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We perform a detailed study of the dynamical susceptibility of two-dimensional Fermi gases and liquids, in
terms of the momentum and energy transferred to the system by an external probe, and both at zero and at finite
temperatures. The response of a noninteracting system is computed and analyzed together with that of a liquid
subjected to a monopole interaction, paying special attention to the Landau limit. The disappearance of Pauli
blocking associated with thermal effects is examined in the frame of the collisional Landau regime. All results
are compared to the equivalent ones obtained for a three-dimensional Fermi liquid.@S0163-1829~96!09333-2#

I. INTRODUCTION

In the past decades there have been several experiments
with 3He adsorbed on graphite and on bulk4He.1,2 With
such substrates the two-dimensional~2D! signatures of these
thin films have been clearly established.

Heat-capacity results presented for3He adsorbed on
graphite allow their identification as a fluid: Above a few
kelvin degrees the heat capacity approacheskB per atom,
resembling a 2D gas behavior,3 while between roughly 3 and
50 mK the Fermi system is degenerate and the measured heat
capacity is almost proportional to the temperature.4 Greywall
and Busch have reported a sharp break in the trend of the
data at 3.2 mK, below which the decrease of the heat capac-
ity with temperature is faster.5 Measurements of magnetic
susceptibility and NMR relaxation times at temperatures be-
tween 0.4 and 4 K suggest a weakly interacting 2D gas
behavior.6 Within a hard-core model, these experimental re-
sults are very well fitted by the 2D Landau Fermi-liquid
approach for finite temperatures developed by Havens-Sacco
and Widom.7

Determinations of the surface tension8,9 and the velocity
of surface sound propagating in3He-4He mixtures9 show
that the two-dimensional3He layer formed at the bulk
4He-vacuum interface behaves as an almost ideal 2D gas of
Fermi quasiparticles. The binding energy at the surface and
the effective mass of this 2D gas are 2.2 K and 1.453He
atomic masses, respectively, and the effective interaction be-
tween the quasiparticles is found to be very weak and pre-
dominantly repulsive at large distances.9 In Ref. 10, a calcu-
lation of transport coefficients in a two-dimensional Fermi-
liquid, using the Landau Fermi-liquid theory, predicts the
thermal conductivity, spin diffusion, and transverse viscosity
for these liquid3He submonolayers.

Films of 3He are also present in3He-4He mixtures films
when the atoms of3He are adsorbed on thin films of4He,
which are themselves either partially or fully adsorbed on a
solid substrate. These3He coverages constitute objects of
research by themselves, since their properties are substan-
tially different from those of layers on the surface of bulk
4He. Although there is some evidence of the two-
dimensional behavior of these layers,11–13 their description
becomes more complicated as long as the4He film thickness

is increased,14–17 since the3He inside the film may behave
either as a 2D or 3D system.

The existence of systems closely behaving as a two-
dimensional Fermi liquid has forced the extension of the
available theories of Fermi liquids to the lower dimensional-
ity involved. In addition to the works already mentioned, this
goal has been pursued by several authors giving rise to cal-
culations of parameters of a Fermi gas with hard-core
interactions,18 thermodynamic and frequency-dependent
magnitudes of a charged 2D Fermi gas,19 and quasiparticle
energies and effective interaction in the frame of Landau
theory.20,21 More recently, the possibility of mapping 2D
quantum fluids into classical ones that interact according to
potentials in phase space, rather than in configuration space,
has been discussed.22

