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The superfluid characteristics of the attractive Hubbard model are analyzed for any couplinguUu and
arbitrary electron concentration (0,n,2) by means of the slave-boson mean-field method and also by the
perturbative treatment of the strong-coupling limit. The slave boson method takes into account correlations of
electrons and yields a reliable description of the crossover from BCS-type superconductivity to local pair
~composite bosons! superconductivity with increasinguUu. The results for the ground state~the free energy, the
gap in the excitation spectrum! and the electromagnetic characteristics~the critical magnetic field, the London
penetration depth, the coherence length! are compared with those obtained by the Hartree-Fock approximation
and by the self-consistent second-order perturbation theory in the weak-coupling limit as well as with those
obtained using perturbational approaches in the strong-coupling limit. We show that the slave-boson method,
in contrast to the Hartree-Fock approximation, gives credible results for all investigated quantities in the whole
interaction range, interpolating smoothly between the BCS and local pair regimes. A comparison of theoretical
predictions for our simple model with experimental data for various families of short-coherence-length super-
conductors suggests that the best agreement can be obtained for intermediate values of the local attraction.
@S0163-1829~96!05942-5#

I. INTRODUCTION

One of the conceptually simplest models for studying cor-
relations and to describe the superconductivity of the sys-
tems with short-range, almost unretarded pairing is the at-
tractive Hubbard model.

1
It constitutes a common basis for

the description of superconductors with weak local electron
pairing, being in many ways similar to the conventional BCS
systems and systems with a strong attraction, where super-
conductivity results from the condensation of hard-core com-
posite charged bosons and is similar to the superfluidity of
4He II. Such a model has been considered as an
effective model of superconductivity in the family of
cuprates,2,3 the barium bismuthates~Ba12xK xBiO3 and
BaPbxBi 12xO3),

1,4 and the fullerides,5 as well as the Chev-
rel phases.1

In this paper we study the basic superfluid characteristics
of this model by means of the slave-boson~mean-field!
theory and also by the perturbative treatment of the strong-
coupling limit, where one is able to get several rigorous re-
sults for three-dimensional~3D! lattices using a systematic
low-density expansion based on knowledge of the exact two-
body scattering amplitude. The slave-boson method is in
principle not restricted to weak or strong coupling. It is an
improvement over the Hartree-Fock approximation~HFA!
since it takes local correlations into account; in particular,
the density of doubly occupied lattice sites is an independent
parameter to be optimized. In fact, it was shown6 that the
slave-boson mean-field approximation~SBMFA! is equiva-
lent to the Gutzwiller approximation to the Gutzwiller wave
function.7 Although the repulsive Hubbard model and its
various generalizations have been extensively analyzed by
this approach,8,9 for the attractive case the method has only

been used in the works of Sofo and Balseiro10 and Bul”ka.11

The main purpose of our work is to extend those investiga-
tions and to discuss also the electromagnetic properties of the
model. We perform the calculations of the energy gapEg ,
the London penetration depthl, the thermodynamic critical
field Hc , and the Ginzburg-Landau correlation lengthjGL
and analyze the evolution of these quantities as a function of
electron concentrationn and the increasing interactionU.
Several analytical results concerning the ground-state char-
acteristics, which can be derived in both the weak-coupling
and strong-coupling limits, are also presented for comparison
with numerical solutions and with the results of other ap-
proaches.

The paper is organized as follows. In the next section we
briefly introduce the spin- and charge-rotationally invariant
slave-boson representation for the considered model. We
present the free energies for the superconducting and the
normal phases as well as the corresponding consistency
equations derived within the SBMFA, and analyze the be-
havior of the ground-state energy, the chemical potential,
and the energy gap in the quasiparticle excitation spectrum.
In Sec. III the electromagnetic properties of the model are
studied within the SBMFA and their evolution with increas-
ing interaction and electron concentration is discussed. In
Sec. IV we present the results for the strong attraction limit
of the model obtained using the effective pseudospin model
and compare them with those of the SBMFA. The last sec-
tion is devoted to conclusions and a supplementary discus-
sion including some comparisons of theoretical predictions
with experimental results for various families of short-
coherence-length superconductors. In Appendix A the
SBMFA solutions for the normal state are given, whereas
Appendix B summarizes the analytical results for the
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ground-state characteristics which can be derived in the limit
of weak coupling within the SBMFA and HFA.

II. CHARACTERISTICS OF THE GROUND STATE

A. Description of the Hubbard model in the spin- and charge-
rotationally invariant slave-boson representation

In this section we want to present the slave-boson repre-
sentation of electronic operators, which is the spin- and
charge-rotationally invariant. The method allows us to inves-
tigate various magnetic orderings as well as the supercon-
ducting and charge ordered phases. We follow the procedure
described in Refs. 12 and 11. The singly occupied states
us& are expressed by the Bose operatorspss8

† and the Fermi
operatorsf s

† as

us&5(
s8

pss8
† f s8

† uvac& ~s51,2 !. ~1!

The site index is omitted for clarity. The doubly occupied
stateu2& and the stateu0&, corresponding to an empty site,
form a doubletur& (r51,2), which may be expressed by
the Bose operatorsbrr8

† as

ur&5(
r8

brr8
† cr8

† uvac&, ~2!

where

cr
†5S f1

† f2
†

1
D . ~3!

The operatorsbrr8 andpss8 obey the commutation relations

@br1r2
,br3r4

† #5
1

2
dr1r4

dr2r3
,

@ps1s2
,ps3s4

† #5
1

2
ds1s4

ds2s3
. ~4!

In order to operate in the physical part of the extended Hil-
bert space we introduce the following constraint:

2(
rr8

brr8
† br8r12(

ss8
pss8
† ps8s51. ~5!

It ensures that each site is occupied by exactly one slave
boson. The electron creation operatorcs

† is expressed by

cs
†[us&^0u1su2&^su5(

s8
~z1s,1s8

† f s8
†

1s8z1s,2s8
† f s8!,

~6!

where

z1s,1s8
†

5ps8s
† b̃111b11

† p̃s8s ,

z1s,2s8
†

5ps8s
† b̃121b12

† p̃s8s . ~7!

b̃rr8 and p̃ss8 are the time-reversed operators ofbrr8 and
pss8 ~i.e., b̃rr85rr8b r̄ 8r̄ and p̃ss85ss8ps̄8s̄). The physi-
cal variable may be expressed by the slave bosons in the
following form: the spin operator by

S5(
ss8

cs
†tss8cs85 (

ss8s9
tss8pss8

† ps8s9 , ~8!

analogously, the operatorJ @defined as J15c1
† c2

† ,

J25c2c1 , Jz5 1
2 (c1

† c11c2
† c221)# by

J5 (
rr8r9

trr8brr8
† br8r9 , ~9!

the number of electrons with spins by

ns5
1

2
1Jz1sSz, ~10!

and the operator of a doubly occupied siteD5n1n2 by

D52(
r

b1r
† br1 . ~11!

