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It is shown that the Ginzburg-Landau model corrected for the normal component describes adequately the
spin-up problem for the superfluid liquid helium. An analysis of the Eckhaus instability in an inhomogeneous
rotationally invariant system is presented. It has been found that the number of vortices which can be nucleated
at the threshold of instability scales with the radius of the container asR3/4. The effect of excitation of the
vortex loops by thermal fluctuations is considered, and the barrier and the nucleation rate are evaluated.
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I. INTRODUCTION

One of the most severe and important experimental tests
of a dynamical model of a superflow in helium is the well-
known spin-up problem in which a container with a super-
fluid is spun until a steady-state rotation is reached.1 Here the
transient behavior of the cell, while transferring an angular
momentum to the superfluid not only reflects interaction of
the superfluid with the walls but also gives insight into the
nature of the superfluidity itself. Specifically, one is inter-
ested in the mechanism of vortex nucleation at the walls due
to rotation and consequently vortex-wall interaction and their
role in the transient and steady-state rotation behavior of the
superfluid.

A conventional approach to the spin-up problem is to de-
scribe it by a two-fluid hydrodynamic model corrected by an
equation for vortex line dynamics.1–3 The vortex lines, con-
taining the vorticity of the superfluid component and pro-
duced topologically multiconnecting space, interact with the
normal component that leads to mutual friction.4 It is evident
that this hydrodynamical description does not catch the key
point of the spin-up problem, namely, the vortex nucleation
which actually causes the spin-up of the superfluid compo-
nent. Thus the vortex nucleation at the container walls and its
dynamics are the primary superfluid relaxation mechanism
toward a steady rotation.

In this paper we suggest a different approach to the
spin-up problem. Let us consider a cell containing a super-
fluid helium rather close to the superfluid transition tempera-
ture Tl . When the cell is rotated with an angular velocity
V, the normal component is involved in a solid body rotation
with VW n5VW 3rW on rather a short time scale of the order of
r 2/nn , where nn is the kinematic viscosity of the normal
component. The superfluid component cannot participate in
the uniform rotation up to the point where the potential flow
condition is satisfied, i.e.,¹W 3VW s50. It follows also from the
order-parameter description of the Ginzburg-Landau~GL!
type model, introduced by Ginzburg and Pitaevskii for a
superfluid5 ~which will be discussed in detail in Sec. II!.
Indeed, then

Vs
W5

\

m
¹x and rs5muCu2, ~1!

whereC5uCuexp(ix) is the complex order parameter of the
superfluid condensate.5 Pitaevskii then generalized this de-
scription by also taking into account hydrodynamics of the
normal component.6 In this framework the resolution of the
spin-up of the superfluid component is the nucleation of the
quantized vortices which are the topological solutions of the
GL equation.5 Outside the vortex core which is normal, one
gets from Eq.~1! the superfluid velocity circulation around a
single quantum vortex

k52p\/m. ~2!

Moreover the GL equation also provides the mechanism of
vortex nucleation due to phase instability.7 Since we suggest
starting from the GL equation for the order parameter which
naturally includes the vortex nucleation, we cannot avoid
discussing two main objections to the approach.

The first and most severe one is the applicability of the
GL-type mean-field theory which, although well known,
does not properly describe even equilibrium properties of the
superfluid transition.8 Since we are interested just in the vor-
tex nucleation mechanism which results from the transla-
tional symmetry breaking of the condensate,7 we believe that
this mechanism will remain valid also in a more elaborate
approach that takes fluctuations into account. The first step in
this direction was taken recently.9 However as has been done
in the equilibrium case one can correct in an artificial manner
the wrong critical exponents appearing in the mean-field
approximation.10

The second objection is related to the comparison with
already existing theories of vortex nucleation which have
been used to analyze and discuss the experimental data. We
will not discuss pinning models since they have already been
compared with nucleation models and criticized by Varo-
quaux et al.11 The generally accepted consideration which
justifies the existence of quantum vortices in superfluid he-
lium, goes back to Feynman’s ground-breaking idea.12 Ac-
cording to Feynman12 it is energetically favorable to create a
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vortex ring of the radiusR in a superfluid if the flow velocity
exceeds the self-induced velocity of the ring

Vsc>VR5~\/2mR!ln~8R/a21!, ~3!

