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Continuum electrodynamics of type-Il superconductors in the mixed state:
The dc and ac response
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The dc and ac response of the ideal type-Il superconductor in the mixed state is analyzed in the frame of a
continuum electrodynamics, in which all fields are averaged on a scale exceeding the intervortex distance. The
results of previous calculations are brought together and compared, while paying special attention to the role of
the vortex line tension and the normal current. The electromagnetic response is studied in the whole range of
magnetic fields and frequencies. The possible effect of the normal current on vortex motion is discussed. We
argue in this respect that existing theories, where the Lorentz force involves the normal current, are not
consistent with Onsager relations. Due to vortex line tension the external fields penetrate into a superconductor
as a superposition of two modes with different complex wave numbibes two-mode electrodynamics
Obtained expressions for the surface impedance should permit one to determine the parameters of the theory
from the experiment and to discriminate different models of vortex mofi®6163-18206)02134-7

[. INTRODUCTION properly in the ac response calculation in Ref. 9. The most
important outcome of this work was that the external elec-
Observation of the dc and ac responses of supercondudrromagnetic field penetrates the superconductor in the form
ors to the external electromagnetic fields is a powerfulof the superposition of two modésvo-mode electrodynam-
method of their experimental investigation. Therefore, a lotics): one has a long penetration depth equal to the skin depth
of work has been done to analyze and calculate thisletermined byp; and is common for any conductor. The
responsé.‘9 This analysis can be done within the frame of second mode is related to the vortex line degree of freedom
the continuum approach which deals with the macroscopi@nd penetrates to a much shorter distance slightly more than
fields a\/eraged on a |arge scale Compared with the Vortewe intervortex SpaCing. Earlier this distance, which we shall
line (VL) spacinga. However, there is a problem to write Call the vortex length\y, appeared in the vortex dynamics

- : ) . ; 14,15 :
equations of continuum electrodynamics properly, i.e., not tdOr rotating superfiuid$'® and for superconductors in Ref.
forget some relevant terms or forces. 12. It was shown that the second mode is crucial for incor-

orating the surface pinning into the theory. However, the
ormal currents have been neglected in Ref. 9, that restricts

In principle, one can derive these equations on averaginrﬁ
validity of the theory to low magnetic fields.

from a more basic theory for smaller scales, like the Londo
or Ginzburg-LandayGL) theories. This yields not only the

structure of equations, but also the magnitudes of all param- The normal currents have been taken into account by Cof-
orea : : 9 Paray, . and Clem(CC).”® They included also vortex bulk pin-
eters which enter the continuum theory. However, in this

_ . . L ning and creep into their theory, but neglected the VL ten-
case, one is restricted to some simple situations or vortey; assuming that the latter would yield only small

configurations, which are not always adequate to the variety, e ction to magnetization. In order to introduce the normal
of experimental objects. The second way is to derive g rents into the theory, one should decide if there is any

continuum electrodynamics from the general conservatio f th | i tex. CC d that
laws and symmetry arguments. This method has been su orce ot the normai current, on a vortex. assumed tha

cessfully exploited for derivation of continuum hydrodynam- this force was like that of the supercurrelt, so that they

ics of rotating He ll(a counterpart of the continuum electro- wrote the Lorentz force with the total curredt=Jg+J,,.

dynamics for neutral superfluid¥® For superconductors However, as will be shown in the present paper, the intro-

such a theory has been initiated by Abrikosov, Kemoklidzeduction of any force from the normal current on a vortex

and KhalatnikoV! and later developed in an essentially moreimplies that there is also a reciprocal force driving the nor-

general form by Mathieu and Simdivs).1213 mal current. The latter is required by Onsager symmetry.
First works on the a.c. resporideusually neglected nor- This force was ignored by CC. Thus the effect of the normal

mal currents and the VL tension. Neglecting line tensioncurrents also needs to be revised.

amounts to only retaining that paf?/2u,, of the elastic This paper has two objecté) to extend the continuum-

energy which is associated with the macroscopic averagelectrodynamics theory of the linear response in the mixed

field B. The theory was reduced to that for the normal non-State over the whole field rangtzom 0 toB.), by introduc-
magnetic conductor, but with the flux-flow resistivigy. For  ing a normal componerd, and retaining line tension effects;
the first time, the VL tension has been taken into accountii) to bring out and discuss the common features and dis-
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crepancies in the basic equations for vortex motion given byhall consider(steady or oscillatoryone-dimensionnal vor-
different authors, which lead to different dispersion equatex motions ¢/dx=d/dy=0). Furthermore, we assume low
tions. to moderate currentsand/or exciting fields so that the
Moreover it will be instructive to discuss the role and the sample is quasi-isothermal and the vortex array only under-
place of the vortex elasticity in continuum electrodynamics.goes slight deformations with respect to the uniform array of
A widely used approach is to present the electrodynamicastraight vortices parallel ta, with the equilibrium density
equations in terms of the only vortex displacemants,t); ~ N= 1/ma’=B/¢o. _ _
following Brandt® this compels to introduce nonlocal — The plan of the paper is the following. In Sec. I, the MS
k-dependent elastic moduli. In a sense this procedure i©rmalism is presented and dependences of different param-
against the spirit of the elasticity theory which is supposed t&ters on the magnetic field are discussed. Section |1l is de-
be alocal theory presented in terms of differential equationsV0ted to the dc response in the flux-flow regime. In Sec. IV,
only. Furthermore, as will be shown below, when normal”_‘e dc response is reconsidered so as to account for a pos-
currents are involved, the nonlocal moduli should depend notiP!€ Jn component of the Lorentz force; this requires one to

only on wave number, but also on frequency, i.e., they aréntroduce a crossterm into the linear dynamica! lawgdrm
nonlocal in space and time. But it is possible to conneci the tex). The effect of such a cross-term in the ac re-
elastic moduli only with the vortex line energy, while treat- SPonse is discussed in the Appendix in the frame of the one-
ing the energy of the macroscopic magnetic field and thdénode electrodynamlc§ ignoring the line tension effeqt. It is
transport currents separately. This leadsktindependent Shown that the analysis of Coffey and Cledves not satisfy
elastic moduli as introduced in Ref. 9. This procedure isthe Onsager relations and their results concerning the ac re-
analogous to what is usually done with the long-range CouSPONSe are revised. _ ,

lomb interaction in the elasticity theory of atomic crystals. N Sec. V, we analyze the ac response including the vortex
One introduces the electrical mean field and the correspondin® tension, which results in the two-mode electrodynamics.
ing electrostatic energy which depends on the atomic dis]h€ two-mode effects are especially important at low mag-
placements over the whole crystal. After that, the additional’€tic fields and low frequencies. In the end of this section the
deformation energy may be given in terms of local elasticre|at'°,”. of.our theory to.dlfferent concepts of the elastic
moduli. In fact, the local elastic moduli were already in- moduli is discussed. Section VI extends the presented theory

volved in the general phenomenological theory of MS, but inf© include vortex pinning. Other effects relevant for real su-
different terms and notations. perconductors are also discussed. Finally, Sec. VII contains