Additionally one finds the relations

f s
† f s852(

s1

ps1s
† ps8s1

12ds8s(
r

br1
† b1r , ~12!

f1
† f2

† 52(
r

br2
† b1r and f2 f152(

r
br1
† b2r .

~13!

Using the above relations@Eqs.~5–13!# one can express the
Hubbard Hamiltonian

H5t(
i j ,s

8 ~cis
† cjs1H.c.!2m(

i ,s
cis
† cis1U(

i
ni1ni2

~14!

in the slave-boson representation as

H5t(
i j

8 (
s8s9

@qi j ,s8s9 f is8
† f js91r i j ,s8s9 f i2s8 f js91H.c.#

2m(
i

~2Ji
z11!12U(

i ,r
bi1r
† bir1 , ~15!

where

qi j ,s8s95(
s

~ z̃i1s,1s8
† z̃j1s,1s92s8s9z̃j1s,2 s̄9

† z̃i1s,2 s̄8!,

~16!

r i j ,s8s95s8(
s

z̃i1s,2s8
† z̃j1s,1s9 . ~17!

(8 denotes a summation confined to nearest-neighbor sites.
The operatorsz̃ are those from Eq.~7! properly renormalized
to get the correct result in the noninteracting limit
(U→0).6,11,12 In our case they are

z̃5b̃†LRp1 p̃†LRb, ~18!

where
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L5@122b†b22p†p#21/2,R5@122b̃†b̃22p̃†p̃#21/2.
~19!

An underbar denotes the 232 matrix.

B. Properties of the mean-field ground state

Now we want to find stable mean-field solutions for the
slave-boson Hamiltonian~15!. We investigate the normal
(N) and the superconducting state (S) for any electron con-
centrationn and any negative value ofU. We will not
present the solutions for the charge density wave~CDW!
state. Such solutions do exist in a definite range ofU/t and
n, but except forn51 their free energy is always higher than
that of S. The superconducting order parameter can be de-
fined using the operatorJ2 @Eq. ~9!# as

D i[^ci2ci1&52(
r

^bir1
† bi2r&. ~20!

Assuming a uniform superconducting state and the absence
of magnetic ordering one has D52^bi11

† bi21

1bi21
† bi22&, ^pi11&5^pi22&, and ^pi12&5^pi21&

50. Taking b252^bi11
† bi111bi22

† bi221bi12
† bi21

1bi21
† bi12&, p252^pi11

† pi111pi22
† pi22&, and d

5^bi11
† bi112bi22

† bi22&, one gets the hopping factors
@Eqs.~16! and ~17!# as

qS5^qi j ,ss&5$p2@~b212d12D!1/2

1~b222d22D!1/2#2%/$124d224D2%, ~21!

and r5^r i j ,s8s9&50. The constraints imposed by Eqs.~5!
and ~8!–~13! are introduced to the partition function with
Lagrange multiplier fields. The number of Lagrange multi-
pliers can be easily reduced; in particular, condition~5!
meansp21b251 and from Eq.~10! the electron concentra-
tion n5112d. We assume all Lagrange multiplier fields as
space and time independent. The ground state is determined
from a saddle point of the partition function, i.e., from the
minimum of the free energyF with respect to the variables
p, b, d, andD. The free energy is the sum of the fermionic
and the bosonic partsF5F f1Fb , which are given by

F f /N52
1

Nb(
k

@ ln$11exp~bEk!%1 ln$11exp~2bEk!%#,

~22!

Fb /N52
uUu
2

~b212d!2~l11m!~112d!22lSD. ~23!

Here, N denotes the number of the lattice sites,
Ek5@(qSek1l1)

21lS
2#1/2, l1 andlS are the Lagrange mul-

tipliers for the constraints~12! and~13!, andek is the energy
dispersion of noninteracting electrons. The minimum ofF is
determined by

1

N

]F

]l1
5
1

N

]F f

]l1
2~112d!50, ~24!

1

N

]F

]b
5
1

N

]F f

]qS

]qS
]b

2uUub50, ~25!

1

N

]F

]lS
5
1

N

]F f

]lS
22D50, ~26!

1

N

]F

]D
5
1

N

]F f

]qS

]qS
]D

22lS50. ~27!

In our derivations we will mainly use the rectangular density
of statesr(e)51/W for ueu<W/2, whereW is the width of
the electronic band. We restrict our considerations to the case
of T50. The fermionic part of the free energy of the super-
conducting phase atT50 is

F f
S/N5l12

qSW

8 H ~R11R2!1l̄1~R12R2!

1l̄S
2ln

R11l̄111

R21l̄121
J , ~28!

where l̄a52la /qSW (a51,S) and R65@(l̄161)2

1l̄S
2] 1/2. For the normal state (D50) the solutions are given

in a parametric way in Appendix A.
In general Eqs.~24!–~27! can be solved numerically. The

results are presented in Figs. 1–6. The difference of the free
energy of the superconducting state and the normal state
DF is exhibited in Fig. 1 forn51 ~solid curve!. For com-
parison the Hartree-Fock solution for the Hubbard Hamil-
tonian ~14! is13,14

FHF
N /N52

W

4
n~22n!2

uUu
4
n2, ~29!

FIG. 1. Free energy difference of the superconducting and the
normal state calculated within the SBMFA~solid curve! at n51.
For comparison, the corresponding Hartree-Fock result is shown by
the short-dashed curve and the difference of the free energy of the
superconducting state in the Hartree-Fock approximation and the
normal state in the slave-boson approach (FHF

S 2Fsb
N ) by the long-

dashed curve.
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FHF
S /N52

W

4
n~22n!cothS WuUu D2

uUu
4
n2, ~30!

for the normal and the superconducting states, respectively.
In this approach also the rectangular density of state is as-
sumed. The differenceFHF

S 2FHF
N is shown in Fig. 1 by the

FIG. 2. Band narrowing factorqS for the superconducting state
vs the interaction parameteruUu for the electron concentration
n51, 0.8, 0.6, 0.4, 0.2, and 0.1, from the bottom.

