. 30! defined by

l T
2[

1

NtotaB
2(
i ,k

^ur i ,k2r i ,k11u2& t . ~12!

In addition, we compute the density-density correlation func-
tion

C~r ,z!5^rv~r ,z!rv~0,0!& t→` ~13!
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and its partial Fourier transform

S~q,z!5E d2rC~r ,z!exp~ iq•r !, ~14!

where rv(r ,z) is the local vortex number density in each
planez andq5(qx ,qy).

III. NUMERICAL RESULTS

A. Location of melting curve: heat of fusion

To locate the melting point for a givenB by MC simula-
tion, we first make a quick sweep over a wide range of tem-
peratures (;20 K!, using 23104 MC steps for eachT in
steps ofDT;0.5–1 K. We interpret a discontinuous jump in
dR(t) as well as the vanishing of the intensity of the Bragg
peakS(q,0) at q5G2 ~whereG2 is a 2D reciprocal lattice
vector of the triangular lattice! as signatures of melting. We
then repeat more careful sweeps over a narrower temperature
region with up to 105 MC steps.

If the temperature is cycled throughTm using an interval
of 104–33104 MC steps for each temperature in increments
DT/Tm50.0024, we observe hysteresis in most monitored
quantities. The width of the loop is typically'0.018Tm .
Hysteresis is most pronounced fordR(t) and for the discli-
nation density~defined below!, but is also quite conspicuous
for the hexatic order parameter~also defined below! in the
same temperature range. From the size of the jump in the
total internal energy seen at melting, we estimate the latent
heat per vortex pancake to be about 0.03460.01kBTm . ~A
possibly more precise estimate is given below.! The melting
transition is calculated to occur atTm(B)/Tc2(B)
50.8760.02, 0.9360.006, and 0.9360.02, forB590, 50,
and 10 kG respectively, and lattices with eight layers, in
reasonable accord with experiment.8 For lattices with 32 lay-
ers and lab51400 Å, we obtain Tm(B)/Tc2(B)
50.8660.02, 0.9260.02, and 0.9660.02 at the same
fields. @HereTc2(B) is the mean-field transition temperature
at fieldB.# Since our assumedT dependence oflab(T,B) is
likely to become less accurate asT→Tc(0), we mayexpect
increasing deviations from experiment at lower fields, as in-
deed we find in our calculations. Note that, for the higher
fields,Tm /Tc2(B) depends little on either the lattice aspect
ratio or the value oflab . This behavior is consistent with the
dimensional crossover discussed below.

The transverse displacementdR(t), as expected, shows
characteristically different behavior in the solid and liquid
phases. In the liquid,dR(t) increases with increasingt ~see
below!, while in the solid phase, it saturates after a short
transient period. The inset to Fig. 1 shows the behavior of
dR(t) across the melting transition forB550 kG, as calcu-
lated by MC simulation. Also shown are the Langevin re-
sults, which agree very well with MC predictions. This con-
firms that the two indeed give, as expected, very similar
predictions for thermodynamic quantities. From the results in
the solid phase, we can read off the Lindemann number
cL[dR(Tm ,B)50.18, atB550 kG. We have not, however,
confirmed thatcL is constant along the melting curve, as
would be expected if Lindemann’s law is really valid.

Another way to display the first-order melting process is
also shown in Fig. 1. The MC energy at any given tempera-

ture fluctuates with MC time. The two curves in the main
part of Fig. 1 show the distributions of total internal energy
within two different time windows at the melting tempera-
ture @~a! and~b! in Figs. 1 and 2#. On either side ofTm , this
distribution tends to be independent of the initial time of the
window. Precisely atTm , however, the system slowly oscil-
lates between a liquid and a solid phase with a correlation
time of about 53104 MC time steps~for this system size!.
The oscillation causes the two distributions to differ: The
two distributions shown are the extreme cases that we have
found in the length of time studied. As shown in the insets at
the bottom of Fig. 2, the density correlation functions in the
‘‘low-energy’’ and ‘‘high-energy’’ windows do indeed show
solidlike and liquidlike characteristics. We believe that the
weak hexagonal symmetry seemingly present in the ‘‘liq-
uid’’ phase actually results from the presence of a few solid
configurations in the window, and possibly also from the
finite size of the sample.