In the MS theory, the local vortex structure is describedth® resume of theory and conclusions.
by the vectorw=ngyv gathering the flux quanturg,, the
vortex densityn (the vortex number per unit area in a plane
normal to vortices or, in otherﬁterms, the length of VL per Neglecting space charge and electrostatic effects on a
unit volume, and the directiorv of the vortex lines; simi- macroscopic scale, and assuming that the superfluid density,
larly, in the Bekarevich-Khalatniko¢BK) theory of the He  n = 2(r 1), satisfies rigidly its equilibrium conditions, as if
Il, @=nxv wherex is the quantum of circulatiotf, By us- it relaxed instantaneously, the free-energy denBityan be
ing the only parametei) to describe the vortex lattice, dif- expressed in terms of a reduced number of local macroscopic
ferences in free energy between different lattices of sameariables, namely the magnetic fiedg the supercurrent den-

density (triangular or square for examplare deliberately sity js (or the superfluid velocity field7s), the vortex field
ignored in the BK and MS theories. Thus the shear rigidity - and the temperatur®. HereB.J. V. stand for the mac-
given by the minute shear modul@sg is ignored:’ Other- P ' si Vs

: : . roscopic averages of the corresponding “microscopic” mag-
wise, the MS equations account for all elastic effects associ- P 9 P 9 p 9

ated with line-tension and compression of vortices. netic field b, supercurrentjs and superfluid velocitys;
In most of this paper we shall restrict our discussion tovs,]s are defined from the order parameter: pe'? by
isotropic materials and perfect homogeneous samples, free

Il. THE MS FORMALISM

from all surface or volume defects. In particular, this means ps=%V 9=2mv—2ea, D)
that the sample surface is assumed to be ideally smooth. R .
Indeed, the basic problems of vortex dynamics discussed in js=—2ep?vs, 2

the present paper are independent of pinning problems, and it . )

is worth first considering the behavior of an ideal sampleWhereps is the momentum field of the supercurrent,and
However, there is no doubt that defects play a dominant role- e are the electronic mass and charge, anid the vector
in determining the ac response of an actual sample, and thgotential. Equatior{2) holds in isotropic materials.

main purpose of the CC theory, in this respect, was precisely |n the mixed state(in rotating He 1) Cur|5SEO (curl

to include pinning effects in the vortex equations of motion.; —0) everywhere except at the vortex cores. Averaging

Therefore these effects are discussed in the present papgfgd taking account of the core singularities gifes
also, with the emphasis on the surface pinning which can be

incorporated into the theory only in the two-mode electrody- .m . .
namics. B— Ecurlvsz w, (©)]
To be more explicit in our predictions, we shall refer to
the following standard conditionsin the usual geometry of a [Curl\73=c3 in rotating He Il (Ref. 10]. The macroscopic
slab (or an half-spacein normal applied field3(0,0,B), we  London equatior{3) states the crucial distinction to be made
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in general between vortex lines and field 1ifé$3 Thus the  reduced order paramejerobeys some time-dependent
vortex fieldw and the magnetic field must be regarded as Ginzgurg-LandauGL) equation, such as that considered by
two independent variables, when writing a local thermody-Schmid:?

namic identity, as in Eq4) below. We note that the vortex of L 1
field  was called “vortex induction” in Ref. 18 and “local —=——= , (8)
vortex magnetic induction” in Refs. 7 and 8. Here we con- 9t 27r 27Rr

sider the simple term “vortex field” as more suitable. Equa-whereL is the left-hand side of the first GL equation, acting
tion (3) together with Maxwell equations intervene as con-as a generalized force, ang a relaxation time, which does
straints limiting the possible spatial variations of currentsnot exceed 10% sec at temperatures not too closdfo We

2
+ E2Af

So 2e.
+7a

f—f3—fg2

and fields. may consider that hardly departs from equilibrium, as far
In the presence of a vortex lattice, the macroscopic theras| <f, or, otherwise stated,=0 within an accuracy./f.
modynamics identity for the free-energy dendiyeads® If v, is the vortex line velocity,
=y Le e Me L s .
dF=—0cdT+ %B-dB— EJs-st-i-s-dw. (4) LNTRfNTR?f,

Two simple results have come out) &F/aI§=I§/,u0, and  sothatL/f<10 “in standard conditions of dc flux flow. For
(i) js is the Cﬂ]jugate variable d—f)s_ Otherwise, explicit small vortex displacementse"m the conditionL/f<1
calculations ofF and/or approximations are required to ob- féads

tain both equations of statdy(T,»,Vy) and &(T,w,Vy). u

Several expressions foF are available in the litera- TNQTRE<11 9)
ture, in the special case of an uniform regular array

where V=0, J,=0, w=B=const in isotropic mater- Which tums out to be a limitation on linearity rather than
ials, F(T,B,V,=0,0=B)=o(T,B),6=¢ is directed along reguency. Takingz~10 *? sec,¢~100 A, and vortex dis-
vortices ands(T,w=B)=deldB—Blu,. This quantity is placements typically less than 1_%, conditié®) is still ful-
usually referred tdexcept for the signas the magnetization, filled at }/27~10 GHz (L/f<10 ). In contrast, but con-

- _ M bvaf | | ith f ics. 1 sistently, the contribution of time relaxation effects to
¢=—M, by atormal analogy with ferromagnetics. However, qicqination remains significatttee Sec. I). We also assume

one should be careful with this analogy as explained in Refthat, at any timep satisfies the equilibrium GL boundary

13. Therefore it is more advisable to calthe vortex poten- conditionN - ﬁp=0. This is consistent with the fact that vor-

tial. All the same, it will be convenient to mtroduce,éas 3tex lines(lines p=0) must end perpendicular to the sample

short notation, an auxiliary vectdr, defined a&:)/,uo+s, surface[condition (7)].
which is neither more nor less artificial than thiefield in Figure 1 shows the general shapes@ty) for a uniform
magnetism. vortex array in an isotropic materi&lin the low field limit
In a homogeneous sample the macroscopic chemical pgw<B,;), ¢=wH;; so thate=H ;— w/uy. HereH.; and
tential of the electrong may be assumed to be uniform, and H,, merely stand for By /e and Bg,/umg, where
the equations for equilibriumfor nondissipative currents uo=4m7Xx10 7,
are™ At high fields,e decreases linearly whean approaches to
B, (the Abrikosov ling:?!
B'=E+-=E=0, ® _ He—olpy  Heo—olug
CT BA2k2—1)+1  2x°Ba

(k>1), (10
C=Jstcurle=0. ©) whereB,=1.16 for a triangular lattice. In an extended Lon-
These equations should be complemented by the boundagion model @p>B;):

condition for the ideal surface:
®o

a
- - In— 11
exN=0, @) E dmph? e (1)

whereN is the normal unit vector: taking=¢» (isotropic ~ Wherex=»X(f?) ~*?is the field-dependent London penetra-

- ; 2_ 2y.22 ; :
materials and low/s), Eq. (7) requires that vortex lines ter- tion ertc:\ (“%)‘ —miZQSe .)' )\O(fP IS the zero—flde_ld per;]—
minate perpendicular to the sample surface. Equat&n etration depth; and™=¢ is an effective core radius. The

states, on a macroscopic scale, that the local supercurrefigld-dependent London penetration deptitends tox, at

jz at the vortex cores, which includes the contribution in-wzo' z_indtqhverges E‘DFBcz-I FOltlr?W'Cg t:'S lnl:ean-fleltq f
duced by vortices themselves if they are curved, is Z&ro. approximation we shafl employ the Lohdon-iike equation o