FIG. 3. The gap in the excitation spectrumEg vs uUu ~a! for the
electron concentrationn51 and 0.1~from top! calculated within
the SBMFA ~solid curve! and the HFA~dashed curve!. ~b! shows
the ratio of the energy gaps obtained by the slave-boson and HF
methods,Eg

sb/Eg
HF , as a function ofuUu ~from bottom forn51 and

0.1!.

FIG. 4. The gapEg as a function ofn ~a! for uUu54W, 2W,
W, and 0.5W ~from top! for the SBMFA~solid curve! and the HFA
~dashed curve!. ~b! shows the ratio ofEg obtained by the SBMFA
and the HFA~from top for uUu54W, 2W, W, and 0.5W).

FIG. 5. Borderline between the region of the BCS-like and the
local pair superconductivity obtained by the SBMFA~solid curve!
and the HFA~dashed curve!.
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short-dashed curve. The expansion of the free energy for the
slave-boson approach as well as the Hartree-Fock solution in
the limit uUu→0 gives the ratio of the free energy differ-
ences g2[uDFu/uDFHFu5e23/2.0.22 ~see Appendix B!.
This value holds in a wide range ofuUu. For larger values of
uUu.W there are great differences in theDF and the
DFHF ~although the free energies of the superconducting
state for both type approximations are relatively close to
each other!. This is due to neglect of the effects of electron
correlations in the normal state by the HFA. The crucial role
of the correlation effects in the normal state in determining
of the condensation energyDF is seen from the plot
FHF
S 2FN ~long-dashed curve in Fig. 1!.
Figure 2 represents theuUu dependence of the band-

narrowing factorqS in the superconducting phase for differ-
ent electron concentrationsn. In contrast to the situation in
the normal phase, where the changes ofqN are serious~see
Appendix A!, in the superconducting phaseqS is close to
unity. However, these minor changes are relevant for the
stability of superconductivity in the weak and intermediate
regions ofuUu ~i.e., for uUu,2W) and for the deviation of
the slave-boson superconducting solutions from the results of
the HFA.

The energy gapEg in the excitation spectrum in the su-
perconducting state (T50) is given by Eg52 min(Ek),
where the dispersionEk5A(qSek1l1)

21lS
2. In Fig. 3~a!

we showEg vs uUu ~solid curve! for two electron concentra-
tionsn51 and 0.1. For comparison the HF solution is1,15

Eg
HF52uUuDHF for um̄u,W/2,

Eg
HF52A~W/22um̄u!21uUu2DHF

2 for um̄u.W/2,
~31!

where

DHF5
W

2uUu
An~22n!/sinh~W/uUu!

and

m̄5
W

2
~n21!coth~W/uUu!.

This is represented in Fig. 3~a! as the dashed curve. The ratio
of Eg obtained for these two approaches is given in Fig. 3~b!.
For small uUu and n51 this ratio is equal to
g5exp(23/4).0.47 ~see also Appendix B for an analytical
derivation!. With the increasing interactionuUu, g increases
andEg becomes closer to that one predicted in the HFA. The
role of correlations decreases with decreasing number of
electrons@see the casen50.1 in Fig. 3~b!#. The dependence
of the excitation gapEg on the electron concentration for
different values ofuUu is presented in Fig. 4~a!. In the limit
n→0 ~or n→2) the both solutions goes to the exact result
for the binding energy of the single Cooper pair in an empty
lattice ~Ref. 1!, Eb52W/@exp(2W/uUu)21#. The dependence
of the ratio ofEg on n is presented in Fig. 4~b!. Once again
we see that the local correlation effects in the superconduct-
ing phase are most significant forEg at n close to 1 and
small uUu.

Using the SBMFA we can analyze the crossover from
BCS-like superconductivity, with extended Cooper pairs, to
superconductivity of composite bosons~local Cooper pairs!,
which occurs when one goes from a weak- to strong-
coupling regime~from uUu!W to uUu@W). At T50 the
approximate boundary between both regimes can be located
~after Legget16! from the requirement that the chemical po-
tential in the superconducting phase reach the bottom of the
electronic band, i.e., frommS52W/2. In the SBMFAmS is
given by

1

N

]FS

]n
5
1

N

]F f

]qS

]qS
]n

2
uUu
2

2l12mS50 ~32!

and determined together with the stability conditions@Eqs.
~24!–~28!#. The borderline is shown in Fig. 5 as a function of
n. The dashed curve in Fig. 5 represents the borderline ob-
tained in the HFA,17 which for the rectangular density of
states~DOS! is determined by

mS
HF5~n21!

W

2
cothS WuUu D2uUun/252W/2.

As we see with increasing deviation from half-filling the
boundary is shifted towards lower values ofuUu. Let us ob-
serve that an analogous shift exhibits also the position of the
maximum of the condensation energyuDFu, which can be
thought of as another indication of the crossover between the
region of weakly and strongly coupled electrons. The corre-
sponding plot is presented in Fig. 6.

III. ELECTROMAGNETIC PROPERTIES

The coupling of electrons to the external magnetic field
may be expressed by a change of the phase

F i j52
e

\cERi
Rj
drA ~r !

FIG. 6. Position of the maximum of the absolute value of the
difference of the free energy of the superconducting and the normal
states as a function of the electron concentrationn ~solid curve!.
The dashed curve represents the critical value ofuUcu, at which the
bandwidth in the normal state is reduced to zero (qN50) ~see Ap-
pendix A!.
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of electrons hopping between the sitesi and j . TheA(r ) is
the vector potential of the magnetic field in the Peierls scal-
ing, ande is the charge of an electron. It modifies the Hub-
bard Hamiltonian~14!:

H5t(
i j ,s

8 ~eiF i j cis
† cjs1H.c.!2m(

is
cis
† cis

2uUu(
i
ni1ni2 . ~33!

The current operator may be obtained by differentiation of
H @Eq. ~33!# with respect to the vector potentialA. In the
linear approximation we get the current operator as a sum of
the diamagnetic and paramagnetic parts,

j a~ i !5 j a
dia~ i !1 j a

para~ i !5e2Aa~ i !t(
s

~cis
† ci1aas1H.c.!