From the average energy difference between the two
phases as read from Fig. 2, and also from the distance be-
tween the peaks in Fig. 1, we estimate the heat of melting to
be&0.02kBTm per vortex pancake. This estimate for the heat
of fusion is in agreement with LLL calculation of Ref. 3, as
well as with experimental estimates at high fields. It is sig-
nificantly smaller, however, than the value of Hetzelet al.17

of 0.3kBTm per vortex pancake, obtained using a frustrated

FIG. 1. Probability distributionP(U) for the total internal en-
ergyU total(T) per pancake, averaged over two different time win-
dows ~a! and ~b! ~specified in Fig. 2!, at the melting temperature
Tm . Calculation is carried out for YBa2Cu3O72d at B550 kG.
Uhex is the corresponding energy for a perfect triangular lattice of
straight vortex lines~the minimum energy configuration!. The dis-
tributions in each window are obtained by dividing the data from
the Monte Carlo configurations shown in Fig. 2 into 256 energy
bins, each of widthnU/kBT51.431024. The curves are least-
squares fits of these data to Gaussian distributions. The error bars at
various values ofU total are the rms deviations of the values of
P(U) inferred from ten bins in the vicinity ofU. Inset: in-plane rms
displacementcL of pancake vortices from their equilibrium lattice
positions in units of lattice spacing, as calculated using both Monte
Carlo and Langevin techniques.
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stacked triangularXY model. The reasons for this difference
are a matter of speculation. One possibility is that in both our
simulations and the LLL model,ucu, which sets the overall
energy scale, decreases with increasing temperature, whereas
in theXY simulation, the coupling strengthJ is temperature
independent. More plausibly, our simulations are carried out
at high fields while theXY simulations are more appropriate
at low fields. Yet a third~unlikely! possibility is that our
simulations allow for anisotropy in the superconducting
properties, whereas those of Hetzelet al. do not.

We find that most of the energy discontinuity at melting
comes from changes in the interaction energy between dif-
ferent pancakes in the same layer, which has a rather clear
jump at melting. By contrast, the interlayer coupling energy
has large fluctuations in both the solid and liquid phases but
no clear jump. These fluctuations tend to mask the steplike
change of the in-plane component.

B. Topological defects in clean YBa2Cu3O72d

We have carried out a search for topological defects
above and below melting in our model for
YBa2Cu3O72d . Basic building blocks for various kinds of
topological defects are disclinations and dislocations. Both
kinds of defects may be identified by carrying out a De-
launay triangulation31 for individual layers of each sampled
configuration. To understand this procedure, we show in Fig.

3 a snapshot of a typical melted configuration in a single
layer which shows bothbond lines, as identified by the De-
launay procedure, andtopological defects. The vortex pan-
cakes are located at the vertices of the triangles. They are
marked by black and grey dots if their numbern( i ) of in-
plane neighbors is 7~positive disclination! or 5 ~negative
disclination! rather than the 6 expected for a perfect triangu-
lar lattice. We see characteristic examples of an isolated dis-
location @i.e., a pair of disclinations, marked by~a!#, an iso-
lated disclination~b!, and a bound pair of dislocations~c!. In
the present work, we arbitrarily call a pair of disclinations
‘‘bound’’ if and only if they reside on neighboring pancakes
as in ~a! and ~c!.

For a more quantitative analysis of the defect configura-
tions, we assign ‘‘charges’’q( i ,z)5n( i ,z)26 to the izth
pancake, wheren( i ,z) is the number of in-plane neighbors
of the izth pancake. Theaveragetotal defect density is de-
fined by

nd5
1

NvNz
(
i ,z

nq~ i ,z!,

where nq( i ,z)512dq( i ,z),0 . ~Note that this definition in-
cludes defects of both signs.! Since tightly bound neutral
pairs of disclinations, such as~a! and ~c!, do not influence
local hexatic order~i.e., the degree of local sixfold symme-
try!, it is also useful to define anisolatedcharge density by

FIG. 2. Evolution of the in-plane component of internal energy,U in plane(T), at the melting temperature, forB550 kG as calculated via
MC simulation. Insets: density-density correlationC(r ,0), averaged over the two different time windows~b! and~c!. These plots show that
the system is alternating between lattice and liquid phases.
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q* ( i ,z)5q( i ,z)1( j8q( j ,z), where the prime indicates that
j runs over the in-plane neighbors of pancake (i ,z). This
definition eliminates bound-pair defects such as~a! and ~c!.
Theaverageisolated charge density is then defined by

nd*5
1

NvNz
(
i ,z

nq* ~ i ,z!,

wherenq* ( i ,z)5(12dq* ( i ,z),0).
Once the charges are identified on each plane, the topo-

logical defect configuration associated with a given vortex
arrangement~lower left in Fig. 3! may be represented as a
‘‘neutral plasma’’ of line charges of variable lengthsl d and
both signs~cf. Fig. 3, lower right!. To quantify the properties
of this plasma, in our simulation, we monitor the distribution
of defect lengths of either signP( l d), defined as

P~ l d!5
1

NzNv
K (

i ,z
(
q

@12nq~ i ,z0!#

3@12nq~ i ,z01 l d11!# )
z5z011

z01 l

nq~ i ,z!L
t

.

~15!

