PHYSICAL REVIEW B VOLUME 54, NUMBER 18 1 NOVEMBER 1996-II

Dynamical susceptibility of a thermally excited neutral Fermi-liquid film
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We perform a detailed study of the dynamical susceptibility of two-dimensional Fermi gases and liquids, in
terms of the momentum and energy transferred to the system by an external probe, and both at zero and at finite
temperatures. The response of a noninteracting system is computed and analyzed together with that of a liquid
subjected to a monopole interaction, paying special attention to the Landau limit. The disappearance of Pauli
blocking associated with thermal effects is examined in the frame of the collisional Landau regime. All results
are compared to the equivalent ones obtained for a three-dimensional Fermi[§ié3-182006)09333-2

. INTRODUCTION is increased?~!" since the®He inside the film may behave
either as a 2D or 3D system.

In the past decades there have been several experimentsThe existence of systems closely behaving as a two-
with *He adsorbed on graphite and on buikle™” With  dimensional Fermi liquid has forced the extension of the
such substrates the two-dimensiof@2D) signatures of these available theories of Fermi liquids to the lower dimensional-
thin films have been clearly established. ity involved. In addition to the works already mentioned, this

Heat-capacity results presented fdHe adsorbed on goal has been pursued by several authors giving rise to cal-
graphite allow their identification as a fluid: Above a few culations of parameters of a Fermi gas with hard-core
kelvin degrees the heat capacity approackgsper atom, interactions® thermodynamic and frequency-dependent
resembling a 2D gas behaviowhile between roughly 3 and magnitudes of a charged 2D Fermi gdsnd quasiparticle
50 mK the Fermi system is degenerate and the measured hesiiergies and effective interaction in the frame of Landau
capacity is almost proportional to the temperatt@reywall  theory22! More recently, the possibility of mapping 2D
and Busch have reported a sharp break in the trend of thguantum fluids into classical ones that interact according to
data at 3.2 mK, below which the decrease of the heat capagotentials in phase space, rather than in configuration space,
ity with temperature is fastérMeasurements of magnetic has been discussé&d.
susceptibility and NMR relaxation times at temperatures be- In spite of the existence of several studies concerning the
tween 0.4 ad 4 K suggest a weakly interacting 2D gas dynamical response of 2D electronic systémi the spec-
behavior® Within a hard-core model, these experimental re-trum of collective excitations in 2D neutral Fermi liquids has
sults are very well fitted by the 2D Landau Fermi-liquid not been investigated to a deep extent, neither from the ex-
approach for finite temperatures developed by Havens-Sacgserimental nor from the theoretical viewpoint. Then, the pur-
and Widom’ pose of this work is to perform a detailed study of the dy-

Determinations of the surface tensidrand the velocity namical susceptibility of a two-dimensional Fermi system.
of surface sound propagating itHe-*He mixture§€ show  Such an investigation includes the analysis of the free gas
that the two-dimensionaPHe layer formed at the bulk and of the liquid at arbitrary nonvanishing temperatures. As
“He-vacuum interface behaves as an almost ideal 2D gas @binted out in various contexts concerning Fermi liquids
Fermi quasiparticles. The binding energy at the surface antkee, for example, Ref. 25whenever such a system is ther-
the effective mass of this 2D gas are 2.2 K and 1%  mally excited, Pauli blocking effects are smoothed away due
atomic masses, respectively, and the effective interaction bee the presence of finite collision rates. It is then important to
tween the quasiparticles is found to be very weak and premanage as well the response to external fields in the colli-
dominantly repulsive at large distancet Ref. 10, a calcu-  sional regime. To accomplish these purposes, the present pa-
lation of transport coefficients in a two-dimensional Fermi-per is structured as follows. In Sec. Il we present a detailed
liguid, using the Landau Fermi-liquid theory, predicts thecalculation of the exact dynamical susceptibility of a 2D
thermal conductivity, spin diffusion, and transverse viscosityFermi gas as a function of the momentum and energy trans-
for these liquid®He submonolayers. ferred by an external probe, with the temperature as a param-