1 iet(
s

~cis
† ci1aas2H.c.! ~34!

(a5x,y,z). From the linear response theory18,19 the expec-
tation value of the Fourier transform of the total current op-
erator is

Ja~q,v!5N
c

4p(
b

@dabKa
dia1Kab

para~q,v!#Ab~q,v!. ~35!

The diamagnetic contribution is

Ka
dia5

8pe2

\2c2a

t

N(
kas

^ckas
† ckas&cos~kaa!. ~36!

The paramagnetic part is expressed by the retarded current-
current Green’s function

Kab
para~q,v!5

4p

c2
i

NE2`

`

dte2 ivtu~ t !^@ j a
para~q,t !, j b

para~2q!#&,

~37!

where j a
para(q,t) is the space-Fourier transform of the para-

magnetic part of the current operator@Eq. ~34!# in the
Heisenberg representation. In the London superconductors
the magnetic field penetration depthl is determined by the
transverse part of the total kernel in the static limit:

l5@2Kdia2 lim
qy→0

Kpara~qx50,qy ,qz ;v50!#21/2. ~38!

At the temperatureT50 the paramagnetic part of the kernel
may be important in determiningl. It happens in the case of
nonlocal ~Pippard! superconductors when the correlation
length becomes greater than the penetration depthl. This
situation is common in many low-Tc systems. The short-
coherence-length superconductors represent the opposite,
i.e., the London limit. In the latter case the ground-state pen-
etration depth is determined entirely by theq→0 limit of the
kernel where the paramagnetic part of the kernel vanishes
andl is given by

l5
1

A2Kdia
. ~39!

In the SBMFA the diamagnetic part of the kernelK is
given by

Ka
dia5

8pe2

\2c2a

t

N (
ia ja

8 (
s8s9

@^qia ja ,s8s9&^ f ias8
† f jas9&

1^r ia ja ,s8s9&^ f ia2s8 f jas9&1c.c.#. ~40!

For hypercubic lattices one can expressKa
dia by the average

value of the kinetic energŷEkin& and, therefore,

Kdia5
8pe2

\2c2a

^Ekin&
zN

5
8pe2

\2c2a

qS
zN

]F

]qS
. ~41!

Here, we have used the relation^Ekin&5qS]F/]qS andz is
the number of the nearest-neighbor sites (z52 for a 1D
chain,z54 for a 2D square lattice, andz56 for a simple
cubic lattice!. The quantityKdia is determined together with
the stability conditions, Eqs.~24!–~27!. For comparison in
the HFA theKdia is given by

KHF
dia52

4pe2t

\2c2a
n~22n!FcothWuUu

2
W

uUu S sinhWuUu D
22G .

~42!

In our calculations ofl at T50 we restrict ourselves to
the London limit, having in mind the properties of the sys-
tems of interest, and finally determine the area in the
uUu2n parameters space where the local approximation may
be valid. The value of the penetration depth calculated in this
way is qualitatively good both in the weak- and strong-uUu
limits, in the latter case approaching the results of the per-
turbation theory, as will be shown below.

Using the value of the penetration depth and the differ-
ence of the free energy between the normal and supercon-
ducting phases one is able to determine the thermodynamic
critical fieldHc and the Ginzburg-Landau correlation length
jGL as

Hc
2~T!

8p
5
FN~T!2FS~T!

Na3
, ~43!

jGL5
F0

2pA2lHc

, ~44!

whereF05hc/2e, and to obtain the estimation for the criti-
cal fields

Hc1.
lnk

k
Hc;

lnk

l2

and

Hc2.
F0

2pjGL
2 ,

wherek5l/jGL .
The results of the slave-boson method are presented be-

low. Figures 7~a! and 7~b! show the variation of the London
penetration depthl with uUu and n. As uUu increasesl
evolves smoothly between two known limits: weakly inter-
acting single-particle carriers~with l22 being proportional
to the bandwidth! and tightly bound pairs~wherel22 de-
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creases likezt2/uUu). Let us notice that in the low-density
limit l22}n21/2 for arbitrary uUu. For the rectangular DOS
the concentration dependence ofl is almost the same in the
both limits @l22}n(22n)#. In general, for other forms of
DOS it cannot be the case and in the weak-coupling limit,
where the effects of DOS are most clearly seen, then depen-
dence ofl can strongly deviate from that one for largeuUu
~e.g., for a fcc lattice the maximum ofl22 is shifted from
n51 towardsn,1!.13 Figure 8 as well as the results of the
Sec. IV shows thatl calculated by the SBMFA is rather
close to that obtained by the HFA, for anyuUu andn, as well
as to that obtained by the exact low-density expansion in the
large uUu limit. A more significant difference between the
results of the SBMFA and HFA is seen only in the interme-
diate region ofuUu, where band narrowing is relevant (qS
deviates maximally from 1!.

The plot of the thermodynamic critical fieldHc as a func-
tion of uUu is shown in Fig. 9~a! for various electron concen-
trationsn. With increasinguUu the Hc

2 increases exponen-
tially for small values ofuUu, and then it goes through a
round maximum and it decreases ast2/uUu for largeuUu. The
maximum is placed in the crossover regime and its position
depends on the electron density. For the rectangular DOS the
calculated maximum ofHc is at uUu/W.2 in the half-filled

FIG. 7. The London penetration depthl as a function ofuUu for
n51, 0.8, 0.6, 0.4, 0.2, and 0.1, from the bottom~a!, andl vsn for
uUu54W ~solid curve!, uUu52W ~short-dashed curve!, uUu5W
~long-dashed curve!, and uUu50.5W ~long-short-dashed curve! ~b!
„l05(\c/e)@za/8pW#1/2….

FIG. 8. Ratio of the London penetration depth calculated in the
SBMFA and the HFA vsuUu for n51.

FIG. 9. Critical fieldHc as a function ofuUu for different elec-
tron concentrationsn51, 0.8, 0.6, 0.4, 0.2, and 0.1~a!, andHc vs
n for uUu54W ~solid curve!, uUu52W ~short-dashed curve!,
uUu5W ~long-dashed curve!, and uUu50.5W ~long-short-dashed
curve! ~b! (H05@8pW/a3#1/2). The curves with dots correspond to
the exact low-density expansion results for the strong-coupling limit
@Eq. ~71!# calculated for the sc lattice atn50.1 ~a! and uUu/W54
~b!.
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band case and with increasingun21u it is shifted towards
smaller values ofuUu/W ~compare Figs. 5 and 6!. The con-
centration dependences ofHc for several fixed values of
uUu are presented in Fig. 9~b!. Let us stress that for
uUu/W,1 the Hc remains almost constant in a quite ex-
tended region of electron concentrations, which is in contrast
with the predictions of the HFA; cf. Fig. 10.

