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The one-dimensionatd model is investigated by the variational Monte Carlo method. A variational wave
function based on the Bethe-ansatz solution is proposed, where the spin-charge separation is realized and a
long-range correlation factor of Jastrow-type is included. In most regions of the phase diagram, this wave
function provides an excellent description of the ground-state properties characterized as a Tomonaga-
Luttinger liquid; both the amplitude and exponent of correlation functions are correctly reproduced. For the
spin-gap phase, another trial state of correlated singlet pairs with a Jastrow factor is introduced. This wave
function shows generalized Luther-Emery-liquid behavior, exhibiting enhanced superconducting correlations
and exponential decay of the spin correlation function. Using these two variational wave functions, the whole
phase diagram is determined. In addition, relations between the correlation exponent and variational parameters
in the trial functions are derivedS0163-182806)05142-9

. INTRODUCTION insight into the wave function in the 2D-J model is to
extend the wave function realized in a 1D system. For this

The anomalous properties found in high-superconduct-  purpose, examining trial wave functions for 1D systems in
ing copper oxides have led to a renewal of interest in detail gives us useful references in the pursuit of the 2D
strongly correlated electron systems in low dimensionst-J model. We shall study variational wave functions in the
Among various candidates, tiie] model has attracted con- 1D t-J model, keeping the possibility of extending to the 2D
siderable attention as a model to describe the cuprateystem in mind.
superconductors? So far, various kinds of variational functions have been

For the one-dimensiondlLD) t-J model, much progress proposed for strongly correlated electron systéfns’ The
has been achieved using analytical and numericautzwiller wave functiof’ has been extensively studied for
technique$. It has been fourtd” that three main regions can its simplicity, and shown to be a good trial function for the
be distinguished in the phase diagram defined by the electrasupersymmetric J/t=2) 1D t-J model!’ This wave func-
density and the ratio of spin exchange interaction to hoppingion was improved for other values dft by introducing a
amplitude,J/t. First, a Tomonaga-Luttinger liquid (TLL)  conventional Jastrow-correlation factor, but the expected
holds for smallJ/t, which is characterized by power-law TLL behavior was not recoverdd:!® Recently, Hellberg and
decay of correlation functions. It has been clarified that theviele have introduced a simple trial wave function of Jastrow
separation of spin and charge degrees of freedom plays appe?® It takes into account the effect of long-range correla-
essential role in this regiol!.Second, phase separation takestions, and shows successfully the anomalous power-law be-
place for largeJ/t, where the system is separated into havior in correlation functions. This wave function has been
electron-rich and hole-rich phases. Third, there is a regiomxtended to the 2Dt-J model to discuss the TLL
with a gap in the spin excitation spectrum fbit>2 and at  instability”* However, the properties of the exact ground

small electron densities. state are not wholly reproduced by this wave function, espe-
On the other hand, in the 2BJ model, although some cially in the smallJ/t region®
aspects have been obtained so'famany problems are left In this paper we introduce another type of variational