In spite of the existence of several studies concerning the
dynamical response of 2D electronic systems,23,24 the spec-
trum of collective excitations in 2D neutral Fermi liquids has
not been investigated to a deep extent, neither from the ex-
perimental nor from the theoretical viewpoint. Then, the pur-
pose of this work is to perform a detailed study of the dy-
namical susceptibility of a two-dimensional Fermi system.
Such an investigation includes the analysis of the free gas
and of the liquid at arbitrary nonvanishing temperatures. As
pointed out in various contexts concerning Fermi liquids
~see, for example, Ref. 25!, whenever such a system is ther-
mally excited, Pauli blocking effects are smoothed away due
to the presence of finite collision rates. It is then important to
manage as well the response to external fields in the colli-
sional regime. To accomplish these purposes, the present pa-
per is structured as follows. In Sec. II we present a detailed
calculation of the exact dynamical susceptibility of a 2D
Fermi gas as a function of the momentum and energy trans-
ferred by an external probe, with the temperature as a param-
eter. In Sec. III we investigate the low-momentum–low-
energy case, in other words, the so-called Landau limit.26,27

The response of a two-dimensional liquid characterized by a
monopole interaction is analyzed in Sec. IV both for arbi-
trary momentum and energy and for the Landau limit. Sec-
tion V contains an abridged reference to a recently developed
formalism for the response of a 3D liquid in the collisional
Landau regime;28 this formulation is here adapted to the
lower dimensionality and its consequences are examined at
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zero and at finite temperatures. The conclusions are summa-
rized in Sec. VI.

II. RESPONSE FUNCTION OF A TWO-DIMENSIONAL
FERMI GAS

The response function per unit areaA of a two-
dimensional Fermi liquid at arbitrary temperatureT is

x~q,v!52
1

A(
p

^puÔup1q&u2
np2np1q

«p1q2«p2\v2 i01 ,

~2.1!

whereÔ is the transition operator,q andv are the momen-
tum and energy transferred by the probe, respectively,«p , is
the energy of the particles having momentum,p andnp is the
Fermi distribution. If the system is a free Fermi gas, the
transition matrix elements are unity, the single-particle~SP!
spectrum is just the kinetic one, and the dynamical response
is the free 2D susceptibilityx0. As in the 3D case,29 the latter
can be exactly computed at zero temperature. For this sake,
we introduce the dimensionless variablesx5q/pF ,
h5p/pF , y5\v/«F , and t5kBT/«F , wherepF and «F ,
respectively, are the momentum and energy at the Fermi sur-
face of a gas of fermions atT50. Furthermore, leta1 and
a2 be

a15
1

2 S yx2xD ~2.2!

and

a25
1

2 S yx1xD . ~2.3!

In terms of these variables, after carrying the angular inte-
gration, the dynamical susceptibility of the particle-hole
~p-h! continuum reads, at any temperature,

x0~x,y,t!5
2N~0!

x F sgn~a2!E
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2 i
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2
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`
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Ah22a1
2G , ~2.4!

whereN(0)5gm/2p\2, with g the spin degeneracy, is the
density of states per unit area on the Fermi surface, and
sgn(x)5uxu/x.
At zero temperature, the occupation numbersn(h) in Eq.

~2.4! are step functions and the integrals must be performed
observing the three different possibilities that may relatex to
y, namely,~i! ua1u,1, ua2u,1; ~ii ! ua1u,1, ua2u.1; and
~iii ! ua1u.1, ua2u.1 . According to these relationships, we
obtain
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12
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12
i

x
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22A12a1
2! for uyu<sgn~22x!~2x2x2!,

12
1

x
~Aa2

2212 iA12a1
2! for sgn~22x!~2x2x2!<y<2x1x2,

12
1

x
~Aa2

2212Aa1
221! for 2x1x2<y.

~2.5!

This result formally coincides with that obtained by Stern23

for the polarizability of a two-dimensional electron gas.
Straightforward computation of the dynamical structure

factorS(q,v,T),

S~q,v,T!5
1

A(
p

^puÔup1q&u2np~12np1q!