We also monitor the in-plane hexatic order parameterC6 ,
defined by

C65
1

NvNz
(
i ,z

1

n~ i ,z!(j ^exp@6iu i j ~z!#&, ~16!

whereu i j (z) is angle made by the bond between vorticesi
and j and thex axis. The results are shown in Fig. 4. Evi-
dently, melting is accompanied by a proliferation of isolated
dislocation and disclination lines, as well as by a dramatic
drop in the in-plane hexatic order parameter. NearTm , but
still below it, transient line defects are observed to appear
and disappear, while atTm there is an abrupt decrease in
hexatic order accompanied by an almost discontinuous jump
in nd* ~cf. Fig. 4!. uC6u appears to vanish no more than 1%
aboveTm . While we cannot rule out a ‘‘hexatic line phase’’
~with hexatic but no long-range crystalline order! within this
temperature range, our numerical results are consistent with
a single melting transition where both hexatic and crystalline
order simultaneously disappear.

As the flux line density increases, the interlayer coupling
becomes weaker compared to the in-plane interaction.
Hence, one might expect a dimensional crossover in the de-
fects associated with the melting transition. Indeed, we find
such a crossover in the solid phase. In Fig. 5, we show the
length distributionP( l d) for 32 layers at several fields
(B510, 50, 90 kG! and temperatures slightly belowTm
(T/Tm50.997, 0.982, 0.988) selected with the criterion of
dR50.15 for consistency. In each case, by monitoring
C(r ,z) andS(q,z), we verified that the system is solid, but
very near melting. As evidence that the lattice anisotropy
depends on field, we note that for the same value of in-plane
rms fluctuations (dR50.15), l T is field dependent: At fields
of 10, 50, and 90 kG, it is respectively 0.077, 0.100, 0.114.

The topological defectshave a dramatic crossoveras a
function of field. This is obvious from the right-hand column
of the figure. At the lowest field~10 kG!, there are line de-
fects penetrating all the way through the sample, which oc-
cur only for temperatures extremely close to melting
(T/Tm.0.99). At higher fields, the defect line segments are

FIG. 3. Snapshot of disclination distribution in a single layer of
a vortex liquid containing 256 lines, as determined by Delaunay
triangulation. Black dots, fivefold disclinations; gray dots, seven-
fold disclinations.~a! A pair of bound disclinations, equivalent to a
dislocation;~b! an isolated disclination;~c! a pair of bound disloca-
tions. The bottom row shows a typical vortex line liquid and its
representation in terms of disclinations of either sign.

FIG. 4. Hexatic order parameteruc6u2 ~left scale! and density of
isolated disclinationsnd* ~right scale! as a function of temperature
in a 64-line system of thickness 8 layers withB550 kG.
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much shorter and occur at somewhat lower values of
T/Tm . ~The latter fluctuations set in at a lower temperatures
because they are short and cost less energy to create.! Also
shown in gray are the defect length distributions for three
temperatures above the melting line, namely,T/Tm51.01,
1.04, and 1.06 forB510, 50, and 90 kG, respectively. In this
case there is no 3D-2D crossover: The defect length distri-
butions in these line liquid states are similar for all three
fields, following a simple exponential form.@However, at the
still higher temperaturesT/Tm*1.05,1.07,1.13 respectively
~not shown!, l T.0.2 and the lines begin to break up into
pancakes, as cutting and reconnections set in~see Sec.
IIID !.#

To account qualitatively for these results, we note that the
defects shown in Fig. 5 are line segments of isolated discli-
nations of various lengths. The energyEc to create an iso-
lated ‘‘pancake’’ ~i.e., 2D! disclination defect, as is well
known, is proportional to the logarithm of the system area. It
may be written approximately asEc'Jln(L2/aB

2), whereL
is the system edge,aB is the lattice constant of the 2D lattice,
andJ is some appropriate energy, which is of the order of the

intervortex interaction energy. The energy to create a line of
l such disclinations is therefore~neglecting momentarily the
interactions between the individual pancakes! of the order
of E(l )'l Ec . Since the total number of such defects
in thermal equilibrium should be proportional to
exp@2E(l )/kBT#, this argument will give the kind of expo-
nential distribution seen numerically in both the solid and
liquid phases.

To further refine this argument, we first note that 1/aB
2 is

proportional to the magnetic inductionB. Hence, for a given
area and fixedJ, the energy to create a 2D disclination in-
creases as lnB, which implies that the slope of the exponen-
tial dependence should becomesteeperasB increases. This
increase is indeed observed in the solid phase, but it seems to
be much more abrupt than the gradual increase suggested by
this argument. Presumably, the abruptness stems from inter-
actions between the disclination pancakes. If this interaction
energy increases exactly asl , the exponential form would
be unaltered. Our numerical results show some deviation
from strictly exponential behavior at low fields, suggesting
that the interaction energy is more complicated. We specu-

FIG. 5. Darker symbols: probability distribution of disclinations of lengthl d at B510, 50, and 90 kG for a 32-layer system, at
temperatures such thatdR(B,T)50.15, i.e., slightly below melting. Lighter symbols: corresponding probability distributions for the same
fields and system at temperatures deep into the liquid phase. In the right column, snapshots of typical defect configurations in the solid phase
are shown for each field. Black and gray represent disclinations of either sign.
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late that this interaction energy is stronger at low fields but is
reduced at larger fields, possibly by screening from other
disclinations, leading to the rather sudden transition to short
defects seen at high fields. But a quantitative theory of this
transition remains to be developed.