As Hc is proportional to a square root of the free energy
difference between the normal and superconducting states it
is a good measure of the condensation energy of the system.
Taking into account that the superconducting critical tem-
peratureTc should behave roughly as the condensation en-
ergy atT50 one expects that the dependence ofHc

2 and
Tc on uUu andn will be qualitatively the same. The available
results forTc vs uUu in the half-filled band case obtained
applying Monte Carlo simulations

20,21
and the Gutzwiller-

type variational approach of Hasegawa22 are in agreement
with this expectation. For arbitraryn, the only calculations of
the Tc maximum have been performed until now using the
effective Hamiltonian derived by the perturbation expansion
in t/uUu up to fifth order.23 They show a shift of this maxi-
mum towards lower values ofuUu/W with decreasingn, be-
ing in agreement with our results forHc .

In Fig. 11 we show the evolution of the Ginzburg-Landau
correlation lengthjGL with uUu andn. With increasinguUu
the correlation length rapidly decreases at smalluUu @jGL
}exp(22uUu/W), for uUu!W# and tends to a constant value
a/2Az5j` , the same for alln at large uUu. The value of
uUu/W at whichjGL becomes comparable withj` is reduced
with increasing deviation from a half-filling. This can be
treated as an additional indication that the crossover between
the BCS and the local pair condensation regimes is shifted
towards loweruUu/W with decreasingn ~compare Figs. 5
and 6!. Let us notice a substantial variation ofjGL with n in
the weak–to–intermediate-coupling regime, wherejGL at-
tains the maximal value at half-filling. This should be con-
trasted with the HFA results, which for the rectangular DOS
yield jGL beingn independent for anyuUu, and predict that
jGL→0 (jGL}t/uUu) if uUu/t→` ~see Fig. 12!.

Figures 13~a! and 13~b! show the plot of the Ginzburg
ratiok5l/jGL . The increase ofk with uUu is exponential in
the weak-coupling limit@k}exp(2W/uUu)#, whereas in the

FIG. 10. Comparison ofHc obtained by the slave-boson method
~solid curve! and the HF approximation foruUu50.5W.

FIG. 11. The Ginzburg-Landau correlation lengthjGL vs uUu for
n51 ~solid curve! and 0.1~dashed curve! ~a!, and jGL vs n for
uUu50.5W ~long-short-dashed curve!, uUu5W ~long-dashed curve!,
and uUu52W ~short-dashed curve! ~b! „j05a/@2(2z)1/2#…. The
curves with dots correspond to the exact low-density expansion
results for the strong-coupling limit@Eq. ~73!# calculated for the sc
lattice atn50.1 ~a! and arbitraryuUu@W ~b!.

FIG. 12. Comparison ofjGL determined by the SBMFA~long-
short-dashed curve! with that calculated in the HFA for
uUu50.5W.
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opposite limitk becomes proportional toAuUu/t2 ~see Sec.
IV !. A crossover between these two types of behavior takes
place for intermediate values ofuUu (1,uUu/W,2). Notice
the universalk vs n dependences:~i! k}1/An for n!1 ~ar-
bitrary uUu) and ~ii ! k}1/An(22n) for uUu@W. As we see
from Fig. 13~b! the HFA can strongly overestimate thek
value, even in the weak-coupling regime~see the discussion
on the ratiog in Sec. IV and Appendix B!.

From the equationk51/A2 one can estimate the bound-
aries between the local and nonlocal electromagnetic behav-

iors in the considered system. In Table I we have given
examples of such estimations ofuUu/W for two fixed
(t,a) values andn51, 0.1 ~which can be reliable for
Ba12xK xBiO3 and KxC60). In the low-concentration limit,
wherek}1/An, the local electromagnetic behavior can ex-
tend up to very small values ofuUu/W. Notice thatk depends
on the material parametersa and t in a universal way:k
}1/Aat and for any fixeduUu/W andn the Ginzburg ratio
k increases with decreasingat.

IV. RESULTS FOR zUz@W OBTAINED
USING THE EFFECTIVE PSEUDOSPIN MODEL
AND THEIR COMPARISON WITH THE SBMFA

For uUu@W we can resort to the perturbation theory in an
analysis of the Hubbard model with the attractive interaction.
In this limit a large gapEg of order uUu exists in the single-
particle spectrum for anyn @cf. Figs. 4~a! and 5~a!#, which is
equivalent to the statement that the Fermi level is pinned
close to2uUu/2. Due to that fact, the standard degenerate
perturbation theory can be applied for the model~14! and
~33! to derive the effective pseudospin Hamiltonian valid for
any band filling, working in the subspace excluding the
single occupancy of sites. Up to second order in a small
parametert/uUu one obtains1,14,23

H̃52
J

2(i j
8 ~e2iF i jr i

1r j
21H.c.!

1J(
i j

8 r i
zr j

z2m̄(
i

~2r i
z11!2

N

4
zJ, ~45!

where 2r i
z5(ni11ni221),r i

15ci1
† ci2

† , J52t2/uUu, and
m̄5m1uUu/2. The operators:r i

6 andr j
z are the charge op-

erators, which in the subspace excluding single occupancy of
sites satisfy the commutation rules of thes51/2 operators.
The electron number condition is

n5
1

N(
i

^2r i
z11&. ~46!

For ^r1&5(1/N)( i^r i
1&Þ0 the Hamiltonian~45! describes

the superconducting state.
It is worthwhile to compare the strong-coupling results of

the SBMFA approach with the ones obtained for Eq.~45!.
Recently the thermodynamic and electromagnetic properties
of the model~45! have been analyzed in Refs. 24 and 25 and
below we only quote the final expressions for the ground-
state characteristics derived within the MFA.@The random
phase approximation~RPA! treatment, taking into account
quantum corrections, yields for 3D lattices qualitatively
similar results, except for the low-concentration limit.25 No-
tice also that for the model~45! the MFA treatment becomes
an exact theory in the limit of an infinite number of spatial
dimensionsD5`.# The MFA calculations of the free energy
at T50 ~the ground-state energy! for the superconducting
and the normal (̂r1&50) states give13,14,24,25

FS/N52
uUu
2
n2z

t2

uUu
n~22n!, ~47!