As we are possibly concerned with very high frequencyState:

vortex motion, we must pay some attention to the hypothesis o= —2eN(T.0 VAV 12
thatng should relax instantaneously to its equilibrium values o S(To@,V$)Vs, (12
as assumed in our theory. Stricth=pof (p3 is the zero- whereN =p? is the mean superfluid density; E(.2) fol-
field equilibrium value of the superfluid density, ahds the lows at once from Eq.(2) if it is assumed that
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1 T T T T Q+ m (9\75 . _,_ é 1
| e =pwC,, (17
_ k=4.7
EO - . and the dissipative functioR=Ta is
w - — - - - -
R=J,-E+¢-C. (18
0
! HereE|, E, , andC, = (»x C) X v denote components par-
- . allel or normal to vorticesy is the normal fluid conductiv-
2 ity, and B is a kinetic coefficient which is the analog of the
= mutual friction coefficienB in rotating He I, and—gE is a
g “friction force” field, which is the analog of the mutual
friction force.
O 1 1 1 1

0.8 1 Electric fieldse and nomal currents,, are induced by
vortex motion inside and around the vortex core, which con-
) , , tribute to dissipation. However, as all fields in our continuum
FIG. 1. The local vortex potentiad defined in Eq.(4) as the

local thermodynamic variable conjugate of the vortex field, for aappro?chlln is a current averaged over the vortex-array cell.
uniform vortex array ¢ =B). &(w,T) is the fundamental equation ThusJ,-E in Eq. (18) does not involve all the dissipation
of state, from which reversible magnetization curves of simplyassociated with normal currents. So it is worth noting that a
shaped samples can be deduced. In particelan=B=Bo) coin- significant part of this dissipation, i.&},-e)—J,-E, comes
cides, except for the sign, with the magnetization curve of a slab iRyjthin the second term, through [except neaH.,, see Eq.
a normal fieldB,. An interpolating formula has been used to join (26) below], as has been already demonstrated in the
the Abrikosov ling(10) and the low-field lines=H¢; — w/ ug (Ref. Bardeen-Stephen model.
38). It is convenient to introduce ah field defined in the text as In Eq. (17) the absence of any significant Hall effect has
h=w/puo+e. The “permeability”  defined in Eq(40) as the ratio o0 assumed. Also, cross terms in the above linear dynami-
wl/h is directly calculated from the upper curve. ’ - s ] A

cal laws between fluxesJf,¢) and associated affinities
(E, C) have been left out deliberately. The possible occur-
rence of such cross terms is discussed in Sec. IV, in connec-
tion with the expression of the Lorentz force.
Collecting Egs.(3), (13), (16), (17), and Maxwell equa-
ns, we obtain a complete set of equations for the

four unknown fields EB, o, 33:

0.2 0)/B02

(f2v4) =f2V,. Inserting Eq(12) in the thermodynamic iden-
tity suggests a quadrat¥; dependence of the vortex poten-
tial, according tade/ V2= mdNg/dw. However, in the lin-
earized equations describing small standard vortex motion%,o
such as defined in the Introductiow? terms ine or Ng,
being of second order, may be systematically ignored.

Equation(12) can be rewritten as 5

- Jd
m. ) (n CUI’lE:—E,
—gVs= woh2Jg. (13

B . ..
One can use Eq(13) with the approximate linear law (Il) curb—=Js+0-E,
f2=1— w/B,. A better approximation in the high field 0

range, using Abrikosov’s results *fs - - -
() @=B+curluor2J,,

A2 N Mo®Ba (high o limit, k>1) (14) Iuoh2d
=== y | o IIMIf, k= > =
f2  1-w/Be g (IV) E=%+ﬁwq. (19

and, in the low field range i
From Egs.(19) (1), (lll), and(IV), we find

No? 0
NM=———— (low o limit, ©<B.,), dw
1—(w/BCZ)InK* ¢ — = —curl é
15 at (BwC,)
where Inc* = Ink+0.52= 2x2(Boy /By). which has to be identified with the transport equation for

Under dissipative conditions, vortices are moviigs0,  Vvortices dw/dt=curl(v, X ), with the line velocity v, .
C+#0 (dissipative part of the supercurrent dengitand Whence

J=Js+3J,, whereld, is the normal current density. Dissipa- - Y P S
tion is governed by the constitutive equatibhs (V) v==prxC (¢=BwC =wXv). (20
R, R This equation can be rewritten as a force equation in the
Jo=0-E=0E, +0'E|, (16)  form
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Later on we shall consider small vortex displacements
J[u(z,t),0,0] from the reference equilibrium state. In this
! A A A case v,=duldz, and ¢o[Js+e(d%uldz?)] in Eq. (23)(V)
=JsX pov+curle X gov. (21)  stands for the thermodynamic for€@x ¢,» per unit length

It may be interpreted as the balance of forces per unipf vortex line. If @ and B are not distinguished, and
i = - . if the normal current in Eq.(23)(ll) is ignored, Jg
length: a Lorentz forceJsX ¢qv, a restoring force ) 5 - s s S
> > , . . , =(w/ ug)(9°ul9z7), so that the forcen(CX ¢pr)=CX w
curle X pqv resulting from a line tensioa ¢, and a viscous X ) . : . .
per unit volume becomes identical with the classical elastic

drag force—nv, . . force C,4(9%ul 9z%), whereC4=hw (or HB) is the Labusch
Let us now consider the standard conditions such as dgjjt modulus. As a matter of fact, the introduction of

fined in the Introduction. Quantities relating to the» equilib- yenormalized or wavelength-dependéfit elastic moduli
rium reference state are written without indicéS=0, amounts to making allowance for the macroscopic London
B(0,0B), w=w»(0,0w0=B), J.=0, J,=0, C=0, equation(23)(lll) (see also the discussion at the end of Sec.
e=£1[0,0,£(w)]. Small changes in the fields are labeled 1.V)- , , _ , y
Keeping terms of first order in one-indexed fields in Eqs. Concluding this section we discuss what conditions re-
(19)/()—(IV) and (21)(V), gives the following set of linear- Strict application of our theory. First of all, this is a condition

> Po - > >
(V) L= L=CXgov

ized equations: for using the p_henome_nological approach, both in the Meiss-
ner state and in the mixed state: the frequency should be less

9B than the microscopic frequencies like the inverse of the qua-

0 curIE1= 1 siparticle relaxation time, or the superconducting gap. This

at’ condition restricts the validity of the theory at very high
frequencies. Another limitation is that the spatial scales de-
B, . - o rived from the theory should not be small compared with the
(I curl “o =Jato-Ey, intervortex distance since the theory deals with variables av-
eraged over the vortex-array cell. We shall return back to this
restriction in Sec. V after these relevant spatial scales were
obtained. Our approach does not require the London theory
to be valid: close to the upper critical field where the latter

