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The one-dimensionalt-J model is investigated by the variational Monte Carlo method. A variational wave
function based on the Bethe-ansatz solution is proposed, where the spin-charge separation is realized and a
long-range correlation factor of Jastrow-type is included. In most regions of the phase diagram, this wave
function provides an excellent description of the ground-state properties characterized as a Tomonaga-
Luttinger liquid; both the amplitude and exponent of correlation functions are correctly reproduced. For the
spin-gap phase, another trial state of correlated singlet pairs with a Jastrow factor is introduced. This wave
function shows generalized Luther-Emery-liquid behavior, exhibiting enhanced superconducting correlations
and exponential decay of the spin correlation function. Using these two variational wave functions, the whole
phase diagram is determined. In addition, relations between the correlation exponent and variational parameters
in the trial functions are derived.@S0163-1829~96!05142-9#

I. INTRODUCTION

The anomalous properties found in high-Tc superconduct-
ing copper oxides1 have led to a renewal of interest in
strongly correlated electron systems in low dimensions.
Among various candidates, thet-J model has attracted con-
siderable attention as a model to describe the cuprate
superconductors.2,3

For the one-dimensional~1D! t-J model, much progress
has been achieved using analytical and numerical
techniques.4 It has been found5–7 that three main regions can
be distinguished in the phase diagram defined by the electron
density and the ratio of spin exchange interaction to hopping
amplitude,J/t. First, a Tomonaga-Luttinger liquid8,9 ~TLL !
holds for smallJ/t, which is characterized by power-law
decay of correlation functions. It has been clarified that the
separation of spin and charge degrees of freedom plays an
essential role in this region.10 Second, phase separation takes
place for largeJ/t, where the system is separated into
electron-rich and hole-rich phases. Third, there is a region
with a gap in the spin excitation spectrum forJ/t.2 and at
small electron densities.

On the other hand, in the 2Dt-J model, although some
aspects have been obtained so far,11 many problems are left
unresolved. Particularly, the crucial question is whether the
features realized in a 1D system, like the charge-spin sepa-
ration and/or TLL, take place also in a 2D system or not.12

To obtain a unified and consistent understanding of the 2D
t-J model, further research is needed.

The variational Monte Carlo~VMC! method is one of the
most powerful and transparent approaches to investigate
strongly correlated electron systems.13 It provides a deeper
insight because of its explicit form of the wave function. It is
very important to construct a better trial function in the
framework of the VMC technique. One way to obtain further

insight into the wave function in the 2Dt-J model is to
extend the wave function realized in a 1D system. For this
purpose, examining trial wave functions for 1D systems in
detail gives us useful references in the pursuit of the 2D
t-J model. We shall study variational wave functions in the
1D t-J model, keeping the possibility of extending to the 2D
system in mind.

So far, various kinds of variational functions have been
proposed for strongly correlated electron systems.14–19 The
Gutzwiller wave function20 has been extensively studied for
its simplicity, and shown to be a good trial function for the
supersymmetric (J/t52) 1D t-J model.17 This wave func-
tion was improved for other values ofJ/t by introducing a
conventional Jastrow-correlation factor, but the expected
TLL behavior was not recovered.17,19Recently, Hellberg and
Mele have introduced a simple trial wave function of Jastrow
type.18 It takes into account the effect of long-range correla-
tions, and shows successfully the anomalous power-law be-
havior in correlation functions. This wave function has been
extended to the 2Dt-J model to discuss the TLL
instability.21 However, the properties of the exact ground
state are not wholly reproduced by this wave function, espe-
cially in the smallJ/t region.19

In this paper we introduce another type of variational
wave function. Two kinds of trial functions are introduced.
First, we consider a variational wave function based on the
Bethe-ansatz solution. In the limit ofJ/t→0, the charge and
spin degrees of freedom are completely separated, and the
ground-state wave function obtained from the Bethe-ansatz
can be written as a product of the two contributions.10 For
finite values ofJ/t, although the charge and spin are sepa-
rated, they interact strongly. To take into account this effect,
we introduce a Jastrow-type correlation factor into the Bethe
ansatz solution forJ/t→0. It is shown that this wave func-
tion has the advantage of providing an excellent description
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of the ground-state properties in most regions of the phase
diagram; both the magnitude and exponent of correlation
functions are correctly reproduced, and a quantitative discus-
sion can be made.

Next, we consider a trial function for small electron den-
sities. For the spin-gap phase, Chen and Lee have proposed a
variational function of a gas of noninteracting bound singlet
pairs.6 This wave function corresponds to a Luther-Emery
state22,8 with an infinite correlation exponent. More accurate
trial function can be generated by correlating the singlet pairs
with a Jastrow factor. This is just our trial wave function for
the spin-gap phase introduced in this paper. This wave func-
tion shows a generalized Luther-Emery liquid behavior, ex-
hibiting enhanced superconducting correlations and expo-
nential decay of the spin correlation function.