Films of *He are also present ifHe-*He mixtures films eter. In Sec. Il we investigate the low-momentum—low-
when the atoms ofHe are adsorbed on thin films dHe,  energy case, in other words, the so-called Landau fifrfit.
which are themselves either partially or fully adsorbed on arhe response of a two-dimensional liquid characterized by a
solid substrate. TheséHe coverages constitute objects of monopole interaction is analyzed in Sec. IV both for arbi-
research by themselves, since their properties are substamary momentum and energy and for the Landau limit. Sec-
tially different from those of layers on the surface of bulk tion V contains an abridged reference to a recently developed
“He. Although there is some evidence of the two-formalism for the response of a 3D liquid in the collisional
dimensional behavior of these layéfs!® their description Landau regimé® this formulation is here adapted to the
becomes more complicated as long astHe film thickness lower dimensionality and its consequences are examined at
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zero and at finite temperatures. The conclusions are summa- 1y
rized in Sec. VI. a=5| 3 +x|. 2.3
Il. RESPONSE FUNCTION OF A TWO-DIMENSIONAL In terms of these variables, after carrying the angular inte-
FERMI GAS gration, the dynamical susceptibility of the particle-hole
The response function per unit area of a two- (p-h) continuum reads, at any temperature,
dimensional Fermi liquid at arbitrary temperatires
2N(0) laal  mn(7)
1E - ) Np—Npiq Xo(X,Y,7)= sgriay) . dﬂ—a .
X(qlw) A 5 <p|o|p Q>| 8p+q_8p_hw_|0+’ 2
(2.1 lag nn(n)
- o — sgrlay) N
whereO is the transition operatog and w are the momen- 0 vai—7
tum and energy transferred by the probe, respectivglyis
the energy of the particles having momentymandn,, is the i 2N(0) J“ d 7n(n)
Fermi distribution. If the system is a free Fermi gas, the X |yl 77,/,72_a2
e . . . . 2
transition matrix elements are unity, the single-partiS®
spectrum is just the kinetic one, and the dynamical response % 7n(7n)
is the free 2D susceptibility,. As in the 3D casé’ the latter —f dy——=—|, 2.9
p Xo lay] /7]2_ o2

can be exactly computed at zero temperature. For this sake,
we introduce the dimensionless variables=q/pg,
n=p/pg, Y=hwleg, and 7=KkgT/eg, wherepg andeg,
respectively, are the momentum and energy at the Fermi su
face of a gas of fermions at=0. Furthermore, letr; and

whereN(0)=gm/2742, with g the spin degeneracy, is the
density of states per unit area on the Fermi surface, and
'SgnE&) = |x|/x.

At zero temperature, the occupation numbefg) in Eq.

o, be (2.4) are step functions and the integrals must be performed
1y observing the three different possibilities that may reiate
a1=§(;—x) (2.2 vy, namely,(i) |a1|<1, |ay|<1; (i) |a1|<1, |ap/>1; and
(iii) |aq1/>1, |ay|>1 . According to these relationships, we
and obtain

1
[1- (a1 D) for y=—2x—x

1
1—;(\/ai—l+i\/l—a§) for —2x—x?<y=sgr2—x)(—2x+x3),
i
NG ~{ 17 x(s0M2—x0VI=aZ-JI=ad) for lyl=sgn2—x(2x-x?), 2.5
1
1—;(\/a§—1—w1—ai) for sgr2—x)(2x—x%)<y=2x+x2,

1
\1—;(\/a22—1—\/a21—1) for 2x+x%<y.