>

() @,=B;+ uoN2curldy,

dJg

> = does not hold one can use the Ginzburg-Landau theory to
— 2
(V) By=poh" 5+ oy, derive the parameters of the theory, or take them from the
experiment. Since we do not consider effects of shear rigid-
V) 0i1=—BXCy, . 29 ity which discriminate the vortex crystal and the vortex lig-
V) ou BrxCu 22 uid, we can apply our theory only if shear rigidity is not
whereC,, = (»xC;) X » is normal to thez axis. essential, like in the perpendicular geometry considered

Moreover we restrict our attention to one-dimensionalthroughout the present papéne standard conditions defined
(1D) vortex motions §/dx=algy=0). The varying fields N Sec.). Butin this case our theory addresses both the solid

El, él’ J)l:w;l, jsl(Z,t) have noz component, neither and the liquid state of the vortex array.

have e;=ev; and C,=Jg +ecurly,. As easily seen, two L THE de RESPONSE
linearly polarized motions &, ,By,v1x,Jsy,v1x) and Ey, ' ¢

By, v1y,Jsx,vLy) €an be considered separately and equiva- et us consider the dc flux flow in a perfect slab normal to
lently. For definiteness, we shall use the former, and dropghe applied fieldB (0,0,8). When a low to moderate dc
|nd_|rcr:esx, Y, 11131!f .thgre is no ambiguity. current is applied in thg direction(Fig. 2), Egs.(23) apply
us we obtain - (with 9/9t=0 andw=B). The electric field and,, are uni-
JE  JB form. On integrating Eq23)(1V) over the thicknesd of the
= slab, the supercurreng per unit length alon@x is found to
be i;=Ed/Bw. Note that this simple result is obtained re-
gardless of the detailed current distributidgfz) and defor-
ay —Z=3+0E mations of the vortex array: the line tension testw, /dz in
s ' Eq.(23)(IV) vanishes by integration, thanks to the boundary
condition ¥XN=0 (v,=0). Then, as the normal current
i,=ocEd, the measured flux-flow conductivity;=i/(Ed),
wherei=ig+i,, is given by

(h 2 o

AR
() wve= —,u,o)\ZE%—BX,

Uf:a+ﬂ_w:0-+,[%' (29
Figure 3 shows the behavior of the flux-flow resistivity
3 +8% 23) pi(w=B) such as commonly observed in an alfc¥. Let
s ' r be the reduced slope of the resistivity curve,

&Vx) 1 1

N
(IV) E=,u,0)\2(9—+ﬁw
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Since os<o,, EQq. (24 reduces to o;=1/Bw, or
pi=PBw, at the zero-field limit. Experimental resulisig. 3
suggest that

o 1 ' -
= = zero-field limif). 25
k onBez B2 ( 0 @9

®
2

The corresponding viscous-drag coefficient= ¢y/8 is
nothing but that introduced in the Bardeen-Stephen model at
T=02 A time-dependent GL model nedr,, such as that
X developed by Schmitf yieldsr,=0.64 in the dirty limit. As
LI L) pointed out above, dissipation from both relaxation effects
1 and eddy normal currents around the vortex core contribute
to B.
FIG. 2. A sketch of the moving vortex lattice in an ideal slab is o— 0o, at B, Eq. (24) implies thatg diverges in the
perpendicular to the applied field. When driven by a low dc currenthjgh field limit. As a matter of fact, Schmid’s expression for

the configuration of the vortex and field lines,(z) and B,(2), o nearH,, (and T—T,) is of the general form(24) by
together with the supercurrent distributidg(z), are governed by taking

the linearized set of equations(23)(I)—(1V), where

J,=coE=const. Beyond a small healing lengkky defined in the 2

text [see Eq.(39) and Fig. J the vortex curvature and are uni- o=op=const, B=—— (Heolimit), (26)
form, and vortex lines coincide with field lines. The total current TRE

i=intis is obtained on integratind, and J,, over the thickness whererg ande have been introduced in E¢8) and(10), so
d, and the experimental flux-flow conductivity, defined as the ratiothatﬁ—1_>0 asB.,—B.

Qo
ol e
a
=
@ g

@
52

i/(Ed) is given by Eq.(24). At t=T/T.<1, let us adopt this relationship between the
kinetic coefficient@ and the relaxation timeg, while ac-
dptlpn counting for the field and temperature dependence of the
r= , normal fluid conductivity o through the two-fluid
dB/B¢, :
expressioh
wherep,, is the resistivity of the normal state. At low fields, a=on[1—f_2(1—t4)]. (27)

pi#(B) approximately follows a linear law witli=ry<1.
The limiting sloper; at B;, is observed to be larger than
unity,23 with r(T=0)=1.7 andr,(T.)=2.5 in good agree-

Whence we find

dosloy,
ment with theory? ryt)= 7BIBy,
c2
1 T T T _ TR 4
Pb, . I Pal )
n
i 0.83770.17 i where 7,=uoo,N5. From the measured slope; (see
1.84 K inset of Fig. 3 we thus obtain an experimental estimation

- ) of the relaxation timerg~10 *—10"1? sec (for t*<1),
Q r 7 . consistent  with  Schmid’'s  expression  for 75

\5_ =(7/16)(h/KTc)[1/(1—1)].2°

The above estimated values @fand 8 (see Fig. 4 will

] be useful when discussing the importance of various terms in
the dispersion equatiofSec. V). Now, one may hope to
obtain, from accurate measurements of surface impedance,
more precise information about the relative weight of the
normal and superconducting channelsoip, as well as the
need for introducingor noY a third transport coefficieng as
discused in Sec. IV and the Appendix.

(D/BCZ

IV. ON A NORMAL CURRENT CONTRIBUTION TO THE
FIG. 3. The field dependence of the flux-flow resistivity. Full LORENTZ FORCE

circles are experimental data taken with a lead-indium alloy ) ) ) .
Ply gdNo 17 at t=T/T,=0.265: k=3.5, k(t)=4.7, Be,=4800G, It is possible to regain some normal-current vortex inter-

pn=1.04<10"7 Q m. The inset shows data ner, in magnified ~ action in the MS formalism, on the condition that cross terms
scales. On fitting these data, we find the reduced slope.96  in the linear dynamical equatioli$6) and(17) are taken into
andr;=1.7. As explained in the text, from the measured slopeaccount. Equation&l6) and(17) can be rewritten in the fol-
r,, and using Eq(28), we obtain an estimation of the relaxation lowing generalized form, in accordance with the Onsager
time of the order parametef,=5.5x 10" %3 sec. symmetry?5
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T T T 7(1_7)
1E Jn_o'(l_ Bow ) . (33
T =4, A
3 = § gl 1Y 34
T i) T8 T Be & (34)
(o il
<
i 1 (1-y?°
0 ; i ! 1 oy=0+ Bw . (35
0 /B,

Equation(35) is a general expression for the flux-flow con-
ductivity assuming arbitrary normal-current contribution to

FIG. 4. The field-dependence of the normal fluid conductivity i, | orentz force. The latter could be specified either from

o and of the kinetic coefficiens, here displayed as dimensionless the experiment, or from the microscopical theory.