FIG. 13. The Ginzburg ratiok5l/jGL vs uUu for n51, 0.8, 0.6,
0.4, 0.2, and 0.1, from the bottom~a!, and k vs n for uUu54W
~solid curve!, uUu52W ~short-dashed curve!, uUu5W ~long-dashed
curve!, and uUu50.5W ~long-short-dashed curve! ~b! „k0

5(\c/e)z/@paW#1/2…. The curves with dots correspond to the exact
low-density expansion results for the strong-coupling limit@Eq.
~74!# calculated for the sc lattice atn50.1 ~a! and uUu/W54 ~b!.

TABLE I. The values ofuUu ~in eV! providing k51/A2 and
100 calculated for two sets of the hopping integral and the lattice
constant (t,a), which approximately correspond for Ba12xKxBiO3

and KxC60, respectively.

t50.1 eV t50.1 eV
a54 Å a514 Å

k51/A2 n51 0.16 0.18
n50.1 0.14 0.15

k5100 n51 0.49 0.63
n50.1 0.32 0.38
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FN/N52
uUu
2
n2

1

2
z
t2

uUu
n~22n!, ~48!

D5^r1&5
1

2
An~22n!, ~49!

mS52
uUu
2

2z
t2

uUu ~222n!, ~50!

and the electromagnetic quantitiesHc , l, jGL , andk are

Hc
2

8p
5
zn~22n!

2a3
t2

uUu
, ~51!

l225
16pe2n~22n!

\2c2a

t2

uUu
, ~52!

jGL5
a

A2z
, ~53!

k5
\c

e

Az
A2pan~22n!t2/uUu

. ~54!

For comparison with Eqs.~47!–~54! we have performed a
strong-coupling expansion of the set of equations~24!–~28!
describing the superconducting phase within the SBMFA, up
to second order int/uUu. A recent analogous expansion for
the energy of the antiferromagnetic phase of the half-filled
repulsive Hubbard model has been derived by Denteneer26

up to fifth order int/U. The expansion can be obtained in
terms of moments of the density of states for the hypercubic
lattices in an arbitrary dimension and the final results for the
quantities of interest obtained in this way are the following:

FS/N52
uUu
2
n2M2

t2

uUu
n~22n!, ~55!

FN/N52
uUu
2
n, ~56!

D5
1

2
An~22n!F122M2S t

uUu D
2G , ~57!

mS52
uUu
2

1M2

t2

uUu ~222n!, ~58!

Eg5uUuF122M2

t

uUu Un21U1OS t2

uUu2D G , ~59!

Hc
2

8p
5
M2n~22n!

a3
t2

uUu
, ~60!

l225
16pe2n~22n!

\2c2a

t2

uUu
, ~61!

jGL5
a

2AM2

, ~62!

k5
\c

e

AM2

Apan~22n!t2/uUu
, ~63!

whereM25z52D is the second moment of the density of
states for aD-dimensional hypercubic lattice. As we see the
results forFS, mS , andl are identical in both approaches.
Expressions~51! and ~60! for Hc

2 differ by a factor of 2,
whereas Eqs.~53! and~62! ~for jGL) as well as Eqs.~54! and
~63! ~for k) by a factor 1/A2 andA2, respectively. This is
due to overestimation ofFN by the SBMFA for largeuUu
@compare Eqs.~48! and ~56!#—this approximation, being
equivalent to the Gutzwiller approximation, neglects entirely
the intersite correlations in the normal phase. The conse-
quences of this shortcoming are most drastic in the low-
density limit, which we will conclude in the following.

The effective pseudospin model~45! can be equivalently
treated as a model of bosons on a lattice with infinite on-site
repulsion ~hard core! and with the nearest-neighbor~NN!
hopping integral equal to the NN density-density interaction.
It is clearly seen by the representation

r i
25bi , r i

15bi
† , r i

z52
1

2
1bi

†bi , ~64!

which transforms Eqs.~45! and ~46! into

H̃52
J

2(i j
8 ~e2iF i j bi

†bj1H.c.!1J(
i j

8 ninj2m̃(
i
ni ,

~65!

n̄5n/25
1

N(
i

^ni&, ~66!

whereni5bi
†bi and m̃52m̄1zJ. The hard-core boson op-

eratorsbi satisfy the Pauli commutation relations

@bi
† ,bj #5~2ni21!d i j , ~bi

†!25bi
250, bi

†bi1bibi
†51,

~67!

which exclude multiple boson occupancy of a given site, and
the number of bosons per siten̄5n/2 is given by Eq.~66!,
which determines the chemical potentialm̃. Recently, several
rigorous results concerning the ground-state properties of the
model of hard-core charged bosons, Eq.~64!, on a lattice
have been derived for various 3D lattices, using a systematic
low-density expansion based on the knowledge of exact two-
body scattering amplitude.25 Transforming the results of Ref.
25 ~Sec.VI B! into our problem one gets forn→0 the fol-
lowing exact expressions@for simplicity we present only the
leading terms of expansions, crucial for comparison with
Eqs.~47!–~63!#:

FS/N52
uUu
2
n2z

t2

uUu
nS 22

1

2
anD1O~n5/2!, ~68!

FN/N52
uUu
2
n2z

t2

uUu
n~22an!, ~69!

mS52
uUu
2

2z
t2

uUu ~22an!1O~n3/2!, ~70!
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Hc
2

8p
5
1

2
az

t2

uUu
n2

a3
1O~n5/2!, ~71!

l225
4pe2

\2c2a

t2

uUu $n~22n!1n2~C21!@2a1a2~2C23!

1O~n5/2!#%, ~72!

jGL5
a

A2z
1

Aa@n1O~n2!#
, ~73!

k5
\c

2e

Aza
A2pat2/uUu

, ~74!

wherea52/(2C21) is the exact two-particle scattering am-
plitude for the model~45! (a50.9839, 1.1196, and 1.1840
for sc, bcc, and fcc lattices, respectively! andC is the Wat-
son integral for a given lattice@C5(1/N)(k(12ek /e0)

21,
andC5 1.5164~sc!, 1.3932~bcc!, and 1.3446~fcc!#. As we
see, the terms up to order (t2/uUu)n in the expansions of
FS andl22 are correctly given by the SBMFA, whereas in
FN only the first term@2(uUu/2)n# is correct. The overesti-
mation of FN by the terms of order (zt2/uUu)n results in
erroneousn dependences ofHc , j, andk in the both previ-
ously discussed approximations. Comparison of Eqs.~71!,
~74!, and ~73! with ~60!, ~63!, and ~62! shows that for
n→0 the correct values ofHc andk can be much smaller
and that ofjGL , much larger than those predicted by the
SBMFA. These differences are clearly seen in Figs. 9, 13,
and 11, where the exact results@Eqs.~71!, ~74!, and~73!# are
given by curves with dots.