This result formally coincides with that obtained by Stérn as expected.

for the polarizability of a two-dimensional electron gas. If the liquid is thermally excited, the integral in E(R.4)
Straightforward computation of the dynamical structurecannot be done analytically, opposite to the case of the 3D
factor S(q,w,T), system?®~3L A numerical integration leads to the results dis-

played in Fig. 1, where the imaginary and real parts of
xo(X,y,7) are plotted in the left and right columns, respec-
tively, as functions of positivg for different values ofr and
for x=0.5, 1, and 2.3. As we can see in this figure, the
X 8(eprq—ep—hw), (2.6)  response function extends over a larger range of frequencies
for the free Fermi gas permits us to verify that y asx increases at fixed- or as 7 increases at fixed.
Likewise, the amplitude of both Rg and Imyy diminish.
Imyo(q,0,T)=—7[S(q,0,T)-S(q,—w,T)], (2.7 Furthermore, all cusps that correspond to matching different

1 -
S(@.0.1)= 22 (PIOlp+ Q)51 -5
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for the population fluctuations and

20 53 15
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E" LN = = =04 for the effective interaction. Here denotes the angle be-
054 \ 051 tweenp andq, while a,,, corresponds to that betweprand
. \\\ 1.04 p/.
7 N S A5 One then needs to redefine the response nfatrix
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1.0 . 0.5+ In particular, the response function for the 2D Fermi gas in
> ~\ 00 \ the Landau limit can be expressed in termdkyf, as
/ N > 7
051 J 05 - x6(5,00=N(0)Qy(S) (3.9
A -1.04
AN for T=0 and
0.0 T T | E— -1.5 T T T T T
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1 an
L = __PF
X5(8:7)= 22 ( agp)ﬂoo[s(p)] (3.5
for finite T, wheres(p)=spe:/p. Notice, anyway, that for
any| we haveQ);; =Qqq.
In the zero-temperature case, explicit calculation of the
integral in Eq.(3.3) gives

N
L .S N N
T T T X”,(S):N(O)[5||r_|—2[(s+| 1_3)
9 12 15 18 _
v 2yJ1-s
, .S
FIG. 1. The susceptibility,/N(0) of a free 2D Fermi gas as a —(s—iy1-s?' ']} +N(0)i >
function of energy for different values of the transferred momentum vl-s

and temperature. The left and right columns, respectively, show the
imaginary and real parts of the response of the p-h continuum. All
variables and parameters are dimensionless as defined in text. for s<1 and

xXcog(l'—I)arcos] (3.6

y domains are smoothed away for nonvanishing values of

7. It is worth mentioning that the same behavior is observed L (s)=N(0)
. 9-31 - . e . . . X
in the 3D casé®tin particular, it is interesting to keep in
mind that for the temperatures and transferred momenta u
der consideration, the latter are much more efficient tha
thermal smoothing to reduce the p-h strength in the gas.

Sy — (3.7

\/S:Tl(s_ /SZ_ 1)|/7|

Ebr s>1. We then obtain the Landau limit of the dynamical
susceptibility,

[ll. LANDAU LIMIT

x5(5,0)=N(0)| 1—

O(s—1)+i

s s
s2—1 J1—¢?

®(1—s)1,
The Landau limit corresponds to exposing the liquid to an 3.9
almost homogeneoug €& pg) and static f w<<eg) perturb- '
ing field, however with finite dimensionless phase velocitywith ®(x) the usual step function.
s=m* w/qpg, Wherem* is the effective mass at the Fermi  For finite temperatures, no closed analytical expression
level. Consequently, af=0 the dynamical susceptibility in can be written for the integral overin Eq. (3.5, which is
this limit can be obtained from the general one in E2j5).  thus numerically solved. This has to be contrasted with the
On the other hand, this dynamical susceptibility can be3D cas€® where an exact expression exists for the imagi-
straighforwardly calculated starting from Landau’s kinetic nary part of the susceptibility, and the real part can be cast as
equation(LKE), just like in the 3D cas®?”In two dimen-  an infinite summation over residues of the integrand at the
sions, the LKE remains formally unchanged; however, theéhermal poles of the Fermi occupation numbegs®®>°
multipole expansions of the effective interaction and popula- In Fig. 2 we show the free response function in the Lan-
tion fluctuations must be taken in terms of the orthogonadau limit, given by Eqs(3.4) and (3.5), for different tem-
angular functions in two dimensions}®. These multipole perature values going from 0 to 0.2 in units of the Fermi

