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Spin-up and nucleation of vortices in superfluid *He
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It is shown that the Ginzburg-Landau model corrected for the normal component describes adequately the
spin-up problem for the superfluid liquid helium. An analysis of the Eckhaus instability in an inhomogeneous
rotationally invariant system is presented. It has been found that the number of vortices which can be nucleated
at the threshold of instability scales with the radius of the containd®®4s The effect of excitation of the
vortex loops by thermal fluctuations is considered, and the barrier and the nucleation rate are evaluated.
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I. INTRODUCTION .k
Vo= —Vx andps= m|W|?, (1)
One of the most severe and important experimental tests
of a dynamical model of a superflow in helium is the well- whereW =|W¥|exp(y) is the complex order parameter of the
known spin-up problem in which a container with a super-superfluid condensafePitaevskii then generalized this de-
fluid is spun until a steady-state rotation is reacheféére the  scription by also taking into account hydrodynamics of the
transient behavior of the cell, while transferring an angulamormal componertt.In this framework the resolution of the
momentum to the superfluid not only reflects interaction ofspin-up of the superfluid component is the nucleation of the
the superfluid with the walls but also gives insight into thequantized vortices which are the topological solutions of the
nature of the superfluidity itself. Specifically, one is inter- GL equatior? Outside the vortex core which is normal, one
ested in the mechanism of vortex nucleation at the walls dugets from Eq(1) the superfluid velocity circulation around a
to rotation and consequently vortex-wall interaction and theiingle quantum vortex
role in the transient and steady-state rotation behavior of the
superfluid. k=2mh/m. @
A conventional approach to the spin-up problem is to de-

L X . Moreover the GL equation also provides the mechanism of
scribe it by a two-fluid hydrodynamic model corrected by an : ) g
. : 1.3 . vortex nucleation due to phase instabilitince we suggest
equation for vortex line dynamics3 The vortex lines, con-

v o . rting from the GL ion for the order parameter which
taining the vorticity of the superfluid component and pro starting from the GL equation for the order paramete ¢

. ) . . ; “naturally includes the vortex nucleation, we cannot avoid
duced topologically multiconnecting space, interact with thediSCussing two main objections to the approach
normal component that leads to mutual frictfbh.is evident !

that this hydrodynamical description does not catch the kebLTtr;/?ngriezzqfiggsihsgc\)/rirewﬂ?fh Isz;l?ﬁoigﬁm\:lvaglllltzng{/vt: €

p%‘f‘tho“ t?e Islzpm—up protﬁlem, _namel)]/c, tthhe vorte?l rP;"Cle""t'ondoes not properly describe even equilibrium properties of the
which actually causes e spin-up ot thé supertiu COmpf)'superfluid transitioff.Since we are interested just in the vor-
nent. Thus the vortex nucleation at the container walls and it3, " |\ | |eation mechanism which results from the transla-

dynamics are the primary superfluid relaxation mechani:sngional symmetry breaking of the condensatee believe that

toward a steady rotation. this mechanism will remain valid also in a more elaborate

.In this paper we suggest. a_different apprqach to theapproac:h that takes fluctuations into account. The first step in
Spin-up _problem. Let us consider a ce_II containing a SUPeTe,iq yirection was taken recentlijiHowever as has been done
fluid helium rather close to the superfluid transition tempera

. : > %in the equilibrium case one can correct in an artificial manner
ture T, . When the cell is rotated with an angular velocity d

o : . - the wrong critical exponents appearing in the mean-field
Q, thg normal component is involved in a solid body rOtat'onapproximatiorﬂo

with V=Xt on rather a short time scale of the order of = The second objection is related to the comparison with
r?/v,, where v, is the kinematic viscosity of the normal already existing theories of vortex nucleation which have
component. The superfluid component cannot participate iBeen used to analyze and discuss the experimental data. We
the uniform rotation up to the point where the potential flowwill not discuss pinning models since they have already been
condition is satisfied, i.e§ X V=0. It follows also from the compared with nucleation models and criticized by Varo-
order-parameter description of the Ginzburg-Land@l) quaux et al!* The generally accepted consideration which
type model, introduced by Ginzburg and Pitaevskii for ajustifies the existence of quantum vortices in superfluid he-
superfluid@ (which will be discussed in detail in Sec.)ll lium, goes back to Feynman’s ground-breaking itfeAc-
Indeed, then cording to Feynmalt it is energetically favorable to create a
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vortex ring of the radiuR in a superfluid if the flow velocity Thus from this short review it follows that the existing
exceeds the self-induced velocity of the ring theories are not able to explain even qualitatively the experi-
mental data on vortex nucleation. A more elaborate theory

V=Vg=(A/2mR)In(8R/a—1), (3)  which will explain the observed velocity and temperature