wherea is the core radius of the vortex related to the super-
fluid correlation length with the same temperature depen-
dence nearTl . Then the potential flow condition, introduced
by Landau for the superfluid component,13 ¹W 3Vs

W50 breaks
down locally at the vortex core. The predicted critical veloc-
ity is temperature independent but size dependent with a
value which is equal to about 10 cm/s in a channel of about
1024 cm. Firstly, this velocity is not an actual velocity of the
vortex nucleation due to the existence of a large energy bar-
rier between the states of higher and lower energies. Sec-
ondly, experimentally observed strong temperature depen-
dence ofVsc and independence on the channel size contradict
the theory discussed above.12 And finally even in early ex-
periments the observed values ofVsc were much larger than
predicted by Eq.~3!. Two mutually excluded theories of vor-
tex nucleation were suggested later on: a classical one based
on a thermodynamical approach of thermal excitation over a
barrier separating two states~with and without a vortex! and
applicable at higher temperatures; and a quantum one, based
on an idea of quantum tunneling under the barrier which is
applicable at very low temperatures. The theory of homoge-
neous thermal nucleation of a quantized vortex ring in a
superflow due to Iordanskii,14 Langer, and Fisher15 ~ILF!
suggested the mechanism of the vortex nucleation. However,
a pure thermodynamical approach to a nonequilibrium state
has been applied. As an energy barrier, Eq.~3! for the energy
of the critical vortex ring was taken. Then the nucleation rate
per unit volume over the free energy barrier is

G5G0exp@2Ea /kBT#, ~4!

where Ea5rs(\
2p2/m2R)(ln8R/a23) is the energy of a

vortex ring of radiusR. It is clear that the prefactorG0 criti-
cally controls the final result on the critical velocity and the
critical ring radius, and cannot be calculated in the frame-
work of the theory.14,15 Although the theory predicts tem-
perature dependence of the critical velocityVsc;rs /T, the
value of the critical velocity predicted is larger up to an order
of magnitude of that found in early and recent experiments
on channel flow in several microns and submicrons size
channels.11,16 And finally, very recent experiments17 on the
energy barrier for the vortex creation in the channel flow
reveals a scaling withVs which is different from that pre-
dicted by the ILF theory. At this point we would like to
emphasize that a dynamic instability approach to the super-
flow was suggested by Kramer18 and Mikeska19 more than
25 years ago, however, without direct relation to the vortex
nucleation mechanism. Later on this idea was reiterated in
various applications, particularly in the description of the
critical behavior of superfluid helium in the vicinity ofTl

under a heat current.9 Just recently this idea was applied to
the problem of vortex nucleation in a channel flow with an
attempt to explain quantitatively the experimental data.7

However, in spite of its long history, the GL model was
never used to describe the spin-up problem in the superfluid
helium.

Thus from this short review it follows that the existing
theories are not able to explain even qualitatively the experi-
mental data on vortex nucleation. A more elaborate theory
which will explain the observed velocity and temperature
dependences of the energy barrier and give reasonable value
for the prefactorG0, is, therefore, definitely needed. The ap-
proach suggested provides different scaling of the energy
barrier with the superfluid velocity and the expression for the
prefactorG0. In this we will correct an erroneous statement
made in the literature on the superflow, i.e., that the GL
model cannot incorporate naturally the thermal excitation
over the barrier.16 On the other hand, low critical velocities
observed in the experiment, in our opinion, are possibly a
result of remnant vorticity, and we hope that next generation
of the experiments will overcome this problem, e.g., in the
way suggested about 20 years ago.21 And finally we would
like to point out that a superfluid3He is a more appropriate
system to test theories since the pinning of vortices and
trapped vorticity there are much less severe problems.22 That
is the reason why the steady-state rotation without vortices
has been observed experimentally only in3He and not in
4He.
The paper is divided into two parts. In the first part we

will discuss just the mechanism of the vortex nucleation due
to the intrinsic instability of the condensate, and the resulting
critical velocity scaling. In the second part we will discuss
the vortex nucleation due to thermal excitation over a barrier
which is a relevant problem at temperatures close toTl .

II. THE VORTEX NUCLEATION PROBLEM
AND CRITICAL VELOCITY

According to Pitaevskii6 dynamics and vortex nucleation
of a superfluid helium near the superfluid transition tempera-
ture Tl can be described by a set of equations, which are a
generalization of a two-fluid hydrodynamical model of
Landau13,23

i\] tC52
\2

2m2DC1~m1ms!mC

2 iLF12 S i\m ¹1VnD 21msGmC, ~5!