expansions now read energy. The thermal effects are the same as in the general
case(Fig. 1), with a noticeable loss of strength for tempera-
5np=2 sn(p)el (3.1) ftures_ up to 0.2 ._For T=0, a dl_verg_enc_e occurs in the
) imaginary part as=1 as we can visualize in E@3.8). The
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FIG. 2. The imaginary and real paitsbove and below, respec- 0.5+ :& 054
tively) of the p-h response in the Landau lirfiit units of N(0)] for N - N
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velocity.

latter is indeed a peculiarity of the 2D Fermi gas, since it FIG. 3. The imaginary part of the dynamical susceptibility in the
does not occur in the 3D system. The appearance of thiguid for interaction strengths,=2.5 (left) and —0.2 (right).
singularity is related to the angular integration that gives riselransferred momentum and temperature are the same as in Fig. 1.
to the response matri.3); since the integration variable is The ordinate of each collective state corresponds to the residue of
the angle itself, rather than aesas in the 3D gas, the Rex atthe pole.

branching point as=1 is a power, rather than a logarithmic,

one Let us first analyze the properties of the collective poles

for finite transferred momentum. Figure 3 displays the imagi-
nary part of the response for the same momenta shown in
IV. MONOPOLE MODEL Fig. 1 for the free gas. The left and right columns, respec-
Lo - . . tively, show results obtained withFy=2.5 and —0.2,
If t_he Ilqwd is ina co_II|5|onIe_ss regime and subjected to aFO=N(O)fO being the dimensionless Landau parameter. For
quasiparticle interaction ~with ~constant =~ momentum-yoqisive interactions, the collective peak moves towards

momentum matrix elements, i.e., in the monopole interactioyighily higher energies, while the width increases to a sig-
model, the response function is obtained in terms of the fregjficant amount; however, for a transferred momentum as

one as high asx=2.3, no collective state is presentlat 0 and we
only observe the smearing of the p-h continuum and broad-
Xo(X,Y,7) 4.1) ening of the resonance in the vecinity of the p-h cutoff. This
1+foxo(x,y,7)’ ' is due to the fact that for this value af the minimum of

. ) ) Rey, is higher than— 1/f,. If we consider an attractive in-
with fo the monopolar Landau parameter in the spin chann&leraction, no collective state may appear and we verify the

under consideration. We must keep in mind that accordmg tQisappearance of the cusp in the p-h strength as the tempera-
the surface sound dataat low densities the value of this tyre increases, similarly to the case of the free gas. More-
parameter Is close to zero but possesses a Iarge uncertaln@xﬁer, the maximum moves towards larger energies with in-
as high as 200%. As in the 3D case, this expression can hgeasingx. It should be remarked that the effect of the
easily derived in the Landau limif;*’ for finite momentum  interaction is to concentrate and redistribute the strength in
and energy transfer, the same holds within the random phaske continuum, giving rise to a sharper cusp and to a curva-
approximation (RPA) frame for thermally excited Fermi ture change at its right-hand side.

XXy, 7)=

liquids 32 In the Landau limit, taking into account E¢3.8), we
We then realize that a collective mode appears, for givereasily find the phase velocities that solve E42) at zero
X, at an energy that solves the equation temperature, namely,
(xy,7)=— = (4.2 (Fg) = —t 00 4.3
XY, 7)=——. . S aa— s} .
Xty fo O T+ IFg2-1
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FIG. 6. Landau limit of the dynamical susceptibiliynaginary

FIG. 4. Zero-temperature strength in the Landau limit for sev-parf for a given repulsive interaction and several temperatures.

eral positive values of the interaction strength.

s=1, causing the collective mode to become broader and to
Equation (4.3 tells us that in the Ilimit Fo>1, merge in the thermally extended p-h continuum. Again, the
so(Fo)=~F/2. Notice thatF is reduced by a factor 1/3 in effect of increasing temperature is essentially the same as for
the 3D case® the 3D liquid.