dependences of the energy barrier and give reasonable value
wherea is the core radius of the vortex related to the superfor the prefactorl’, is, therefore, definitely needed. The ap-
fluid correlation length with the same temperature depenproach suggested provides different scaling of the energy
dence neal, . Then the potential flow condition, introduced barrier with the superfluid velocity and the expression for the
by Landau for the superfluid componéfty x V,=0 breaks Prefactorl’s. In this we will correct an erroneous statement
down locally at the vortex core. The predicted critical veloc-made in the literature on the superflow, i.e., that the GL
ity is temperature independent but size dependent with &odel cannot incorporate naturally the thermal excitation
value which is equal to about 10 cm/s in a channel of abou@Ver the barrief® On the other hand, low critical velocities
10~ cm. Firstly, this velocity is not an actual velocity of the Observed in the experiment, in our opinion, are possibly a
vortex nucleation due to the existence of a large energy bafesult of remnant vorticity, and we hope that next generation
rier between the states of higher and lower energies. Se@f the experiments will overcome this problem, e.g., in the
ondly, experimentally observed strong temperature deperVay suggested about 20 years &gand finally we would
dence ol and independence on the channel size contradidike to point out that a superfluidHe is a more appropriate
the theory discussed aboteAnd finally even in early ex- System to test theories since the pinning of vortices and
periments the observed values\af. were much larger than trapped vorticity there are much less severe probféisiat
predicted by Eq(3). Two mutually excluded theories of vor- 1S the reason why the steady-state rotation without vortices
tex nucleation were suggested later on: a classical one bas8@s been observed experimentally only 3He and not in
on a thermodynamical approach of thermal excitation over aHe.
barrier separating two statésith and without a vortexand The paper is divided into two parts. In the first part we
applicable at higher temperatures; and a quantum one, basidll discuss just the mechanism of the vortex nucleation due
on an idea of quantum tunneling under the barrier which ig0 the intrinsic instability of the condensate, and the resulting
applicable at very low temperatures. The theory of homogecritical velocity scaling. In the second part we will discuss
neous thermal nucleation of a quantized vortex ring in ahe vortex nucleation due to thermal excitation over a barrier
superflow due to lordanskif, Langer, and Fishét (ILF) which is a relevant problem at temperatures closg&,to
suggested the mechanism of the vortex nucleation. However,
a pure thermodynamical approach to a nonequilibrium state Il. THE VORTEX NUCLEATION PROBLEM
has been applied. As an energy barrier, Byfor the energy AND CRITICAL VELOCITY
of the critical vortex ring was taken. Then the nucleation rate

per unit volume over the free energy barrier is According to Pitaevsifidynamics and vortex nucleation

of a superfluid helium near the superfluid transition tempera-
ture T, can be described by a set of equations, which are a

I'=T'oexd —Ea/kgT], ) generalization of a two-fluid hydrodynamical model of
_ 2 2 2 . Landal,JlS'Z?’
where E, = pi (-7 /m°R)(In8R/a—3) is the energy of a
vortex ring of radiugR. It is clear that the prefactdr, criti- %2
cally controls the final result on the critical velocity and the iAo ¥V=— WNPJr (u+ usg)m¥

critical ring radius, and cannot be calculated in the frame-

work of the theory**!® Although the theory predicts tem- 1/ih 2

perature dependence of the critical velocity~ p/T, the _iA[E mV Vel tusm?, )
value of the critical velocity predicted is larger up to an order

of magnitude of that found in early and recent experiments gp+ divj=0,

on channel flow in several microns and submicrons size

channels:*® And finally, very recent experimerifson the i=pNVetpaV  po=p—m|¥|?,

energy barrier for the vortex creation in the channel flow 6)
reveals a scaling with/ which is different from that pre- i%

dicted by the ILF theory. At this point we would like to psVs=— o (PIVI—TVET),

emphasize that a dynamic instability approach to the super-

flow was suggested by Kramé&rand Mikesk&® more than pe=m| W2,

25 years ago, however, without direct relation to the vortex
nucleation mechanism. Later on this idea was reiterated in aj+VII=0, 7
various applications, particularly in the description of the

critical behavior of superfluid helium in the vicinity af,

under a heat currefitJust recently this idea was applied to 9 S+ div
the problem of vortex nucleation in a channel flow with an

attempt to explain quantitatively the experimental data.wherep,,ps,un,is, andV, Vs are the densities, chemical
However, in spite of its long history, the GL model was potentials and velocities of normal and superfluid compo-
never used to describe the spin-up problem in the superfluidents correspondingljll is the stress tensg@mcluding vis-
helium. cous terms and pressiyés is an entropy, and is a tem-

K R
SVn—TVT) =T )
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perature,A is the parameter characterizing relaxation rate, i ) 5
andR is a function of dissipatiorisee, for details, Refs. 6, W == (AW +W —[W[*W = VW)
23, and 10. For simplicity we restricted the analysis by

small values ofv,,vs and neglected in Ed7) nonlinear in A o )
v, terms. + S [(V=iV) W+ W —|¥[*¥]+0O(e), (16
NearT, the chemical potentials of normal and superfluid
components can be written in the form dipn+ divp,V,+0O(e)=0, (17)
— _ 2 P
us= €WV —b|¥|*¥ + higher-order terms, (9) dup V= nAV, +O(e), (18)
1= po(S,p) = V3, (100  wheren/p,=v,. If no external temperature gradient is im-

posed and the temperature is kept constant, then the equation
where u, is the chemical potential of motionless liquid, for the entropy splits off and consequently the residual part
€=(T\—T)/T, is the reduced temperature, abds a posi-  of the chemical potential,=const is gauged away. Here
tive constant in a mean-field approximation. In order to corwe neglect the coupling between the order paramétend
rect the mean-field scaling and to describe the properties ahe temperaturd via dependencewy(T). In Ref. 24 it is
superfluid helium neafl, one can introduce by hand the claimed that this coupling might be relevant for the dynamics
temperature dependence ef and b.'%?° Then one gets of superfluid. We agree that if an external heat flux is sup-
e~(T—T)**<1 andb~(T-T,)%21%%The term~V2in  plied, the temperature variations cause macroscopic motion
the expression foru arises from the renormalization of of the superfluid due to counterflow convection effects. Even
chemical potential of the fluid due to macroscopic motion ofin an isolated system mutual friction between normal and
the normal componer(see, e.g., Ref. 23 superfluid components produces some heat.