Comparing the energies of the trial function based on the
Bethe-ansatz solution and the generalized Luther-Emery
state, the entire phase diagram is determined. Evaluating the
correlation exponents by a finite-size scaling analysis, the
relations between the correlation exponent and variational
parameters in these trial functions are derived.

This paper is organized as follows. In the next section our
trial functions are introduced. Section III provides the results
of physical quantities by the VMC calculations. Energies and
various correlation functions are compared with the exact
calculations in Sec. III A. In Sec. III B, the correlation ex-
ponents are evaluated from the finite-size scaling to discuss
the long-range behavior of correlation functions. The phase
diagram of the 1Dt-J model determined by our wave func-
tions is shown in Sec. III C. Section VI is devoted to a
summary and discussion of related problems.

II. TRIAL WAVE FUNCTION

The t-J model is defined by the Hamiltonian

H52t (
^ i j &s

~ ĉis
† ĉ js1 H.c.!1J(̂

i j &
~Si•Sj2

1
4ninj !, ~1!

where ĉis
† 5cis

† (12ni ,2s), cis
† being the creation operator

for an electron with spin projections at lattice sitei , and
ni5(snis5(scis

† cis . Thusĉis
† creates an electron only on

an empty site, avoiding double occupancy. The spin operator
associated with sitei is defined asSi5

1
2(a,bcia

† sa,bcib ,
wheres5(sx ,sy ,sz) is a vector of Pauli matrices. The
summations in Eq.~1! are taken over nearest-neighboring
pairs. This model reduces to theU5` Hubbard model in the
limit J/t→0.

For highly correlated electron systems, Gutzwiller-
Jastrow-type wave functions with a two-body correlation
factor are fairly common.14–19 The Gutzwiller wave
function,20 which is a prototype of the trial function of this
type, is often used as a starting trial function for its simplic-
ity. It is defined as

ucG&5PdufF&5)
i

~12ni↑ni↓!ufF&, ~2!

wherefF is a simple Fermi sea andPd is the operator pro-
jecting out the double occupancy. This wave function is es-
sentially a Fermi-liquid state, having a discontinuity in mo-
mentum distribution atk5kF . Thus, the expected TLL

behavior was not recovered.17 Hellberg and Mele have intro-
duced a variational state with a long-range correlation:18

ucHM&5)
iÞ j

)
ss8

@12~12udi j un!nisnjs8#ucG&, ~3!

di j5sin@pr i j /Ns#, ~4!

where r i j5ur i2r j u is the distance between thei th and j th
sites, andNs the number of sites. Whenn50, cHM reduces
to cG . It has been shown thatcHM exhibits the characteristic
behavior of a TLL.18 However, the correlation exponent es-
timated with this wave function does not coincide with the
exact value for smallJ/t.19 This disagreement becomes ap-
parent when the global features of various correlation func-
tions are compared with the exact ones.19

An important feature of the TLL is the separation of spin
and charge degrees of freedom in the low-energy excitations.
In the limit of J/t→0, Ogata and Shiba have shown that the
ground-state wave function obtained from the Bethe ansatz
has a simple form due to the complete decoupling of charge
and spin degrees of freedom.10 It can be written as a product
of a Slater determinant of spinless fermions describing the
charge degrees of freedom and the spin wave function of the
squeezed Heisenberg model in which all empty sites are
omitted. The ground-state wave function in the limit of
J/t→0 is expressed as

c0~x1 , . . . ,xNe!5X~x1 , . . . ,xNe!Y~y1 , . . . ,yM !, ~5!

where

X~x1 , . . . ,xNe!5det@exp~ iqixj !#, ~6!

$xj% are the positions ofNe electrons, and$yj% are the coor-
dinates of M up spins with vacant sites omitted.
X(x1 , . . . ,xNe) is the wave function for noninteracting spin-

less fermions with momenta$qi%, andY(y1 , . . . ,yM) is the
ground-state wave function of theS5 1

2 antiferromagnetic
Heisenberg model.

For finite values ofJ/t, the charge and spin degrees of
freedom are no longer completely separated, and the charge-
spin coupling occurs. Thus we introduce a Jastrow-type cor-
relation factor in our trial wave function to mix the charge
and spin degrees of freedom. We shall study the following
variational state for the 1Dt-J model:

ucBA&5FJuXY&, ~7!

where the amplitude ofuX&5) i
Necqi

† u0& is given by Eq.~6!,

ensuring the absence of double occupancy. The long-range
correlation factor of Jastrow type in Eq.~7! is defined as

FJ5)
iÞ j

)
ss8

$12@12h~r i j ;ss8!#nisnjs8%, ~8!

and the form of functionh is assumed to be

h~r i j ;ss8!5H udi j un1 if s5s8,

udi j un2 if sÞs8,
~9!

wheredi j is given by Eq.~4!. The Jastrow factorFJ modu-
lates the Bethe-ansatz wave function by the distance between
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all pairs of particles. A positive value ofn1 (n2) induces a
repulsive correlation between particles with the same spins
~opposite spins!, while negative values provide an attractive
correlation. Whenn15n2, FJ reduces to the correlation fac-
tor studied by Hellberg and Mele.