The imaginary part of the response functionTat 0 is
plotted in Fig. 4 for positive values &f,. We observe that a
collective mode appears at a phase velosigy 1, but in
contrast to the 3D casé there is no damped resonance with
so<1l. We can also verify that as indicated by Hg.3),
so(Fp) is an increasing function of,. As in the general
case, no collective mode exists for negative valueB gHfin
Fig. 5 the distorsion of the p-h continuumst 1 is shown

V. COLLISIONAL REGIME IN THE LANDAU LIMIT

In Ref. 28 we present the full formalism leading to the
construction of the density-density and temperature-density
response of a 3D Fermi liquid in the collisional Landau re-
gime. This scheme makes room for an arbitrary momentum
dependence of the effective interaction between quasiparti-
for Fo between—1 and 0. For lower values &, the system  cles; the main results of the procedure are summarized in the
becomes unstable. We realize that Fas approaches zero Appendix for a simplified situation, namely, the case in
from negative values, the location of the maximum is shiftedvhich the expansion amplitudefs(p,p’) of the effective
towardss= 1, while the intensity increases until the diver- interaction are independent—or weakly dependent—upon
gence of the free response appears. If the interaction strengthe indicated momenta.

decreases further into negative values, the peak drifts ap- Although the system of equatiortd1)—(A3) is cumber-
proachings=0 asF, approaches-1. some to solve in a general case, it can be considerably sim-

On the other hand, Re at s=0 also diverges at Plified in the monopole model, since in that situation one can
Fo=—1; this can be easily understood realizing that fromextract a closed expression for the density fluctuation elimi-

Egs.(3.8) and(4.1), we have, aff =0, the static compress- hating 6T from the two conservation lawgA2) and (A3).
The density-density response is then

ibility
N(0) _ % x*
X:—1+FO, (44) X SU 1+fOXSC' (51)
which exhibits, afF,= — 1, the singularity that indicates the With the screened resposne
onset of instabilities against density fluctuations. A
In Figs. 6 and 7 the imaginary part gf in the Landau s 5.2

limit is shown for several values of reduced temperattire X iaAlTg+ Bl Ngy’
and forFy=2.5 and— 0.2, respectively. As the temperature

increases for a fixedF,, the p-h spectrum spreads beyond being here

6 = 2.0 p
~ ---- R=-09 F=-02 =0.125]
// \ - - — FR=-0.75 =02
! \\ . E,=-0.5 15— A e =04
. 4— ‘4 ' .
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FIG. 5. Same as Fig. 4 for attractive interactions.

FIG. 7. Same as Fig. 6 for an attractive interaction.
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FIG. 8. Imaginary and real partieft and right columns, respec-
tively) of the collisional response in the Landau limit. From top to FIG. 9. Same as Fig. 8 for a temperatdre 0.2 .
bottom, we show the free, screened, and liquid susceptibility at zero
temperature for different values of the collision rate. All quantitiesweaker than the short-range effects that become apparent as

are dimensionless. two particles experience a close encounter. Surface sound
propagating as a hydrodynamic mode in layers'idé, with
o S NooNga— (Ngy)? a velocity that is consistent with vanishing or very small
A=i ;[Xg%z)Xg%o)_(Xé%l))z]Jr S Ny values of the monopole interactiSrrepresents a possible

(5.3 realization of these considerations. Anyway the upper part of
these figures is useful as a reference to observe the evolution