unresolved. Particularly, the crucial question is whether thavave function. Two kinds of trial functions are introduced.
features realized in a 1D system, like the charge-spin sepdrirst, we consider a variational wave function based on the
ration and/or TLL, take place also in a 2D system or ¥ot. Bethe-ansatz solution. In the limit dft—0, the charge and
To obtain a unified and consistent understanding of the 23pin degrees of freedom are completely separated, and the
t-J model, further research is needed. ground-state wave function obtained from the Bethe-ansatz
The variational Monte Carlé/MC) method is one of the can be written as a product of the two contributidh&or
most powerful and transparent approaches to investigaténite values ofJ/t, although the charge and spin are sepa-
strongly correlated electron systehidt provides a deeper rated, they interact strongly. To take into account this effect,
insight because of its explicit form of the wave function. It is we introduce a Jastrow-type correlation factor into the Bethe
very important to construct a better trial function in the ansatz solution fod/t—0. It is shown that this wave func-
framework of the VMC technigue. One way to obtain furthertion has the advantage of providing an excellent description
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of the ground-state properties in most regions of the phaskehavior was not recoverédHellberg and Mele have intro-
diagram; both the magnitude and exponent of correlatiomuced a variational state with a long-range correlatfon:
functions are correctly reproduced, and a quantitative discus-
sion can be made. v
Next, we consider a trial function for small electron den- WHM)_L[,- };[, [1=(=ldy[Inionio Ilde). (3
sities. For the spin-gap phase, Chen and Lee have proposed a
variational function of a gas of noninteracting bound singlet dij=sin 7ri; /Ng], (4)
pairs® This wave function corresponds to a Luther-Emery i , ) i
staté?® with an infinite correlation exponent. More accurate WNereTij =|ri—rj| is the distance between théh andjth
trial function can be generated by correlating the singlet pair$it€S: andNs the number of sites. When=0, ¢,y reduces
with a Jastrow factor. This is just our trial wave function for ©© ¥ - It has beenlghown tha,y exhibits the characteristic
the spin-gap phase introduced in this paper. This wave fund2€havior of a TLL.” However, the correlation exponent es-
tion shows a generalized Luther-Emery liquid behavior, exltimated with this wave fnglnctlpn (_joes not coincide with the
hibiting enhanced superconducting correlations and expd®Xact value for small/t.* This disagreement becomes ap-
nential decay of the spin correlation function. parent when the globf_;ll features of various correlation func-
Comparing the energies of the trial function based on th&ions are compared with the exact _O'J"%S' , ,
Bethe-ansatz solution and the generalized Luther-Emery AN important feature of the TLL is the separation of spin
state, the entire phase diagram is determined. Evaluating tf&'d charge degrees of freedom in the low-energy excitations.
correlation exponents by a finite-size scaling analysis, th& the limit of J/t—0, Ogata and Shiba have shown that the
relations between the correlation exponent and variationgiround-state wave function obtained from the Bethe ansatz
parameters in these trial functions are derived. has a §|mple form due to the complete d.ecoupllng of charge
This paper is organized as follows. In the next section ou@Nd Spin degrees of freeddﬁ‘ﬂt. can be written as a product
trial functions are introduced. Section IIl provides the result?f @ Slater determinant of spinless fermions describing the
of physical quantities by the VMC calculations. Energies and-harge degrees of freedom and the spin wave function of the
various correlation functions are compared with the exacpdueezed Heisenberg model in which all empty sites are
calculations in Sec. Il A. In Sec. Ill B, the correlation ex- OMitted. The ground-state wave function in the limit of
ponents are evaluated from the finite-size scaling to discus¥t—0 is expressed as
the long-range behavior of correlation functions. The phase _
diagram of the 10X-J model determined by our wave func- PoXys - Xng) =X(Xgs o XY (Yo - Ym)s ()
tions is shown in Sec. Ill C. Section VI is devoted to ayhere
summary and discussion of related problems.

X(Xq, ... xn ) =defexpliqix))], (6)
Il. TRIAL WAVE FUNCTION .

. _ o 1x;} are the positions ofl, electrons, andy;} are the coor-
Thet-J model is defined by the Hamiltonian dinates of M up spins with vacant sites omitted.
X(X1, ... xy,) is the wave function for noninteracting spin-

H=—t> (&l&,+ Hc)+I> (S-S—1imn;), (1) less fermions with momentgy;}, andY(ys, . .. yw) is the

(ij)o (p) ground-state wave function of th=3 antiferromagnetic

where&] =cl (1-n; _,), ¢/ being the creation operator Heisenberg model. .

for an electron with spin projection at lattice sitei, and For finite values ofJ/t, the charge and spin degrees of

niZEUHiU=EUCLCig- Thus?:iTU creates an electron only on freedom are no longer completely separated, and the charge-

an empty site, avoiding double occupancy. The spin operato?pl'nt_coufpl'rtlg O_CCUfS.tT_h:JS we '?tmdtl.JCGf Jafstr;)r:/v-tyﬁe cor-
associated with sité is defined as§ =15, ¢! o, 5,5, [CIAUON factor in our rial wave function to mix the charge

where o= (oy,0y.0,) is a vector of Pauli matrices. The and spin degrees of freedom. We shall study the following

summations in Eq(1) are taken over nearest-neighboring variational state for the 10-J model:
pairs. This model reduces to thke=«~ Hubbard model in the | Waa)=F4|XY) )
limit J/t—0. ’

For highly correlated electron systems, Gutzwiller- where the amplitude db(>=HiNec$i|0> is given by Eq.(6),

Jastrow-type wave functions with a two-body correlationgnsyring the absence of double occupancy. The long-range

H 4-19 : N . . .
factor are fairly commori? The Gutzwiller wave correlation factor of Jastrow type in E€f) is defined as
function ™ which is a prototype of the trial function of this

type, is often used as a starting trial function for its simplic-

ity. It is defined as FJ:il;[j H {1-[1=n(rij;o00") NN}, (8)
and the form of functiory is assumed to be
|¢G>:Pd|¢F>:H (1—nini )| de), 2 i

|dii|"t if o=d,
where ¢ is a simple Fermi sea arié is the operator pro- n(rij,o0')= |d_J_|V2 if
jecting out the double occupancy. This wave function is es- !
sentially a Fermi-liquid state, having a discontinuity in mo- whered;; is given by Eq.(4). The Jastrow factoF ; modu-
mentum distribution atk=kr. Thus, the expected TLL lates the Bethe-ansatz wave function by the distance between

(€)

o# o',
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all pairs of particles. A positive value af; (v,) induces a which explicitly shows a singlet liquid picture of the RVB
repulsive correlation between particles with the same spinstate?
(opposite spins while negative values provide an attractive

correlation. Wherv,= v,, F; reduces to the correlation fac- 1. SIMULATION AND RESULTS
tor studied by Hellberg and Mele. ] )

The wave function of the spin part in E) is approxi- In this section, we present the results of the VMC calcu-
mated as a trial function of Jastrow-Marshall-tyfge, lations for various values af/t andne=N¢/Ns with N and

N, being the number of electrons and sites, respectively, and
make comparisons with those of exact calculations and other
Y(y1, ooy = (=D sy, (100 trial functions. We consider the 1BJ model with up to 300
1<) sites under the periodic boundary condition with

wheres;; = sin 7(y;—Y;)/N| for a system of, electrons and Ne/2= odd.

