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Superconducting properties of the attractive Hubbard model: A slave-boson study
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The superfluid characteristics of the attractive Hubbard model are analyzed for any cquplirgd
arbitrary electron concentration {<2) by means of the slave-boson mean-field method and also by the
perturbative treatment of the strong-coupling limit. The slave boson method takes into account correlations of
electrons and yields a reliable description of the crossover from BCS-type superconductivity to local pair
(composite bosonsuperconductivity with increasir|ty|. The results for the ground statbe free energy, the
gap in the excitation spectrymand the electromagnetic characterisfittee critical magnetic field, the London
penetration depth, the coherence lengtte compared with those obtained by the Hartree-Fock approximation
and by the self-consistent second-order perturbation theory in the weak-coupling limit as well as with those
obtained using perturbational approaches in the strong-coupling limit. We show that the slave-boson method,
in contrast to the Hartree-Fock approximation, gives credible results for all investigated quantities in the whole
interaction range, interpolating smoothly between the BCS and local pair regimes. A comparison of theoretical
predictions for our simple model with experimental data for various families of short-coherence-length super-
conductors suggests that the best agreement can be obtained for intermediate values of the local attraction.
[S0163-182696)05942-5

. INTRODUCTION been used in the works of Sofo and Bals&irand Bukal?
The main purpose of our work is to extend those investiga-
One of the conceptually simplest models for studying cortions and to discuss also the electromagnetic properties of the
relations and to describe the superconductivity of the sysmodel. We perform the calculations of the energy gap
tems with short- range, almost unretarded pairing is the atthe London penetration depth the thermodynamic critical
tractive Hubbard modellt constitutes a common basis for field H., and the Ginzburg-Landau correlation lengtg,
the description of superconductors with weak local electrorand analyze the evolution of these quantities as a function of
pairing, being in many ways similar to the conventional BCSelectron concentratiom and the increasing interactiod.
systems and systems with a strong attraction, where supe®everal analytical results concerning the ground-state char-
conductivity results from the condensation of hard-core comacteristics, which can be derived in both the weak-coupling
posite charged bosons and is similar to the superfluidity ofind strong-coupling limits, are also presented for comparison
“He Il. Such a model has been considered as amith numerical solutions and with the results of other ap-
effective model of superconductivity in the family of proaches.
cuprate$® the barium bismuthategBa, K ,BiO; and The paper is organized as follows. In the next section we
BaPh,Bi;_,03),}* and the fullerides,as well as the Chev- briefly introduce the spin- and charge-rotationally invariant
rel phases. slave-boson representation for the considered model. We
In this paper we study the basic superfluid characteristicpresent the free energies for the superconducting and the
of this model by means of the slave-bosémean-field  normal phases as well as the corresponding consistency
theory and also by the perturbative treatment of the strongequations derived within the SBMFA, and analyze the be-
coupling limit, where one is able to get several rigorous re-havior of the ground-state energy, the chemical potential,
sults for three-dimensiondBD) lattices using a systematic and the energy gap in the quasiparticle excitation spectrum.
low-density expansion based on knowledge of the exact two Sec. Il the electromagnetic properties of the model are
body scattering amplitude. The slave-boson method is irstudied within the SBMFA and their evolution with increas-
principle not restricted to weak or strong coupling. It is aning interaction and electron concentration is discussed. In
improvement over the Hartree-Fock approximatigtFA)  Sec. IV we present the results for the strong attraction limit
since it takes local correlations into account; in particular,of the model obtained using the effective pseudospin model
the density of doubly occupied lattice sites is an independerand compare them with those of the SBMFA. The last sec-
parameter to be optimized. In fact, it was sh8vihat the tion is devoted to conclusions and a supplementary discus-
slave-boson mean-field approximatiBBMFA) is equiva-  sion including some comparisons of theoretical predictions
lent to the Gutzwiller approximation to the Gutzwiller wave with experimental results for various families of short-
function” Although the repulsive Hubbard model and its coherence-length superconductors. In Appendix A the
various generalizations have been extensively analyzed b§BMFA solutions for the normal state are given, whereas
this approacli;? for the attractive case the method has onlyAppendix B summarizes the analytical results for the
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ground-state characteristics which can be derived in the limit

. . T
of weak coupling within the SBMFA and HFA. S= E C;Tw'co': 2 , Too'PogrPorors ®)
Il. CHARACTERISTICS OF THE GROUND STATE analogously, the operatod [defined as J*=clc’,

A. Description of the Hubbard model in the spin- and charge- J =C_C,, J*= 3(clei+clc_—1)] by
rotationally invariant slave-boson representation

In this section we want to present the slave-boson repre- J=> 7 ,b o0 9)
sentation of electronic operators, which is the spin- and pp'p"
charge-rotationally invariant. The method allows us to inves-
tigate various magnetic orderings as well as the supercon-
ducting and charge ordered phases. We follow the procedure

the number of electrons with spin by

described in Refs. 12 and 11. The singly occupied states no_:£+JZ+O-SZ’ (10)
|o) are expressed by the Bose operatmlr;, and the Fermi 2
operatorsz, as and the operator of a doubly occupied dite=n_,n_ by
_ Tt —
|U>_§ p(ru'/f(r’|va'c> (O' +1 ) (1) D= 22 b+p pt - (11)

The site index is omitted for clarity. The doubly occupied
state|2) and the stat¢0), corresponding to an empty site,
form a doubletp) (p=+,—), which may be expressed by

Additionally one finds the relations

£
the Bose operatorls, , as flf,,=2> pllapo,ol+25o,(f§ bl.bi,, (12
71
lpy=2 b,y |vag, )

PR fift=2> bl b, andf f,=23 bl,b_,.
where P P (13

F fifi 3 Using the above relatiorf€£qgs. (5—-13] one can express the

Pl 1) 3 Hubbard Hamiltonian

The operatord,,» andp,, obey the commutation relations
_tE (CIUCJU+H C)— ME CIUC|U+UZ N4 N -

1 ij,o0
T =
[bplpz ngPA,] 25911’4592!33’ (14)
in the slave-boson representation as

1
t =_
[p(rla'z’ p0'30-4] - 2 50'10'450'20'3' (4)