The wave function of the spin part in Eq.~7! is approxi-
mated as a trial function of Jastrow-Marshall-type,23

Y~y1 , . . . ,yM !5~21!L$yi %)
i, j

usi j uns, ~10!

wheresi j5sin@p(yi2yj)/Ne# for a system ofNe electrons and
L$yi% is the number of up spins in one sublattice contained in
the spin configuration (y1 , . . . ,yM). With this trial function
Y(y1 , . . . ,yM), we have calculated the ground-state energies
of the 1D antiferromagnetic Heisenberg model,
HHeis5J(^ i j &Si•Sj , with Ne<70 by the VMC technique,
and estimated the energy in the thermodynamic limit from
finite-size scaling with a formulaE/Ne5E`1C/Ne

2 . The
minimum energy is realized forns'2, and the resultant en-
ergy is E`5(20.442160.0001)J, which is quite close to
the exact value by the Bethe ansatz,24 EBA /Ne52(ln2
2 1

4)J5(20.443 147 . . . )J. The difference is only 0.24%.
Therefore,Y(y1 , . . . ,yM) reproduces well the true ground-
state wave function of the 1D Heisenberg model.

As a result, we have three variational parameters in our
trial state~7!, i.e., n1, n2, and ns . In most regions of the
phase diagram, this wave functioncBA successfully repro-
duces the exact ground state of the 1Dt-J model as shown in
Sec. III.

However, a Luther-Emery-liquid behavior, exhibiting a
gap in the spin excitation spectrum and enhanced supercon-
ducting correlations, is found forJ.2t and at small
densities.6,7 The true ground state for this region lies out of
the variational subspace spanned bycBA . To represent the
spin-gap phase better, we introduce another trial state as fol-
lows:

ucRVB&5FJPd (
$ i nj n%

)
n

Ne/2

hr i nj n21@ i n , j n#u0&, ~11!

where @ i , j #5(ci↑
† cj↓

† 2ci↓
† cj↑

† ) is a singlet pair in a given
configuration$ i nj n%, and Pd projects out the double occu-
pancy. In Eq.~11!, hr i j21 controls the weight for a singlet
bond as a function of its length. The functionh in the Ja-
strow factor is taken to beh(r i j ;ss8)5udi j ul; i.e., FJ is
assumed to be spin independent. Two variational parameters
l andh are contained in the trial functioncRVB . This is a
natural generalization of the wave function of a gas of non-
interacting bound singlet pairs proposed by Chen and Lee,6

which corresponds to a Luther-Emery state with infinite cor-
relation exponent. Correlating the singlet pairs with the Ja-
strow factorFJ , cRVB can be expected to exhibit generalized
Luther-Emery behavior. It is also a particular form of the
resonating valence bond~RVB! state. In fact,cRVB can be
rewritten as

ucRVB&5FJPdF(
k

cosk2h

h222hcosk11
ck↑
† c2k↓

† GNe/2u0&,

~12!

which explicitly shows a singlet liquid picture of the RVB
state.2

III. SIMULATION AND RESULTS

In this section, we present the results of the VMC calcu-
lations for various values ofJ/t andne5Ne /Ns with Ne and
Ns being the number of electrons and sites, respectively, and
make comparisons with those of exact calculations and other
trial functions. We consider the 1Dt-J model with up to 300
sites under the periodic boundary condition with
Ne/25 odd.

The variational parameters in Eqs.~7! and ~11! are opti-
mized using a conjugate-gradient method combined with the
fixed sampling in the VMC calculations. Technical details of
the optimization procedure were described in Ref. 25, and
some practical improvements are made to achieve the con-
vergence rapid enough to handle multiparameter optimiza-
tion: A quasi-Newton algorithm is employed instead of Pow-
ell’s optimization algorithm in Ref. 25, and the gradient is
evaluated by the numerical differentiation. Once the fully
optimized wave function is obtained, we use it in evaluating
the physical quantities with another VMC run in order to
examine the properties of the 1Dt-J model in detail. Calcu-
lated quantities are the total energy per site, the momentum
distribution function

n~k!5
1

2Ns
(
i j s

eik~r i2r j !^cis
† cjs&, ~13!

and the equal-time correlation functions, where^•••& indi-
cates the expectation value for a given trial function. The
spin and charge correlation functions in Fourier-transformed
form are defined as

S~k!5
4

Ns
(
i j

eik~r i2r j !^Si
zSj

z&, ~14!

C~k!5
1

Ns
(
i j

eik~r i2r j !@^ninj&2^ni&^nj&#, ~15!

respectively. The singlet pairing correlation function is de-
fined as

P~k!5
1

Ns
(
i j

eik~r i2r j !^D i
†D j&, ~16!

where D i is the annihilation operator of a nearest-
neighboring electron singlet pair,

D i5
1

A2
~ci↑ci11↓2ci↓ci11↑!. ~17!

We collect typically 30 000 samples to take averages of the
energy for the optimization of variational parameters, and
100 000–200 000 samples for the evaluations of the expec-
tation values of observables.