L{y,} is the number of up spins in one sublattice contained in _ ' N€ variational parameters in E¢§) and(11) are opti-
the spin configurationy( , . . . .yy). With this trial function mized using a conjugate-gradient method combined with the

Y(yi. ... yy), we have calculated the ground-state ener ieéixed sa}m_pling in the VMC calculations. _Tech_nical details of
(v1 ym) g g| the optimization procedure were described in Ref. 25, and

of the 1D antiferromagnetic Heisenberg model, o i
some practical improvements are made to achieve the con-

Hreis= I2ijyS - S, with Ne<70 by the VMC technique, . : o
and estimated the energy in the thermodynamic limit from/€r9ence rapid enough to handle multiparameter optimiza-

finite-size scaling with a formul&/N,=E..+C/N2. The tio'n: A quasl-Newton algarithm is employed instead of Pow-
minimum energy is realized fars~2, and the resultant en- ell's optimization algorlth.m In Ref. 25.’ and the gradient is
ergy is E,,=(—0.4421-0.0001), which is quite close to evqlugted by the numer!cal dlf_ferent|at|on. Qr]ce the fu]ly
the exact value by the Bethe ans¥tzEgs/N.=— (In2 opt|m|zeo_l wave fun_c_tlon is obtained, we use it in evaluating
—1)J=(-0.44314 .. .)J. The differenceBiAs oﬁly 0.24%. the phy3|cal quantlt!es with another VMC run in order to
Tr:erefore,Y(yl, ... Yar) reproduces well the true ground- examine the properties of the 1tBJ model in detail. Calcu-

state wave function of the 1D Heisenberg model. lated quantities are the total energy per site, the momentum

S . distribution function
As a result, we have three variational parameters in our

trial state(7), i.e., v1, v5, and vs. In most regions of the 1 _

phase diagram, this wave functiofs, successfully repro- n(k)= 5 > ekl ¢, (13
duces the exact ground state of the ttDmodel as shown in stie

Sec. lIl. and the equal-time correlation functions, whére - ) indi-

However, a Luther-Emery-liquid behavior, exhibiting a cates the expectation value for a given trial function. The

gap in the spin excitation spectrum and enhanced supercoBpin and charge correlation functions in Fourier-transformed
ducting correlations, is found fod>2t and at small form are defined as

densitie€” The true ground state for this region lies out of

the variational subspace spanned fay, . To represent the 4 i(ri—r)
spin-gap phase better, we introduce another trial state as fol- S(k)= N_s; el <SIZSJ'Z>’ (14)
lows:
1 .
Ne/2 C(k)= N_E elk(riiri)[<ninj>_<ni><nj>], (15)

s 1]

|wRVB>=FJPd§ 1} hiin ™ Yin,jnl|0),  (12)

respectively. The singlet pairing correlation function is de-
where[i,j1=(cl,c/,—cfc[,) is a singlet pair in a given fined as
configuration{i,j}, andIPd projects out the double occu- 1
pancy. In Eq.(11), h'ii™* controls the weight for a singlet _ - iK(ri=r)/ATA
bond as a function of its length. The functi}fmin the Ja- Pk)=3 e P(AjAj), (16)
strow factor is taken to bey(r;;;o0’)=|d;;|"; i.e., F; is ) o
assumed to be spin indepeer71(d(-|:‘Jnt. TV\?O \lalr]iLtional peﬂramete\%h.ere A.i is the an.nlhllanon_ operator of a nearest-
\ andh are contained in the trial functiofirys. This is a  neighboring electron singlet pair,
natural generalization of the wave function of a gas of non-
interacting bound singlet pairs proposed by Chen and®Lee,
which corresponds to a Luther-Emery state with infinite cor-
relation exponent. Correlating the singlet pairs with the Ja- )
strow factorF,, ey can be expected to exhibit generalized WWe collect typically 30 000 samples to take averages of the
Luther-Emery behavior. It is also a particular form of the 8Nergy for the optimization of variational parameters, and

resonating valence bon@RVB) state. In factryg can be 10_0 000—200 000 samples for the evaluations of the expec-
rewritten as tation values of observables.

s ]

1
Ai:E(CiTCHlFCUCiHT)‘ 17

cok—h Ng/2 A. Quarter-filled case

_ o coxmh g ¢
|Yrve) = F P Ek: h?—2hcok+ 1 k1=Kl 1), First we compare the properties gf;, with those of