In order to operate in the physical part of the extended Hil- tE UEU [ o ‘T”flv FiortTij,o otz fjortH.C
bert space we introduce the following constraint:

—p2 (2X+1)+20 b by, (15)
t t . f pip
22, by, 0, 22 PyyiPero=1. (5) ' e
Pp oo
o _ where

It ensures that each site is occupied by exactly one slave

boson. The electron creation operadﬁris expressed by ~t _

qu a'a’ 2 |+g— +g’Z]+0' +o" G"O',Zj+o_'7p2i+gy,p),

|0-><0|+0-|2><0-| 2 (Z+a' +a’ o’ +0—’ZTFO' 70"f0")’ (16)
(6) — N
where rij,v’v”:‘flz s R 17)
ZKU,M, pT b 1 +bl Pores 3’ denotes a summation confined to nearest-neighbor sites.
_ The operatorg are those from Eq(7) properly renormalized
Zl=p, b, +bl P, (7) to get the correct result in the noninteracting limit

~ (U—0)5121n our case they are

b,y andb;qgr are the time-reversed operators lnf,, and

Psor (€., b, =pp'by7y andP,, =oo’'p;72). The physi- Z=b'LRp+p'LRb, (18
cal variable may be expressed by the slave bosons in the - - - —
following form: the spin operator by where
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L=[1-2b'b—2p'p] Y2R=[1—2b'b—2p"p] 2

0.00
- (19

An underbar denotes thex2 matrix.

-0.02
B. Properties of the mean-field ground state

Now we want to find stable mean-field solutions for the
slave-boson Hamiltoniaril5). We investigate the normal
(N) and the superconducting stats) (for any electron con-
centrationn and any negative value dfl. We will not
present the solutions for the charge density wéEZ®W) i
state. Such solutions do exist in a definite rang&¢f and
n, but except fon=1 their free energy is always higher than '0'060 '
that of S. The superconducting order parameter can be de- [U|/wW
fined using the operatal” [Eq. (9)] as

(FS-FY)/NW

-0.04

-
[\
w
A
(s, ]

FIG. 1. Free energy difference of the superconducting and the
AiE<Cifci+>=22 (biTp+bi7p>_ (20 normal state calculated within the SBMFRAolid curve at n=1.
p For comparison, the corresponding Hartree-Fock result is shown by
) ) ) the short-dashed curve and the difference of the free energy of the
Assuming a uniform superconducting state and the absenGgperconducting state in the Hartree-Fock approximation and the
of magnetic ordering one hasA=2(b{, . bj_. normal state in the slave-boson approabfi{— FY) by the long-
+bl b)), (pir)=(pi——), and (pi_)=(pi_) dashed curve.
=0. Taking b?=2(b/ .b,,+b/_ _b__+bl, _b,_.

+bl_,bi._),  pP=2(pl,.ipisstp__pi--), and & 1 0F 1 dF; gs -
=(b/, ,b;,,—bl__b;__), one gets the hopping factors NE_N@E_W“’_O’ (29
[Egs.(16) and(17)] as
1 0F 10F
As=(0ij,00) ={P?[(D*+25+2A) — -1 _oa-p, (26)
N ors N dhg
+(b%=26-2M)Y2121{1-46°—4A%), (2))
andr=(rjj ,»,»)=0. The constraints imposed by EJ$§) lfzia_':f&is_ s=0. (27)
and (8)—(13) are introduced to the partition function with N JA N dgs dA

Lagrange multiplier fields. The number of Lagrange multi- o _ _ _
pliers can be easily reduced; in particular, conditi@  In our derivations we will mainly use the rectangular density
meansp?+b2=1 and from Eq(10) the electron concentra- Of statesp(e)=1MW for |e[<W/2, whereW is the width of

tion n=1+24. We assume all Lagrange multiplier fields as the electronic band. We restrict our considerations to the case
space and time independent. The ground state is determingi T=0. The fermionic part of the free energy of the super-
from a saddle point of the partition function, i.e., from the conducting phase &t=0 is

minimum of the free energl with respect to the variables
p, b, §, andA. The free energy is the sum of the fermionic

qsW —
and the bosonic parts=F;+Fy, which are given by FfS/Nz)\l— STI (Ry+RO)+M(Ry—RL)
1 B _
Ff/Nz—W; [In{1+exg BE)} +In{1+exp(— BE)}, Nain Rﬁ_ﬁ“], 29
22 R+ —1
Ul where N,=2\,/qeW (@=1,) and R.=[(A;=1)2

Fo/N=— (624 28)— (A + w)(1+28)— 20 A, (23)  +A&™2 For the normal stateX(=0) the solutions are given
2 in a parametric way in Appendix A.
) . In general Eqs(24)—(27) can be solved numerically. The
Here, N denotes the number of the lattice sites,esults are presented in Figs. 1-6. The difference of the free
Ev=[(dsex+N1)?+AE]"% N1 and\s are the Lagrange mul- energy of the superconducting state and the normal state
tipliers for the constraintél2) and(13), ande, is the energy  AF is exhibited in Fig. 1 fom=1 (solid curvé. For com-

dispersion of noninteracting electrons. The minimunFdé  parison the Hartree-Fock solution for the Hubbard Hamil-
determined by tonian (14) is*>*

LAF LR 1 ios-0 24 N W vl
Nan, Ny (2070 @9 FIN=—Zn(2—n)-—n (29)
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FIG. 2. Band narrowing factayg for the superconducting state
vs the interaction parametgl)| for the electron concentration
n=1, 0.8, 0.6, 0.4, 0.2, and 0.1, from the bottom.
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FIG. 3. The gap in the excitation spectrig vs |U| (a) for the
electron concentration=1 and 0.1(from top) calculated within
the SBMFA (solid curve and the HFA(dashed curve (b) shows
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FIG. 4. The gapE, as a function ofn (a) for |U|=4W, 2w,
W, and 0.5V (from top) for the SBMFA(solid curve and the HFA
(dashed curve (b) shows the ratio oE, obtained by the SBMFA
and the HFA(from top for |U|=4W, 2w, W, and 0.5V).