To describe the spin-up problem, the set of equatihs However, for the small velocity limit that we consider,
(8) can be significantly simplified in the first order of the these temperature variations should not affect in the main
small parametete. We assume that there are no externalorder of e the motion of the fluid. Also, the coupling coeffi-
temperature fluxes and the temperature is kept constant. cient fronf* is a phenomenological parameter, and there is

It is convenient to perform the following scaling of the no reason for this parameter to be large enough to provide an

variables(see for details Ref. 10 effective coupling.
For velocities much smaller than the speed of the first
X sound, we can treat the normal fluid as incompressible. The
X_’@' dynamics of the normal part is described by a simple linear

(11) equation
é(e)= \/ﬁ2psol2m2AcMTA: 1.63<10 8¢ 23 cm,

V= vaAV,,. (19)

Equation(19) admits a rigidly rotating stationary solution

v V(€)= qe®=0.23x 10'%3 cm 372,

v
- Ve(e)'
(12) V,=Qr. (20
cm Equation (16) is reminiscent of that of the Ginzburg-
=0.74x 10%?® —, Landau equation for type-Il superconductors with a complex
S order paramete® The role of an external magnetic field is
(13 played by the angular velocity, and that of the corresponding
vector potential by the velocity of the normal component.
pe— Ps , Then by analogy one expects that(a& ()4, there exists a
pe(€) motionless superfluid component with no vortices. At
(14 0>, vortices will be nucleated and penetrate into the
fluid producing a vortex lattice in the interior of a helium
_ 2 23 23 2/3_ on 9 container. As follows from the experiments on the superfluid
pel€) =MW |*= pege™=1.43, T\ "= 0.35 cn®’ “He Q. is too low to be detectel.On the other hand,
Q, (which is analogous ttd., in superconductors and at
&(e) which superfluidity will be completely destroyed in the
t—t/ir(e), (€)= T(E)QO-%X 10" 1% 435, samplé is too high to be reached experimentally. However,
© (15) as already mentioned, one should keep in mind that theoreti-
cal estimates of(},; were based on erroneous energy
where £(€) is the correlation length below the point,  considerationé.
AC, is the specific-heat jump¥ o, peo are amplitudes of We will treat the superfluid part independently from the
the temperature dependence of the equilibrium value® of normal one: we consider the spin-up of the superfluid part in
and ps in bulk helium, p, =0.146 g/cn?, m is the mass of a rigidly rotating flow of the normal component. Of course,
the helium atomy,(e) is the temperature dependent unit of this assumption does not describe the first stage of the
velocity, andr(e€) is the unit of time. Under this scaling in spin-up because it takes some time until rigid rotation of
the leading order ot we are left with the set of equations: normal fluid sets in. However, this stage is relatively short of

Vit Vde V9 nee
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the order ofr?/v,,, and does not affect the vortex nucleation
mechanism, which is the main subject of the studies.

As a result of these assumptions we are left with one
equation for the order parameter of the superfluid &) in
the given velocity field of the normal component. This equa-
tion is asymptotically correct in the vicinity of the point.
Moreover, one can speculate that the equation also describes
some aspects of spin-up féHe near zero temperature with
A—0. Of course, the assumption is that> p is no longer >
valid, and opposite inequality takes place. However, we can 04l
imagine the situation when a small part of superflfiide is \
in still normal *He, which plays the role of normal compo- \,
nent. Here we expect that the vortex nucleation is not af- 02| \,
fected by this circumstance. Therefore, we will consider Eg. \
(16) approximately valid for all temperatures with the pa-
rameter A—0 for T—0 and diverges as\~e Y° for 00
T—T,. R

1.0

Ill. CRITICAL VELOCITY

. . . . FIG. 1. The order-parameter amplitud®| as a function of
Critical velocity for the bulk instability of the superflow aqiys forrR=30, 0=0.032, andy=cc. The solid line shows nu-

in a channel was found in Refs. 18 and 19, which in Ourmerical solution, the dashed line is the adiabatic approximation Eq.

scaled variables reads ¥s=1/\/3. It appears that the criti- (A5).

cal velocity is notA dependent. This value coincides with

the well-known critical wave number of the Eckhaus insta-whereF=|¥|. Equation(21) has to be complimented by the

bility in pattern-forming system& conditions at the =0 and the boundary condition at the wall
For the cylindrical geometry the method employed inof the container =R, whereR is the radius of the container.

Refs. 18 and 19 cannot be implemented because of the dgs a boundary condition at the wall we will take a condition

pendence of the normal velocity and as a result of the supebof finite suppression of the superfluid density by the wall,

fluid density on a radial coordinate in the presence of rotat.e.,

tion. In order to define the critical angular velocity we use a

method similar to that of Ref. 27 implemented for thin su- HV+y¥=0 forr=R, (22

perconducting films in a magnetic field. It tuns out that they here o, characterizes the suppression rate of the order pa-
analysis of the critical velocity for the circular container is rameter. Fory—0 we have a no-flux boundary condition
much more complicated than that for the channel. We ShOV(a ‘If=d) and for they—oo zero condition, W =0 corre-

r [l

that the critical velocity(or angular frequengyis always spondingly.

higher than the one fc_)( the parallel ﬂ.OW' Moreover, at the The solution of Eq.(21) for general(},R is accessible
thresh_old of the |nstab|l|ty321nly a certain angula_w mode Wlthonly numerically. For some particular choice of parameters
the azimuthal numben~R*" grows. This selection mecha- Q,R, and fory— the solution is depicted in Fig. 1.