(12 Y for the quarter-filled casen,= 3. At this electron den-
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the VMC evaluation of the physical quantities shows that the

N
T
5

NS total spin is zero, and the spin correlation function is isotro-
"V, pic [ S*(k) = SY(k) =S4 k)], as far as the optimizedg, is
oV, | employed:

Next we discuss the variational energies. It has been
shown that the ground-state energy converges smoothly to
the thermodynamic limit”*® Following Yokoyama and

Ogatal’”*®we estimate the variational energy per site in the
(: limit Ng—oo from the finite-size scaling. We calculate the

variational energies of 12-, 20-, 36-, 60-, and 100- site sys-
L . tems forn,=0.5 using the optimized/z, and ¢y, and
then fit the results to the formula

Variational Parameters in ¢ ga
o
{

e E/Ng=E..+C;/N2+C,/N2+ C5/NS. (18

|
N
[T
[y

PS The fitted values ofE..(¢¥ga) and E.(#yy) are listed in
Jit Table | for several values af/t. They are compared to the
FIG. 1. Optimization result of variational parametersiig, is exact res‘j!}S obtarllned from tlhe Bethle ansa;tzr]fd)ito (Ref_.
shown forne=% andNg=100. Triangles, squares, and circles rep- 28)_an(_1 2,” and the extrapolated values of the exact d"f"go'
resentyy, v, and v, respectively. The solid lines are the least- Nalization of small clusters fod/t=1 and 3. The latter is

squares fits of the data. The transition to a phase-separated state€jéaluated from fitting the energies of 4-, 8-, 12-, and 16- site

shown by an arrow al/t~3.3. clusters to Eq(18)."° o o
Using #ga, the ground-state energy per site in the limit

sity, the spin-gap state is absent. In addition, wién-0,  Ns— is obtained to bé&..= — 2t/ for J/t— 0, equivalent
the exact results of correlation functions have beero the exact energy. The reason for the coincidence is that the
obtained®1"-%for fairly large N, with which we can com- energy is determined only by the charge degree of freedom
pare the VMC results. in the limit J/t—0, whose treatment is rigorous ifga . In

The result of the optimization of variational parameters infact, the variancé[ H — E(i/ga) 1) in VMC sweeps vanishes
Jea is shown in Fig. 1 fon.=1/2 as a typical case. The data at anyn,. For all the range od/t, E..(¢/ga) is quite close to
in the regionJ/t<3.3 are fitted to polynomials of degree the exact energy, as shown in Table I. Especially in the small
m, wherem=2 for v, and v, andm=3 for v,, respec- J/t region, the advantage afgs Over ¢y is obvious. The
tively. For J/t—0, the minimum energy is realized for difference in energy betweeft,, and the exact one is larg-
v1=v,=0 andvg~2. In the case of finitd/t, the optimal  est for J/t=0, while the error ofyg, gradually increases
variational parameters show the coupling of charge and spiwith J/t except forJ/t=2.
degrees of freedom as expected, i®.#0 and/orv,#0. For J/t=2, both E.(pa) and E..(4nv) are extremely
v, and vg decrease withl/t while the dependence of, on  close to the exact energy obtained by the Bethe ansatz. In
J/t is weak forJ/t<2. NearJ/t=2, v, intersects the zero this connection, Yokoyama and Ogata have shown that the
line, andv, becomes— 1. For largerJ/t, the attractive cor- Gutzwiller function ¢ is a good trial function ford/t=2
relation between electrons with opposite spins is prominentand all range of, .’ In fact, an analytical calculation of the
For J/t>3.3, the variational state separates into the electronenergy using the Gutzwiller wave function shows
fich and -poor phases. The variational parameters abruptli..(¥g)=—0.903 02 . .. ***" which is close to the exact
change their behavior at the phase separation boundary a@se. Moreover, Kuramoto and Yokoyadave found that
shown in Fig. 1. The data in the phase separated region args is the exact ground state of the] model with long-range
fitted to other polynomials. interactions and hoppings satisfyingJ-:Ztijocri]Z In the

For other values of,, the optimal values of variational supersymmetric case, the ground state behaves as almost a
parameters show similar behaviors except for curvaturedree-electron staté except for the exclusion of double occu-
Notice that the trial state with optimal variational parametersgpancy because of the cancellation of hopping and interacting
is single although the Jastrow factby is spin dependent; processes, both of which have the same weithtl/2.

TABLE |. Ground-state energies of the 12 model in the limitNg—oo for the quarter-filled case
(ne=3). The VMC results are obtained from the finite-size scaling, (£6), with Ng= 12, 20, 36, 60, and
100. Exact results obtained from the Bethe ansatd 00 (Ref. 28 and 2(Ref. 29 and extrapolated values
of the exact diagonalization of small clustéRef. 19 for J=1 and 3 are listed as a comparison. The unit of
the energy ig.