Fog/N=— V—Vn(z—n)cot){ﬂ) - an (30)
H 4 uj)” A ™

for the normal and the superconducting states, respectively.
In this approach also the rectangular density of state is as-
sumed. The differencE;-— F}\c is shown in Fig. 1 by the
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the ratio of the energy gaps obtained by the slave-boson and HF FIG. 5. Borderline between the region of the BCS-like and the

methodsESYEL", as a function ofU| (from bottom forn=1 and
0.2).

local pair superconductivity obtained by the SBMFgolid curve
and the HFA(dashed curve
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20 and

W
,uzz(n—l)cotr(W/lUD.

1.5
This is represented in Fig(&® as the dashed curve. The ratio

of E4 obtained for these two approaches is given in Fig).3
For small |Ul and n=1 this ratio is equal to
vy=exp(—3/4)=0.47 (see also Appendix B for an analytical
derivatior). With the increasing interactiofJ|, y increases
andEy becomes closer to that one predicted in the HFA. The
role of correlations decreases with decreasing number of
osl— 1 o 1 . 1 1 . electrongsee the case=0.1 in Fig. 3b)]. The dependence
06 02 04 06 08 10 of the excitation gafE, on the electron concentration for
different values ofU| is presented in Fig.(@). In the limit
. . n—0 (or n—2) the both solutions goes to the exact result
. FIG. 6. Position of the maximum of the absqlute value of the¢y, the binding energy of the single Cooper pair in an empty
difference offthe f_ree efrleI:gy cl)f the superconduc_tl?g T_\gd theenormqbttice (Ref. 1), Ep= 2W/[exp(2N/|U|)—l]. The dependence
states as a function of the electron concentratiofsolid curve. - - L ;
The dashed curve represents the critical valufgf, at which the of the ratio ofEq onn is pres?nted n Flg.' ®). Once again
we see that the local correlation effects in the superconduct-

bandwidth in th | state is reduced t 0 Ap- . A
anawicii In the normat state 1s reduced 1o zaiR0) (see Ap ing phase are most significant f&, at n close to 1 and
pendix A). small|U| g

short-dashed curve. The expansion of the free energy for t Ctés;?(g the SBM';A ;'.V?t can tﬁnal¥ze dtr:je Ccrossover_ fro;n
slave-boson approach as well as the Hartree-Fock solution i “lIKe superconductivity, with extended L.ooper pairs, to

the limit |U|—0 gives the ratio of the free energy differ- superconductivity of composite bosofiscal Cooper pairs
ences y?=|AF|/|AF =& 32=0.22 (see Appendix B which occurs when one goes from a weak- to strong-

This value holds in a wide range {dfl|. For larger values of couplm.g regime(from |U|<W to |U|>W)' At T=0 the
IU|>W there are great differences in theF and the approximate boundary between both regimes can be located

AF ¢ (although the free energies of the su|0erconductingiafter Legget) from the requirement that the chemical po-

state for both type approximations are relatively close toential in_ the supgrconducting phase reach the bottom of the
each other This is due to neglect of the effects of electron electronic band, i.e., froms=—W/2. In the SBMFAus is
correlations in the normal state by the HFA. The crucial role9'Ven by
of the correlation effects in the normal state in determining s

of the condensation energgF is seen from the plot L1oF> 1F;d0s_ M —\;—pug=0 (32)
Fie—FN (long-dashed curve in Fig.)1 N on Nodgs on 2

Figure 2 represents thBJ| dependence of the band-
narrowing factormg in the superconducting phase for differ-
ent electron concentrations In contrast to the situation in
the normal phase, where the changeggfare seriougsee
Appendix A), in the superconducting phasg is close to
unity. However, these minor changes are relevant for th
stability of superconductivity in the weak and intermediate W W
regions of|U]| (i.e., for [U|<2W) and for the deviation of MHF:(n_l)_Coﬂ-(_) —|U|n/2=—WI2.
the slave-boson superconducting solutions from the results of s 2 U]
the HFA.

The energy gajk, in the excitation spectrum in the su-
perconducting state T(=0) is given by E;=2 min(g),
where the dispersiofiE, = /(qsex+\1)2+ A5 In Fig. 3a)
we showE vs |U| (solid curve for two electron concentra-
tionsn=1 and 0.1. For comparison the HF solutiofr’is

[Ul/W

1.0

and determined together with the stability conditigiss.
(24)—(28)]. The borderline is shown in Fig. 5 as a function of
n. The dashed curve in Fig. 5 represents the borderline ob-
tained in the HFAL which for the rectangular density of
gtates(DOS) is determined by

As we see with increasing deviation from half-filling the
boundary is shifted towards lower values|of|. Let us ob-
serve that an analogous shift exhibits also the position of the
maximum of the condensation energyF|, which can be
thought of as another indication of the crossover between the
region of weakly and strongly coupled electrons. The corre-
sponding plot is presented in Fig. 6.

EfF=2|U[Aye  for [u[<Wi2,

Il. ELECTROMAGNETIC PROPERTIES
EF=2(Wi2—|u])?+|U[2AZe  for |u[>Wi2,

(31) The coupling of electrons to the external magnetic field

where may be expressed by a change of the phase

w _ e[k
AHF:m\/n(Z—n)/SinKW”UD Pij==7¢ ), drAM)
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of electrons hopping between the siteandj. The A(r) is In the SBMFA the diamagnetic part of the kerr€lis
the vector potential of the magnetic field in the Peierls scalgiven by
ing, ande is the charge of an electron. It modifies the Hub-

bard Hamiltonian(14): gme’
r( ) Zla hzc 3 NIEJ ,E [<q| ] o’ 0_//><f| 0_ J U'")
- P e
tI]Eo' (el JCI()-C](T_’_H C MIEU Cia'CIO' +<riaja,o”o’”><fia—0"f]a0"’>+C'C‘]‘ (40)
For hypercubic lattices one can expré(s%a by the average
—UI2 nini_ . (33  value of the kinetic energyE,;,) and, therefore,
I
2 2