] tr1 div j50,

j5rsVs1rnVn, rn5r2muCu2,
~6!

rsVs52
i\

2
~C*¹C2C¹C* !,

rs5muCu2,

] tj1¹P50, ~7!

] tS1 divSSVn2
k

T
¹TD5

R

T
, ~8!

wherern ,rs ,mn ,ms , andVn ,Vs are the densities, chemical
potentials and velocities of normal and superfluid compo-
nents correspondingly,P is the stress tensor~including vis-
cous terms and pressure!, S is an entropy, andT is a tem-
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perature,L is the parameter characterizing relaxation rate,
andR is a function of dissipation~see, for details, Refs. 6,
23, and 10!. For simplicity we restricted the analysis by
small values ofvn ,vs and neglected in Eq.~7! nonlinear in
vn terms.

NearTl the chemical potentials of normal and superfluid
components can be written in the form

ms5eC2buCu2C1higher-order terms, ~9!

m5m0~S,r!2Vn
2 , ~10!

where m0 is the chemical potential of motionless liquid,
e5(Tl2T)/Tl is the reduced temperature, andb is a posi-
tive constant in a mean-field approximation. In order to cor-
rect the mean-field scaling and to describe the properties of
superfluid helium nearTl one can introduce by hand the
temperature dependence ofe and b.10,20 Then one gets
e;(T2Tl)

4/3!1 andb;(T2Tl)
2/3.10,20 The term;Vn

2 in
the expression form arises from the renormalization of
chemical potential of the fluid due to macroscopic motion of
the normal component~see, e.g., Ref. 23!.

To describe the spin-up problem, the set of equations~5!–
~8! can be significantly simplified in the first order of the
small parametere. We assume that there are no external
temperature fluxes and the temperature is kept constant.

It is convenient to perform the following scaling of the
variables~see for details Ref. 10!:

x→
x

j~e!
,

~11!
j~e!5A\2rs0/2m

2DCmTl51.6331028e22/3 cm,

C→
C

Ce~e!
, Ce~e!5Ce0e

1/350.2331012e1/3 cm23/2,

~12!

Vn→
Vn

Ve~e!
, Ve~e!5

\

mj~e!
59.743103e2/3

cm

s
,

~13!

rs→
rs

re~e!
,

~14!

re~e!5muCu25re0e
2/351.43rlTl

2/3e2/350.35e2/3
g

cm3,

t→t/t~e!, t~e!5
j~e!

2Ve~e!
'0.83310212e24/3 s,

~15!

where j(e) is the correlation length below thel point,
DCm is the specific-heat jump,Ce0 , re0 are amplitudes of
the temperature dependence of the equilibrium values ofC
andrs in bulk helium,rl50.146 g/cm3, m is the mass of
the helium atom,Ve(e) is the temperature dependent unit of
velocity, andt(e) is the unit of time. Under this scaling in
the leading order ofe we are left with the set of equations:

] tC52
i

2
~DC1C2uCu2C2Vn

2C!

1
L

2
@~¹2 iVn!

2C1C2uCu2C#1O~e!, ~16!

] trn1 divrnVn1O~e!50, ~17!

] trnVn5hDVn1O~e!, ~18!

whereh/rn5nn . If no external temperature gradient is im-
posed and the temperature is kept constant, then the equation
for the entropy splits off and consequently the residual part
of the chemical potentialm05const is gauged away. Here
we neglect the coupling between the order parameterC and
the temperatureT via dependencem0(T). In Ref. 24 it is
claimed that this coupling might be relevant for the dynamics
of superfluid. We agree that if an external heat flux is sup-
plied, the temperature variations cause macroscopic motion
of the superfluid due to counterflow convection effects. Even
in an isolated system mutual friction between normal and
superfluid components produces some heat.

However, for the small velocity limit that we consider,
these temperature variations should not affect in the main
order ofe the motion of the fluid. Also, the coupling coeffi-
cient from24 is a phenomenological parameter, and there is
no reason for this parameter to be large enough to provide an
effective coupling.

For velocities much smaller than the speed of the first
sound, we can treat the normal fluid as incompressible. The
dynamics of the normal part is described by a simple linear
equation

] tVn5nnDVn. ~19!