Why is there no such transition in the liquid state? A
possible but speculative explanation is that, in the liquid,
there are many disclinations~of the order of 0.5 per plaquette
per layer of the vortex lattice!. Hence, they strongly screen
one another, and the effective sample areaL2 in the expres-
sion for the creation energy should be replaced by the area of
a plaquette, which is of orderaB

2 . Then the energy to create
a line of l disclinations is independent of field~except pos-
sibly through the prefactorJ), implying a field-independent
distribution, as observed numerically.

Although the above arguments are certainly speculative,
the principal numerical result, namely, a rather sharp ‘‘3D-
2D’’ crossover in the defect structure, may have an experi-
mental analog. Obaraet al.32 have recently reported a cross-
over in multilayers of DyBa2Cu3O7/(Y12xPrx)Ba2Cu3O7, in
which a 3D vortex lattice showed only 2D correlations above
;10 kG. In the experimental sample, of course, the vortex
lattice is affected by point pins, possibly producing a sharper
crossover than we see here. Nonetheless, these pins should
affect the vortex lattice quite differently at low and high
fields, because the defect lines are clearly much less rigid at
high fields.33 Specifically, because of this low rigidity@as
shown inP( l d)#, the point pins may cause the defect lines to
break into short segments rather abruptly at a well-defined
magnetic field which may be speculatively identified with
the transition observed by Ref. 32.

C. Distribution of magnetic induction in solid and liquids

Both the static and dynamic magnetic field distributions
are often probed experimentally,7,34–36using techniques such
asmSR and NMR. To calculate this distribution, we have
evaluated the instantaneous local magnetic fieldB(r ,t) at a
given timet ~either by MC or LD simulation!, using Clem’s
prescription37 for the field of a stack of vortex pancakes. In
the present case, we have an additional complication due to
the periodic boundary conditions. This difficulty is again
solved by including the effects of image pancakes both
within the plane and along thec axis.

To obtain the dynamic evolution of the field distribution,
using LD simulation, we consider theinstantaneous distribu-
tion function

P~B,t !5
1

VE dVd„B~r ,t !2B…, ~17!

which will in general depend on time, as the system ap-
proaches equilibrium. For a measurement which probes the
local field averaged over a timet, we obtain the field distri-
bution functionPt(B) from the following definition:

Pt~B!5
1

VE dVd„^B~r ,t8!& t2B…, ~18!

where^•••& t denotes an average over a timet ~either over
real time, for a LD simulation, or Monte Carlo time!. From
the limit t→`, we obtain the static field distribution function

appropriate formSR ~in a typicalmSR, the muons sample
the B field at random points in a sample averaged over a
typical muon lifetime of;1026 sec! using either MC or LD
simulation. A similar technique has been recently applied to
obtain the static field distribution in Bi2Sr2CaCu2O8 using
MC simulation.38 By varying the durationt over which the
local field is accumulated, we also find out how rapidly the
field distribution approaches the static limit.

Figure 6 showsPt(B) as calculated using LD simulation
for t/t0 ranging from 103 to 53105 and three different tem-
peratures above and below melting. In the long-time limit,
the solid phase exhibits the characteristically asymmetric
profile arising from the static triangular lattice. In the liquid,
the profile becomes nearly symmetric~and very narrow! be-
cause vortices move around, producing the same time-
averaged field everywhere. The distribution in the solid
phase is qualitatively similar to that detected bymSR experi-
ments in Bi2.15Sr1.85CaCu2O81d .

7 Our symmetric result in
the liquid appears to disagree with the experiment. The dis-
crepancy may result from the fact that our simulation
sample, in contrast to the experimental one, lacks a bound-
ary. The possible influence of such boundaries on the field
distribution observed bymSR experiments has been noted
and discussed by Schneideret al.38 For short-time scales
(t/t0,104), our distribution retains significant asymmetry
even in the liquid phase, suggesting that the time scale for
field relaxation is of this order in the liquid.

Figure 7 shows the change in rms width of the field dis-
tribution across the melting point. In the long-time limit, the

FIG. 6. Dependence of time-averaged magnetic field distribu-
tionPt(B) on time windowt/t0 used for average, at an applied field
of 50 kG. The time evolution is calculated at several temperatures
from Langevin dynamics using Clem’s prescription for computing
the magnetic field~Ref. 37!. The distribution is plotted as a function
of B/Bav21, whereBav is the space-averaged magnetic induction.
Successive distributions in each vertical panel are displaced hori-
zontally by 0.02 units.
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temperature dependence of the width as obtained from both
MC and LD simulations agrees qualitatively with NMR line-
width measurements across melting.34 This agreement sug-
gests that the time scale of the NMR measurement is longer
than (104–105)t0 . Since the NMR experiments are carried
out using ac fields of frequency; MHz, this implies
104t0!1 msec ort0!10210 sec.~This agrees with another
estimate oft0 given below.! Note also that our interpretation
of NMR linewidth neglects the possibility that the ac NMR
field actually exerts a force on the vortex lattice.