The current operator may be obtained by differentiation of K dia— 8me” (Euin) _ 8me Ei (41)
H [Eg. (33)] with respect to the vector potentid. In the h2c’a zN  #h°c®a zNdgg

linear approximation we get the current operator as a sum

f . 3 .
the diamagnetic and paramagnetic parts, Yiere, we have used the relatigg,;,) = qsdF/dgs and z is

the number of the nearest-neighbor sites=@ for a 1D
chain,z=4 for a 2D square lattice, anz=6 for a simple
jo()=]9%i)+jPaRi)=e?A (i)t (¢] Ciia ,+H.C) cubic latticd. The quantityk 9@ is determined together with

o ‘ the stability conditions, Eqg24)—(27). For comparison in
the HFA theK% is given by

i o1 5o |
co WU| 0] smwal (.42

In our calculations o at T=0 we restrict ourselves to
the London limit, having in mind the properties of the sys-
J (g,w)= N—E [ S, BK“""‘+ KEE10,0)]A4(q,0). (35  tems of interest, and finally determine the area in the
|U| —n parameters space where the local approximation may
The diamagnetic contribution is be valid. The value of the penetration depth calculated in this
way is qualitatively good both in the weak- and strdhl-
dia 8me? t + limits, in the latter case approaching the results of the per-
Ka ~72c%a NKZT (Ck oCk oyCc0gK ). (36)  turbation theory, as will be shown below.
“ Using the value of the penetration depth and the differ-
The paramagnetic part is expressed by the retarded currerdnce of the free energy between the normal and supercon-
current Green'’s function ducting phases one is able to determine the thermodynamic
critical field H, and the Ginzburg-Landau correlation length

4w
KEz19,0) ll\lf dte”"“'o(t)([5Ta.),iFT—a)]), oL a@s

+ietY (¢f,Ciia o —H.C) (39) s
Kﬂff_—‘z—mn(z—n)

(a=x,y,z). From the linear response thedty® the expec-
tation value of the Fourier transform of the total current op-
erator is

(37) HXT)  FNT-FX(T) 3
= 3 ,
where jP¥qq,t) is the space-Fourier transform of the para- 8m Na
magnetic part of the current operatpgq. (34)] in the @
Heisenberg representation. In the London superconductors -0 (44)

the magnetic field penetration depthis determined by the gGL_ZTr\/E)\HC’

ransver rt of th | kernel in th ic limit: . L ..
transverse part of the total kemel in the static limit where®,=hc/2e, and to obtain the estimation for the criti-

A=[— K%~ |im Kpa“"(qxzo,qy,qz;w=0)]*1’2. (3  cal fields

B0 Ink Ink
At the temperaturd =0 the paramagnetic part of the kernel Hep= THCN N
may be important in determining. It happens in the case of
nonlocal (Pippard superconductors when the correlation and
length becomes greater than the penetration deptiihis
situation is common in many loW; systems. The short- Hep= Po '
coherence-length superconductors represent the opposite, 2w

i.e., the London limit. In the latter case the ground-state pen-
etration depth is determined entirely by tipe- 0 limit of the

kernel where the paramagnetic part of the kernel vamshel%
and\ is given by

where k= )\/SGL
The results of the slave-boson method are presented be-
w. Figures 7a) and 1b) show the variation of the London
penetration deptin with |U| and n. As |U| increases\
evolves smoothly between two known limits: weakly inter-
A= . (39) acting single-particle carriersvith A =2 being proportional

J— K2 to the bandwidth and tightly bound pair§where \ ~2 de-
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FIG. 8. Ratio of the London penetration depth calculated in the
SBMFA and the HFA vgU| for n=1.
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FIG. 7. The London penetration depthas a function ofU| for
n=1, 0.8, 0.6, 0.4, 0.2, and 0.1, from the bottéay and\ vsn for
|[U|=4W (solid curve, |U|=2W (short-dashed curye|U|=W 0.05
(long-dashed curyeand|U|=0.5W (long-short-dashed curyeb)
(N o= (hcle)[zal8mW]Y?). 0.00
0 1 2 3 4 5

creases likezt?/|U|). Let us notice that in the low-density lul/w

limit X ~2cn~ Y2 for arbitrary|U|. For the rectangular DOS 0.25

the concentration dependencexofs almost the same in the | l l I i
both limits [\ ~2xn(2—n)]. In general, for other forms of
DOS it cannot be the case and in the weak-coupling limit, 0.20
where the effects of DOS are most clearly seentldepen-
dence of\ can strongly deviate from that one for larfjg| o 0.15
: - P : T
(e.g., for a fcc lattice the maximum of < is shifted from 2
n=1 towardsn<1).!2 Figure 8 as well as the results of the = 010
Sec. IV shows thah calculated by the SBMFA is rather
close to that obtained by the HFA, for afly| andn, as well
as to that obtained by the exact low-density expansion in the 0.05
large |U| limit. A more significant difference between the
results of the SBMFA and HFA is seen only in the interme- R e B P LI—
diate region of|U|, where band narrowing is relevangd 0.0 0.5 1.0 1.5 20

deviates maximally from )1 n

fi Th?ﬂ?t of ;he thgrn;pdygl;?;nlc Cntlcal flleH?[ as a func- FIG. 9. Critical fieldH, as a function ofU| for different elec-
Ion_ 0 IS_S o_Wn in _Ig. or varzlo_us electron concen- tron concentrations=1, 0.8, 0.6, 0.4, 0.2, and 0(&), andH_ vs
trationsn. With increasing|U| the H{ increases exponen- n for |U|=4W (solid curve, |U|=2W (short-dashed curye

tially for small values of|U|, and then it goes through a |U|=W (long-dashed curvye and |U|=0.5W (long-short-dashed
round maximum and it decreasestd§U| for large|U|. The  curve (b) (Ho=[87W/a3]¥3). The curves with dots correspond to
maximum is placed in the crossover regime and its positiofihe exact low-density expansion results for the strong-coupling limit
depends on the electron density. For the rectangular DOS theq. (71)] calculated for the sc lattice at=0.1 (a) and|U|/W=4
calculated maximum ofi; is at|U|/W=2 in the half-filled  (b).
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FIG. 10. Comparison dfi. obtained by the slave-boson method
(solid curve and the HF approximation fdiJ|=0.5W.

band case and with increasifg—1| it is shifted towards
smaller values ofU|/W (compare Figs. 5 and)6The con-
centration dependences 6f; for several fixed values of
|U| are presented in Fig. (§). Let us stress that for
|U|/W< 1 the H, remains almost constant in a quite ex-

tended region of electron concentrations, which is in contrast

with the predictions of the HFA, cf. Fig. 10.