A. Quarter-filled case

First we compare the properties ofcBA with those of
cHM for the quarter-filled case:ne5

1
2. At this electron den-
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sity, the spin-gap state is absent. In addition, whenJ/t→0,
the exact results of correlation functions have been
obtained10,17,26for fairly largeNs , with which we can com-
pare the VMC results.

The result of the optimization of variational parameters in
cBA is shown in Fig. 1 forne51/2 as a typical case. The data
in the regionJ/t<3.3 are fitted to polynomials of degree
m, wherem52 for n2 and ns , andm53 for n1, respec-
tively. For J/t→0, the minimum energy is realized for
n15n250 andns'2. In the case of finiteJ/t, the optimal
variational parameters show the coupling of charge and spin
degrees of freedom as expected, i.e.,n1Þ0 and/orn2Þ0.
n2 andns decrease withJ/t while the dependence ofn1 on
J/t is weak forJ/t<2. NearJ/t52, ns intersects the zero
line, andn2 becomes21. For largerJ/t, the attractive cor-
relation between electrons with opposite spins is prominent.
For J/t.3.3, the variational state separates into the electron-
rich and -poor phases. The variational parameters abruptly
change their behavior at the phase separation boundary as
shown in Fig. 1. The data in the phase separated region are
fitted to other polynomials.

For other values ofne , the optimal values of variational
parameters show similar behaviors except for curvatures.
Notice that the trial state with optimal variational parameters
is single although the Jastrow factorFJ is spin dependent;

the VMC evaluation of the physical quantities shows that the
total spin is zero, and the spin correlation function is isotro-
pic @Sxx(k)5Syy(k)5Szz(k)#, as far as the optimizedcBA is
employed.27

Next we discuss the variational energies. It has been
shown that the ground-state energy converges smoothly to
the thermodynamic limit.17,19 Following Yokoyama and
Ogata,17,19we estimate the variational energy per site in the
limit Ns→` from the finite-size scaling. We calculate the
variational energies of 12-, 20-, 36-, 60-, and 100- site sys-
tems for ne50.5 using the optimizedcBA and cHM , and
then fit the results to the formula

E/Ns5E`1C1 /Ns
21C2 /Ns

41C3 /Ns
6. ~18!

The fitted values ofE`(cBA) and E`(cHM) are listed in
Table I for several values ofJ/t. They are compared to the
exact results obtained from the Bethe ansatz forJ/t50 ~Ref.
28! and 2,29 and the extrapolated values of the exact diago-
nalization of small clusters forJ/t51 and 3. The latter is
evaluated from fitting the energies of 4-, 8-, 12-, and 16- site
clusters to Eq.~18!.19

Using cBA , the ground-state energy per site in the limit
Ns→` is obtained to beE`522t/p for J/t→0, equivalent
to the exact energy. The reason for the coincidence is that the
energy is determined only by the charge degree of freedom
in the limit J/t→0, whose treatment is rigorous incBA . In
fact, the variancê@H2E(cBA)#

2& in VMC sweeps vanishes
at anyne . For all the range ofJ/t, E`(cBA) is quite close to
the exact energy, as shown in Table I. Especially in the small
J/t region, the advantage ofcBA over cHM is obvious. The
difference in energy betweencHM and the exact one is larg-
est for J/t50, while the error ofcBA gradually increases
with J/t except forJ/t52.

For J/t52, bothE`(cBA) and E`(cHM) are extremely
close to the exact energy obtained by the Bethe ansatz. In
this connection, Yokoyama and Ogata have shown that the
Gutzwiller functioncG is a good trial function forJ/t52
and all range ofne .

17 In fact, an analytical calculation of the
energy using the Gutzwiller wave function shows
E`(cG)520.903 092 . . . ,30,17 which is close to the exact
one. Moreover, Kuramoto and Yokoyama31 have found that
cG is the exact ground state of thet-J model with long-range
interactions and hoppings satisfyingJi j52t i j}r i j

22 In the
supersymmetric case, the ground state behaves as almost a
free-electron state19 except for the exclusion of double occu-
pancy because of the cancellation of hopping and interacting
processes, both of which have the same weightt5J/2.

FIG. 1. Optimization result of variational parameters incBA is
shown forne5

1
2 andNs5100. Triangles, squares, and circles rep-

resentn1, n2, and ns , respectively. The solid lines are the least-
squares fits of the data. The transition to a phase-separated state is
shown by an arrow atJ/t'3.3.

TABLE I. Ground-state energies of the 1Dt-J model in the limitNs→` for the quarter-filled case
(ne5

1
2!. The VMC results are obtained from the finite-size scaling, Eq.~18!, with Ns5 12, 20, 36, 60, and

100. Exact results obtained from the Bethe ansatz forJ50 ~Ref. 28! and 2~Ref. 29! and extrapolated values
of the exact diagonalization of small clusters~Ref. 19! for J51 and 3 are listed as a comparison. The unit of
the energy ist.

J Exact VMCE`(cHM) ~Error %! VMC E`(cBA) ~Error %!