Two more pieces of information may be extracted from
these results. First, the inset in the Fig. 7 shows that a MC
result taken over 43104 MC steps gives a rms width closely
matching the LD result obtained witht/t05105. This sug-
gests that a single MC time step using our version of the
Metropolis algorithm with individual step sizeDx5aB/32 is
equivalent to'2.5t0 of LD time. Also, from the LD results
with variable t/t0 , we can infer that melting has a pro-
nounced effect on the field distribution only when the mea-
surement is made on time scales longer than;105t0 . In fact,
the required time scale to distinguish solid from liquid may
be somewhat longer than even this value in the thermody-
namic limit. For the LD cell size used in these magnetic field
calculations, the individual pancakes may havedR(t)}ta

with a;1/3 rather thana;1/4 as expected for very long
lines ~see below!. Thus, for these thicker samples, we expect
that the relevant time scale for field relaxation should be
closer to (105)4/3t0;0.5msec.

D. Relevance of vortex line cutting and reconnection

Before turning to further dynamical results, we first con-
sider the validity of neglecting vortex line cutting and recon-
nection. In an earlier numerical study of Bi2Sr2CaCu2O8
using a similar model,11 it was found that including line-
breaking effects had little effect on the calculated melting
properties. In simulations of YBa2Cu3O72d , which has far
stiffer lines, it is reasonable to expect that the approximation
is even sounder. Indeed, even in the liquid phase up to
T/Tc2(B);0.97, our numerical results show that the trans-
verse ‘‘wandering length’’l T , measured in units of the
intervortex separation, is no larger than 0.2.

To check this approximation another way, define a ‘‘vor-
tex collision length’’ zz by l T

2(zz /d)
d;1. Presumably

d51 in the dilute ~low-field! limit, where the transverse
wandering of a line directed along thec axis is a random
walk with step size l T . Using 0.2 for l T , we obtain
zz /d;25, which exceeds the thickness of our sample. In the
dense regime,d may be smaller than 1 because of the restric-
tive effects of the repulsive interactions among flux lines,
leading to an even largerzz /d.

Cutting and reconnection should occur massively only
when the collision length becomes comparable to the inter-
layer spacing, leading to frequent ‘‘collisions’’ of vortex
lines. By balancing the entropic gain from permutations of
vortex connections against the accompanying cost in inter-
layer coupling energy, we estimate that this condition should
be met only whenl T.0.7, which occurs only well above
melting. To verify this, we did two MC runs, in one of which
we allowed cutting and reconnection according to a Boltz-
mann weight factor obtained from the change in interlayer
coupling energy that would be produced upon cutting and
reconnection. The result shows that this cutting occurs at a
negligible rate untilT/Tm.1.05, at which point about 12%
of recombination attempts are accepted.l T at this tempera-
ture was found to be about 0.16, a value which may roughly
be taken as a kind of ‘‘Lindemann melting criterion’’ for flux
cutting in the liquid state. Thus, over much of the liquid
regime, we conclude that the thermodynamics of this model
can be treated without considering flux line breaking and
reconnection. This conclusion justifies our treatment of flux
line dynamics in the same approximation.

E. Langevin dynamics of vortex line liquids and solids:
Slow and fast relaxation

Having justified our nonbreaking assumption, we return to
the dynamics of vortex line liquids and solids. We begin by
considering the motion of asingle vortex line within the
overdamped dynamics of Eq.~6!. In the limit of a very long
line in which each pancake is subject only to thermal Lange-
vin noise and a harmonic interlayer restoring force, Eq.~6!
can be solved analytically. The derivation is similar to that of
Ref. 5 for more general cases. The result for the mean-square
displacement of a pancake from its initial position at timet is

^ur i ,k~ t !2r i ,k~0!u2&'kBTS t

d2hed
D 1/2E

2`

`

dkS 12e2k2

k2
D

}t1/2, ~19!

which predicts asublinear time dependence.39 By contrast,

FIG. 7. Mean-square width (dB)2/Bav
2 of the magnetic field dis-

tributionP(B/Bav), plotted as a function ofT/Tm(B) at an applied
field B550 kG. The width is calculated from Langevin dynamics
for time intervals of varying durations:t/t05103, 104, 105 ~inset!,
and 53105 ~main figure!. Also shown in the inset is the mean-
square width as obtained from a MC simulation sampled over
43104 MC steps.

1328 54SEUNGOH RYU AND D. STROUD



an uncoupled pancake vortex has an ordinary diffusive trans-
verse motion, in whicĥ ur i ,k(t)2r i ,k(0)u2&}t.