J Exact VMC E..(/1m) (Error %) VMC E..(ga) (Error %)
0 —0.636620 —0.6119 + 0.0003 (4) —0.636620 *0 (0)

1 —0.755359 —0.7493 + 0.0001 (0.9 —0.75488 = 0.00005 (0.09
2 —0.903649 —0.90315 = 0.00005 (0.09 —0.90318 = 0.00006 (0.05
3 —1.081713 —1.0774 + 0.0001 (0.9 —1.0806 =+ 0.0001 0.
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FIG. 2. (8 The momentum distribution function(k), (b) the FIG. 3. (a) The momentum distribution function(k), (b) the

spin correlation functiors(k), (c) the charge correlation function spin correlation functiorS(k), (c) the charge correlation function
C(k), and (d) the singlet pairing correlation functioR(k) for  C(k), and (d) the singlet pairing correlation functio®(k) for

_1 _ ; i i
ne=3 andJ/t=0. Open circles and dashed lines denote the VMCn_= 3 and N;=100. The data are evaluated by the VMC calcula-
results ofyga and ¢y, respectively, folNg=100. The exact re-  tions with ¢ for J/t=1 (open diamonds 2 (open squargsand 3
sults (Refs. 10,17, and 26for Ns=52 are also shown with solid (open triangles The dashed lines denote the corresponding results
lines. of Yy -

Therefore, it is natural to expect that variational energies
converge to the same value if a trial function can recover th
“free-electron” nature forJ/t=2. The above three varia-
tional wave functions have this property correctly although
the long-range behavior of correlation functions is different
In Fig. 2, (8 the momentum distribution function(k),
(b) the spin correlation functio®(k), (c) the charge corre-
lation functionC(k), and(d) the singlet pairing correlation
function P(k) are shown ford/t=0, where open circles de-
note the VMC results ofg, , and the dashed lines represent
those ofyy . We evaluate the data for the lattice with 100
sites at quarter filling. The exact results obtained from thQN
Bethe-ansatz solution fal,=52 are also shown in Fig. 2
with solid lines!®*"?®|n the TLL, the momentum distribu-
tion function exhibits power-law singularities & and
3kg although the latter is very weak. Qualitatively, both of
Ysp and iy reproduce the anomalous power-law behavior B. Correlation exponent

inherent in a TLL as shown in Fig.(@. However,n(k) by | o ;s now examine the correlation exponents to discuss
Yum departs appreciably from that by the Bethe ansatz whilgy,o |ong.range behavior of correlation functions. In the TLL
n(k) by g almost coincides with the exact one. For the ogime "hoth the charge and spin excitations are gapless and

correlation functions, there are also .the a}ppar'ent differenceg s correlation functions show power-law decay. Following
betweenyyy and the exact result whilgg, is quite close 1o o 1| theory, the leading singularities of the distribution

the exact one, as shown in Figstbp-2(d). In particular,  f,nction and correlation functions can be writterh&s
C(k) calculated withysyy, shows different behavior: It has a

small cusp at R-. On the other hand, botlyz, and the
exact result exhibit lineak dependence il€(k), reflecting n(k)~[k—ke|* sgntk—kg) for k~keg, (19
the free spinless fermions nature. This, recovers the glo-

bal features of correlation functions correctly in contrast to

nm is observed, but it is not so large as in the case of
/t=0 except for the peak o€(2kg). For J/t=2 (open
squarey the two variational functions give almost the same
results, in accordance with the agreement of energies. At
'J/t=3 (open trianglek it is remarkable thaP(k) atk=0 is
strongly enhanced due to the increased effective attraction
between neighboring electrons with opposite spins as shown
in Fig. 3(d). One can also see the enhancemer® (@) near
k= asJ/t increases. The singularity &¥(2kz) becomes
sharp whenl/t=2.

The correlation functions byg, shown in Fig. 3 agree

ell with the result of the quantum Monte Carlo
calculatioi? or of the exact diagonalization in smaller

lattices!”1926

v S(k)~|k—2kg|7"1 for k~2Kg, (20)
HM -

In Fig. 3, we show the VMC results of the momentum
distribution function and the correlation functions for finite C(K)~|k—2kg| 7 for k~ 2k, (22)

J/t and n,=3. We have plotted the results afg, (open
symbolg and ¢y (dashed lings for comparison. At
J/t=1 (open diamonds the difference betweemz, and P(k)~|k|*~1 for k~0. (22
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TABLE Il. The correlation exponeri, for n,= % Results for

g are evaluated from fittind?(k) to Eq. (26) for lattice sizes
_2\ ranging fromNg=12 to 100. With¢yy, K, is directly obtained
from Eg. (27). The last column is evaluated from the optimized

variational parameters itfgp .