quantities. Agcordlng to Eq24), o and 1Bw represen_t _the norma_l Coffey and Clem write down the two-fluid equation
and superfluid components of the flux-flow conductivity. Referring . —~ ) ; )
to data of Fig. 3 (=0.26514<1), o(w) is a plot of the two-flud J=JstJn, as also the macroscopic London equation, in the

expresion(27). NearT,, o would be of the order ofr, over the ~ form (19)(lll). But the CC equation of vortex motion is dif-
whole field range. TherB is calculated fromor— o, by using the ~ ferent from Eq.(21); in the absence of pinning, this reads
fitting line of Fig. 3

. I necwL=JX @, (36)
Jo=0E, +0'E—»C,, (29 oo ’
m oV where J is the total current density and the viscous-drag
E+— —=¢=0Xv,=9E, +BwC, , (30)  coefficient5cc is directly related to the experimental flux-
e Jt flow conductivity 7cc= ¢gosw. In contrast, the force equa-

wherevy is a dimensionless coefficient. Note thatloes not tion (21) only involves the supercurrent through

enter the dissipative functiofi8) directly, but it influences, ©=Js*curle. In order to restore the Lorentz ford ¢ov

nevertheless, the rate of dissipation via the currents and af? the equation of vortex mgtioﬁhg CC modsi one should
finities in the dissipative function. assume thawr=vy/(Bow+ y?)=1 in Eq. (31). But strong

From Egs.(29) and (30) we then obtain the generalized discrepancy between CC results and ours still remains: they
force equation neglected the termxy in the right-hand side of Eq29).

Therefore the CC equations violate the Onsager symmetry.
y R R This affects both the dc response and the ac response. In the
ﬁJnx QoV Appendix the latter is analyzed in the frame of a one-mode
Bowty electrodynamicsd terms neglectedo compare with the CC
—(C+ad)X onm. 31 results.
(C+adn)x gov S Now if the condition =1, or y=vy?+Bow, is pre-
Equation(21) corresponds toy=0. If y#0, the linearized scribed, so as to restore the Lorentz forke ¢ in the

Poow - -
WUL:CX Qo+

equations(23) become equation of vortex motiofthe CC model is revised to satisfy
the Onsager symmetryEg. (33) turns back toJ,=0, and
JE B Eq. (35) reduces tao;=o/y. The latter result and the dis-
T continuity implied atH., look rather difficult to believe.
Thus we are led to the conclusion that the naive concept of a
1 4B vy Lorentz forceJ X @05 driving the vortices involving the total
(1) M—Ozz(l— v)Js+ oE— Ye current hardly holds. In the following sectiop will be as-
sumed to be zero.
_ ) ddg
() 0re==poh™ 7+ By, (32 V. THE ac RESPONSE AND THE PENETRATION OF
EXTERNAL FIELDS: THE TWO-MODE
N 1 £ \2 dds . 14 ayx) ELECTRODYNAMICS
(V) (1=7E=so gt TPt ) Here we consider small vortex displacements

G[u(z,t),0,0] from the reference equilibrium state. We are
e looking for solutions of Egs(23) in the forme'k?2e 12t e
O b, js, vx, U denoting complex amplitudes. Equatiofis,
(1), (nr), and (V) from Egq. (23) become a set of homoge-
On applying the dc response, and following the same proneous and linearly independent equations &rb, jg,
cedure as in Sec. lll, we find vy=iku [v = —iQu=—(Q/K)vy]:

v
J+ e—

(V) v =8 9z
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T/ TR

0 0.2 0.8 1
(l)/BC2 0.2 (,)/B02 0.8 1

FIG. 5. The field-dependent London “penetration depth”  FIG. 6. The small field-dependent characteristic time de-
A= )\o(f_z)’l’2 according to the Clem “mean-field” approximation. fined in Eq.(41), which governs the frequency dependence of the ac
An interpolating formula has been used to join the low and high-response. It is to be compared with the relaxation time of the order
field expressions of? [see Eqs(14) and(15)]. While being useful ~ parametersz~10~** sec.
in various extensions of the London modgl,should not be re-
garded as any screening length. According to the MS model, thbe noted that, , in contrast tox (see Eq.(14)), does not
actual penetration depth for nondissipative supercurrents is thaliverge atH ., (Fig. 5). The expression fox, in an extended
Ay given by Eq.(39). Note that\ diverges atH., whereas\,, London model frpe<w or a<\),
decreases tg/+/2.

/1 a
(l) ke=-Qb, Ay= mh’l? (42)

(1) ge+j5:ik£, coincides with that of the characteristic healing length for
Mo distortions of the vortex array in rotating He Il. Such distor-

tions occur in collective Kelvin wave$,or, at equilibrium,

near a wall inclined to the axis of rotatidAWhereas\y in

) super(_:onductprs_ is always s_maller thegr 10_0 nm,\y in

(V) jetikev+ ——v,=0 (37) He Il is only limited by the size of the rotating vessel. Ac-
Bk curate second sound measurements at angular velocities

Note that one would obtain an equivalent system from equagwlse(is1 (\v~0.1 mm have proved the correctness of

tions (1), (Il), (111, and(IV). Indeed, the Euler equatigiy) ~ EQ- (42).” The ratiou=w/h is an equilibrium property di-

can be obtained here as a linear combination of equatipns rectly deduced from the equation of statfw) (Fig. 1). It
(), and (V). was first introduced by Soniet al” as a permeability ac-

On stating that the s¢87) of homogeneous equations has counting for the diamagnetism of the mixed state.
nonzero solutions, we obtain the following biquadratic dis- According to Eqs(25) and(26) for 3, the high and low
persion equation which connects the frequetityand the ~ field limits of the short timery are, respectivelyr, =7z (at

() iKuoh?js+ wrye=b,

wave numbek. It is clear that the terriks is responsible for  ®=Bcz),  and  7y=1;(Bcz/Bc1) = oo\ §(Bc2/Bey)
the existence of a second modé' term) : (w—0). Figure 6 shows the dependence ofy in an alloy,
such as deduced from those ©f3 and\y (Figs. 1, 4, and

)\\2,k4+(1—iﬂuocr)\\2,—iﬂr\,)k2 5); this relates to the dirty limit whereg=2.89r; (Ref. 19

andrg> 7, the electronic relaxation timer(,= neirlm). Ex-
—iQuo—0ueory=0, (38  cepting a small temperature interval closeTtg in the pure

limit 7r<<7 and 7j~7, so thatry<r7. Then the condition

whereo; is the flux-flow conductivity Eq. (24)], and ;
7t UEQ. (29)] Q71y<1 holds in the whole frequency range where Ohm’s

) Ne ) law itself is valid (2 7<<1). In contrast, in the dirty limit the
N= (hZM—+8). (39  condition Qr<1 holds at rather high frequencies where
0 1=Qr,, and one can apply our dispersion relation up to
o 0O /27~10-100 GHz.
M= (40 The dispersion equatiof88) can be rewritten as
2 \2 (KNZ+1—-iQ7) (K=o Q) —iQ(mos— poo)=0.
N 41 43
Tv_ﬂh - ,88 . ( )

The lengthny, labeledd in Ref. 13 andig in Ref. 26, is  When comparing different terms of Eq88) or (43) it is
worth noting the inequalities

nothing but the mixed state penetration depth for diamag-
netic and nondissipative dc currenti{ C= —curle) such - T
as first introduced in Ref. 12. The lengkky is a monotonic < < o< — <t
! ! ) MQO=UoOnSUOFS T, MO =17, (44)
decreasing function ab from A, to &/+/2 (Fig. 5). It should " Ay AV
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z BZ
; b 1000 . .
ky-mode k*-mode k;-mode