To test this behavior, we have examined the long-time
behavior of the quantitydR(t) defined in Eq.~11! from LD
simulation in the limits of~i! a single pancake vortex,~ii ! a
single long line,~iii ! single short line segments, and~iv! an
ensemble of 64 lines in 8 and 16 layers, at various tempera-
tures both below and aboveTm . For the single pancake, we
observe ordinary diffusive behavior. From the limit
t/t0→1012, we deduceD51.431023 cm2/sec forT560 K
~using t051.2310215 sec; see below!. This diffusion con-
stant seems to agree reasonably well with experimental esti-
mates for an extremely anisotropic system such as
BiSr2Ca2Cu2O8.

40 A single line of up to 1000 vortices
shows dR(t)}t1/4 as predicted analytically, while lines
shorter than 4d show behaviors close to a 2D diffusion.

Figure 8 shows case~iv! for B550 kG and 16 layers of
YBa2Cu3O72d at five temperatures above and belowTm .

For T,Tm , vortex excursions are limited to radii smaller
than the appropriate Lindemann distance of around 0.2aB .
For T.Tm , the rms displacement seems to grow with an
approximatelyt1/4 behavior as expected from the analytic
estimate for a single line. In the case of an eight-layer system
~not shown!, we observeddR(t)}t1/3, possibly indicating
that the system lies between the long-line and 2D limits. In
both cases, the motion of individual pancakes is slower than
in the usual Brownian diffusion. Hence, in the long-time
limit, a diffusion constant defined on the assumption of a
linear t dependence will vanish even in the liquid regime and
even without pinning. At sufficiently high temperatures, of
course, line cutting will eventually set in~though not in the
present approximate model!. With line cutting, the system
may then cross over to a 2D liquid with ordinary diffusive
behavior. Therefore, there is an interesting possibility of two
different types of liquids characterized by different diffusive
behavior, with a smooth crossover between them.

As a further means of studying relaxation in the solid and
liquid phases, we have monitored the LD evolution of vari-
ous thermodynamic quantities, such as various components
of internal energy and the defect density, after the system is
initialized in some arbitrary nonequilibrium state. For each
temperature, we considered five different initial states. Each
initial state was prepared by randomly and rigidly displacing
the individual vortex lines from a perfect triangular lattice by
an amount not exceeding a fractiona r of the mean intervor-
tex spacing. In most cases, a rapid exponential relaxation of
energy is observed. By fitting the time-dependent internal
energy to the forma1bexp@2t/tr#, we find a relaxation time
t r which increases with increasing temperature~cf. Fig. 9,
for whicha r50.31). This increase is once again due mainly
to an energy scale which diminishes@or a lab(T,B) which
increases# with increasingT.

Superimposed on this overall trend, there may be a peak
in t r corresponding to enhanced fluctuations precisely at the
melting temperature~although there are large uncertainties at
this temperature!. This behavior is consistent with expecta-
tions for a phase transition with a kinetic or ‘‘critical’’ slow-
ing down, but the feature is generally concealed by the steep
increase oft r with increasing temperatures, and can hardly
be used to distinguish between possible first-order and con-
tinuous phase transitions. The middle row of Fig. 9 shows
the progression of the density correlation function from an
initial random configuration to a well-ordered state over a
period of about 100t0 at a temperatureT/Tm50.9. The lower
row shows the local instantaneous magnetic field profile for
the initial and final configurations in a particular layer. The
cores of the vortices lie at the centers of the bright regions.

In Fig. 10, we show a typical relaxation of total internal
energy over time after an initial randomization, this time
with a r50.63. Also shown is the density of isolated discli-
nations,nd* . In contrast to the internal energy, which relaxes
exponentially, the disclination density relaxes toward zero
~i.e., an elastic lattice! with a roughly lnt behavior. The dis-
clinations finally disappear~via pair annihilation! long after
the internal energy has nearly equilibrated. The spikes in
nd* on top of the overall logarithmic decay may correspond
to a large-scale rearrangements of vortices, possibly involv-
ing activated processes. The energy relaxation itself shows
no obvious signature of any such activated processes.

FIG. 8. ~a! rms transverse displacementdR(t) of vortex pan-
cakes at several temperatures both above and below the melting
temperatureTm , as calculated by Langevin dynamics atB550 kG
for Nz516, and plotted in units ofaB , the mean vortex separation.
For T,Tm , the rms displacement saturates at a value approaching
the Lindemann numbercL'0.18 atTm . In the liquid regime, the
displacement increases roughly ast1/4, as expected for a long line,
and not ast1/2 as expected of diffusing particles.~b! Root-mean-
square ‘‘wandering length’’l T at the same temperatures. Note that
l T saturates even in the liquid state, though its value continues to
increase, primarily because of the reduction of line tension with
increasing temperature.
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To understand real materials, we next examine how point
pins influence these general features. In Fig. 11, we show the
relaxation of the in-plane component of the internal energy
for different pinning strengths (0,ap,5) with an areal
density equivalent toBp5888 kG. The relaxation is qualita-
tively different from the weak-pinning cases (ap<3), in
which the energy typically decays exponentially as in clean
systems. Atap55, for example, the in-plane part of the en-
ergy varies logarithmically with time almost fromt50.