Equation~19! admits a rigidly rotating stationary solution

Vn5Vr . ~20!

Equation ~16! is reminiscent of that of the Ginzburg-
Landau equation for type-II superconductors with a complex
order parameter.25 The role of an external magnetic field is
played by the angular velocity, and that of the corresponding
vector potential by the velocity of the normal component.
Then by analogy one expects that atV<Vc1, there exists a
motionless superfluid component with no vortices. At
V.Vc1 vortices will be nucleated and penetrate into the
fluid producing a vortex lattice in the interior of a helium
container. As follows from the experiments on the superfluid
4He Vc1 is too low to be detected.4 On the other hand,
Vc2 ~which is analogous toHc2 in superconductors and at
which superfluidity will be completely destroyed in the
sample! is too high to be reached experimentally. However,
as already mentioned, one should keep in mind that theoreti-
cal estimates ofVc1 were based on erroneous energy
considerations.4

We will treat the superfluid part independently from the
normal one: we consider the spin-up of the superfluid part in
a rigidly rotating flow of the normal component. Of course,
this assumption does not describe the first stage of the
spin-up because it takes some time until rigid rotation of
normal fluid sets in. However, this stage is relatively short of
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the order ofr 2/nn , and does not affect the vortex nucleation
mechanism, which is the main subject of the studies.

As a result of these assumptions we are left with one
equation for the order parameter of the superfluid Eq.~16! in
the given velocity field of the normal component. This equa-
tion is asymptotically correct in the vicinity of thel point.
Moreover, one can speculate that the equation also describes
some aspects of spin-up for4He near zero temperature with
L→0. Of course, the assumption is thatrn@rs is no longer
valid, and opposite inequality takes place. However, we can
imagine the situation when a small part of superfluid4He is
in still normal 3He, which plays the role of normal compo-
nent. Here we expect that the vortex nucleation is not af-
fected by this circumstance. Therefore, we will consider Eq.
~16! approximately valid for all temperatures with the pa-
rameter L→0 for T→0 and diverges asL;e21/3 for
T→Tl .

III. CRITICAL VELOCITY

Critical velocity for the bulk instability of the superflow
in a channel was found in Refs. 18 and 19, which in our
scaled variables reads asVn51/A3. It appears that the criti-
cal velocity is notL dependent. This value coincides with
the well-known critical wave number of the Eckhaus insta-
bility in pattern-forming systems.26

For the cylindrical geometry the method employed in
Refs. 18 and 19 cannot be implemented because of the de-
pendence of the normal velocity and as a result of the super-
fluid density on a radial coordinate in the presence of rota-
tion. In order to define the critical angular velocity we use a
method similar to that of Ref. 27 implemented for thin su-
perconducting films in a magnetic field. It turns out that the
analysis of the critical velocity for the circular container is
much more complicated than that for the channel. We show
that the critical velocity~or angular frequency! is always
higher than the one for the parallel flow. Moreover, at the
threshold of the instability only a certain angular mode with
the azimuthal numbern;R3/4 grows. This selection mecha-
nism has no analog for the parallel flow. In this section we
consider the stability of stationary solution, corresponding to
nonrotating superfluid. Our aim is to find the critical fre-
quency of the rotation as the function of the container radius
R, and the critical angular number of the most unstable per-
turbation. We carry out our calculation in the physically rel-
evant limit of very largeR ~for real vessels of the diameter 1
cm the radiusR after the scaling is of order 106 depending
on the closeness to thel point!. We employ the method of
matched asymptotic expansions in the bulk of the container
and near the container wall. Analytical results appear to be in
very good agreement with the results of numerical simula-
tion even for moderate values ofR5100– 200.

A. Stability of the nonrotating solution

Equation~16! possesses a stationary solution correspond-
ing to nonrotating superfluid in the presence of the solid
body rotation of the normal component. For this solution the
argC50, whereas the superfluid densityuCu2 dependence
on the radius is given by the following equation:

] r
2F1

] rF

r
1F2F32V2r 2F50, ~21!

whereF5uCu. Equation~21! has to be complimented by the
conditions at ther50 and the boundary condition at the wall
of the containerr5R, whereR is the radius of the container.
As a boundary condition at the wall we will take a condition
of finite suppression of the superfluid density by the wall,
i.e.,

] rC1gC50 for r5R, ~22!

whereg characterizes the suppression rate of the order pa-
rameter. Forg→0 we have a no-flux boundary condition
(] rC50) and for theg→` zero condition,C50 corre-
spondingly.