As H. is proportional to a square root of the free energy

difference between the normal and superconducting states

is a good measure of the condensation energy of the system.
Taking into account that the superconducting critical tem-

peratureT, should behave roughly as the condensation en
ergy atT=0 one expects that the dependencel—tif and

T. on|U| andn will be qualitatively the same. The available
results forT; vs |U| in the half-filled band case obtained
applying Monte Carlo simulations  and the Gutzwiller-
type variational approach of Haseg&ware in agreement
with this expectation. For arbitrary, the only calculations of
the T, maximum have been performed until now using the
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FIG. 11. The Ginzburg-Landau correlation length vs|U| for
n=1 (solid curve and 0.1(dashed curve(a), and ég_ vs n for
|U|=0.5W (long-short-dashed curydU| =W (long-dashed curye
and |U|=2W (short-dashed curye(b) (&,=a/[2(22)*?]). The
curves with dots correspond to the exact low-density expansion
results for the strong-coupling limiEqg. (73)] calculated for the sc
lattice atn=0.1 (a) and arbitrary]U|>W (b).

effective Hamiltonian derived by the perturbation expansion

in t/|U] up to fifth order® They show a shift of this maxi-
mum towards lower values ¢BJ|/W with decreasing, be-
ing in agreement with our results fot, .

In Fig. 11 we show the evolution of the Ginzburg-Landau
correlation lengthég, with |U| andn. With increasing|U |
the correlation length rapidly decreases at smidll [&g,
cexp(—2|Ul/w), for |U|<W] and tends to a constant value
al2\z=¢.., the same for alh at large|U|. The value of
|U]/W at which &g, becomes comparable with, is reduced
with increasing deviation from a half-filing. This can be

treated as an additional indication that the crossover between
the BCS and the local pair condensation regimes is shifted

towards lower|U|/W with decreasingh (compare Figs. 5
and 6. Let us notice a substantial variation &, with n in
the weak—to—intermediate-coupling regime, whégg at-
tains the maximal value at half-filling. This should be con-
trasted with the HFA results, which for the rectangular DOS
yield £, beingn independent for anjU|, and predict that
Figures 18a) and 13b) show the plot of the Ginzburg
ratio k=\/&g, . The increase ok with |U| is exponential in
the weak-coupling limif k<exp(—WI|U|)], whereas in the

short-dashed curye with that calculated
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FIG. 12. Comparison ofg, determined by the SBMFAlong-
in the HFA for
|U|=0.5W.
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10— iors in the considered system. In Table | we have given
examples of such estimations ¢tJ|/W for two fixed
(t,a) values andn=1, 0.1 (which can be reliable for
Ba; ,K,BiO; and K,;Cgg). In the low-concentration limit,
where k< 1/\/n, the local electromagnetic behavior can ex-
tend up to very small values ¢l |/W. Notice thatx depends
on the material parametees andt in a universal way:x
«1/\at and for any fixedU|/W andn the Ginzburg ratio

x increases with decreasirag.

xK/x

IV. RESULTS FOR |U|>W OBTAINED
USING THE EFFECTIVE PSEUDOSPIN MODEL
AND THEIR COMPARISON WITH THE SBMFA

[Ul/w
For |U|>W we can resort to the perturbation theory in an
10— analysis of the Hubbard model with the attractive interaction.
In this limit a large gafE, of order|U| exists in the single-
particle spectrum for ang [cf. Figs. 4a) and a)], which is
equivalent to the statement that the Fermi level is pinned
close to—|U|/2. Due to that fact, the standard degenerate
perturbation theory can be applied for the mo@k) and
(33) to derive the effective pseudospin Hamiltonian valid for
any band filling, working in the subspace excluding the
single occupancy of sites. Up to second order in a small
parametet/|U| one obtain§!423

K/K

~ I o B
H=—§; (ez'q)'inerj +H.c)

+3X pipi-u, (2 Z+1)—EZJ (45)
FIG. 13. The Ginzburg rati@a= /&g, vs|U| forn=1, 0.8, 0.6, i PiPi™ Hau (4P 45
0.4, 0.2, and 0.1, from the bottoga), and « vs n for |U|=4W
(solid curve, |U|=2W (short-dashed curye|U| =W (long-dashed  where 2?=(n;,+n;_—1),p; =cl,c_, J=2t%|U|, and
curvg, and |U[=05N (long-short-dashed curve (b) (xo 7=, 4 |U|/2. The operatorsp® and p? are the charge op-
=(hcle)z/[ maW]¥). The curves with dots correspond to the exact”_* L P i Py &= ge op
: P erators, which in the subspace excluding single occupancy of

low-density expansion results for the strong-coupling lifrg. . - .
(74)] calculated for the sc lattice ai=0.1 (@) and|U[/W=14 (b). sites satisfy the commutat!qn rl_JIes of the 1/2 operators.
The electron number condition is

opposite limitk becomes proportional t<;1|U|/t2 (see Sec.