For pins of any strength, we find that the system never
relaxes back to the perfect triangular lattice within our simu-
lation times; a significant fraction of disclinations always
survives even aftert/t0553105 ~cf. lower part of Fig. 12!.
Possibly, early-stage relaxation is controlled mainly by pin-
ning forces. But once the pinning energy is nearly optimized
by this quick relaxation, all driving forces for relaxation be-
come comparable in strength~after t/t0'33104), and relax-
ation slows dramatically. Any further relaxation must reduce
the elastic strain energy without sacrificing pinning energy.
To accomplish this, both total and isolated defect densities
slowly but steadily decrease~with many fluctuations!. Also,

nd* /nd ~lower panel of figure! decreases noticeably for
t/t0.33104. In other words, energy relaxation in this re-
gime is proceeding via a decrease in the number of isolated
defect configurations.

The slow elastic relaxation just described must involve
vortex rearrangement. It may therefore affect measurements
of the local magnetic field and the total magnetization. In-
deed, such quantities have long been known to depend

FIG. 9. Top: relaxation timet r describing return of vortex sys-
tem to its equilibrium configuration, following an initial perturba-
tion, as plotted for several temperatures in the flux solid and flux
liquid state. Calculation is carried out as described in the text. Error
bars are standard deviations from five different initial configura-
tions. Middle: snapshots of density-density correlation function
C(r ,z50) for three representative configurations during relaxation
atT/Tm50.89. Bottom: evolution of local fieldB(r ,t) in a specific
ab plane of the sample, for the first and third configurations of
middle panel.

FIG. 10. Time dependence of total internal energyU total(T) per
pancake~left-hand scale! and the isolated disclination densitynd*
~right-hand scale!, as calculated via LD simulation atB550 kG,
T/Tm50.898, starting from a randomized initial configuration in a
pin-free sample.Uhex is the internal energy of an ideal hexagonal
lattice at the same temperature.

FIG. 11. Relaxation of in-plane portion of internal energy per
pancake,U in-plane, for point pins of varying strength (0<ap<5).
The initial configuration is a randomized distribution of straight
vortex lines witha r50.63 ~see text!. Note the gradual crossover
from an exponential to a logarithmic time dependence as the pin-
ning strength increases. At the largest value ofap , the relaxation is
dominated by changes in the pinning energy. Other conditions same
as in the previous figure.Uhex is here the in-plane part of the inter-
nal energy of an ideal hexagonal lattice~per pancake! at the same
temperature.
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strongly on the time scale over which they are measured.
Thus, our model can help to explain such slow relaxation of
magnetization, in disordered samples. The calculations also
suggest that the slow relaxation results predominantly from
the rearrangement and annealing-out of topological defects.

Next, we briefly discuss the value oft0 , which is crucial
in connecting our numerical results to experiments on real
materials. The friction coefficienth is related to the flux-
flow resistivityr ff by the equationr ff5Bf0 /hc

2. Assuming
a flux-flow resistivityr ff (B550 kG,T/Tm50.9);0.16rn ,
wherern is the normal-state resistivity, and estimatingrn as
its value atTc(0), rn„Tc(0)…;100 mV cm ~Ref. 41! for a
single crystal of YBa2Cu3O72d , we obtain
r ff'1.6310217 sec. The corresponding value oft0 , assum-
ing the time step in Sec. II C, ist0'10214–10215 sec. Since
our value of r ff is probably an overestimate, this value
should be taken as the lower bound fort0 .

42

Finally, we briefly return to the influence of pins on the
dynamics of flux lines, in light of this value fort0 . In real
materials, such pins will strongly affect flux line dynamics,
typically slowing down their motion by several orders of
magnitudes~as we have noted above!. This has some impli-
cations for interpreting the experimental results which are
sensitive to the time evolution of local magnetic field. One
such experiment is the spin-echo NMR probe40,43 in the
highly anisotropic Tl-based compounds. This has been inter-
preted as implying a vortex diffusion constantD of
1024;1025 cm2/sec at temperaturesT&Tm , and of
'1023–1024 cm2/sec forT.Tm . On the other hand, more

recent spin-echo results on aligned powders of
YBa2Cu3O72d seem to show lack of diffusion even on very
long time scale.35,36 These results may indicate the presence
of strong pins in the powder samples, which greatly slow
down the dynamics. Another possibility is that the discrep-
ancy is somehow due to the nondiffusive behavior of long
lines discussed above.

IV. DISCUSSION AND CONCLUSIONS.

We have presented a detailed numerical study of the vor-
tex structure in a model for YBa2Cu3O72d , both above and
below the flux lattice melting temperature, using Monte
Carlo and Langevin simulations. Our results indicate that in
clean YBa2Cu3O72d , there is a weakly first-order melting
transition, with a very small heat of fusion which agrees the
calculations of Ref. 3 at similar fields.