The solution of Eq.~21! for generalV,R is accessible
only numerically. For some particular choice of parameters
V,R, and forg→` the solution is depicted in Fig. 1.

The stationary solution is stable forV,Vc and loses sta-
bility above the critical angular velocityVc . In order to find
Vc we need to perform a linear stability analysis near the
stationary solution of Eq.~21!. Instability of the stationary
solution leads to nucleation of vortices and the correspond-
ing spin-up of superfluid. It is similar to that of penetration
of a magnetic field into type-II superconductors and creating
of the vortex state.25

We substitute a perturbative solution of the form

C5F~r !1W~r ,u,t !, ~23!

whereW is a small generic perturbation.
It is convenient to transform to the frame rotating with

frequencyV. In the corotating frame we obtain in the linear
order inW

] tW5
L1 i

2
@DW1~122F22V2r 2!W

2F2W*22iV]uW#. ~24!

At the threshold of the instability~which appears to be
stationary bifurcation! the growth rate of the perturbations

FIG. 1. The order-parameter amplitudeuCu as a function of
radius forR530, V50.032, andg5`. The solid line shows nu-
merical solution, the dashed line is the adiabatic approximation Eq.
~A5!.

54 13 075SPIN-UP AND NUCLEATION OF VORTICES IN . . .



vanishes and we can set] tW50. RepresentingW5A1 iB,
and looking for solution in the form

SABD5 (
n52`

` SAn

Bn
Dexp@ inu#, ~25!

we arrive at the following equations forAn ,Bn ~wheren is
the rotation or azimuthal number of the perturbation!:

] r
2An1

] rAn

r
2
n2An

r 2
1~123F22v2r 2!An12VniBn50,

~26!

] r
2Bn1

] rBn

r
2
n2Bn

r 2
1~12F22v2r 2!Bn22VniAn50.

~27!

The boundary conditions areAn(R)1gAn(R)5Bn(R)
1gBn(R)50 andAn(r ),Bn(r ) remain bounded forr→0.

The critical angular velocityVc is defined by the condi-
tion when Eqs.~26! and~27! have a nontrivial eigenfunction
satisfying boundary conditions as we increaseV from zero
~see, for details, Ref. 27!. For R@1 it is a tough numerical
problem. However, the solution of the problem can be
achieved in the limit of very largeR. Finding the most un-
stable azimuthal number comprises three steps. Firstly, we
determine the solution in the bulk of container using the
advantage of so-called adiabatic approximation. This ap-
proximation is similar to the adiabatic approximation used in
derivation of the phase diffusion equation in the pattern-
forming systems. Physically it means that the amplitude~or
real part in the present case! adiabatically slaves the phase
dynamics due to a difference in time scales. The ‘‘adiabatic’’
solution loses its validity near the wall of the container~be-
cause the boundary condition is violated! and another ap-
proximation has to be applied. Secondly, we apply another
valid approximation upon the wall of the container~inner
approximation!. This approximation breaks down at some
distance from the wall. Finally, we match both solutions in
the region where both approximations are valid. Matching of
the adiabatic solution with the solution at the wall of the
container fixes critical frequency of the rotation and selects
the most unstable mode with the rotation numbern. The
details of the procedure are described in the Appendixes
A–C; here we present the answer~the calculations are rather
cumbersome, and were carried out with the aid of a program
for analytical computations,MAPLE!.

The analysis shows that the most unstable eigenmodes are
localized in the narrow layer of the widthr b near the con-
tainer wall. We obtainedr b;AR!R for largeR. The value
of most unstable azimuthal numbern and the critical fre-
quencyVc for the container radiusR is given by the expres-
sions:

n5Q~g!R3/4, ~28!

Vc5
1

R
A1

3
1

D~g!

R1/2 . ~29!

The dimensionless parametersQ(g),D(g) are the functions
of the suppression rateg and are obtained by the matching of
outer and inner expansions. The values ofD and correspond-

ing Q as a function of the suppression rateg are shown in
Fig. 2. Note that for the zero boundary condition~which
corresponds tog→`) the parameterD vanishes.