0 20.636620 20.6119 6 0.0003 ~4! 20.636620 6 0 ~0!

1 20.755359 20.7493 6 0.0001 ~0.8! 20.75488 6 0.00005 ~0.06!
2 20.903649 20.90315 6 0.00005 ~0.06! 20.90318 6 0.00006 ~0.05!
3 21.081713 21.0774 6 0.0001 ~0.4! 21.0806 6 0.0001 ~0.1!
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Therefore, it is natural to expect that variational energies
converge to the same value if a trial function can recover the
‘‘free-electron’’ nature forJ/t52. The above three varia-
tional wave functions have this property correctly although
the long-range behavior of correlation functions is different.

In Fig. 2, ~a! the momentum distribution functionn(k),
~b! the spin correlation functionS(k), ~c! the charge corre-
lation functionC(k), and ~d! the singlet pairing correlation
functionP(k) are shown forJ/t50, where open circles de-
note the VMC results ofcBA , and the dashed lines represent
those ofcHM . We evaluate the data for the lattice with 100
sites at quarter filling. The exact results obtained from the
Bethe-ansatz solution forNs552 are also shown in Fig. 2
with solid lines.10,17,26 In the TLL, the momentum distribu-
tion function exhibits power-law singularities atkF and
3kF although the latter is very weak. Qualitatively, both of
cBA andcHM reproduce the anomalous power-law behavior
inherent in a TLL as shown in Fig. 2~a!. However,n(k) by
cHM departs appreciably from that by the Bethe ansatz while
n(k) by cBA almost coincides with the exact one. For the
correlation functions, there are also the apparent differences
betweencHM and the exact result whilecBA is quite close to
the exact one, as shown in Figs. 2~b!–2~d!. In particular,
C(k) calculated withcHM shows different behavior: It has a
small cusp at 2kF . On the other hand, bothcBA and the
exact result exhibit lineark dependence inC(k), reflecting
the free spinless fermions nature. ThuscBA recovers the glo-
bal features of correlation functions correctly in contrast to
cHM .

In Fig. 3, we show the VMC results of the momentum
distribution function and the correlation functions for finite
J/t and ne5

1
2. We have plotted the results ofcBA ~open

symbols! and cHM ~dashed lines! for comparison. At
J/t51 ~open diamonds!, the difference betweencBA and

cHM is observed, but it is not so large as in the case of
J/t50 except for the peak ofC(2kF). For J/t52 ~open
squares!, the two variational functions give almost the same
results, in accordance with the agreement of energies. At
J/t53 ~open triangles!, it is remarkable thatP(k) at k50 is
strongly enhanced due to the increased effective attraction
between neighboring electrons with opposite spins as shown
in Fig. 3~d!. One can also see the enhancement ofP(k) near
k5p as J/t increases. The singularity ofP(2kF) becomes
sharp whenJ/t52.

The correlation functions bycBA shown in Fig. 3 agree
well with the result of the quantum Monte Carlo
calculation32 or of the exact diagonalization in smaller
lattices.17,19,26

B. Correlation exponent

Let us now examine the correlation exponents to discuss
the long-range behavior of correlation functions. In the TLL
regime, both the charge and spin excitations are gapless and
the correlation functions show power-law decay. Following
the TLL theory, the leading singularities of the distribution
function and correlation functions can be written as4,8

n~k!;uk2kFua sgn~k2kF! for k;kF , ~19!

S~k!;uk22kFuh21 for k;2kF , ~20!

C~k!;uk22kFuh21 for k;2kF , ~21!

P~k!;ukum21 for k;0. ~22!

FIG. 2. ~a! The momentum distribution functionn(k), ~b! the
spin correlation functionS(k), ~c! the charge correlation function
C(k), and ~d! the singlet pairing correlation functionP(k) for
ne5

1
2 andJ/t50. Open circles and dashed lines denote the VMC

results ofcBA andcHM , respectively, forNs5100. The exact re-
sults ~Refs. 10,17, and 26! for Ns552 are also shown with solid
lines.

FIG. 3. ~a! The momentum distribution functionn(k), ~b! the
spin correlation functionS(k), ~c! the charge correlation function
C(k), and ~d! the singlet pairing correlation functionP(k) for
ne5

1
2 andNs5100. The data are evaluated by the VMC calcula-

tions withcBA for J/t51 ~open diamonds!, 2 ~open squares!, and 3
~open triangles!. The dashed lines denote the corresponding results
of cHM .
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Logarithmic corrections have been omitted in these formu-
las. As far as the interaction is isotropic in spin space, the
critical exponents are described by a dimensionless TLL pa-
rameterKr as follows:

4,8

a5min@1,~Kr21!2/~4Kr!#, ~23!

h5Kr11, ~24!

m51/Kr11. ~25!