3d~«p1q2«p2\v!, ~2.6!

for the free Fermi gas permits us to verify that

Imx0~q,v,T!52p@S~q,v,T!2S~q,2v,T!#, ~2.7!

as expected.
If the liquid is thermally excited, the integral in Eq.~2.4!

cannot be done analytically, opposite to the case of the 3D
system.29–31A numerical integration leads to the results dis-
played in Fig. 1, where the imaginary and real parts of
x0(x,y,t) are plotted in the left and right columns, respec-
tively, as functions of positivey for different values oft and
for x50.5, 1, and 2.3. As we can see in this figure, the
response function extends over a larger range of frequencies
y as x increases at fixedt or as t increases at fixedx.
Likewise, the amplitude of both Rex0 and Imx0 diminish.
Furthermore, all cusps that correspond to matching different
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y domains are smoothed away for nonvanishing values of
t. It is worth mentioning that the same behavior is observed
in the 3D case;29–31 in particular, it is interesting to keep in
mind that for the temperatures and transferred momenta un-
der consideration, the latter are much more efficient than
thermal smoothing to reduce the p-h strength in the gas.

III. LANDAU LIMIT

The Landau limit corresponds to exposing the liquid to an
almost homogeneous (q!pF) and static (\v!«F) perturb-
ing field, however with finite dimensionless phase velocity
s5m*v/qpF , wherem* is the effective mass at the Fermi
level. Consequently, atT50 the dynamical susceptibility in
this limit can be obtained from the general one in Eq.~2.5!.
On the other hand, this dynamical susceptibility can be
straighforwardly calculated starting from Landau’s kinetic
equation~LKE!, just like in the 3D case.26,27 In two dimen-
sions, the LKE remains formally unchanged; however, the
multipole expansions of the effective interaction and popula-
tion fluctuations must be taken in terms of the orthogonal
angular functions in two dimensions,eia. These multipole
expansions now read

dnp5(
p

dnl~p!eil a ~3.1!

for the population fluctuations and

f pp85(
l
f l~p,p8!eil app8 ~3.2!

for the effective interaction. Herea denotes the angle be-
tweenp andq, whileapp8 corresponds to that betweenp and
p8.

One then needs to redefine the response matrix27,21

V l l 8~s!5
1

2pE0
2p

da
cosa

cosa2s2 i01 ei ~ l 82 l !a. ~3.3!

In particular, the response function for the 2D Fermi gas in
the Landau limit can be expressed in terms ofV00 as

x0
L~s,0!5N~0!V00~s! ~3.4!

for T50 and

x0
L~s,t!5

1

A(
p

S 2
]np
]«p

DV00@s~p!# ~3.5!

for finite T, wheres(p)5spF /p. Notice, anyway, that for
any l we haveV l l5V00.

In the zero-temperature case, explicit calculation of the
integral in Eq.~3.3! gives

x l l 8
L

~s!5N~0!H d l l 82 i
s

2A12s2
@~s1 iA12s2! l 82 l

2~s2 iA12s2! l 82 l #J 1N~0!i
s

A12s2

3cos@~ l 82 l !arcoss# ~3.6!

for s,1 and

x l l 8
L

~s!5N~0!Fd l l 82
s

As221
~s2As221! l 82 l G ~3.7!

for s.1. We then obtain the Landau limit of the dynamical
susceptibility,

x0
L~s,0!5N~0!F12

s

As221
Q~s21!1 i

s

A12s2
Q~12s!G ,

~3.8!

with Q(x) the usual step function.
For finite temperatures, no closed analytical expression

can be written for the integral overp in Eq. ~3.5!, which is
thus numerically solved. This has to be contrasted with the
3D case,28 where an exact expression exists for the imagi-
nary part of the susceptibility, and the real part can be cast as
an infinite summation over residues of the integrand at the
thermal poles of the Fermi occupation numbersnp .