- 3, XE)%Z)Noo— 2)(&(3)1),\'()1,\'004r XE)%O(NO:L)Z' 54 :;()en;StJlreegLé;nst!‘tyxo into x, through the coupling t&p as
S Noo The overall behavior of the dynamical susceptibility in
and these curves is completely equivalent to the 3D ¢ide;
Fig. 8 we realize that for vanishing temperature, increasing
1 m* o the collision rate considerably smoothes the p-h response.
azw,—NooJr W' (5.5 Instead, the coupling to density fluctuations causes the

screened response to exhibit a concentrated low-energy reso-
Here 7, is the relaxation timégiven as an external param- hance, which drifts towards smaller phasg vglocitieS(ras
ete) and w'=w+i/7, is the complex frequency. The becomes larger. When we regard the cool liquid, we can see
momentum-energy correlatiomé,, and the general thermal Lhat éhe ?rf]feCt (I)If rlpnva?lihm%htwo-zartl(t:le CO"'fst!O_TS '? ttr?

. (nm) - ; roaden the collective state with moderate sensitivity of the
response matrig;,, - are defined in EGsA4) and(AS). centroid to the value of. On the other hand, observing Fig.
we learn that the combination of temperature and colli-
onal effects gives rise to a more important dependence of
the collective state with the size of the relaxation rate; in-
deed, the larger the value of, the more the height of the
collective peak is lowered, and the more substantial is the
increase of the width.

Some indicative results are shown in Figs. 8 and 9. |
each of these figures, we plot the imaginary and real partgi
(left and right columns, respectivelyf the p-h response
X6, the screened respongé® and the density-density re-
sponse in the liquidy, as functions of the dimensionless
phase velocitys for three values of the dimensionless relax-
ation ratec=m*/roqpge . While in Fig. 8 the temperature is
T=0, in Fig. 9 we takel=0.2s . Concerning the meaning
of the free susceptibility('a as a function of a complex vari-
ables’=m*w'/gps, one can imagine that it represents a In this work, we have undertaken a detailed study of the
limiting situation where the liquid effects, mostly due to the dynamical susceptibility of two-dimensional Fermi systems.
long-range part of the two-body interaction, are sensitivelyStarting from the free gas exposed to an external probe that

VI. CONCLUSIONS
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may either deposit or extract momentum and energy, wdicas y Tenicas, Argentina, and No. EX071/95 from Univer-
have analyzed the properties of the response of the p-h cosidad of Buenos Aires.

tinuum in the full range of momentum, energy, and tempera-

tures below the degeneracy threshold. The Landau limit of

static and homogeneous systems has received special atten- APPENDIX

tion, in view of its relevance to the 3D gases. A liquid has  The fundamental equations for the response in the pres-
been built introducing the simplest effective interaction, agnce of non-negligible two-quasiparticle collisions consist of
constant one characterized by a strerfggh\We have exam-  ap infinite coupled system for the multipolar amplitudes of
ined the appearance of co_llectlve states and their trend ifhe population fluctuationsn,, together with the density
terms of all involved magnitudes, namely_, tr{:msferred MO4nd temperature onesp and ST. While the relationship
mentum and energy or the phase velocity in the Landaymong the variations in the occupation numbers is derived
limit, as well as the temperature. , _ from the LKE, following a well-known textbook

In the context of static and thermodynamic properties ofyocaduré” the coupling of these variations to those in den-
2D Fermi gases and liquids, it has been pOIntz(g out that theiry and temperature can be expressed by means of the mass
reduced dimensionality introduces no new effectShis is 554 energy conservation laws. These ideas have been already
not the case insofar as transport coefficients are concé?ned'app”ed to a 3D Fermi liquid in which a simplified
a (InT)~* factor in the thermal conductivity and spin difus- nomentum-dependent SP interaction acts between Landau
sion coefficients is a substantial difference with respect to th%uasiparticlegs The generalization to arbitrary momentum
3D system. In the present work we observe another fundgjependence of the interaction has been performed in Ref. 28,
mental difference, namely the fact that the dynamical strucynere it has been shown that starting from the LKE in the
ture factor of the 2D gas in the Landau limit exhibits a powerq|axation time approximation plus the mass-energy conser-