The correlation exponentKr can now be rather easily
calculated from our VMC result ofP(k) thann(k), C(k), or
S(k) since the singularities of these quantities become much
weaker than that ofP(k) in some cases. Following Assaad
and Würtz,32 we use the following procedure to obtain the
exponent ofP(k). Let us assume a behavior

lnuP~0!2P~k1!u52~m21!lnNs1a, ~26!

wherek152p/Ns , andm anda are the fitting parameters.
Fitting the data for various lattice sizes to Eq.~26!, the ex-
ponent ofP(k) can be evaluated by finite-size scaling. Once
m is obtained,Kr is given by Eq.~25!.

As an example, we plot the fitting result ofP(k) for
ne5

1
2 in Fig. 4. We have calculatedP(k) of 12-, 20-, 36-,

60-, and 100-site systems forne5
1
2 using the optimized

cBA , and then fit the results to Eq.~26!. The linearity of
these plots is good. The correlation exponentKr obtained
from the slope of these plots and Eq.~25! is tabulated in
Table II. ForcHM , one can rather analyze the exponent di-
rectly. The relation between the variational parameter in
cHM andKr has been derived analytically from the general-
ized conformal field theoretical argument to be33

Kr5
1

2n11
. ~27!

Therefore, the optimal value ofn can be used to determine
Kr for cHM . The results forcHM in Table II are obtained
from this equation. The expected values of the exponents are
also shown in Table II: ForJ/t50 and 2,Kr has been ex-
actly determined from the bosonization theory34 or the con-
formal field theory,35,36with Kr50.5 and 0.85, respectively,
and the exact diagonalization on a 16-site ring has shown5

thatKr'0.62 and 2.2 forJ/t51 and 3, respectively.
The results ofcHM andcBA are consistent with the ex-

pected values; atJ/t53, Kr becomes larger than 1 and thus
the superconducting correlations correspondingly dominate
the long-range behavior while for smaller value ofJ/t,
Kr,1. However, the quantitative coincidence is not so good
for cHM , while the exponents evaluated fromcBA are sur-
prisingly close to the expected values. Therefore, one could
conclude that our variational wave functioncBA can quanti-
tatively reproduce not only the amplitude of correlation func-
tions, but also the correlation exponent. The last column in
Table II shows the value of (n11n212)21 evaluated from
the optimized variational parameters incBA . It seems that
Kr agrees with (n11n212)21. This point will be discussed
in the next subsection.

C. Phase diagram

The phase diagram of the 1Dt-J model obtained by
cBA and cRVB is shown in Fig. 5 with contour lines for
several values ofKr . As seen in Fig. 5, there are four dis-
tinct phases. For smallJ/t, the ground state is a repulsive
TLL with Kr,1. In this region, spin correlations dominate
the long-range behavior. IncreasingJ/t, these correlations
are suppressed, and the ground state changes to an attractive
TLL with Kr.1. It has dominant singlet pairing correla-
tions. For largerJ/t, the variational state is phase separated
into the electron-rich phase with antiferromagnetic order and
the empty phase. In this region, the longest-wavelength
charge correlationC(k152p/Ns) diverges when the system
sizeNs is increased. This behavior is in contrast with the
TLL, where C(k1) remains finite. The phase separation
boundary in Fig. 5 is determined by the behavior ofC(k1).
These three phases are described bycBA . The spin-gap state
lies between the TLL and phase-separated regions at small
densities, wherecRVB is more stable thancBA . The optimal
values of variational parameters incRVB fit to the formulas

FIG. 4. The VMC results of lnuP(0)2P(k1)u at ne51/2 are plot-
ted forJ/t50 ~circles!, 1 ~diamonds!, 2 ~squares!, and 3~triangles!
as a function of lnNs , wherek152p/Ns . The data are evaluated
with cBA for Ns5 12, 20, 36, 60, and 100. The solid lines are the
least-squares fits of the plots.

TABLE II. The correlation exponentKr for ne5
1
2. Results for

cBA are evaluated from fittingP(k) to Eq. ~26! for lattice sizes
ranging fromNs512 to 100. WithcHM , Kr is directly obtained
from Eq. ~27!. The last column is evaluated from the optimized
variational parameters incBA .

J/t Expected value Kr(cHM) Kr(cBA) (n11n212)21

0 0.50a 0.40 0.51 6 0.03 0.50
1 0.62b 0.57 0.62 6 0.05 0.65
2 0.85c 0.95 0.85 6 0.07 0.95
3 2.2b 3.2 2.2 6 0.2 2.4

aReferences 34 and 35.
bReference 5.
cReference 36.

13 134 54KENJI KOBAYASHI, CHIKAOMI OHE, AND KAORU IGUCHI



as h51.03720.151(J/t) and l50.78120.173(J/t) for
ne50.2 and 2.8<J/t<3.2, for example.

The phase diagram determined by the present method is
consistent with the result of the exact diagonalization on a
16-site ring.5 It is correctly recovered thatKr51/2 at any
electron density in the limitJ/t→0.34,35When we compare
the spin-gap region with the result of the wave function of
noninteracting singlet pairs by Chen and Lee,6 the correlation
effect of the Jastrow factor introduced incRVB seems to play
no essential role since these two trial functions give almost
the same result; the correlation effect only slightly pushes the
spin-gap region to larger values ofne . This is because the
balance of energy hardly changes; i.e., the magnitude of cor-
relation energy induced by the Jastrow factor incRVB is less
than 2%, which is comparable to the energy lowering of
cBA compared tocHM . However, there is a significant dif-
ference in the long-range behavior of correlation functions.
The wave function by Chen and Lee givesKr5` while
Kr is finite for ourcRVB as seen below.