M
S
O¢/2
1A
'_'

FIG. 8. Small vortex motions inz planes near a surface=0
perpendicular to the applied dc fiel[duperconducting half-space
z<0). The exciting fieldo(0)cos(1t) is along thex direction. The
full line, labeledk*, represents the vortex profilg(z,t=0) such
as calculated for an ideal surface from E¢80) and (54), taking
0=2B¢, Qry=10. The full line labeledk; (k,) represents the
FIG. 7. Full lines represent, in the complex plane, typical varia-pmf'le’ which would be obtained for a pukg mode &, modg

tions of the wave vectdk for each of the two modes, as function of only satisfying the continuity 0By [but »,(0)+0]. For clarity, x
the frequencyQ/2m at a given field (»>B. upper curve; components of displacements and fields have been magnified by a
C 1

w=<B,; lower curve. In this figure, the frequency is increased, in factor of 1000. _The_ low vortex density has be_en chosen so as to
the direction of the arrow, frorfd 7,=10"2 to Q 7,= 1?. Full dots ilustrate the weighting effect of the factar< s, in Eq. (54).

indicate the values d2 r,= 1. Dashed lines represent the limiting

dispersion curves ab=B., and w=0. Concerning the low fre- Let us considerfow to moderate frequenciesuch that
quency range@ r,<1), it is more convenient to refer to simplified {2 7,<<1. It should be noted that the conditiéhr, <1 is not
and explicit expressions fde; andk,, Eq. (47). so restrictive as it is satisfied in most practical conditions:

Q7y=10 2 for Q/2w=<1GHz in alloys. Taking into account
as confirmed by a numerical calculation. From Ep) itis  inequalities(44), simplified expressions fok; andk, then
clear that, atH., where o;=0=0, and u=pu,, a second follow immediately
evanescent modk, appears besides the damped mdgde

commonly observed in any conductor : 1+i
=+ —
| amE
5 . 2i
klZIMOUnQ:_Z!
I i
k2: x _(QT\/<1) (47)
1 2 M
k%z—A—\Z/(l—iﬂr\,)z—?(l—iﬂm)(at Heo) 48
These two modes can be followed continuously down to >
»=0(Fig. 7. 5=/ <&y, (48)
In the zero-field limit we have pofd
v is the skin depth related to the flux-flow conductivity that
kiziﬂﬁz lim (iIQuoy), incorporates the permeabilify. In so far asyQr,<1 Eq.
0 =0 (46) implies thats;— \y2/Q 7= 5,vBc1 /Be2> N, SO that

M<Ao<<6; (or ky<€ks,). We retain that, under practical con-
, 1 ditions, thek;mode can penetrate into a sample a relatively
kp=— )\_SH'“O”Q’ (0—0) (46) large depthd; whereas thé&, mode dies off over the small
depthhy, .
The k,—mode atw=0 is nothing but the one mode emerg-  Let us consider a half spa@<0 subject to a small ex-
ing from the classical electrodynamics of the Meissnerciting field B,=b(0)e '*. From the first three equations
state?” whereas now, the damped, normal-likg;mode re-  (37) the vortex profileu(z) can be calculated for each mode
sults from the onset of the mixed stafi@ the absence of [including thekcc mode; see Eq57) below] as function of
pinning). the field amplitudgFig. 8):
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. b :
iku=wy=—(1+ K2N2—i oo QN2). (49

Using simplified expression&?7) for k; andk, (Qn,<1),
we obtain

bl _b2 w
g ey
bl 5f _b2 a))\v
ul_;ﬁ’ UZ—TE(QT\/<1). (50

The new length scal®s=why/uge in the k, mode is rel-
evant for surface pinningsee Sec. V)l In determining the
amplitude of the displacement in tHe mode, this scale
plays the same role a% for the k; mode.
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ImK (xg)

Rek () 2

FIG. 9. Typical high frequency graph of the effective wave vec-
tor k* for an ideal surface, such as resulting from the right combi-
nation of the two modes. The frequency has been increased, in the

In the k, mode, field lines and vortex lines incurve in direction of the arrow, fron27y=10"? to Q7= 1C%; the full dot

opposite directiongFig. 8). In the wide frequency range con-

corresponds toQdr,=1. Numerical calculations show that the

cerned (7,<1), thek, mode has a quasistatic behavior, Coffey-Clem wave vectokcc, in the absence of pinnin@ashed

while the k; mode is spatially uniform over the depi,

(uy=const, if \\y<5;). None of them fulfils the boundary

condition (7) for an ideal surface=0, i.e., v,=0. There-
fore, we have to combine both
B, = (b,e'*1?+ b,e'*2?) e~ while requiringb; +b,=b(0)
and v,= v, + v5,=0. We thus obtain

b2 1+k§)\2_|ILL00'Q)\2
= (rx=0).

by 1+KAAZ—ipgo QN2 6

Note in this respect that a one-mode theory cannot satisfy the

boundary conditiorv,=0.

A quantity of interest in the ac response is the surface
impedance, usually expressed in terms of a complex effec-

tive penetration depth* = 1/ik* =\"+i\";

_ 10€(0) _ po(ert€y)

b(0) bi+b,
_ by moer by we€;
b(0) b; b(0) b,
Q
__%:_WOQ)\*
=—iugQ(N +iN"). (52

It appears, from the second line, thatis the mean of the
surface impedances for puke andk, modes weighted with
their respective contributiotv,/b(0) and b,/b(0) to the
screening.

Using Eqgs.(37)(I) and(51), we have

Hofd b, ki
" (“m)(“

wot 1—i g QN2+ N2(k3+kok, +K3)
kg Aky(Ky+kq)

-1

b,

Z= b

(53

modes,

line), is close tok*, at fields such thatt=puq (0>B;).

by=b(0) -, b2=b(0)( 1-2) (an<),
Mo Mo
(54)
we infer the effective complex penetration depth of an ideal
surface

1 M M O
L _ i —
N =ns (1 e Ay+ MO(1+|) >

m O
Mo 2

or equivalently, neglecting the small, term, the surface

impedance:
[—iQ
Z= ,u,.
Ot

This is an expression for the surface impedance of a conduc-
tor with the conductivityo; and the magnetic permeability
w well known from electrodynamics of continuous metfia.

At higher frequencies @ r,>10"2), we have to use
rather cumbersome expressions kér, which are not worth
writing. Figure 9 shows an example of the high-frequency
behavior of k*=1/i\* at intermediate to large fields
(w>By¢1), such thatu=pu, (say to better than 5% see Fig.
1). Numerical calculations confirm thak*=k; (and
N =\" in this range, within the same precision, as it is
evident on the “low frequency” expressiaid4).