J/it  Expected value K () K, (¥en) (vi+vy+2)7 1

In | P(0)~P(ks) |
I\

0 0.50? 0.40 0.51 * 0.03 0.50

1 0.62° 0.57 0.62 * 0.05 0.65

-6 A Jh=3 2 O.85bC 0.95 0.85 * 0.07 0.95
- 3 2.2 3.2 22 *0.2 2.4

o Jjt=2
o Jit=1 8References 34 and 35.
8l CTJ/t=0 | . . Y PReference 5.
3 4 ‘Reference 36.

In Ng
Therefore, the optimal value af can be used to determine
FIG. 4. The VMC results of IP(0)—P(ky)| atn,=1/2 are plot- K, for ¢y . The results forjyy, in Table Il are obtained
ted forJ/t=0 (circles, 1 (diamonds, 2 (squarel and 3(triangles from this equation. The expected values of the exponents are
as a function of INg, wherek,;=27/N;. The data are evaluated also shown in Table II: Fod/t=0 and 2,Kp has been ex-
with ¢ga for Ng= 12, 20, 36, 60, and 100. The solid lines are the actly determined from the bosonization the¥rgr the con-
least-squares fits of the plots. formal field theory3>*®with K ,=0.5 and 0.85, respectively,
and the exact diagonalization on a 16-site ring has shown
Logarithmic corrections have been omitted in these formuthath~0_62 and 2.2 fod/t=1 and 3, respectively.
las. As far as the interaction is isotropic in spin space, the The results ofi, and g, are consistent with the ex-
critical exponents are described by a dimensionless TLL papected Va|ues; a't/t:3' Kp becomes |arger than 1 and thus

rameterkK, as follows#® the superconducting correlations correspondingly dominate
the long-range behavior while for smaller value &ft,
a=min[1,(K,—1)%(4K,)], (23)  K,<1.However, the quantitative coincidence is not so good
for ¢ym, while the exponents evaluated frog, are sur-
n=K,+1, (24)  prisingly close to the expected values. Therefore, one could
conclude that our variational wave functigh, can quanti-
p="1/K,+1. (25)  tatively reproduce not only the amplitude of correlation func-

tions, but also the correlation exponent. The last column in

The correlation exponer, can now be rather easily Table Il shows the value ofiq+v,+2)"* evaluated from
calculated from our VMC result d®(k) thann(k), C(k), or ~ the optimized variational parameters ifg, . It seems that
S(k) since the singularities of these quantities become muck , agrees with ¢;+ v,+2)~*. This point will be discussed
weaker than that oP(k) in some cases. Following Assaad in the next subsection.
and Wirtz,*2 we use the following procedure to obtain the
exponent ofP(k). Let us assume a behavior _

C. Phase diagram
In|P(0)—P(ky)|=—(#—1)InNs+a, (26) The phase diagram of the 1BJ model obtained by
o Yea and ygryg is shown in Fig. 5 with contour lines for
wherek,=2m/Ns, andu anda are the fitting parameters. geyeral values oK ,. As seen in Fig. 5, there are four dis-
Fitting the data for various lattice sizes to Eg6), the ex-  tinct phases. For gmaﬂ/t, the ground state is a repulsive
ponent ofP(k) can be evaluated by finite-size scaling. Oncery | with K,<1. In this region, spin correlations dominate
w is obtainedK, is given by Eq.(25). the long-range behavior. Increasidgt, these correlations

Af an example, we plot the fitting result &(k) for e suppressed, and the ground state changes to an attractive
ne=3 in Fig. 4. We have caIcuIateF(k) of 12-, 20-, 36-,  TLL with K,>1. It has dominant singlet pairing correla-
60-, and 100-site systems for.=; using the optimized {ons. For larger/t, the variational state is phase separated
¥8a, and then fit the results to E§26). The linearity of  jnto the electron-rich phase with antiferromagnetic order and
these plots is good. The correlation expongntobtained  the empty phase. In this region, the longest-wavelength
from the slope of these plots and E@S) is tabulated in  charge correlatiol©(k,=27/Ny) diverges when the system
Table Il. Foryiy, one can rather analyze the exponent di-sjze N is increased. This behavior is in contrast with the
rectly. The relation between the variational parameter INTLL, where C(k,) remains finite. The phase separation
Jum andK , has been derived analytically from the ge”eral'boundary in Fig. 5 is determined by the behaviorGgk;).

ized conformal field theoretical argument to*be These three phases are described/gy. The spin-gap state
lies between the TLL and phase-separated regions at small
K = 1 27) densities, wher@gyg is more stable thagg, . The optimal
P 2v+1° values of variational parameters ifxyg fit to the formulas
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FIG. 5. The phase diagram of the ¥E) model as determined
by ¢ga and ygyg . In the spin-gap phasejgryg is more stable than
e While other phases are describediay, . The curves represent
the contours of constant correlation expon&nt evaluated from
Eqg. (29.