Figure 6 shows the distribution function and correlation
functions for 150 sites and 30 electrons. The selected values
of J/t are 0, 2.5, and 3 as typical cases of the repulsive TLL,
attractive TLL, and spin-gap state, respectively. Triangles
and squares in Fig. 6 are evaluated withcBA while circles
with cRVB . The spin correlation functions forJ/t50 and
2.5 exhibit the linear behavior at smallk characteristic of the
TLL as shown in Fig. 6~b!. On the other hand,S(k) for
J/t53 is quadratic at smallk and analytic for all wave vec-
tors. Unlike TLL’s, a Luther-Emery liquid exhibits exponen-
tial decay of the spin correlation function in real space, while
both charge and singlet pairing correlations decay
algebraically.8 The short-range behavior ofS(k) for J/t53
shows that the spin-gap state is characterized as a Luther-
Emery liquid. The charge correlation function forJ/t53 ex-
hibits a cusp atk52kF , indicating the formation of bound
singlet pairs. AsJ/t decreases, this cusp is suppressed. More
definitive characters of the three phases can be seen in the
singlet pairing correlation functions plotted in Fig. 6~d!.
P(k) is fully suppressed whenJ/t50. As J/t increases,
P(k50) becomes much larger, indicating the growth of
long-range order. The cusp atk50 is greatly enhanced for
J/t53.

Finally, we plot the exponents of the singlet pairing cor-
relation function forne50.2 as a function ofJ/t in Fig. 7,
wherem21 is evaluated from fittingP(k) to Eq. ~26! for
lattice sizes ranging fromNs530 to 150. In the region
2.8<J/t<3.2, the variational energy ofcRVB is lower than
that ofcBA . Correspondingly, the squares and circles in Fig.
7 are evaluated withcBA andcRVB , respectively. In addi-
tion, n11n212 for cBA and 2l21 for cRVB are shown in
Fig. 7 with solid lines, wheren1, n2, andl are optimized
variational parameters. It seems that the fits ofn11n212

FIG. 5. The phase diagram of the 1Dt-J model as determined
by cBA andcRVB . In the spin-gap phase,cRVB is more stable than
cBA while other phases are described bycBA . The curves represent
the contours of constant correlation exponentKr evaluated from
Eq. ~29!.

FIG. 6. ~a! The momentum distribution functionn(k), ~b! the
spin correlation functionS(k), ~c! the charge correlation function
C(k), and ~d! the singlet pairing correlation functionP(k) for
ne50.2 andNs5150. Selected values ofJ/t are 0~triangles!, 2.5
~squares!, and 3 ~circles! as typical cases of the repulsive TLL,
attractive TLL, and spin-gap state, respectively.

FIG. 7. Exponents of the singlet pairing correlation function for
ne50.2 as a function ofJ/t. Squares are evaluated withcBA , while
circles withcRVB , fitting P(k) to Eq. ~26! for lattice sizes ranging
from Ns530 to 150. Solid lines represent the value ofn11n212
for cBA and 2l21 for cRVB , wheren1, n2, andl are the opti-
mized variational parameters.
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and 2l21 to the exponents ofP(k) are good. The expo-
nents of the correlation functions in the Luther-Emery liquid
that decay with power laws can be also described by a single
parameterKr like a TLL,8 and it holds that

m5
1

Kr
. ~28!

Using Eqs.~25! and~28!, one can conclude from Fig. 7 that
Kr relates to the variational parameters incBA andcRVB as

Kr5
1

n11n212
for cBA ~29!

and

Kr5
1

2l
for cRVB , ~30!

respectively. The critical exponentKr evaluated fromP(k)
for ne50.2 is tabulated in Table III together with the pre-
dicted values by Eqs.~29! and ~30!, and they agree very
well. For other values ofne , Kr also agrees with
(n11n212)21 or (2l)21. The example forne50.5 is
shown in Table II.Kr shown in Fig. 5 is evaluated from Eq.
~29!.

The relations~29! and ~30! are confirmed by the follow-
ing facts. ~i! In the limit ne→1, we haven15n250 and
ns'2, i.e., cBA5Y, for the Heisenberg chain sinceX be-
comes only a constant. This is in accordance withKr→1/2
asne→1.5 ~ii ! It is correctly recovered thatKr→1/2 at any
electron density in the limitJ/t→0,34,35 where we have
n15n250. ~iii ! The magnitude of the discontinuous jump in
m21 at J/t;2.8 is (n11n212)2(2l21)'1 as seen in
Fig. 7. This is consistent with the crossover from the TLL to
the Luther-Emery-liquid behavior described by Eqs.~29! and
~30!. ~iv! n11n212'0 on the phase separation boundary in
Fig. 5, which leads toKr5`. This corresponds to the diver-
gence ofC(k1).