nism.has no anal_qg for the_ parallel ﬂO\.N' In this sectio_n W€ The stationary solution is stable fo¥<(). and loses sta-
consider the stability of stationary solution, corresponding tooility above the critical angular velocit§2, . In order to find

nonrotating superfluid. Our aim is to find the critical fre- Q. we need to perform a linear stability analysis near the

guen((:jytﬁf thqtrot?tlon als the fugctlor; t%f the C?nta'Teglrad'u%tationary solution of Eq(21). Instability of the stationary
» and the critical anguiar number of the most unstable Pelg), viqn jeads to nucleation of vortices and the correspond-

turbation. We carry out our calculation in the physically rel- ing spin-up of superfluid. It is similar to that of penetration

evant limit (.)f very larger (for Tea' .vessels of the d|ame_ter 1 of a magnetic field into type-Il superconductors and creating
cm the radiusR after the scaling is of order #@epending of the vortex stat&®

on the closeness t_o the poin_t). W? employ the method OT We substitute a perturbative solution of the form
matched asymptotic expansions in the bulk of the container

and near the container wall. Analytical results appear to be in T=F(r)+W(r,6,t), (23
very good agreement with the results of numerical simula- ) ) ,
tion even for moderate values Bf=100— 200. whereW is a small generic perturbation.
It is convenient to transform to the frame rotating with
A. Stability of the nonrotating solution frequency(). In the corotating frame we obtain in the linear
. . . order inW
Equation(16) possesses a stationary solution correspond-
ing to nonrotating superfluid in the presence of the solid A+i
body rotation of the normal component. For this solution the HW= T[AW+(1—2F2—QZFZ)W
argl =0, whereas the superfluid density'|?> dependence
on the radius is given by the following equation: —F2W* —2iQa,W]. (24)
5 aF 3 2 o At the threshold of the instabilitywhich appears to be
i+ r +HP=F=0%TF=0, 21 stationary bifurcationthe growth rate of the perturbations
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vanishes and we can séfW=0. RepresentingV=A+iB,

and looking for solution in the form 2o

-2 (5

we arrive at the following equations fé,,,B,, (wheren is -
the rotation or azimuthal number of the perturbation e

exdiné], (25 T

d.A, n%A
PAL+ rr“— rzn+(1—3F2—erZ)AnJrZQniBn:O,

(26 s \
4B, n?B,

9B+ — - +(1-F%- »%?)B,—2QniA,=0.
@7 ; : ; ; 7o

The boundary conditions aréA,(R)+ vA,(R)=B,(R)
+ yB,(R)=0 andA,(r),B,(r) remain bounded for—0.

The critical angular velocity) is defined by the condi- FIG. 2. Dependence ok (solid ling) and Q (dashed ling as
tion when Eqs(26) and(27) have a nontrivial eigenfunction functions ofy.
satisfying boundary conditions as we incredsdrom zero
(see, for details, Ref. 27For R>1 it is a tough numerical ing Q as a function of the suppression rateare shown in
problem. However, the solution of the problem can beFig. 2. Note that for the zero boundary conditiéwhich
achieved in the limit of very larg®. Finding the most un-  corresponds toy— ) the parameteA vanishes.
stable azimuthal number comprises three steps. Firstly, we
determine the solution in the bulk of container using the . N -
advantage of so-called adiabatic approximation. This ap- B. Comparison of critical velocities
proximation is similar to the adiabatic approximation used in  The quantity).R in Eq. (29) has a dimension of velocity.
derivation of the phase diffusion equation in the patternCorresponding critical velocity for parallel flow is smaller
forming systems. Physically it means that the amplittale (v =1/,/3=0.5773). Therefore, inhomogeneous suppres-
real part in the present cgsadiabatically slaves the phase sjon of the order parameter due to rotation results in increase
dynamics due to a difference in time scales. The “adiabatic”of the critical velocity.
solution loses its validity near the wall of the contaittiee- According to Refs. 18, 19, and 10 the critical velocity of
cause the boundary condition is violateahd another ap- parallel flow in the physical units is
proximation has to be applied. Secondly, we apply another
valid approximation upon the wall of the contain@nner
approximation. This approximation breaks down at some 1 23CM
distance from the wall. Finally, we match both solutions in Ve=0:R= ﬁve'\’?’-?’x 10% 5 (30)
the region where both approximations are valid. Matching of
the adiabatic solution with the solution at the wall of the
container fixes critical frequency of the rotation and selectsvhereV, is the velocity above which the density of super-
the most unstable mode with the rotation numberThe  fluid vanishedsee Eq(13)]. The power 2/3 is introduced to
details of the procedure are described in the Appendixegssure correct scaling of the superfluid density nearithe
A-C; here we present the answére calculations are rather point. ForR=1 cm ande=10"* from this formula one gets
cumbersome, and were carried out with the aid of a progranf),~11 s~ . Correction to the frequency due to finieis

for analytical computationsyAPLE). irrelevant in this case, since scal®lis of the order 19
The analysis shows that the most unstable eigenmodes a(ﬁ is in the dimensional unit
localized in the narrow layer of the width, near the con- In mean-field theory one ha® R=(A/m)(eY¥\3&,).

tainer wall. We obtained,~ JR<R for largeR. The value ForR=1 cm ande= 102 the difference in the angular ve-
of most unstable azimuthal numbarand the critical fre- locity is rather significant, e.gQ.=50 s~ *. From the con-

quency() for the container radiuR is given by the expres- \antional Feynman equation one obtaifis=1.7x 102

sions: s71, i.e., the difference is more than 3 orders of magnitude.
— —6 ; . . A
n=Q(y)R¥ (29) At €= 10 jUS'F about an order o!nagmtgde difference still
remains and is equa),=0.5 s . At R=0.1 cm and
1 /1 A(y) €=10° both values forQ) will be of the same order of
c"rRV3 + RZ: (29 magnitude of several Hz. What is crucial here is the different

scaling of() with R and the strong dependence em our
The dimensionless paramete®$y),A(y) are the functions case. For the case=10"® andR=0.1 cm scaled is of the

of the suppression rateand are obtained by the matching of order 18, and the correction to the frequency can be of the
outer and inner expansions. The valueaadnd correspond- order of several percent.
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C. Phase equation duces the velocity difference at the boundary. Thus one cre-
ates different states witki;<V,s and a different number of

The nonlinear stage of the dynamics can be partially re > .
9 y X Y é/ortlces at the center of the container.