IV). A crossover between these two types of behavior takes

place for intermediate values {dfi| (1<|U|/W<2). Notice

the universak vs n dependencesi) kx 1/\/n for n<1 (ar- o _

bitrary |U]) and (i) x=1/\n(2—n) for |U|>W. As we see  For{p")=(1IN)Z(p;")#0 the Hamiltonian45) describes

from Fig. 13b) the HFA can strongly overestimate the the superconducting state.

value, even in the weak-coupling regirteee the discussion It is worthwhile to compare the strong-coupling results of

on the ratioy in Sec. IV and Appendix B the SBMFA approach with the ones obtained for E4p).
From the equatiok=1/y2 one can estimate the bound- Recently the thermodynamic and electromagnetic properties

aries between the local and nonlocal electromagnetic beha®f the modek45) have been analyzed in Refs. 24 and 25 and
below we only quote the final expressions for the ground-

TABLE I. The values of|U]| (in eV) providing k=1/y2 and  state characteristics derived within the MFhe random
100 calculated for two sets of the hopping integral and the Iatticebhase approximatiotRPA) treatment, taking into account
constant {,a), which approximately correspond for BaK,BiOs  guantum corrections, yields for 3D lattices qualitatively
and K,Cqo, respectively. similar results, except for the low-concentration lif¥itNo-
tice also that for the modé#5) the MFA treatment becomes

n=%2 (2p7+1). (46)

t=0.1ev t=0.1ev an exact theory in the limit of an infinite number of spatial
a=4 A a=14 A dimensiond =.] The MFA calculations of the free energy
k=112 n=1 0.16 0.18 at T=0 (the ground-state enerpyor the superconducting
n=0.1 014 015 and the normal(p*)=0) states give'4242
k=100 n=1 0.49 0.63 |U| 2
n=0.1 0.32 0.38 FS/N:__n_Z_n(Z_n), (47)

2 U]
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NP LY | t?
FYN=—— 5 —n— |U|n(2 n, (48)
1
A=(p")=5Vn(2—n), (49
U t2

MS:_T |U| (2—2n), (50)

and the electromagnetic quantitigls, \, &g, , andk are

H2 _zn(2-n) t?

87 2a° U’ (51
16me’n(2—n) t2
ST ol (52
a
=—, 53
gGL \/Z ( )
he \/E (54

e V2mran(2—n)t¥[uU|’

13 147

h N
K= LI (63)
e mran(2—n)t%/|U|

whereM,=z=2D is the second moment of the density of
states for @ -dimensional hypercubic lattice. As we see the
results forFS, ug, and\ are identical in both approaches.
Expressiong51) and (60) for Hﬁ differ by a factor of 2,
whereas Eq953) and(62) (for &g,) as well as Eqs(54) and
(63) (for k) by a factor 142 and /2, respectively. This is
due to overestimation ofN by the SBMFA for large|U|
[compare Eqs(48) and (56)]—this approximation, being
equivalent to the Gutzwiller approximation, neglects entirely
the intersite correlations in the normal phase. The conse-
quences of this shortcoming are most drastic in the low-
density limit, which we will conclude in the following.

The effective pseudospin mod@l5) can be equivalently
treated as a model of bosons on a lattice with infinite on-site
repulsion (hard cor¢ and with the nearest-neighbdNN)
hopping integral equal to the NN density-density interaction.
It is clearly seen by the representation

) 1
pi =bi. pi=bl, pi=—>+bib;, (64)

For comparison with Eq€47)—(54) we have performed a Which transforms Eqg(45) and (46) into
strong-coupling expansion of the set of equati@@4—(28)
describing the superconducting phase within the SBMFA, up H=— ‘]E (ez"l’ub bj+H. C)+JE nin;— ME n,
to second order in/|U|. A recent analogous expansion for 249 )
the energy of the antiferromagnetic phase of the half-filled (65)
repulsive Hubbard model has been derived by Dentéfeer
up to fifth order int/U. The expansion can be obtained in
terms of moments of the density of states for the hypercubic
lattices in an arbitrary dimension and the final results for the
quantities of interest obtained in this way are the following:wheren;=b/b; and z=2u+zJ. The hard-core boson op-
eratorsb; satisfy the Pauli commutation relations

n=n/2= %2 (ny), (66)

U] t?
SIN —
FIN== Mg B9t b j=(an-1)8;, (b))2=b?=0, bib+bib=1,
(67)
FN/N=— Mn, (56) which exclude multiple boson occupancy of a given site, and
2 the number of bosons per site=n/2 is given by Eq.(66),
1 (2 which determines the chemical poteniial Recently, several
N P ey PR - rigorous results concerning the ground-state properties of the
A 2 n(2-n)1 ZMZ(I I) } 7 model of hard-core charged bosons, E64), on a lattice
have been derived for various 3D lattices, using a systematic
|U] 2 low-density expansion based on the knowledge of exact two-
Ms= =5 +M ZW(Z_ 2n), (58) body scattering amplitud®. Transforming the results of Ref.
25 (Sec.VI B into our problem one gets far—0 the fol-
t t2 lowing exact expressiori$or simplicity we present only the
Eg:|U|[1_2M2m n-1+0 mz” (590  leading terms of expansions, crucial for comparison with

Eqgs.(47)—(63)]:

H2  M,n(2—n) t2 |u| t2
16we®n(2—n) t2 2
_2:—_ U
"2c%a ap (61 N/N_—|—|n z|U|n(2—an), (69
o=, (62) :_M t (2—an)+0(n%?), (70)
2yM, S V]
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H: 1 2 n?

_ 5/

- 2az|u|5§+0(n 2, (71
4me? 2

A 2= {n(2—n)+n%(C—1)[2a+ a?(2C—23)

“#h2c?a |u|
+0(n%?)]}, (72)
LI S 3
\2z \Ja[n+0(n?)]
e za -

K= 7~ i — el
2e \[27at?/|U|

wherea=2/(2C—1) is the exact two-particle scattering am-
plitude for the model45) («=0.9839, 1.1196, and 1.1840
for sc, bcc, and fcc lattices, respectivebndC is the Wat-
son integral for a given latticBC=(1/N)Z(1— ec/€p) "1,
andC= 1.5164(s0), 1.3932(bco), and 1.3444fcc)]. As we
see, the terms up to ordet?(|U|)n in the expansions of
FS and\ 2 are correctly given by the SBMFA, whereas in
FN only the first term{ — (|U|/2)n] is correct. The overesti-
mation of FN by the terms of orderzt*|U|)n results in
erroneous dependences dfl ., &, andk in the both previ-
ously discussed approximations. Comparison of E@$),
(74), and (73) with (60), (63), and (62) shows that for
n—O0 the correct values dfl, and k can be much smaller
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3.5285 found in the HFARef. 27] and in the case of a
D-dimensional hypercubic lattice the value ¢fhas been
estimated to be/=0.288-0.016D, for |U|—0.2" A similar
renormalization in the weak-coupling limity&0.4) has
been also found by Jarréft,who calculatedT, using nu-
merical Monte Carlo simulations for the Hubbard model in
infinite dimensions. Both these results are in agreement with
our SBMFA calculations, performed using a rectangular
DOS, which for|U|—0, n=1 predicty=0.47.