We also find that there is a striking change in distribution
of local magnetic fields at melting: The time-averaged mag-
netic field sensed by a fixed particle in the sample has a very
narrow distribution in the liquid~because the vortices move
around in the liquid!, but acquires an asymmetric distribution
of finite and temperature-dependent width in the solid phase.
This behavior agrees with bothmSR and NMR experiments
in YBa2Cu3O72d . Although some previous MC
calculations38 have suggested a similar transition, our LD
simulations provide more information. In particular, because
the time constant of the Langevin simulations can be ex-
tracted from measurements of the liquid-state resistivity, we
can estimate the measurement time necessary to distinguish
the solid and liquid field distributions. This time appears to
be about 0.5msec in YBa2Cu3O72d at a field of 50 kG.

Our calculations show that there is a qualitative change in
the structure of the topological defects in the crystalline
phase just below melting. Namely, even in clean
YBa2Cu3O72d , there are long lines of disclinations parallel
to the c axis at relatively low fields (B&10 kG!, but these
break up into short~‘‘2D’’ ! disclinations at higher fields. We
believe that this breakup may be an essential ingredient in
the ‘‘3D-2D’’ transition recently reported in
Bi-Sr-Ca-Cu-O.6,32,33 In clean systems, we find numerically
that the distribution of defect line lengths is approximately
exponential in the liquid, but deviates from exponential in
the solid phase. We account for these forms by a simple
model of topological defects in the vortex lattice of a layered
superconductor.

A remarkable result of our Langevin simulations is that
the vortex lines move nondiffusively even in the liquid state
— that is, the rms displacements of the vortex pancakes vary
like ta, wherea,0.5. This agrees with the exact result de-
rived for a single long line,39 that the rms displacement of a
sufficiently long vortex line subject to thermal noise varies as
t1/4. Our simulations suggest that the behavior is also found
in a dense line liquid with strong short-range repulsive inter-
actions. While the full transport implications remain to be
explored, this result is consistent with recent NMR measure-
ments on YBa2Cu3O72d ,

36 which also suggest that in the
liquid state vortex lines move subdiffusively.

The LD calculations also reveal that the vortices relax
much more slowly asT→Tc2(B). Such slow relaxation is
actually built into the TDGL equation, whose time constant

FIG. 12. Time dependence of interlayer part of internal energy
UJ(T), pinning energyUpin(T), in-plane component of elastic en-
ergy U in-plane(T), and ratio of isolated disclination densitynd* to
total disclination densitynd , for strong pinning (ap55), at a tem-
perature ofT/Tm50.898 whereTm is the melting temperature for a
pin-free sample.
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is proportional to the deviation of the Ginzburg-Landau free
energy from its minimum value. Since the minimum be-
comes ever shallower as Tc2(B) is approached, the relax-
ation time constant should become ever longer. It would be
most interesting to have experimental confirmation of this
behavior. The Langevin results also suggest that the time
constant may increase as the~first-order! melting transition is
approached from either side.

A final conclusion has to do with the influence of point
pins on the dynamics. Our Langevin results show that, after
any disturbance, the energy relaxes nearly exponentially
back to equilibrium in a pin-free sample. With strong pins
present, however, the energy relaxation is close to logarith-
mic in time. At even longer time scales, there is a crossover
to a logarithmic relaxation with a different slope. We iden-
tify this slower relaxation with the logarithmically slow
annealing-out of topological defects in the disordered
samples~these same defects are also slow to disappear in the
pin-free case!. It has long been known that many properties
of the high-Tc materials vary logarithmically slowly with
time ~most notably, the sample magnetization!. Our model,
which treats in a fairly realistic manner a disordered
YBa2Cu3O72d sample, clearly produces such slow relax-

ation, and identifies it with a particular type of topological
defect dynamics.

In summary, we have presented a detailed study of the
nature of the flux line melting based on the vortex represen-
tation of the Lawrence-Doniach model, using both Monte
Carlo and Langevin simulations in a consistent way. We cal-
culate a wide range of properties of both the vortex solid and
liquid phases which are consistent with experiment, and
which shed light on the topological defects which underlie
the melting process, as well as the time-dependent magneti-
zation and magnetic field distribution, of these materials.

ACKNOWLEDGMENTS

We are grateful for valuable discussions with Professor C.
H. Pennington and C. Recchia. This work was supported by
DOE Grant No. DE-FG02-90 ER45427 through the Midwest
Superconductivity Consortium at Purdue University, by NSF
No. Grant DMR94-02131. D.S. thanks the Department of
Applied Physics at Stanford University and Professor S.
Doniach for their kind hospitality during the completion of
this work. Calculations were carried out, in part, with the use
of the computational facilities of the Ohio Supercomputer
Center.

*Electronic address: ryu@pacific.mps.ohio-state.edu
†Permanent address.
1M. Franz and S. Teitel, Phys. Rev. Lett.73, 480 ~1994!.
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