covered by a simplified phase diffusion equation. Indeed, th

modulus of ¥ follows the phage accprding to f[he relation IV. NUMERICAL RESULTS
|W|2~1—(V¢—V,)2 Substituting this expression for the
equation for the phase we obtain a single equatifom To go beyond stability analysis we performed simulations
A—x, close toT,) of Eg. (16). We used a quasispectral code based on fast-
Fourier transform(FFT) for the rectangular domain. Bound-
A V(Vo—V,)? ary conditions modeled th&# (R)—0 condition. This was
hd=7 A¢—(V¢—Vn)m achieved by adding the attenuation factb¥' to the linear
n term in ¥ term in Eq.(16) beyond the radiu®k according
+ higher-order terms. (31 the following formula: d=0 for r<R and

d= —sint0.5\r?—R?] for r>R. Although it is difficult to

This equation reminds us of that from the theory of aevaluate the effective suppression ratecorresponding to
nonlinear stage of Eckhaus instabili(gee, e.g., Ref. 28  this boundary condition, we note that the functigpwanishes
However, the difference is that velocity of a normal compo-at the distance of the order of few dimensionless units away
nent cannot be gauged away by SUbStitUtiWnew from the wall, which I’OUgh|y can be modeled bye2—3.
=V ¢—V, because field/,, has nonzero vorticity. This cir- We used typically 128 128 harmonics of FFT and the time
cumstance results in a completely different asymptotic stattep 0.-05/A +i| andR=65. We also performed simulations
of the system when the instability saturates: if “regular’ With 256X256 harmonics irR=140. N
Eckhaus instability just drives the system to a new value of FOr R=65 we have observed instability at frequency
the velocity in the stable region, whereas in our case thé}=0:00945. For this radius and a rough estimate for
instability results in the creation of an array of vortices. This? =3 0ur analytic expressiof29) gives(2=0.009 52, which

difference can be explained by the following considerationsSC"TeSPONdS to the numerical result within 1%. The reason
the vortex which is nucleated at the boundary climbs nor_1‘0r the discrepancy is obviously uncertainty in the choice of
> Note that the result without the JR correction is

mally to V, towards the center of the container. The resultingy'_ N . .
superflow around the vortex reduces the velocity differenceg_1/(‘/§R)~0'0088’ and is much below the numerical

. . value.
Vr—V at the boundary. Vortices will be generated at the . :
boundary till the moment wheWg—V <V, is satisfied. We observed nucleation and consequent tearing off of the

This new state witn vortices will be stable at a given value vortices forQ;Q? irrespective ofA i However, the charac-
of Q). The mechanism of nonlinear relaxation of the unstableter of the nucleation and asymptotic states depends strongly
’ . . - onA.
solution and a particular selection of a new stable solution . ' .
following the instability (that is analogous to the wave- _I__et us discuss first the Cagé_’oo'. Slightly above the
critical value(). we observed nucleation of several vortices.

number selection problem in pattern-forming systerase . . ; o
issues which can be studied by analysis of nonlinear eVolul_\lucleatlon occurs at nonlinear stage of the instability when a

tion, e.g., using the nonlinear phase diffusion equatam. set.of single zerosfour zeros forR=65) is torn off at the
As ,showyn recently by numerical simulations of the Swift- radiusR. These zeros are the seeds for the vortex cores. The
Hohenberg equatio®. thermal fluctuations smear the Eck- vortices propagate into the interior of the container and fi-

haus boundary and change the scaling of the finite wav ally form a lattice, reminiscent of that of the Abrikosov
number(or superfluid velocity in our cages a function of attice”® (see Fig. 3. Further increase df) results in forma-

the initial one. The temporal evolution of the unstable statd'O" of addm_onal vortices. Also, th_e number of vorpces does
changes as wel? However in any case the result differs not depend linearly o, however it approaches a linear law

from conventionally accepted opinion that the steady state of/ith increase of) (see Fig. 4 o .
rotating superfluid helium can be described by It turns out that the character of nucleation is drastically

Q,=Nm#/m where N is the number of vortices per unit different forA— 0. Typically one has torn off whole clusters

arlea. Thus if).= Q. the number of vortices will be defined of vortices(see Fig. 4. These clusters can be considered as a

by the relation Q‘C_Q )=nah/m where Q;—0Q.)~Q, perturbed multicharged vortex. The multicharged vortex is

0. and (Q-—Qf)l<ﬂ f HereQ, <0, is the final \f/elocitly definitely unstable and breaks down into single-charged vor-
[ I c- = Cc

of the superflow. Therefore the difference betw&eandn Eces afte: sgme t|me.t.Hov;/(;ger, (;hS' Ilfetlmef of the lxortex
can be considerable. appens to be proportiona and diverges for smal.

The difference with pattern-forming systems can be fol-Explanation of this phenomenon is reported in Ref. 29. The
lowed even further. In principle one can imagine that insidereasoT for mult|vprte>;] nlucle(ejltlon Is that fcér|—>0 Zlmulta-_ d
the Eckhaus stable region one can bring the system locall€OUS!y many azimuthal modes are unstable and grow inde-

into an unstable state by a local perturbation of a superflui endently. As a result, these modes haye plose Z€ros a_t the
velocity, and due to weak conservation law same place. Finally, a perfect vortex lattice is formed, which

| |2(V—V,) =const it results in a local superfluid density can be considered as an analog of the Abrikosov lattice.

dip. This solution is unstable to small perturbations of the
superfluid density which causes further deepening of its am-
plitude to zero, and finalizes in a phase slip. This process
only involves a homoclinic unstable solution. The resulting Contrary to hydrodynamical pattern-forming systems, in a
vortex climbs into the container center, stays there, and resuperfluid helium thermal noise plays a crucial role in vor-

V. THERMAL EXCITATION OF THE VORTEX
OVER THE BARRIER AT Q<Qc
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FIG. 4. Number of vortices as a function &f. (a) R=65; (b)