V. DISCUSSION AND FINAL REMARKS

Our analysis of the attractive Hubbard model by the
SBMFA has shown that in the weak-coupling limit the gap
Eg in the excitation spectrum atT50 is reduced in compari-
son to that obtained in the HFA by a renormalization factor
g (Eg5gEg

HF). The renormalizations concern most of
the other superfluid characteristics of the system~see
Appendix B!, the thermodynamical magnetic field
@Hc5(g/AqS)Hc

HF#, the coherence length@jGL5(qS /
g)jGL

HF#, and the Ginzburg ratio@k5(g/qS
3/2)kHF#, and only

the London penetration depth remains almost unrenormal-
ized @l5(1/qS)l

HF; qS→1 if uUu→0#. The value ofg is
found to be a function of the electron concentrationn. The
renormalization is maximal in the half-filled band case and it
is reduced with increasingun21u @cf. Fig. 4~b!, g→1 for
n→0#.

Recently the half-filled Hubbard model has been exten-
sively considered at weak coupling within the self-consistent
second-ordert/U!1 perturbation treatment taking into ac-
count the vertex corrections~see Ref. 27 forU.0 and Ref.
28 for U,0; notice that forn51 the repulsive Hubbard
model can be mapped to the negativeU model by the
repulsion-attraction transformation1,14!. These analyses
show a decrease of the gap parameter and the critical tem-
peratureTc with respect to the HFA solution by the same
renormalization factor g @such that the ratio
Eg(T50)/kBTc for U→0 is identical to the BCS ratio

3.5285 found in the HFA~Ref. 27!# and in the case of a
D-dimensional hypercubic lattice the value ofg has been
estimated to beg.0.28820.016/D, for uUu→0.27 A similar
renormalization in the weak-coupling limit (g.0.4) has
been also found by Jarrell,21 who calculatedTc using nu-
merical Monte Carlo simulations for the Hubbard model in
infinite dimensions. Both these results are in agreement with
our SBMFA calculations, performed using a rectangular
DOS, which foruUu→0, n51 predictg.0.47.

The attractive Hubbard model is probably the simplest
lattice model to display a crossover from BCS-like to local
pair ~composite bosons! superconductivity. The previous
analyses of the crossover have been performed using~broken
symmetry! HFA. They have shown the smooth evolution of
the ground-state energy and the single-particle excitations in
the superconducting phase from weak to strong coupling.1,15

More recent studies of the collective excitations performed
within the HFA RPA have also found a continuous evolution
of the collective-mode spectrum from the Anderson mode,
for weak coupling, into the Bogoliubov sound mode for
hard-core bosons.17,29 In the present work we have studied
the basic ~ground-state! superfluid characteristics of the
U,0 model going beyond the HFA. We have found that the
SBMFA ~in contrast to the HFA! gives credible results for
all the investigated quantities in the whole interaction range
interpolating smoothly between the weak- and strong-
coupling regimes, where it matches well the results of the
perturbation methods developed for these limits. The values
of the calculated ground-state energy of the superconducting
phase, the chemical potential, and the London penetration
depth are quite close to those obtained within the HFA for
any uUu andn. The largest differences, but not higher than
5%, are found near half-filling in the intermediate-coupling
regime uUu/W'1. On the other hand, we have shown that
although the HFA predictions for the behavior of the energy
gap vsuUu are qualitatively satisfactory, quantitatively they
can be off by a factor of 2–3 for 0,uUu/W,1. Moreover,
we have found that for several superfluid properties (jGL ,
Hc , k) the validity of the HFA is restricted to the case of
low electron concentrations in theuUu/W!1 limit only, and
that beyond this regime it gives erroneous behavior of these
quantities. This failure is due to the fact that the HFA greatly
overestimates the free energy of the normal state, which is
used in a standard calculation ofHc and nextjGL .

As follows from Sec. IV the attractive Hubbard model in
the largeuUu limit ( uUu@W, kBT) can be equivalently con-
sidered either as the pseudospin Heisenberg model with a
fixed magnetization@Eqs. ~45! and ~46!# or as the model of
hard-core bosons with a charge 2e and the hopping integral
equal to the intersite density interaction@Eqs.~65! and~66!#.
For these equivalent models we have presented~in Sec. IV!
the results derived within the MFA~for arbitraryn) as well
as the rigorous results obtained using a systematic low-
density expansion (n!1) for various 3D lattices. The MFA
results@which for the models~45! and~65! become the exact
ones in theD→` limit # are found to be very close to the
strong-coupling results of the SBMFA for any concentration
of electrons. Forn!1 the comparison with rigorous low-
density expansion results for 3D lattices shows that in the
limit uUu/W@1 FS, mS andl22 are correctly given by the
SBMFA @up to the order (t2/uUu)n#, whereasFN and, con-
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sequently,Hc are substantially overestimated by this ap-
proach.

Although our model seems to be oversimplified for quan-
titative relations with experiment, nevertheless some of the
theoretical predictions should be experimentally testable, at
least on a qualitative level. Among the recently studied su-
perconducting materials the best candidates for such com-
parisons are the extreme type-II superconductors. This group
of materials, including the cuprates, fullerides, Chevrel
phases, and bismuthates, generally exhibits several unique
features such as highTc at relatively low carrier density,
small value of the Fermi energy,; 0.1–0.3 eV, short coher-
ence length~which can be of order of interparticle distance
or even a lattice constant!, extremely largel/jGL ratio, and
the universal trends in theTc versus condensate density
dependence ~universal dependence Tc /Tc

max vs
@l(0)/l(0)max#2).1,30–33 Moreover, they haveTc propor-
tional toTF ~the Fermi temperature! or TB ~the Bose-Einstein
condensation temperature!, with TB.(3–30)Tc and
TF.(10–100)Tc .