singularity when the phase velocity equals the Fermi oneygtion laws, after some lengthy algebraic st&hspe reaches
This is the only signature of dimensionality upon the dy-ihe set of equations

namical response, since the overall tendency of all quantities
here investigated, as one modifies the temperature or the

transferred momentum, reproduces the behavior of the cor- S| (00,. 9
responding 3D magnitudes. 5n,+; o[ Xty Noodii+| oy fy.
An important manifestation of thermal effects is the ex-
istence of finite quasiparticle lifetimes even in the vecinity of o o'm’
. . ; =—ji—1{s ( (00 _ 5 N )+ # . (00)
the Fermi surface of the noninteracting system. Its relevance s | 9P| HelXio 1o™Noo o°p Xio

to the broadening of colleécgve modes in liquitle has been
remarked by many authorsand cannot be disregarded in
any analysig of Fe);mi liquids at nonvanishing ter?1peratures. T 5T[ﬂTX|<80)+X|(81)]] — Xio(s")6U (A1)
The simplest approach to the problem, which makes room
for the most important phys_ic_al featurgs, consist's of examing, the variations in the occupation numbers,
ing the response in the collisional regime described by Lan-
dau’s kinetic equation. This viewpoint allowed us to learn
about the competition between thermal and collisional ef- O——EE (%9 Ngodio]f,0n
fects as agents for collective mode broadening in films, T g4 WX 00101 T <
which are quite similar to those in 3D liquids. Generally
speaking, we see that finite quasiparticle lifetimes are re- o W' ML\ oo S
sponsible for collective widths to a larger extent than the —dp 'S o%p Xoo + S_u“pNOO
smearing of ther Fermi surface at nonvanishing tempera-
tures, within the scales under consideration. In view of the Y 00, (0nq, S
results obtained in the 3D ca&&3* which confirm the ex- — 6T i7lmpxoo T xoo 1+ 57 (#Noot Noy)
perimental observations concerning zero sound in liquid
%He, it is apparent that this is a very general property of —x5Y 86U (A2)
Fermi systems.
Finally, we wish to remark that experimental data on thefor the mass conservation law, and
excitation spectrum and transport properties of 2D Fermi lig-
uids will be substantial to ascertain the validity of linear S
response and Le_mdau theory r_estrlcted to the_ reduced d!men- 0=— —,E [XI<81)_ No18i0]f; 0N,
sionality. In particular, we believe that, in spite of the sim- S
plicity of the proposed interaction, the monopolar model

! *

Mot

could describe in a first aproximation the excitation spectrum _soli o N ww’m/’: (01) S N
of submonolayers of liquid®He formed upon graphite or PIVST| B a’p Xoo T grKpiNon
bulk “He.
.o 0D, (027, 3
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for energy conservation. s'(p)=s(p)+io(p)
In these expressions we have introduced the momentum- -
energy correlation _em (p)
ap
1 an AR om*(p) . m*(p)
- _ P02k = +i , A6
Nom Azp: «98p) ( T ) (A%) qp 700 P (A6)
while s"=m* w/qpg+im*/ is taken at the Fermi
and the general thermal response matrix level. @/ape To4Pe
Here 74 is the assumed relaxation time of the liquid; thus
1 an AL o is the dimensionless collision rate. In addition, we have
X|(|nrm)(s,): KZ ( _ a_p)ﬂll '[S/(p)]pn( pT ) written the paramete%%
o™ Noo
In particular,Nge=Ngy(T) is the averaged density of states gnd
whose zero-temperature value N{0), while x{2 is the Noj
density-density response of the free 2D Fermi gas in Eq. MT=" N (A8)
(3.5. Furthermore,s’(p) is the complex dimensionless 0o

phase velocity of the perturbation, in units of the velocity ofand the effective masm;::m*(pﬂ), p, being the momen-
a quasiparticle having momentum and effective mass tum at which the quasiparticle energy equals the chemical
m* (p), potential w.
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