B. Comparison of critical velocities

The quantityVcR in Eq. ~29! has a dimension of velocity.
Corresponding critical velocity for parallel flow is smaller
(Vc51/A350.5773). Therefore, inhomogeneous suppres-
sion of the order parameter due to rotation results in increase
of the critical velocity.

According to Refs. 18, 19, and 10 the critical velocity of
parallel flow in the physical units is

Vc5VcR5
1

A3
Ve'3.33103e2/3

cm

s
, ~30!

whereVe is the velocity above which the density of super-
fluid vanishes@see Eq.~13!#. The power 2/3 is introduced to
assure correct scaling of the superfluid density near thel
point. ForR̃51 cm ande51024 from this formula one gets
Vc'11 s21. Correction to the frequency due to finiteR is
irrelevant in this case, since scaledR is of the order 105

(R̃ is in the dimensional unit!.
In mean-field theory one hasVcR5(\/m)(e1/2/A3j0).

For R̃51 cm ande51024 the difference in the angular ve-
locity is rather significant, e.g.,Vc550 s21. From the con-
ventional Feynman equation one obtainsVc51.731022

s21, i.e., the difference is more than 3 orders of magnitude.
At e51026 just about an order of magnitude difference still
remains and is equalVc50.5 s21. At R̃50.1 cm and
e51026 both values forVc will be of the same order of
magnitude of several Hz. What is crucial here is the different
scaling ofVc with R and the strong dependence one in our
case. For the casee51026 andR̃50.1 cm scaledR is of the
order 103, and the correction to the frequency can be of the
order of several percent.

FIG. 2. Dependence ofD ~solid line! andQ ~dashed line! as
functions ofg.
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C. Phase equation

The nonlinear stage of the dynamics can be partially re-
covered by a simplified phase diffusion equation. Indeed, the
modulus ofC follows the phase according to the relation
uCu2'12(¹f2Vn)

2. Substituting this expression for the
equation for the phase we obtain a single equation~for
L→`, close toTl)

] tf5
L

2 S Df2~¹f2Vn!
¹~¹f2Vn!

2

12~¹f2Vn!
2D

1 higher-order terms. ~31!

This equation reminds us of that from the theory of a
nonlinear stage of Eckhaus instability~see, e.g., Ref. 28!.
However, the difference is that velocity of a normal compo-
nent cannot be gauged away by substitution¹fnew
5¹f2Vn because fieldVn has nonzero vorticity. This cir-
cumstance results in a completely different asymptotic state
of the system when the instability saturates: if ‘‘regular’’
Eckhaus instability just drives the system to a new value of
the velocity in the stable region, whereas in our case the
instability results in the creation of an array of vortices. This
difference can be explained by the following considerations:
the vortex which is nucleated at the boundary climbs nor-
mally toVW n towards the center of the container. The resulting
superflow around the vortex reduces the velocity difference
VR2Vs at the boundary. Vortices will be generated at the
boundary till the moment whenVR2Vs<Vcs is satisfied.
This new state withn vortices will be stable at a given value
of V. The mechanism of nonlinear relaxation of the unstable
solution and a particular selection of a new stable solution
following the instability ~that is analogous to the wave-
number selection problem in pattern-forming systems! are
issues which can be studied by analysis of nonlinear evolu-
tion, e.g., using the nonlinear phase diffusion equation~31!.
As shown recently by numerical simulations of the Swift-
Hohenberg equation,32 thermal fluctuations smear the Eck-
haus boundary and change the scaling of the finite wave
number~or superfluid velocity in our case! as a function of
the initial one. The temporal evolution of the unstable state
changes as well.32 However in any case the result differs
from conventionally accepted opinion that the steady state of
rotating superfluid helium can be described by
V i5Np\/m whereN is the number of vortices per unit
area. Thus ifV i>Vc the number of vortices will be defined
by the relation (V i2V f)5np\/m where (V i2V f);V i
2Vc and (V i2V f)!Vc . HereV f<Vc is the final velocity
of the superflow. Therefore the difference betweenN andn
can be considerable.

The difference with pattern-forming systems can be fol-
lowed even further. In principle one can imagine that inside
the Eckhaus stable region one can bring the system locally
into an unstable state by a local perturbation of a superfluid
velocity, and due to weak conservation law
uCu2(Vs2Vn)5const it results in a local superfluid density
dip. This solution is unstable to small perturbations of the
superfluid density which causes further deepening of its am-
plitude to zero, and finalizes in a phase slip. This process
only involves a homoclinic unstable solution. The resulting
vortex climbs into the container center, stays there, and re-

duces the velocity difference at the boundary. Thus one cre-
ates different states withVs<Vcs and a different number of
vortices at the center of the container.