kin kim

as h=1.037-0.151¢/t) and \=0.781-0.173Q/t) for FIG. 6. (8 The momentum distribution function(k), (b) the
ne=0.2 and 2.&J/t=<3.2, for example. spin correlation functiorS(k), (c) the charge correlation function
The phase diagram determined by the present method {S(k), and (d) the singlet pairing correlation functioR(k) for
consistent with the result of the exact diagonalization on &_=0.2 andN,= 150. Selected values dft are O(triangles, 2.5
16-site ring It is correctly recovered thak,=1/2 at any (squarel and 3 (circles as typical cases of the repulsive TLL,
electron density in the limig/t—0.3*3° When we compare attractive TLL, and spin-gap state, respectively.
the spin-gap region with the result of the wave function of
noninteracting singlet pairs by Chen and ke correlation Finally, we plot the exponents of the singlet pairing cor-
effect of the Jastrow factor introduced jikys Seems to play relation function forn,=0.2 as a function ofi/t in Fig. 7,
no essential role since these two trial functions give almoswhere,u_ 1 is evaluated from fitting?(k) to Eq. (26) for
the same result; the correlation effect only slightly pushes theattice sizes ranging fromNg=30 to 150. In the region
spin-gap region to larger values nf. This is because the 2 8<J/t<3.2, the variational energy afryg is lower than
balance of energy hardly changes; i.e., the magnitude of Cothat of 5, . Correspondingly, the squares and circles in Fig.
relation energy induced by the Jastrow factoiligg is less 7 are evaluated Withygs and Yryg, respectively. In addi-
than 2%, which is comparable to the energy lowering oftion, v, + v,+2 for g, and 24— 1 for ¢ryg are shown in
isa compared tayyy . However, there is a significant dif- Fig. 7 with solid lines, wherev;, v,, and\ are optimized

ference in the long-range behavior of correlation functionsygriational parameters. It seems that the fitsvf- v,+ 2
The wave function by Chen and Lee givés=c while

K, is finite for ourryg as seen below.

Figure 6 shows the distribution function and correlation
functions for 150 sites and 30 electrons. The selected values 2
of J/t are 0, 2.5, and 3 as typical cases of the repulsive TLL,
attractive TLL, and spin-gap state, respectively. Triangles
and squares in Fig. 6 are evaluated wjtg, while circles
with #ryg. The spin correlation functions fa¥/t=0 and
2.5 exhibit the linear behavior at smélicharacteristic of the
TLL as shown in Fig. &). On the other handS(k) for
J/t=3 is quadratic at smak and analytic for all wave vec-
tors. Unlike TLL’s, a Luther-Emery liquid exhibits exponen- 0
tial decay of the spin correlation function in real space, while
both charge and singlet pairing correlations decay Q‘}?ﬁ%

adpa

o ¢y

Vit V,+2

u-1

algebraically’ The short-range behavior &{k) for J/t=3
shows that the spin-gap state is characterized as a Luther-
Emery liquid. The charge correlation function fdit=3 ex-
hibits a cusp ak=2kg, indicating the formation of bound It

singlet pairs. Asl/t decreases, this cusp is suppressed. More

definitive characters of the three phases can be seen in the g 7. Exponents of the singlet pairing correlation function for

singlet pairing correlation functions plotted in Fig(di  _=0.2 as a function od/t. Squares are evaluated with, , while
P(k) is fully suppressed whed/t=0. As J/t increases, ircles withyryg, fitting P(K) to Eq.(26) for lattice sizes ranging
P(k=0) becomes much larger, indicating the growth offrom N,=30 to 150. Solid lines represent the valueigf- v,+2
long-range order. The cusp kt=0 is greatly enhanced for for g, and 20— 1 for yryg, Wherev,, v,, and\ are the opti-
J/t=3. mized variational parameters.




13136 KENJI KOBAYASHI, CHIKAOMI OHE, AND KAORU IGUCHI 54
TABLE Ill. The correlation exponenk, for n,=0.2, obtained  correlation factor of Jastrow type is included. With this wave
by fitting P(k) to Eq.(26) for lattice sizes ranging froth;=30to  function, it has been shown that remarkable improvement is
150. The last column is evaluated from the optimized Va“at'onalachleved especially in the smallt region: The variational
parameters in the trial wave functions. energy, momentum distribution function, and various corre-
lation functions exhibit an excellent coincidence with exact

-1 -1

It Type ofy Ko (vitvot2) ~or (24) ones. The evaluation of correlation exponents with finite-size
0.0 BA 0.51 =+ 0.05 0.50 scaling has shown that this variational wave function can
1.0 BA 0.57 =+ 0.07 0.63 correctly reproduce not only the global features of correla-
2.0 BA 0.97 =+ 0.06 0.98 tion functions but also the long-range behavior with anoma-
25 BA 1.7 =+ 02 1.6 lous power-law decay, which is characteristic of a TLL.