The attractive Hubbard model is probably the simplest
lattice model to display a crossover from BCS-like to local
pair (composite bosonssuperconductivity. The previous
analyses of the crossover have been performed bnogen
symmetry HFA. They have shown the smooth evolution of
the ground-state energy and the single-particle excitations in
the superconducting phase from weak to strong couplifig.
More recent studies of the collective excitations performed
within the HFA RPA have also found a continuous evolution
of the collective-mode spectrum from the Anderson mode,
for weak coupling, into the Bogoliubov sound mode for
hard-core boson¥:?° In the present work we have studied
the basic (ground-state superfluid characteristics of the
U <0 model going beyond the HFA. We have found that the
SBMFA (in contrast to the HFAgives credible results for
all the investigated quantities in the whole interaction range
interpolating smoothly between the weak- and strong-
coupling regimes, where it matches well the results of the
perturbation methods developed for these limits. The values

and that ofég, , much larger than those predicted by the of the calculated ground-state energy of the superconducting
SBMFA. These differences are clearly seen in Figs. 9, 13phase, the chemical potential, and the London penetration

and 11, where the exact resulEgs.(71), (74), and(73)] are
given by curves with dots.

V. DISCUSSION AND FINAL REMARKS

depth are quite close to those obtained within the HFA for
any |U| andn. The largest differences, but not higher than
5%, are found near half-filling in the intermediate-coupling
regime|U|/W~1. On the other hand, we have shown that
although the HFA predictions for the behavior of the energy

Our analysis of the attractive Hubbard model by thegap ys|U| are qualitatively satisfactory, quantitatively they

Eq in the excitation spectrum at=0 is reduced in compari-

we have found that for several superfluid propertiég, (

son to that obtained in the HFA by a renormalization factory ) the validity of the HFA is restricted to the case of

y (Eq=7EL"). The renormalizations concern most of
the other superfluid characteristics of the systésee
Appendix B, the thermodynamical magnetic field

[H.=(y/\Jag)HEF], the coherence length ég =(qs/
y) €8], and the Ginzburg ratipx = (y/q2?) "], and only

low electron concentrations in the)|/W<1 limit only, and

that beyond this regime it gives erroneous behavior of these
guantities. This failure is due to the fact that the HFA greatly
overestimates the free energy of the normal state, which is
used in a standard calculation lf. and nextég, .

the London penetration depth remains almost unrenormal- As follows from Sec. IV the attractive Hubbard model in

ized [A=(1/gg)\"F; qs—1 if |U|—0]. The value ofy is
found to be a function of the electron concentratmnThe

the large|U| limit (|U|>W, kgT) can be equivalently con-
sidered either as the pseudospin Heisenberg model with a

renormalization is maximal in the half-filled band case and itfixed magnetizatiofEqgs. (45) and (46)] or as the model of

is reduced with increasingn—1| [cf. Fig. 4b), y—1 for
n—0].

hard-core bosons with a charge and the hopping integral
equal to the intersite density interactifiggs.(65) and(66)].

Recently the half-filled Hubbard model has been extenfor these equivalent models we have presefite&ec. 1V)
sively considered at weak coupling within the self-consistenthe results derived within the MF&or arbitraryn) as well

second-ordet/U<1 perturbation treatment taking into ac-
count the vertex correctionsee Ref. 27 fotJ>0 and Ref.
28 for U<O0; notice that forn=1 the repulsive Hubbard
model can be mapped to the negatile model by the
repulsion-attraction transformatioh'). These analyses

as the rigorous results obtained using a systematic low-
density expansionn<1) for various 3D lattices. The MFA
results[which for the model$45) and(65) become the exact
ones in theD—x limit] are found to be very close to the
strong-coupling results of the SBMFA for any concentration

show a decrease of the gap parameter and the critical tenof electrons. Fom<1 the comparison with rigorous low-
peratureT, with respect to the HFA solution by the same density expansion results for 3D lattices shows that in the

renormalization factor y [such that the ratio
Eg(T=0)/kgT for U—0 is identical to the BCS ratio

limit |U|/W=>1 FS, ug and\ 2 are correctly given by the
SBMFA [up to the order ?/|U])n], whereasFN and, con-
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X tively weak density dependenéa slow increase witm) in
0.10 0.15 0.20 the intermediate-coupling regimésompare Fig. 1(b)]. Ex-

T T T T T T perimental results ofig, in the cuprates seem to confirm this
- prediction. The in-plan€g, is found to be almost density

181 12000 independent, and the out-of-plagg, to increase witm.*®
_ 16__ ] Unfortunately, we are not aware of existing analogous ex-
T | . - perimental data for other families of nonconventional super-
< L 10000 % conductorsthe measurements for doped bismuthates would
~ - x be most interesting in this respgct
£ 1 i Ts000 < The slave-boson mean-field approd&BMFA) seems to
: | be, at present, the only systematic and simple method which
10'_ . takes into account correlation.s of electro_ns. and yields reli-
1 J 6000 e}ble description of all superfluid characteristics pf the attraq—
N R A T T tive Hubbard model for any electron concentration and arbi-
0.0 0.5 10 15 2.0 trary |U|. Moreover, the method can be easily extended to
n study more general models, including intersite interaction