28,29

In Fig. 2 we show the free response function in the Lan-
dau limit, given by Eqs.~3.4! and ~3.5!, for different tem-
perature values going from 0 to 0.2 in units of the Fermi
energy. The thermal effects are the same as in the general
case~Fig. 1!, with a noticeable loss of strength for tempera-
tures up to 0.2«F . For T50, a divergence occurs in the
imaginary part ass51 as we can visualize in Eq.~3.8!. The

FIG. 1. The susceptibilityx0 /N(0) of a free 2D Fermi gas as a
function of energy for different values of the transferred momentum
and temperature. The left and right columns, respectively, show the
imaginary and real parts of the response of the p-h continuum. All
variables and parameters are dimensionless as defined in text.
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latter is indeed a peculiarity of the 2D Fermi gas, since it
does not occur in the 3D system. The appearance of this
singularity is related to the angular integration that gives rise
to the response matrix~3.3!; since the integration variable is
the angle itself, rather than cosa as in the 3D gas, the
branching point ats51 is a power, rather than a logarithmic,
one.

IV. MONOPOLE MODEL

If the liquid is in a collisionless regime and subjected to a
quasiparticle interaction with constant momentum-
momentum matrix elements, i.e., in the monopole interaction
model, the response function is obtained in terms of the free
one as

x~x,y,t!5
x0~x,y,t!

11 f 0x0~x,y,t!
, ~4.1!

with f 0 the monopolar Landau parameter in the spin channel
under consideration. We must keep in mind that according to
the surface sound data,9 at low densities the value of this
parameter is close to zero but possesses a large uncertainty,
as high as 200%. As in the 3D case, this expression can be
easily derived in the Landau limit;26,27 for finite momentum
and energy transfer, the same holds within the random phase
approximation ~RPA! frame for thermally excited Fermi
liquids.32

We then realize that a collective mode appears, for given
x, at an energyy that solves the equation

x0~x,y,t!52
1

f 0
. ~4.2!

Let us first analyze the properties of the collective poles
for finite transferred momentum. Figure 3 displays the imagi-
nary part of the response for the same momenta shown in
Fig. 1 for the free gas. The left and right columns, respec-
tively, show results obtained withF052.5 and 20.2,
F05N(0) f 0 being the dimensionless Landau parameter. For
repulsive interactions, the collective peak moves towards
slightly higher energies, while the width increases to a sig-
nificant amount; however, for a transferred momentum as
high asx52.3, no collective state is present atT50 and we
only observe the smearing of the p-h continuum and broad-
ening of the resonance in the vecinity of the p-h cutoff. This
is due to the fact that for this value ofx, the minimum of
Rex0 is higher than21/f 0. If we consider an attractive in-
teraction, no collective state may appear and we verify the
disappearance of the cusp in the p-h strength as the tempera-
ture increases, similarly to the case of the free gas. More-
over, the maximum moves towards larger energies with in-
creasingx. It should be remarked that the effect of the
interaction is to concentrate and redistribute the strength in
the continuum, giving rise to a sharper cusp and to a curva-
ture change at its right-hand side.

In the Landau limit, taking into account Eq.~3.8!, we
easily find the phase velocities that solve Eq.~4.2! at zero
temperature, namely,

s0~F0!5
111/F0

A~111/F0!
221

. ~4.3!

FIG. 2. The imaginary and real parts~above and below, respec-
tively! of the p-h response in the Landau limit@in units ofN(0)# for
different temperatures, as a function of the dimensionless phase
velocity.

FIG. 3. The imaginary part of the dynamical susceptibility in the
liquid for interaction strengthsF052.5 ~left! and 20.2 ~right!.
Transferred momentum and temperature are the same as in Fig. 1.
The ordinate of each collective state corresponds to the residue of
Rex at the pole.
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Equation ~4.3! tells us that in the limit F0@1,
s0(F0)'AF0/2. Notice thatF0 is reduced by a factor 1/3 in
the 3D case.26

The imaginary part of the response function atT50 is
plotted in Fig. 4 for positive values ofF0. We observe that a
collective mode appears at a phase velocitys0.1, but in
contrast to the 3D case,28 there is no damped resonance with
s0,1. We can also verify that as indicated by Eq.~4.3!,
s0(F0) is an increasing function ofF0. As in the general
case, no collective mode exists for negative values ofF0; in
Fig. 5 the distorsion of the p-h continuum ats,1 is shown
for F0 between21 and 0. For lower values ofF0 the system
becomes unstable. We realize that asF0 approaches zero
from negative values, the location of the maximum is shifted
towardss51, while the intensity increases until the diver-
gence of the free response appears. If the interaction strength
decreases further into negative values, the peak drifts ap-
proachings50 asF0 approaches21.