R=140.
FIG. 3. The sequence of grey-coded imagesdof demonstrat-

ing nucleation of vortices and creation of the vortex lattice. The a1 S
dark shade corresponds to zero|#|; the white one to its maxi- McCumber and Halper evaluated the thermoactivation

mum value. Vortices are seen as black dots. The parameters af@te for thin superconducting wires from the Ginzburg-
Q=0.01, R=65, A>1. The initial condition is? =1 plus small- Landau equation. This problem is similar to that considered

amplitude broadband noise(@ t=100A, (b) t=200A, () Dy us, and we will use the analogy in the following esti-

t=1100\. mates. They have obtained the following expression:
tex nucleation over the barrier particularly at high enough N(T)
temperaturegabove 1 K. The reason for this difference is in ozﬁ, (33

the macroscopic nature of hydrodynamic flow compared
with the microscopic nature of the quantum vortex. Accord-

ing to the currently accepted ILF theory the nucleation rateWhereN(T) Is in effect the number of statistically indepen-

. . , . _dent subsystems along the wire ar(d) is the microscopic
over the barrier may be described by the Kramers equatlOgiffusion time inversely proportional taT. The effective

numberN(T) is approximately equal to the length of the

I'=Toexd —Eo/kgT]. (32 wire measured in units of the coherence lengti)
There have been several attempts to estinhgtérom gen-
eral considerations or from experimental data. The difference N(T)~ —,
scans many orders of magnitude from early estimates of &(T)

Langer and Repp¥ which gavel'=10* Hz, up to the re-

cent experiment for the microscopic channels, by SteinhauexvhereL is the wire’s length.

et al,}” who obtained™,= 10’ Hz. It is clear that this param- For the energetic dimensionless barrier of single phase-
eter fixes the fluctuation time scale, and it remains a chalslip nucleation McCumber and Halpetirhave obtained the
lenge to find it from theory. following expression:



shows(see Sec. lll and the AppendiXethat the unstable
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4.2 [1-3Kk?
Eo= T\/1—3k2—4k(1—k2)arcta >z ) modes leading to the vortex penetration are indeed localized
(34) in this layer near the container's wall. We can evaluate the

value ofr,, from the condition
where the wave numbdéris defined by the total supercurrent
by the conditionj =k(1—k?). ro~é(e) X VRIE(e) = VE(e)R.
Direct implementation of the McCumber and Halperin -
method is technically impossible for our case. Our situation For the container of the radii®=0.1 cm the widthr,, is
is essentially three-dimensional, and instead of oneof the order 1um. Finally, we obtain the following expres-
dimensional phase slips we expect nucleation of the vortegion for the dimensionless thermoactivation exponent
loops. Even saddle-point calculations are technically imposE* =AF/(kgT,) for k=QR— 13
sible because of the explicit dependence of the equation on
0 g o AC,€*¢(e)*VE(e)R
kg

the radial coordinate. However, strong inhomogeneity of the
problem is also a simplifying factor. Indeed, the superflow
velocity is maximal near the edge of the container. There-
fore, the activation barrier is smallest at the edge, whereas ~10%€"3(1-30%R%)32 (37)

the bulk contribution is negligibly smallactivation in the  £qr ¢=0.001 we estimate that the transition broadening at

bul||: has a mulch h.|tg)1|he: energegc bamerff . . the critical rotation velocity) ;R=1/\/3 due to thermal fluc-
Seems plausible to consider an efiective qu""S"OneEuations is about 1-2% of the total value ©f

dimensional model for thermoactivation. We assume tha We can use the same considerations to estimate the nucle-

It foll f that ideration that th I Mation rate of a vortex loop in a narrow channel flow. Typical
process. It follows Irom that consideration that th€ Small VO, yne| yolume is of the order of Am312Then one gets
tex rings nucleated in the bulk shrink, whereas they will be

~ 1023 ; - — 105 i
metastable near the wall in the layer of the ordegofrhe [o~107%" that gives at—0.001I'o=10" Hz. The relative

At e ieE* 1y 3( 1 2v/2)3/2
vortex rings are stretched by the velocity field and cause tht?hg?fgcggﬁi?;iozagﬁr thI:Eis thleorr;(iiimi\r/n)ra dizvsh%;ethe
phase-slip events on the scale of the effective boundar};c 9

layer. The width of the effective boundary layeg at the ortex loop which can grow! This leads to the broadening

critical frequency@d, is of the orden/R<R since our analy- of the transition of the order to 1-2%. Thus both the nucle-
. d c. X ) i y tion rate and the broadening of the transition are in reason-
sis shows that the eigenfunctions for instability are localize

. . 7
n this layer. ble agreement with experimelit:

We consider the thermoactivation of vortex loops in the
cylindrical container of the radiuR and the heighH. The

number of statistically independent degrees of freedom The main results of our studies are the following:

N(T) in our context is simplyR/&(e) XH/&(e), since we (1) We showed that one can describe adequately the
assume that the nucleating vortex loop is the sfzaVe  spin-up problem in superfluid helium starting from vortex-
neglect the contribution from the activation of the vortexfree superflow using the GL model corrected for the normal
rings in the bulk and take into account only boundary nuclecomponent velocity field. The superfluid is brought into ro-
ation. The characteristic time in our caseris=7/A. In the  tation by the vortex nucleation process at the container wall
context of the superfluid we obtain for the prefaclg;, the  where an instability of the condensate takes place. This in-

*

(l_ 3QZR2)3/2

VI. CONCLUSIONS

following expression: stability is related to the translational symmetry breaking of
_ the complex order parameter describing the superfluid state.
~ RH T (2) We found that the number of vortices that can be
Fo_g(e) 7o(€) ~10%€™ Hz. (39 nucleated at once scales with the radius of a container as
~ R4 since it is a maximum number of zeros in the wave
For e~0.001 and forR=H=0.1 cm we obtain[,~10'7,  function. On the other hand, it scales with— (), linearly.
which is reasonable for the experimental ddta. It means that a derivativdn/d(}; is a finite constant con-
For the energetic barrier of the vortex nucleation in thetrary to analogous quantity in type-ll superconductors
superfluid helium we have in the dimensional ulits dn/dH where it diverges atl—H. These differences mean
that in superfluid helium one can observe, in principle, nucle-
) 4\/5 ation of vortices one by one contrary to superconductors
AE=T\AC,e0¢(T) T\/l_3k where already at the threshold a great number of vortices are
generated®