terms like the correlated hopping, the Coulomb interactions,
) . , and the intersite charge and spin exchange, as well as the
FIG. 14. The London penetration depth normalized to its  glectron-phonon coupling, and to study the interplay between
value atn=1 (left axis) as a function of the electron concentration \,5rious types of superconductivitg,(p, andd type), mag-
n (lower axi9 obtained for the attrgctive Hubbard model in netic orderings, and the charge density wa{@BW's). The
SBMFA for |U|/W=0.4, a_nd egpenmental resultéRef. 34 present method is a mean-field type, and therefore it does not
(squaresfor La, ,SrCuO;, films (right and upper axjs includes fluctuations of bosonic fields. We also confined our
studies to the cas&=0. However, one can use the path
sequently,H. are substantially overestimated by this ap-integral approach and extend these studiesTfel0, taking
proach. into account fluctuations in a coherent potential approxima-
Although our model seems to be oversimplified for quan-tion (CPA) (in an analogous way as one treats statir
titative relations with experiment, nevertheless some of thelynamic fluctuatior® for D =).
theoretical predictions should be experimentally testable, at
least on a qualitative level. Among the recently studied su-
perconducting materials the best candidates for such com-
parisons are the extreme type-Il superconductors. This group We would like to thank R. Micnas, T. Kostyrko, and P.
of materials, including the cuprates, fullerides, Chevrelvan Dongen for many useful discussions. We are grateful for
phases, and bismuthates, generally exhibits several uniqure financial support by the Polish Research Committee of
features such as higli, at relatively low carrier density, Sciences within the projects 2 PO3B 165 (®.R.B. and
small value of the Fermi energy; 0.1-0.3 eV, short coher- S.R) and 2 P0O3B 104 11S.R) and by the Institute for
ence lengthiwhich can be of order of interparticle distance Scientific Interchange Foundation in ToritGC PECO Net-
or even a lattice constgntextremely largen/ég, ratio, and  work ERBCIPDCT94002)
the universal trends in th&@; versus condensate density
dependence (universal  dependence T /T{® s
[X(0)/\(0)™]?).1:39-33 Moreover, they haveT, propor-
tional to T (the Fermi temperatuy@r Ty (the Bose-Einstein
condensation temperatgye with Tg=(3-30)T, and The free energy of the normal stateTat 0 is given for
Te=(10-100)T,.%° All these features clearly support the the rectangular DOS by Eq&8) and (23) with A=0
models with short-range, nonretarded attractisee Ref. 1
for review). For all above superconductors the experimenFN/N:(FfN+ FN)/N
tally estimated Ginzburg ratio is of order 18033 Thus,
from the equalityx=100 one can estimate the values of anW
|[U|/W and n, which eventually could be reliable for these T2
materials. Examples of such estimations are given in Table |
and they indicate that the best agreement can be obtained f@ihere the band narrowing factory=2(1—b?)(b?

intermediate values of the local attraction. An important test; \[h%—45%)/(1—45%). (Here, the parametet) may be
for the theory would be the measurementshofH., and  positive as well as negativeThe stable solutions are given
&L as a function of electron concentratianVery recently  in a parametric way as a function of the double-occupancy

Locquet et al** have reported penetration depth measureparameter Ps|<b?<1. The interactiorlJ is expressed by
ments for Lg_,Sr,CuQ, films as a function of doping, ex-

tending in the range from heavily underdoped to heavily
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APPENDIX A: SBMFA SOLUTIONS
FOR THE NORMAL STATE

— v
(1—Xp)%+ E(b2+ 26)— u(1+268), (Al)

4_K2_ 2
overdoped. As it follows from Fig. 14 the theoretical plots of U=W|1-2b%2— 27 bT4s ’ (A2)
A(n)/\(n=1) for our simple model fit surprisingly well Vb*—46°

these experimental data. With respect to the Ginzburg-
Landau coherence lengtfs, the theory predicts its rela- the free energy is
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w u In the HFA[Eg. (31)]
FN/IN=— —qgyn(2—n)+ = (b?+29), (A3)
4 2 oW
HF _ e
and the chemical potential is given by Eq —2Wexr{ o)’ (BS)
W 2b*—b2(1—28)—28(1+26) and thus, the reduction parameter is given by
=—|1-2b%- . A4
H=2 Jb*—482 (A4) E 2W/gs
_ g
) ) y=F:=qSex m —+1]]. (B6)
Here, n=1+246. It is seen that forU<0 the width of g y

the band is reduced to zerogqy=0) at U./W | the limit A—0, gg=4b2(1—b?), dqs/db?=4(1—2b?),
=[—1-Vn(2—n] (see Fig. 6 For U<U. b1 and  andaqg/dA2=qe(4— 1/b?%). From Eqs(21), (25), and(28)
FY/N=Un/2. The values olJ./(8t) calculated for hyper- e find thatgs/y=—1—3|U|/8W for |U|/W<1, and there-
cubic 1D, 2D, and 3D lattices ah=1 are —1.273, fgore

—1.621, and—2.005, respectivel§. For a more detailed

analysis of the normal-state solutions of the attractive Hub- v=exp — 3/4). (B7)
bard model performed using the Gutzwiller approximation to _ S N

the Gutzwiller wave functionwhich is equivalent to our Expansion of F> [Eq. (28)] and F" [Eq. (A1)] for

treatment of this stajeve refer the reader to Ref. 37. |U|—0 yields
E2
AFIN=(FN=FS)/N= —_, (B8)
APPENDIX B: ANALYTICAL SBMFA RESULTS 8qsW
FOR |U|/W—0 whereas the corresponding expansions of E28). and (30)
Here, we want to calculate analytically the gap in the9'V®
excitation spectrum and the other ground-state characteristics (EHFY2
in the limit|U|— 0 and forn=1, and compare them with the AF/N= (FﬁF— FﬁF)/Nz g (B9)
corresponding HF results. In the SBMFA the gap for 8W
|U[—0 is Eg=2\g. From Eqgs.(25) and(27) we get Taking into account EqgB4) and (B5) one obtains
)\s=|U|Ay, (B1) AF H. 2 yz 810
where AFye \HEF) qs.
90s/ IA? Analogous calculations for Af [Egs.(41) and(42)] give
= . B2
Y= 20qe/ b2 B2 N2 1
, (—HF) =—, (B11)
For A\s—0 we find from Eqs(26) and(28) A Js
7\_5 2 and from Eqgs(43), (44) and(B10), (B11) it follows directly
A=—ZIn— (B3)  that
2 \g .
- : . oL\’ AF \(\FR\2 gg
(As=2As/qsW). Putting Eq.(B1) into Eq. (B3) we get the | =\ AF ~ | =57 (B12)
gap in the SBMFA: GL HF Y
HF
2q.W K N (€ 4
- —as =l == . B13
Eg—quWexp[ Uly } (B4) P ()\HF £Tq (B13)
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