On the other hand, Rex at s50 also diverges at
F0521; this can be easily understood realizing that from
Eqs.~3.8! and ~4.1!, we have, atT50, the static compress-
ibility

x5
N~0!

11F0
, ~4.4!

which exhibits, atF0521, the singularity that indicates the
onset of instabilities against density fluctuations.

In Figs. 6 and 7 the imaginary part ofx in the Landau
limit is shown for several values of reduced temperaturet
and forF052.5 and20.2, respectively. As the temperature
increases for a fixedF0, the p-h spectrum spreads beyond

s51, causing the collective mode to become broader and to
merge in the thermally extended p-h continuum. Again, the
effect of increasing temperature is essentially the same as for
the 3D liquid.

V. COLLISIONAL REGIME IN THE LANDAU LIMIT

In Ref. 28 we present the full formalism leading to the
construction of the density-density and temperature-density
response of a 3D Fermi liquid in the collisional Landau re-
gime. This scheme makes room for an arbitrary momentum
dependence of the effective interaction between quasiparti-
cles; the main results of the procedure are summarized in the
Appendix for a simplified situation, namely, the case in
which the expansion amplitudesf l(p,p8) of the effective
interaction are independent—or weakly dependent—upon
the indicated momenta.

Although the system of equations~A1!–~A3! is cumber-
some to solve in a general case, it can be considerably sim-
plified in the monopole model, since in that situation one can
extract a closed expression for the density fluctuation elimi-
nating dT from the two conservation laws~A2! and ~A3!.
The density-density response is then

x5
dr

dU
5

xsc

11 f 0x
sc, ~5.1!

with the screened resposne

xsc5
A

iaA/t01vB/v8N00
, ~5.2!

being here

FIG. 4. Zero-temperature strength in the Landau limit for sev-
eral positive values of the interaction strength.

FIG. 5. Same as Fig. 4 for attractive interactions.

FIG. 6. Landau limit of the dynamical susceptibility~imaginary
part! for a given repulsive interaction and several temperatures.

FIG. 7. Same as Fig. 6 for an attractive interaction.
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A5 i
s

s8
@x00

~02!x00
~00!2~x00

~01!!2#1
s

s8

N00N022~N01!
2

N00
,

~5.3!

B5 i
s

s8

x00
~02!N0022x00

~01!N01N001x00
~00~N01!

2

N00
, ~5.4!

and

a5
1

v8N00
1
m*v

q2r
. ~5.5!

Here t0 is the relaxation time~given as an external param-
eter! and v85v1 i /t0 is the complex frequency. The
momentum-energy correlationsN00 and the general thermal
response matrixx l l 8

(nm) are defined in Eqs.~A4! and ~A5!.
Some indicative results are shown in Figs. 8 and 9. In

each of these figures, we plot the imaginary and real parts
~left and right columns, respectively! of the p-h response
x0
L , the screened responsexsc, and the density-density re-

sponse in the liquid,x, as functions of the dimensionless
phase velocitys for three values of the dimensionless relax-
ation rates5m* /t0qpF . While in Fig. 8 the temperature is
T50, in Fig. 9 we takeT50.2«F . Concerning the meaning
of the free susceptibilityx0

L as a function of a complex vari-
able s85m*v8/qpF , one can imagine that it represents a
limiting situation where the liquid effects, mostly due to the
long-range part of the two-body interaction, are sensitively

weaker than the short-range effects that become apparent as
two particles experience a close encounter. Surface sound
propagating as a hydrodynamic mode in layers of3He, with
a velocity that is consistent with vanishing or very small
values of the monopole interaction,9 represents a possible
realization of these considerations. Anyway the upper part of
these figures is useful as a reference to observe the evolution
from the quantityx0

L into x, through the coupling todr as
measured byxsc.