IV. NUMERICAL RESULTS

To go beyond stability analysis we performed simulations
of Eq. ~16!. We used a quasispectral code based on fast-
Fourier transform~FFT! for the rectangular domain. Bound-
ary conditions modeled theC(R)→0 condition. This was
achieved by adding the attenuation factordC to the linear
term inC term in Eq.~16! beyond the radiusR according
the following formula: d50 for r<R and
d52sinh@0.5Ar 22R2# for r.R. Although it is difficult to
evaluate the effective suppression rateg corresponding to
this boundary condition, we note that the functionc vanishes
at the distance of the order of few dimensionless units away
from the wall, which roughly can be modeled byg'2–3.
We used typically 1283128 harmonics of FFT and the time
step 0.05/uL1 i u andR565. We also performed simulations
with 2563256 harmonics inR5140.

For R565 we have observed instability at frequency
V50.009 45. For this radius and a rough estimate for
g'3 our analytic expression~29! givesV50.009 52, which
corresponds to the numerical result within 1%. The reason
for the discrepancy is obviously uncertainty in the choice of
g. Note that the result without the 1/AR correction is
V51/(A3R)'0.0088, and is much below the numerical
value.

We observed nucleation and consequent tearing off of the
vortices forV>Vc irrespective ofL. However, the charac-
ter of the nucleation and asymptotic states depends strongly
on L.

Let us discuss first the caseL→`. Slightly above the
critical valueVc we observed nucleation of several vortices.
Nucleation occurs at nonlinear stage of the instability when a
set of single zeros~four zeros forR565) is torn off at the
radiusR. These zeros are the seeds for the vortex cores. The
vortices propagate into the interior of the container and fi-
nally form a lattice, reminiscent of that of the Abrikosov
lattice25 ~see Fig. 3!. Further increase ofV results in forma-
tion of additional vortices. Also, the number of vortices does
not depend linearly onV, however it approaches a linear law
with increase ofV ~see Fig. 4!.

It turns out that the character of nucleation is drastically
different forL→0. Typically one has torn off whole clusters
of vortices~see Fig. 4!. These clusters can be considered as a
perturbed multicharged vortex. The multicharged vortex is
definitely unstable and breaks down into single-charged vor-
tices after some time. However, the lifetime of the vortex
happens to be proportional toL and diverges for smallL.
Explanation of this phenomenon is reported in Ref. 29. The
reason for multivortex nucleation is that forL→0 simulta-
neously many azimuthal modes are unstable and grow inde-
pendently. As a result, these modes have close zeros at the
same place. Finally, a perfect vortex lattice is formed, which
can be considered as an analog of the Abrikosov lattice.

V. THERMAL EXCITATION OF THE VORTEX
OVER THE BARRIER AT V<VC

Contrary to hydrodynamical pattern-forming systems, in a
superfluid helium thermal noise plays a crucial role in vor-
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tex nucleation over the barrier particularly at high enough
temperatures~above 1 K!. The reason for this difference is in
the macroscopic nature of hydrodynamic flow compared
with the microscopic nature of the quantum vortex. Accord-
ing to the currently accepted ILF theory the nucleation rate
over the barrier may be described by the Kramers’ equation

G5G0exp@2E0 /kBT#. ~32!

There have been several attempts to estimateG0 from gen-
eral considerations or from experimental data. The difference
scans many orders of magnitude from early estimates of
Langer and Reppy30 which gaveG051034 Hz, up to the re-
cent experiment for the microscopic channels, by Steinhauer
et al.,17 who obtainedG05107 Hz. It is clear that this param-
eter fixes the fluctuation time scale, and it remains a chal-
lenge to find it from theory.