Let us compare our results with the traditional one-mode
theory5~® In the one-mode theory the effective penetration
depthA* =i/k* is directly connected with the complex wave
numberk* of the only mode penetrating into the sample
from the surface. In contrast, the two-mode effective penetra-

(56)

In the low frequency limit the above formulas becometion depth given by Eq(56) does not relate directly to the

simplified. For a puré&, mode,Z would be purely inductive
(A" =\y,\"=0). For a purek; mode,\"=\"= /2. From
the right combination of modes,

actual field penetration, this being described in the two-
modes electrodynamics kiwo penetration depths |k;| and
1/ ks|. In the one-mode theory of Clem and Coffey
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1 : : : : which the amplitude of the jump in the electrical field is
enough to obtain a reliable electrostatic solution, despite that
L 4 the Debye radius may be of the same order or even less than
Kee the interatomic distance.

-k, - Concluding this section, we discuss the relation of the
presented analysis with the traditional approach in terms of
L K+ y the nonlocal elastic modulf. Following this approach, we
reduce the set of equatiof37) to one equation for the vor-
tex displacement, (v,=ikuy, v, =—iQuy):

2A"1dp

o

@ 2
_n;OUL:C44k Uy . (58)

Mg
.

This equation expresses the balance between the viscous fric-
7 2 45GHz | tion force onw/ ¢ vortices per unit volume and the elastic
force determined by the tilt elastic modulus

ro
T
ASY

0.2 0B 08 1 C_wz 1-iQuoolk?
o 1—iQueo N>+

22 + we. (59

FIG. 10. The field dependence of the complex penetration depth
A*=X\'+iN". N’ (\") corresponds to the inductiveesistive part ~ One can see that the elastic modulu iand () dependent,
of the surface impedance. Upper curves show the low frequenci€., nonlocal not only in space, but also in time. However,
(Q7y<10%) behavior of\” in three casesti) k*, combination of  the nonlocal contribution is due to the energy of the average
two modes for an ideal surfacéij) purek,; mode; (i) kcc, one-  magnetic fieldB=w and the transport currents which has
mode Coffey-Clem theory, in the absence of pinning. K, nothing to do with the true vortex line tension proportional to
\"— &,/2 whered,, is the normal skin depth. It is worth noting that the vortex potentiak. We prefer to relate the tilt modulus

the finite limit atw=0 of \" for the k; mode, corresponds, in our with the vortex line tension only, rewriting E¢58) as
model to a large flux-flow skin depth§{=<&,) in contrast with the

vanishing CC skin depth. The lower figure magnifies, at 45 GHz, w ) .o
the low field dependence af*, for comparison with the CC theory. T VLT wjst ChkUy. (60)
1—ipor QN2 Here Cj,= we is the renormalized tilt moduldsvhich does

k*2=k&c=imooiQ (57 not depend on eithek or ), as one might expect for any
elastic modulus. The long-range intervortex interaction re-
sponsible for nonlocality is incorporated by the Lorentz force
[the first term on the right-hand side of E0)] proportional

to the supercurrerit; averaged over the vortex cell.

1—i oo QN

At 0=0, aso;—», ki tends to the same limit a& [Eq.
(46)]. At @=B_,, as\?—x, kéc tends to the same limit as
ki [Eqg. (45)]. We emphasize that the flux-flow skin depth

defined in the CC paper a&;= \2/uqo: Q) differs from that V. TOWARDS REAL SUPERCONDUCTORS: BULK

givgn by Eq.(48) by the factor\/ulgo. Whereas the former AND SURFACE PINNING
vanishes aiw—0, the latter remains generally large com-
pared with\ . Now our theoretical predictions for ideal samples may

Effects of low “permeability” x are most important at appear as a somewhat academic discussion. Nevertheless, it
low vortex densities §<B,;),° whenk* deviates from both is an essential step before tackling the difficult and actual
k, andkec significantly (Fig. 10. Measurements of”(w) problem of the ac response in the presence of pinning. As is
have been performed by Berezin al,?® where a low pin-  well known, the smallest critical currents alter the linear ac
ning Pb-In sample exhibits, &= 10° rd/sec, a linear depen- response altogether: for instance, in a large low-frequency
dence\"xw (to be compared with "> \/w in the one-mode domain below the so-called depinning frequency
electrodynamics This result may corroborate the two-mode (~10—100 MH2), the surface impedance is nearly induc-

response, in so far as the sample may be regarded as an idédg, \'=const, \"=0, where typicallyA’'~10 um. Re-
one. member that, in this range, the response of an ideal surface

It is worth discussing now the conditions restricting ap-corresponds to a classical skin effect with a much larger skin
plication of our theory. It is accurate enough until the spatialdepth.
scales(the penetration depths of the two moplegceed the In order to account for such a radical change in the sur-
intervortex distance, since the latter plays a role of a “mi-face impedance, the classical way, initiated by Camgbell,
croscopical” scale for our continuum approach. From Eg.consists in introducing a bulk pinning force Ku in the
(42) it appears that, may be of the same order as the force equation(36) for small vortex motions. This means
vortex spacinga. Then our theory may not describe the field that one should replace the friction coefficiengc in this
variation in thek, mode accurately. But, in many experimen- equation, as well as in all following equations, by
tal situations, the amplitude of such a mode is more impor#cc—K/i€), or, in other terms, to replace the flux-flow con-
tant than the details of its spacial variation. The same situaductivity o by o;—1iQuoh2, wherehc=Jweo/uK is
tion arises with the Debye screening theory for metals irthe Campbell length directly related ko As a result, there is



13094 PLACAIS, MATHIEU, SIMON, SONIN, AND TRAITO 54

still one mode, but its penetration depth is strongly reduceences concerning the size effects. Experiments are now in
down to\c. progress, in the Laboratoire de Physique de la Mat@on-

The same substitutionp— 7—K/iQ, or of—o;—1/  den®e, which ought to decide between the two approaches
iQuo\2 in our final expressions incorporates the Campbelffor some superconducting materials.
approach into the two-mode theory. In particular, the skin There are also other effects crucial for description of real
depthd; entering Eq(47) has to be replaced h§, using the ~ superconductors, especially high-materials.

expression (i) Flux creep This may be incorporated into the theory
simply by using a proper expression for the conductivity