The overall behavior of the dynamical susceptibility in
these curves is completely equivalent to the 3D case;28 in
Fig. 8 we realize that for vanishing temperature, increasing
the collision rate considerably smoothes the p-h response.
Instead, the coupling to density fluctuations causes the
screened response to exhibit a concentrated low-energy reso-
nance, which drifts towards smaller phase velocities ass
becomes larger. When we regard the cool liquid, we can see
that the effect of nonvanishing two-particle collisions is to
broaden the collective state with moderate sensitivity of the
centroid to the value ofs. On the other hand, observing Fig.
9 we learn that the combination of temperature and colli-
sional effects gives rise to a more important dependence of
the collective state with the size of the relaxation rate; in-
deed, the larger the value ofs, the more the height of the
collective peak is lowered, and the more substantial is the
increase of the width.

VI. CONCLUSIONS

In this work, we have undertaken a detailed study of the
dynamical susceptibility of two-dimensional Fermi systems.
Starting from the free gas exposed to an external probe that

FIG. 8. Imaginary and real parts~left and right columns, respec-
tively! of the collisional response in the Landau limit. From top to
bottom, we show the free, screened, and liquid susceptibility at zero
temperature for different values of the collision rate. All quantities
are dimensionless.

FIG. 9. Same as Fig. 8 for a temperatureT50.2«F .
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may either deposit or extract momentum and energy, we
have analyzed the properties of the response of the p-h con-
tinuum in the full range of momentum, energy, and tempera-
tures below the degeneracy threshold. The Landau limit of
static and homogeneous systems has received special atten-
tion, in view of its relevance to the 3D gases. A liquid has
been built introducing the simplest effective interaction, a
constant one characterized by a strengthF0. We have exam-
ined the appearance of collective states and their trend in
terms of all involved magnitudes, namely, transferred mo-
mentum and energy or the phase velocity in the Landau
limit, as well as the temperature.

In the context of static and thermodynamic properties of
2D Fermi gases and liquids, it has been pointed out that the
reduced dimensionality introduces no new effects.19 This is
not the case insofar as transport coefficients are concerned;10

a (lnT)21 factor in the thermal conductivity and spin difus-
sion coefficients is a substantial difference with respect to the
3D system. In the present work we observe another funda-
mental difference, namely the fact that the dynamical struc-
ture factor of the 2D gas in the Landau limit exhibits a power
singularity when the phase velocity equals the Fermi one.
This is the only signature of dimensionality upon the dy-
namical response, since the overall tendency of all quantities
here investigated, as one modifies the temperature or the
transferred momentum, reproduces the behavior of the cor-
responding 3D magnitudes.

An important manifestation of thermal effects is the ex-
istence of finite quasiparticle lifetimes even in the vecinity of
the Fermi surface of the noninteracting system. Its relevance
to the broadening of collective modes in liquid3He has been
remarked by many authors33 and cannot be disregarded in
any analysis of Fermi liquids at nonvanishing temperatures.
The simplest approach to the problem, which makes room
for the most important physical features, consists of examin-
ing the response in the collisional regime described by Lan-
dau’s kinetic equation. This viewpoint allowed us to learn
about the competition between thermal and collisional ef-
fects as agents for collective mode broadening in films,
which are quite similar to those in 3D liquids. Generally
speaking, we see that finite quasiparticle lifetimes are re-
sponsible for collective widths to a larger extent than the
smearing of ther Fermi surface at nonvanishing tempera-
tures, within the scales under consideration. In view of the
results obtained in the 3D case,28,34 which confirm the ex-
perimental observations concerning zero sound in liquid
3He, it is apparent that this is a very general property of
Fermi systems.