IV. SUMMARY AND DISCUSSION

In this paper, we have carried out the VMC calculation
for the 1D t-J model. As a trial state, we have proposed a
variational wave function based on the Bethe-ansatz solu-
tion. In this wave function, the separation of charge and spin
degrees of freedom is realized explicitly, and the long-range

correlation factor of Jastrow type is included. With this wave
function, it has been shown that remarkable improvement is
achieved especially in the smallJ/t region: The variational
energy, momentum distribution function, and various corre-
lation functions exhibit an excellent coincidence with exact
ones. The evaluation of correlation exponents with finite-size
scaling has shown that this variational wave function can
correctly reproduce not only the global features of correla-
tion functions but also the long-range behavior with anoma-
lous power-law decay, which is characteristic of a TLL.

In addition, a variational wave function of singlet pairs
correlated with a Jastrow factor has been introduced to de-
scribe the spin-gap phase. This wave function correctly ex-
hibits enhanced superconducting correlations and exponen-
tial decay of the spin correlation function, as expected for the
generalized Luther-Emery state.

Comparing the energies of the trial function based on the
Bethe-ansatz solution and the generalized Luther-Emery
state, the whole phase diagram has been determined. The
VMC results show that our wave functions provide a more
precise description of the ground-state properties for the 1D
t-J model in the whole phase diagram. Evaluating the corre-
lation exponents by a finite-size scaling analysis, the rela-
tions between the exponentKr and the variational param-
eters in the trial functions have been established.

Let us now compare our trial wave functions with others.
For strongly correlated electron systems, the Gutzwiller-
Jastrow-type trial state has been extensively studied, but the
conventional Jastrow factor does not recover the expected
TLL behavior if only short-range correlations are
included.17,19A trial wave function of this type is essentially
a Fermi-liquid state. The wave function introduced by Hell-
berg and Mele successfully exhibits the power-law singular-
ity of the TLL.18 The long-range nature of the Jastrow factor
is essential for the non-Fermi-liquid behavior. However, the
correlation exponent does not coincide with the exact value.
This disagreement becomes apparent when we compare the
global features of various correlation functions. The differ-
ence betweencHM and the exact result is largest for
J/t50. These are in sharp contrast tocBA , with which we
can quantitatively reproduce both the amplitude and the ex-
ponent of correlation functions. This is becausecBA has the
separation of charge and spin degrees of freedom correctly.
The effect of the spin-charge separation becomes clear espe-
cially in the smallJ/t region. In fact, when we compare the
phase diagram determined by the present method with that of
cHM ,

19 the behavior ofKr is much improved in the repulsive
TLL region, while it agrees with the result ofcHM in the
attractive TLL phase.

Finally we mention some remaining issues. The spin
wave functionY(y1 , . . . ,yM) in Eq. ~7! has been approxi-
mated as a trial function of Jastrow-Marshall type for its
simplicity. It is known, however, a liquid state is realized in
the 1D antiferromagnetic Heisenberg model. When a RVB-
type trial state is used as the spin part in Eq.~7! instead of
Jastrow-Marshall type, further improvement may be ex-
pected. Actually, Ogata37 has examined a trial function com-
posed of a spin trial state of RVB type and spinless fermions
for J/t50. It is interesting to correlate this trial function with
a Jastrow factor, applying to all ranges ofJ/t.

An application of the present method with some modifi-

TABLE III. The correlation exponentKr for ne50.2, obtained
by fitting P(k) to Eq. ~26! for lattice sizes ranging fromNs530 to
150. The last column is evaluated from the optimized variational
parameters in the trial wave functions.

J/t Type ofc Kr (n11n212)21 or (2l)21

0.0 BA 0.51 6 0.05 0.50
1.0 BA 0.57 6 0.07 0.63
2.0 BA 0.97 6 0.06 0.98
2.5 BA 1.7 6 0.2 1.6
2.8 RVB 1.6 6 0.2 1.7
3.0 RVB 1.8 6 0.2 1.9
3.2 RVB 2.3 6 0.4 2.2
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cations to magnetic properties such as spin susceptibility and
magnetization curve is also interesting in order to elucidate
the metal-insulator transition in the 1Dt-J model. In fact, it
was shown that Jastrow wave functions reproduce charge
and spin susceptibilities and the magnetization curve cor-
rectly, in contrast with the Gutzwiller approximation.19

An important question is whether the properties of
strongly correlated electrons realized in 1D system can be
extended to higher dimensions because of their close connec-
tion to high-Tc superconductors.

12 In a 2D system, it is not
established even for the metallic regime whether the ground
state is a Fermi liquid or TLL. In these contexts, an extension
of the present method to 2D systems together with a reex-

amination of the appropriate Hamiltonian is under consider-
ation.

Quite recently, we have found that part of our result for
the variational wave function of correlated singlet pairs has
been obtained independently by Chen and Lee.38
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