) 1-3k? (3) We present a complete analysis of the Eckhaus insta-
—4k(1—k%)arcta k2 | €19 (836 pility of the initial nonuniform state and have derived the
corresponding nonlinear phase diffusion equation. It differs
whereAC,=0.76x 10" erg cm 3 K ~* is the specific-heat from the well-known result for the uniform initial state by
jump at the\ point, ando is the effective cross section the appearance of additional gauge field which cannot be
corresponding to the excitation of a single phase-slip eventtenormalized out due to time translation symmetry breaking
The effective cross sectioffor the vortex loops of the by rotation. As a result, instead of the unsaturated Eckhaus
radius€) in our case is the product of the correlation lengthinstability one finds in the spin-up problem a new situation
&(e€) by the effective boundary layer widity . Our analysis where the steady state includes vortices located at the center
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of the container and effectively renormalizes the velocity ofThis solution (which we call “adiabatic’) is valid every-
rotation. where except the edge of container. From E&B) in the
(4) Scaling of the critical rotation velocity as a function of limit R—c we obtain the relation betweek, andB,
closeness td, and of the radius of a container are given.
(5)By analogy with a pattern-forming system we consider B QinB,
also the finite-size effect on the instability. As a result, An= 1-Q%R?9°+n°(2R?7?) "
one can find a size of a channel below which the instability
will not occur if in the mean-field approximation Substituting Eqs(A2) and(A3) in Eg. (A4) we arrive at a
Q.=(1UR\3)(1+272£5/eR?)Y?=1, ie., atR<wé/e? a  single equation foB,,:
vortex cannot be created in a channel of radu©f course,
the scaling should be corrected for deviation from the mean- , d,Bn _ N?[1-30%R*7p°+n?(2R?*7°)

(A6)

field approach, namely the scalird® instead ofe'’?. =ty 2 1-Q%R22+ 0% (2R% ) Ba=0.
(6) The same considerations lead to a simple (A7)

formula for T, suppression due to rotation, namely

Se=(QRméy\/31h)%2 We assume that fdR>1 alson>1. Therefore, the right-

(7) Thermal nucleation over the barrier give scaling for hand side(rhs) of Eq. (A7) is in general very large. In order

the barrier and for the nucleation rate which are different0 obey the boundary condition at=1 the rhs has to be-
from those given by previous theories. come small asp—1. This can be achieved by setting

n/R—0, (QR)2=1/3. Thus, we obtain the familiar expres-
sion for the critical frequency),
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Foundation and ISF. for finite R and the relation between and R we have to
focus on the behavior of the solution in the vicinity of
APPENDIX A: OUTER EXPANSION n=1, i.e., near the wall. We assume now that &1

. ) _ o ) (QR)2=1/3+ 6, wheres<1 is the correction to the critical
In this section we focus on the solution, valid in the '”te'frequency due to finit®k. Changing the variableg=1— ¢
rior of the container, which we will call the outer solution. (not to be confused with the correlation length in this con-
This solution can be obtained analytically in the limit of very text) and keeping only the terms linear & we arrive at the
large R with the framework of adiabatic approximation. In following equation: '
order to apply the adiabatic approximation, we scale the co-
ordinates in Eqgs(21), (26), and(27) as follows: , 3n2 n2
dgBn+(1+ §)a§Bn=7( —35+2&+ ﬁ) B, (A9)
n=rIR. (A1)
) ) ) ) ) with the boundary conditioB,({—)—0. We cannot for-
This scaling brings the equations into the form mally apply the boundary condition fagf=0 because outer

expansion loses its validity near the wall at the distance of

1 d,F order 1. At this point we have to match outer solution with
2 - —E3— 2.2F = . . . . . .
Ef(anFJr 7 +F-F (AR F=0, (A2 inner expansion, which has to be obtained in a different ap-
proximation.
1 9A (n/R)?A Equation(A9) is reduced to the Airy equation in the limit
E( &EzAn 7 “) — 5 T4 (1-3F2— (QR)2)A, of Igrgen.NTo see that, we app_ly the following _scaling of the
K variables,£= £(3n?)Y3, and arrive at the equation
+2QniB,=0, (A3) 2. 2 -1 2\~ 157
97Bn=(£+a)By+(2n?) "Y1+ (2n%) "] 9By,
1 9,B,|  (n/R)B (A10)
2 7N\ _ n _E2_ 2,2
ﬁz(ﬁ”anL ; ) 7 TA-FORIAB,
—20niA,=0. (A4) a=3/4—65n%+n*/R?)/(3n?)%3 (A11)
We assume that critical frequen€y is of the order IR, is the constant of order one. Foe-1 the last two terms in

i.e. OR~1. Also the critical number of the azimuthal mode Ed- (A10) can be dropped and we obtain the Airy equation
is n>1. Let us first focus on Eq39). For R>1 the term  ¢7Bn=(&+a)B,. The solution, obeying the boundary con-
1/R2((9§,F+(7,]F/77) is small and the solution in a zero order dition at é—o is
in R™2 is given simply by

B,=CAi(é+a)= CAi( (3n2)1’3r§ +al, (A12)