Finally, we wish to remark that experimental data on the
excitation spectrum and transport properties of 2D Fermi liq-
uids will be substantial to ascertain the validity of linear
response and Landau theory restricted to the reduced dimen-
sionality. In particular, we believe that, in spite of the sim-
plicity of the proposed interaction, the monopolar model
could describe in a first aproximation the excitation spectrum
of submonolayers of liquid3He formed upon graphite or
bulk 4He.
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APPENDIX

The fundamental equations for the response in the pres-
ence of non-negligible two-quasiparticle collisions consist of
an infinite coupled system for the multipolar amplitudes of
the population fluctuationsdnl , together with the density
and temperature ones,dr and dT. While the relationship
among the variations in the occupation numbers is derived
from the LKE, following a well-known textbook
procedure,27 the coupling of these variations to those in den-
sity and temperature can be expressed by means of the mass
and energy conservation laws. These ideas have been already
applied to a 3D Fermi liquid in which a simplified
momentum-dependent SP interaction acts between Landau
quasiparticles.25 The generalization to arbitrary momentum
dependence of the interaction has been performed in Ref. 28,
where it has been shown that starting from the LKE in the
relaxation time approximation plus the mass-energy conser-
vation laws, after some lengthy algebraic steps,28 one reaches
the set of equations

dnl1(
l 8

s

s8
Fx l l 8

~00!
1 i

s

s8
N00d l l 8Gdnl 8 f l 8

52 i
s

s8 H drFmr~x l0
~00!2d l0N00!1

vv8mm*

q2r
x l0

~00!G
1dT@mTx l0

~00!1x l0
~01!#J 2x l0~s8!dU ~A1!

for the variations in the occupation numbers,

052
s

s8(l @x l0
~00!2N00d l0# f ldnl

2drH i s

s8
S mr1

vv8mm*

q2r Dx00
~00!1

s

s8
mrN00J

2dTH i s

s8
@mrx00

~00!1x00
~01!#1

s

s8
~mTN001N01!J

2x00
~00!dU ~A2!

for the mass conservation law, and

052
s

s8(l @x l0
~01!2N01d l0# f ldnl

2drH i s

s8
S mr1

vv8mm*

q2r Dx00
~01!1

s

s8
mrN01J

2dTH i s

s8
@mrx00

~01!1x00
~02!#1

s

s8
~mTN011N02!J

2x00
~01!dU ~A3!
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for energy conservation.
In these expressions we have introduced the momentum-

energy correlation

Nnm5
1

A(
p

S 2
]np
]«p

D pnS «p2m

T Dm ~A4!

and the general thermal response matrix

x l l 8
~nm!

~s8!5
1

A(
p

S 2
]np
]«p

DV l l 8@s8~p!#pnS «p2m

T Dm.
~A5!

In particular,N00[N0(T) is the averaged density of states
whose zero-temperature value isN(0), while x00

(00) is the
density-density response of the free 2D Fermi gas in Eq.
~3.5!. Furthermore,s8(p) is the complex dimensionless
phase velocity of the perturbation, in units of the velocity of
a quasiparticle having momentump and effective mass
m* (p),

s8~p!5s~p!1 is~p!

5
v8m* ~p!

qp

5
vm* ~p!

qp
1 i

m* ~p!

t0qp
, ~A6!

while s85m*v/qpF1 im* /t0qpF is taken at the Fermi
level.

Heret0 is the assumed relaxation time of the liquid; thus
s is the dimensionless collision rate. In addition, we have
written the parameters28

mr5
11N00f 0

N00
~A7!

and

mT52
N01

N00
, ~A8!

and the effective massmm*5m* (pm), pm being the momen-
tum at which the quasiparticle energy«p equals the chemical
potentialm.
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