28 RVB 16 + 0.2 1.7 In addition, a variational wave function of singlet pairs
3.0 RVB 1.8 + 02 1.9 correlated with a Jastrow factor has been introduced to de-
3.2 RVB 23  + 04 29 scribe the spin-gap phase. This wave function correctly ex-

hibits enhanced superconducting correlations and exponen-
tial decay of the spin correlation function, as expected for the

and 2.—1 to the exponents oP(k) are good. The expo- generalized Luther-Emery state.

nents of the correlation functions in the Luther-Emery liquid Comparing the energies of the trial function based on the

that decay with power laws can be also described by a singlBethe-ansatz solution and the generalized Luther-Emery

parameteK , like a TLLB and it holds that state, the whole phase diagram has peen detgrmined. The
VMC results show that our wave functions provide a more
1 precise description of the ground-state properties for the 1D
*=k (28 t-3 model in the whole phase diagram. Evaluating the corre-

g lation exponents by a finite-size scaling analysis, the rela-

Using Egs.(25) and(28), one can conclude from Fig. 7 that tions between the exponeht, and the variational param-
K, relates to the variational parametersyigs and ¢ryg @S eters in the trial functions have been established.
Let us now compare our trial wave functions with others.
- for Ypa (29) For strongly correlated electron systems, the Gutzwiller-
Povitryt2 Jastrow-type trial state has been extensively studied, but the
conventional Jastrow factor does not recover the expected
TLL behavior if only short-range correlations are
1 included!”*° A trial wave function of this type is essentially
K,= o for Yrvs., (30 a Fermi-liquid state. The wave function introduced by Hell-
berg and Mele successfully exhibits the power-law singular-
respectively. The critical exponett, evaluated fromP(k) ity of the TLL.*® The long-range nature of the Jastrow factor
for n,=0.2 is tabulated in Table Ill together with the pre- is essential for the non-Fermi-liquid behavior. However, the
dicted values by Eqgs(29) and (30), and they agree very correlation exponent does not coincide with the exact value.
well. For other values ofn,, K, also agrees with This disagreement becomes apparent when we compare the
(vi+v,+2)" Y or (20)"1. The example forn,=0.5 is  global features of various correlation functions. The differ-
shown in Table 11K, shown in Fig. 5 is evaluated from Eq. ence betweenyy and the exact result is largest for
(29). J/t=0. These are in sharp contrastf@,, with which we
The relations(29) and (30) are confirmed by the follow- can quantitatively reproduce both the amplitude and the ex-
ing facts. (i) In the limit n,.—1, we haver,;=v,=0 and ponent of correlation functions. This is becausg, has the
ve~2, i.e., yga=Y, for the Heisenberg chain sinc¢ be-  separation of charge and spin degrees of freedom correctly.
comes only a constant. This is in accordance - 1/2 The effect of the spin-charge separation becomes clear espe-
as neﬂl (i) It is correctly recovered that ,—1/2 at any cially in the smallJd/t region. In fact, when we compare the
electron density in the limitd/t— 0343 where we have phase diagram determined by the present method with that of
v,=,=0. (iii ) The magnitude of the discontinuous jump in ¥xw . the behavior oK, is much improved in the repulsive
w—1 atd/t~2.8is (vy;+v,+2)—(2A—1)~1 as seen in TLL region, while it agrees with the result ofy in the
Fig. 7. This is consistent with the crossover from the TLL toattractive TLL phase.
the Luther-Emery-liquid behavior described by E@$9) and Finally we mention some remaining issues. The spin
(30). (iv) v, + v,+2~0 on the phase separation boundary inwave functionY(ys, ....yy) in Eg. (7) has been approxi-
Fig. 5, which leads t& ,= . This corresponds to the diver- mated as a trial function of Jastrow-Marshall type for its
gence ofC(k;). simplicity. It is known, however, a liquid state is realized in
the 1D antiferromagnetic Heisenberg model. When a RVB-
type trial state is used as the spin part in E4).instead of
Jastrow-Marshall type, further improvement may be ex-
In this paper, we have carried out the VMC calculationpected. Actually, Ogafd has examined a trial function com-
for the 1Dt-J model. As a trial state, we have proposed aposed of a spin trial state of RVB type and spinless fermions
variational wave function based on the Bethe-ansatz solufor J/t=0. It is interesting to correlate this trial function with
tion. In this wave function, the separation of charge and spira Jastrow factor, applying to all rangesJit.
degrees of freedom is realized explicitly, and the long-range An application of the present method with some modifi-

and

IV. SUMMARY AND DISCUSSION
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cations to magnetic properties such as spin susceptibility an@mination of the appropriate Hamiltonian is under consider-
magnetization curve is also interesting in order to elucidatetion.
the metal-insulator transition in the 1120 model. In fact, it Quite recently, we have found that part of our result for

was shown that Jastrow wave functions reproduce chargge variational wave function of correlated singlet pairs has

and spin susceptibilities and the magnetization curve corpeen obtained independently by Chen and ee.
rectly, in contrast with the Gutzwiller approximation.
An important question is whether the properties of
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