30 All these features clearly support the
models with short-range, nonretarded attraction~see Ref. 1
for review!. For all above superconductors the experimen-
tally estimated Ginzburg ratio is of order 100.30–33 Thus,
from the equalityk5100 one can estimate the values of
uUu/W and n, which eventually could be reliable for these
materials. Examples of such estimations are given in Table I
and they indicate that the best agreement can be obtained for
intermediate values of the local attraction. An important test
for the theory would be the measurements ofl, Hc , and
jGL as a function of electron concentrationn. Very recently
Locquet et al.34 have reported penetration depth measure-
ments for La22xSrxCuO4 films as a function of doping, ex-
tending in the range from heavily underdoped to heavily
overdoped. As it follows from Fig. 14 the theoretical plots of
l(n)/l(n51) for our simple model fit surprisingly well
these experimental data. With respect to the Ginzburg-
Landau coherence lengthjGL the theory predicts its rela-

tively weak density dependence~a slow increase withn) in
the intermediate-coupling regimes@compare Fig. 11~b!#. Ex-
perimental results onjGL in the cuprates seem to confirm this
prediction. The in-planejGL is found to be almost density
independent, and the out-of-planejGL to increase withn.35

Unfortunately, we are not aware of existing analogous ex-
perimental data for other families of nonconventional super-
conductors~the measurements for doped bismuthates would
be most interesting in this respect!.

The slave-boson mean-field approach~SBMFA! seems to
be, at present, the only systematic and simple method which
takes into account correlations of electrons and yields reli-
able description of all superfluid characteristics of the attrac-
tive Hubbard model for any electron concentration and arbi-
trary uUu. Moreover, the method can be easily extended to
study more general models, including intersite interaction
terms like the correlated hopping, the Coulomb interactions,
and the intersite charge and spin exchange, as well as the
electron-phonon coupling, and to study the interplay between
various types of superconductivity (s, p, andd type!, mag-
netic orderings, and the charge density waves~CDW’s!. The
present method is a mean-field type, and therefore it does not
includes fluctuations of bosonic fields. We also confined our
studies to the caseT50. However, one can use the path
integral approach and extend these studies forT.0, taking
into account fluctuations in a coherent potential approxima-
tion ~CPA! ~in an analogous way as one treats static22 or
dynamic fluctuations36 for D5`).
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APPENDIX A: SBMFA SOLUTIONS
FOR THE NORMAL STATE

The free energy of the normal state atT50 is given for
the rectangular DOS by Eqs.~28! and ~23! with D50

FN/N5~F f
N1Fb

N!/N

52
qNW

4
~12l̄1!

21
U

2
~b212d!2m~112d!, ~A1!

where the band narrowing factorqN52(12b2)(b2

1Ab424d2)/(124d2). ~Here, the parameterU may be
positive as well as negative.! The stable solutions are given
in a parametric way as a function of the double-occupancy
parameter 2udu<b2<1. The interactionU is expressed by

U5WF122b22
2b42b224d2

Ab424d2
G , ~A2!

the free energy is

FIG. 14. The London penetration depthl normalized to its
value atn51 ~left axis! as a function of the electron concentration
n ~lower axis! obtained for the attractive Hubbard model in
SBMFA for uUu/W50.4, and experimental results~Ref. 34!
~squares! for La22xSrxCuO4 films ~right and upper axis!.
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FN/N52
W

4
qNn~22n!1

U

2
~b212d!, ~A3!

and the chemical potential is given by

m5
W

2 F122b22
2b42b2~122d!22d~112d!

Ab424d2
G . ~A4!

Here, n5112d. It is seen that forU,0 the width of
the band is reduced to zero (qN50) at Uc /W
5@212An(22n)# ~see Fig. 6!. For U,Uc b251 and
FN/N5Un/2. The values ofUc /(8t) calculated for hyper-
cubic 1D, 2D, and 3D lattices atn51 are 21.273,
21.621, and22.005, respectively.8 For a more detailed
analysis of the normal-state solutions of the attractive Hub-
bard model performed using the Gutzwiller approximation to
the Gutzwiller wave function~which is equivalent to our
treatment of this state! we refer the reader to Ref. 37.

APPENDIX B: ANALYTICAL SBMFA RESULTS
FOR zUz/W˜0

Here, we want to calculate analytically the gap in the
excitation spectrum and the other ground-state characteristics
in the limit uUu→0 and forn51, and compare them with the
corresponding HF results. In the SBMFA the gap for
uUu→0 is Eg52lS . From Eqs.~25! and ~27! we get

lS5uUuDy, ~B1!

where

y5
]qS /]D2

2]qS /]b
2 . ~B2!

For lS→0 we find from Eqs.~26! and ~28!

D52
l̄S
2
ln
2

l̄S
~B3!

(l̄S52lS /qSW). Putting Eq.~B1! into Eq. ~B3! we get the
gap in the SBMFA:

Eg52qSWexpF2qsWuUuy G . ~B4!

In the HFA @Eq. ~31!#

Eg
HF52WexpF2

2W

uUu G , ~B5!

and thus, the reduction parameter is given by

g[
Eg

Eg
HF5qSexpF2WuUu S qSy 11D G . ~B6!

In the limit D→0, qS.4b2(12b2), ]qS /]b
2.4(122b2),

and]qS /]D2.qS(421/b4). From Eqs.~21!, ~25!, and~28!
we find thatqS /y.2123uUu/8W for uUu/W!1, and there-
fore

g5exp~23/4!. ~B7!

Expansion of FS @Eq. ~28!# and FN @Eq. ~A1!# for
uUu→0 yields

DF/N5~FN2FS!/N5
Eg
2

8qSW
, ~B8!

whereas the corresponding expansions of Eqs.~29! and~30!
give

DFHF/N5~FHF
N 2FHF

S !/N5
~Eg

HF!2

8W
. ~B9!

Taking into account Eqs.~B4! and ~B5! one obtains

DF

DFHF
5S Hc

Hc
HFD 25 g2

qS .
~B10!

Analogous calculations for 1/l2 @Eqs.~41! and ~42!# give

S l

lHFD 25 1

qS
, ~B11!

and from Eqs.~43!, ~44! and~B10!, ~B11! it follows directly
that

S jGL
jGL
HFD 25S DF

DFHF
D S lHF

l D 25 qS
2

g2 , ~B12!

k

kHF5S l

lHFD S jHF

j D5
g

qS
3/2. ~B13!
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