F?=1-Q°R*7*+O(R™?). (A5)
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where C is the arbitrary constanftdue to linearity of the problem can be solved by modifying the solution E8@) by
equation andr = éR=R—r. The constantr involves as yet a linear combination with fundamental solution of the homo-
unknown valuesn, s which have to be fixed by matching geneous Eq(B2), bounded at —«. This solution is simply
with the solution which is valid near the boundary of the A,=d;F,. The corrected solution is of the form
container(inner solution.
A,=—i(d,Fot+adFy), B;=0, (B9)
APPENDIX B: DERIVATION OF INNER SOLUTION _ i .
where constant «, defined from the condition

Let us now consider the solution of Eq26) and (27) A, — yA;=0, is of the form(for v= 1/\/5);
valid also at the wally ~R. The key simplification in the

inner region is that we ignore the explicit dependence of Egs. _ 3y3ycoshu
(26) and(27) on the radial coordinate and replace it by its a= m.
value at the boundariR. As above, we introduce new coor-
dinater =R—r. The inner region of the solution is defined
by the condition 6<r <R. In this region in the leading order
in 1/R, Eq. (21) for stationary solutior and Eqs.(26) and
(27) for the perturbations assume the following form:

(B10)

Nontrivial behavior arises in the second ordemitR for
Eq. (B3). Using Eqs(B7) and(B9) we obtain the following:

7B+ (1-Fi—0’R)B,
F>Fo+Fo—F3— Q2R?*F(=0, (B1) () 2R?
= F0+

, (9,FotadFo)|. (B1D

n<A
A, — —5 +(1—3F2— O?R?)A,+2QniB,=0, 3
R For the frequency, close to the critical one we have
(B2)  OR=w»~1%\3. As a result, Eq(B11) is reduced to

B —@+(1—F2—92R2)B —20niA,=0 2
r=n R2 0 n n . (9%824' . Bz
(B3) 3cosK[r//3+u]
These equations are subjected to the boundary condition Eq. o1 2
(22) atr=0. The boundary condition at—c is defined by =| — — + —adF,|.
matching with the outer solution. 3\2cosR[T7\3+u] 3
The solution of Eq(B1) is of the form (B12)
T The solution to Eq(B12) is simply linear inr function
Fo=V1—v’tanh y1—v>—+u], (B4) a(B12) Py
V2 _
r -
wherev=QR and the constant is given by the boundary B,=——+ @213 (B13)
condition Eq.(22): V2
2(1- 17 However, fory+ 0 this solution does not satisfy the bound-
sinhu= ———. (B5)  ary condition forr =0. The solution requires modification by
Y

some amount of second fundamental solution to homoge-

For the solution to the set of linear equatiof®2) and neous Eq(B12) which is of the form

(B3) we search in the form of series

ISR,

3 - -
B@="—{tanir/\3+u](r/y3+u)—1}. (B14)
- V2

Bo B1
In zero order we find immediately

n? (A,
+R7(Bz)+---. (B6)

R
This fundamental solution does not obey the boundary con-
dition, and grows linearly for large. The solution, obeying
the boundary condition is of the form

T
(B7) By=| — —

2

(taking into account that the critical frequency obeys the re- V2

lation 1~ 1/R.) The first order is also trivial, and we readily where( is given in terms ofy,u as follows:
obtain

T
AOZO, BOZFOZ\l_Vtan{ \ll_V E‘{'u

+a\213+¢B? |, (B15)

2ycosifu

A= —idFy Bi=0. (88) = 2+3y%c0sHu”

(B16)

This expression is obtained taking the derivative with respect
to » from Eq. (B4). However, the solution E(B8) in gen-  The constan{ vanishes fory—c as{=2/3y and{= 13
eral does not satisfy the boundary conditionrat0. This  for y=0.
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APPENDIX C: MATCHING OF THE INNER
AND OUTER EXPANSIONS

The outer solution Eq(A12) must be matched with the
inner solution Eq.(B15) in their overlap region. The outer
solution is valid throughr =R—r>1 and breaks at=0.
The inner limit of the outer solution is defined by
(3n?)Y3/R<1 which givesr <R/(3n?)3, which gives rise
to the following bilateral condition:

1<r<R/(3n?)13
The inner solution is valid in the interval
0<r~RZ/n2

We see that the expansions overlaprat\R if we set
n~R%¥4 The exact relation is fixed by matching inner limit
(r—0) of the outer solution with the outer limit (%) of
the inner solution.

Expansion of the outer solution for (3)Y3(r/R)<1
gives rise to

T
Bn=C<Ai(a)+(3n2)1’3§Ai’(a) . (C1
Outer expansion of the inner solution in the regienl but
n?/R?r<1 gives[using Eq.(B14) and v~ 1/\/3]

2
Bo=\/3~

n® _
W(l—\/gé)f-

(C2

IGOR ARANSON AND VICTOR STEINBERG

V3n?(1-3¢)

Equation(C3) can be written in terms of scaled variables
Q=n/R¥, A=5RY" (C4)

In this scaling the dependence Bnin Eq. (C3) disappears.
Then Eq.(C3) assumes the form

.,(3@4—1&692 V3Q¥¥(1-430) (3Q4—18AQ2)
Ai 4(3Q2)2/3 ) 2(31/3) Al 4(3Q2)2/3
=0. (CH

Equation(C5) is solved numerically. The instability thresh-
old corresponds to the minimal value Afas a function of
Q. The minimal value ofA and correspondin@ as a func-
tion of the suppression ratg are shown in Fig. 2. Note that
for the zero boundary conditioriwhich corresponds to
vy—o) the parameteA vanishes.

Using Eqg.(C4) we obtain finally the value of the most
unstable azimuthal number and the shift of critical fre-
quency due to finite radius of the contain®r

n=Q(yR*, (CH)
1 /1 Ay
“zV3+ ' €0

Since (317)¥/R~ R we obtain that the eigenfunctions
B~ Ai[(3n?)Y3(r/R)+ ], corresponding to the most un-

The matching of the above expansions is possible if thestable modes are localized in the layer of the widgk VR

following relation holds:

near the container wall.
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