L2 2 o as done by Clem and Cofféy Then oy is not the flux-

kl_g_g_ Eﬁ_m' 6 fiow conductivity anymore, but théhermal activated flux-

flow (TAFF) conductivity. This does not change structure
Note that the incorporation of the permeabilityagain pre-  and qualitive conclusions of our theory, but can modify
vents for the dlvergence of the second term at vanishinguantitative results which should be discussed for any mate-
vortex density (LOACIM—>¢OHC1/K as w—0), so that rial separately.
6,>\y and Eq.(54) for ideal boundary conditions holds. As  (ii) Hall effect In the classical superconductors the Hall
a result, according to Eq55) (with &, instead ofd;), the  effect is usually very weak, but it becomes strong in super-
effective penetration depth is linear in the vortex density aklean highT. superconductors as recent experiments have
low field A* =Ay+ w0 eo /B K. revealed®™ The Hall effect has been incorporated into the
Another way is offered by a new interpretation of vortex two-mode theory in Ref. 36 in order to explain magnetore-
pinning, that follows rather naturally from the MS theory assistance resonances observed in the superclean Bi
explained in Refs. 12 and 13. According to this MS model ofcompounds’
the critical state, which relies on a number of (iii) Anisotropy, thin-film applicationslt is another im-
experiments2°~33critical currents of soft sample@n fact,  portant extension of our theory. The two-mode theory for the
of most standard sampleare well accounted for by only anisotropic thin films has been developed in Ref. 36 men-
considering the surface roughness. In spite of unavoidabléoned a few lines above.
surface irregularities on a scale comparable to or smaller
than the vortex spacing, MS have suggested that the con-
tinuum description can be maintained, provided that the
boundary condition(7) be released and replaced by a new The continuum electrodynamics of the mixed state of
empirical surface condition. The new boundary conditiontype-I| superconductors has been presented on the basis of
should lead to another combination of the two modes, enthe MS equations of vortex motidA.This has yielded the
hancing thek, mode. This must change the frequency depentwo-mode electrodynamics advanced in Ref. 9, while extend-
dence of the surface impedanze”>* ing it in the whole field range and including normal currents.
An explicit form of this boundary condition must depend |n this generalized form, our theory of the ac linear response
on actual properties of the surface, and, as illustration of thean be compared with the previous one-mode theories
effect on the ac response, we restrict ourselves here to theampbell* Brandt® Coffey and Clent;®) by first consider-
case of extreme surface pinning when the ends of vorticefhg the simpler case of ideal samples. The main difference is
are literally pinned to defects so that they cannot move alonghat, in the two-mode electrodynamics, the external fields
the surface at all, i.ey;+u,=0. Then, according to Eq. penetrate into the superconductor as a superposition of two
(49), the ratio of the two-mode amplitude [is.f. Eq.(51)]:  modes which satisfies the boundary conditiéh for the
o ) ideal surface, whereas it is ignored in the one-mode theories.
E: _ Q 1+ KN T oo QN 62) Thereby the latters are not able to discriminate the ideal and
by Ky 1+ KA —i oo QN2 the rough surface, which is crucial for the analysis of the
. L . effects of the surface pinning.
Surface impedance is given by, instead of E5g), Concerning the effects of the normal current on the dc and
N2(k,+ky) ac responses, the main differences with Clem and Cdf?gy,
Z=puo : 2 . 1 . ) (63)  When writing the equations vortex motion, are the following:
1-ipoo QN =Nk ks (i) while assuming the existence of a the Lorentz force from
the normal current on the vortex, Clem and Coffey ignored
the force from the vortex on the normal fluid, as required by
the Onsager relationgii) the assumption of a Lorentz force
A )—1 involving the total current seems to be questionable, as ar-
_2 —

VII. CONCLUSION

In the low-frequency limit, oo QN2 Q7)<1, the effec-
tive complex penetration depth reads

A =(AgtAy)| 1+ (64)  gued in Sec. IV. However, the final decision on this question
should be given by the microscopical theory or by the careful

Here g, introduced after Eq(50), plays the role of the observation of the field dependence of the ac response at

Campbell length. The low frequency expansion of E#), different frequencies, as discussed in the Appendix.

AN =gt A)[1+i(Ng/85)], yields the surface resistance

ReZ« Q3/_2 different from that for an ideal sample(/Q) or ACKNOWLEDGMENTS

for the pinning case in the frame of the Campbell approach

(«Q?). This might be used to discern between the bulk and Two of us(E.B.S. and K.B.T).are indebted to Alexander

surface pinning.Also there may be some noticeable differ- Tagantsev for collaboration during the initial stage of study-
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ing the effect of the normal current on the ac response in St. , TV A2 oi—o
Petersburg. E.B.S. thanks the Laboratoire de Physique de la T o 1-72 o
Matiere Condense for hospitality during preparation of the HoTt Y f
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Condense de I'Ecole Normale Supeure” is “Unité Asso- ~ given by Clem and Coffey in the absence of pinning: see Eq.
ciee au CNRS”(URA 1437. The work was partially sup- (4) in Ref. 7 at the infinite Campbgll length: . However,
ported by the Russian Foundation for Fundamental Research differs from the London penetration depth So, as far as

(Grant No. 96-02-16943aand by Soros International Sci- one-mode electrodynamics is concerned, it is seen that vari-
ence Foundation. ous models of vortex motion lead to the same general form

of the surface impedance. Discrepancies between them will

only result from different relations betweeénand\. Let us
APPENDIX: THE ac RESPONSE AND THE PENETRATION discuss them

OF EXTERNAL FIELDS: THE ONE-MODE In the Clem-Coffey theory? the Lorentz force is as-
ELECTRODYNAMICS sumed to be proportional to the total current. As discussed in

: . P ; Sec. 1V, this assumption implies the relationship
In this appendix, in order to simplify the analysis of the ©=*-, ", ; . .
effect of the normal current on the ac response, and then t8 7/+/8‘”"d Eus'gg E(?' (353' this  condition  reads
compare with the analysis of C we shall neglect the Y=/, an 9.(68) reduces to
vortex-line tension systematically. The effects of the vortex-

(A4)

O

line tension are represented in the equations by the terms Az:hzm- (AS5)
involving the vortex potentiak. We thus study the ac re- ) r )
sponse in the frame of a one-mode electrodynamics. Expression(A5) for A, at variance with the CC result
We refer to the set of equatiori82), while takinge=0 A=A, should properly reflect the assumption that the normal
and y#0, so that Eqs(37) are replaced by current and the supercurrent enter the Lorentz force sym-
metrically. This disagreement is due to the fact that the CC
() ke=-Qb, analysis, assuming a Lorentz force from the normal current

on a vortex, did not take into account the force from the
b vortex on the normal component, such as required by the
(I  oet(l-y)js=ik—, Onsager symmetry.
Ko It is to be noted that, irrespective df, Eq. (A3) leads to
the same limiting expressions far at both low and high
frequencies: in the low-frequency Iika,*2=i5(2)f/2; in the
y Q high-frequency limit\*2=i §2/2; that is an usual skin effect
(V) B—we+js+ ﬁvxzo. (Al)  described by the flux-flow conductivityr; and by the
normal-fluid conductivityr, respectively. Therefore, in order
Then, using the same notations as in Sec. V, the dispersido discriminate between different models by experiment, one
equation now reads should investigate the intermediate range of frequencies
. , ) (typically Qr,~10 2—1). Furthermore, the difference be-
(1=iQ )k =i Quoot— 0 ugoy=0, (A2)  tween the CC resultA=\) and expressiolfA5) becomes
wherea; is given by Eq.(35). Solving Eq.(66) with respect  €SPecially important at high magnetic fields approaching

to k, we can find the complex effective penetration depthBcz- In this limit, )\2“1/(Bc2_‘f’) [see Eq.(14)], whereas
\* =1/ik, oi— 0% (Bs—w). Thus the divergence of the length

«1/(B;,— w) at B., is stronger than that fok itself, N
A2+i—52 x1/\B.o,—w. On the other hand, the simple assumption
2 cof v=0 , adopted in Secs. IlI, lll and V, which neglects the
)\*2=m, (A3) interaction between the normal current and the vortex, yields
no divergence o\ atw— B, at all. Thus the observation of
in terms of the three length&) the CC flux-flow penetration the field dependence of the surface impedance at different
depth 8o;= (/o o) Y2 (i) the normal-fluid penetration frequencies should define the role of the normal current in
depth 8= (2/uoQ o) Y2 and(iii) a new real length\: the vortex dynamics.

() ikpoN2jst wry=b,
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