McCumber and Halperin31 evaluated the thermoactivation
rate for thin superconducting wires from the Ginzburg-
Landau equation. This problem is similar to that considered
by us, and we will use the analogy in the following esti-
mates. They have obtained the following expression:

G05
N~T!

t~T!
, ~33!

whereN(T) is in effect the number of statistically indepen-
dent subsystems along the wire andt(T) is the microscopic
diffusion time inversely proportional toDT. The effective
numberN(T) is approximately equal to the length of the
wire measured in units of the coherence lengthj(T)

N~T!'
L

j~T!
,

whereL is the wire’s length.
For the energetic dimensionless barrier of single phase-

slip nucleation McCumber and Halperin31 have obtained the
following expression:

FIG. 3. The sequence of grey-coded images ofuCu demonstrat-
ing nucleation of vortices and creation of the vortex lattice. The
dark shade corresponds to zero ofuCu; the white one to its maxi-
mum value. Vortices are seen as black dots. The parameters are
V50.01, R565, L@1. The initial condition isC51 plus small-
amplitude broadband noise.~a! t5100L, ~b! t5200L, ~c!
t51100L.

FIG. 4. Number of vortices as a function ofV. ~a! R565; ~b!
R5140.
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E05S 4A23 A123k224k~12k2!arctanA123k2

2k2 D ,
~34!

where the wave numberk is defined by the total supercurrent
by the conditionj5k(12k2).

Direct implementation of the McCumber and Halperin
method is technically impossible for our case. Our situation
is essentially three-dimensional, and instead of one-
dimensional phase slips we expect nucleation of the vortex
loops. Even saddle-point calculations are technically impos-
sible because of the explicit dependence of the equation on
the radial coordinate. However, strong inhomogeneity of the
problem is also a simplifying factor. Indeed, the superflow
velocity is maximal near the edge of the container. There-
fore, the activation barrier is smallest at the edge, whereas
the bulk contribution is negligibly small~activation in the
bulk has a much higher energetic barrier!.

It seems plausible to consider an effective quasi-one-
dimensional model for thermoactivation. We assume that
only the boundary layer plays a role in the thermoactivation
process. It follows from that consideration that the small vor-
tex rings nucleated in the bulk shrink, whereas they will be
metastable near the wall in the layer of the order ofj. The
vortex rings are stretched by the velocity field and cause the
phase-slip events on the scale of the effective boundary
layer. The width of the effective boundary layerr b at the
critical frequencyVc is of the orderAR!R since our analy-
sis shows that the eigenfunctions for instability are localized
in this layer.

We consider the thermoactivation of vortex loops in the
cylindrical container of the radiusR and the heightH. The
number of statistically independent degrees of freedom
N(T) in our context is simplyR̃/j(e)3H/j(e), since we
assume that the nucleating vortex loop is the sizej. We
neglect the contribution from the activation of the vortex
rings in the bulk and take into account only boundary nucle-
ation. The characteristic time in our case istc5t/L. In the
context of the superfluid we obtain for the prefactorG0, the
following expression:

G05
R̃H

j~e!2tc~e!
'1027e7/3 Hz. ~35!

For e;0.001 and forR̃5H50.1 cm we obtainG0;1017,
which is reasonable for the experimental data.11

For the energetic barrier of the vortex nucleation in the
superfluid helium we have in the dimensional units10

DE5TlDCme2sj~T!S 4A23 A123k2

24k~12k2!arctanA123k2

2k2 D erg, ~36!

whereDCm50.763107 erg cm23 K 21 is the specific-heat
jump at thel point, ands is the effective cross section
corresponding to the excitation of a single phase-slip event.

The effective cross section~for the vortex loops of the
radiusj) in our case is the product of the correlation length
j(e) by the effective boundary layer widthr b . Our analysis

shows ~see Sec. III and the Appendixes! that the unstable
modes leading to the vortex penetration are indeed localized
in this layer near the container’s wall. We can evaluate the
value of r b from the condition

r b;j~e!3AR̃/j~e!5Aj~e!R̃.

For the container of the radiusR̃50.1 cm the widthr b is
of the order 1mm. Finally, we obtain the following expres-
sion for the dimensionless thermoactivation exponent
E*5DF/(kBTl) for k5VR→1/A3

E*'
DCme2j~e!2Aj~e!R̃

kB
~123V2R2!3/2

'103e1/3~123V2R2!3/2. ~37!

For e50.001 we estimate that the transition broadening at
the critical rotation velocityVcR51/A3 due to thermal fluc-
tuations is about 1–2% of the total value ofV.

We can use the same considerations to estimate the nucle-
ation rate of a vortex loop in a narrow channel flow. Typical
channel volume is of the order of 1mm.3,11,17Then one gets
G0'1022e3 that gives ate50.001G051015 Hz. The relative
thermoactivation barrier isE*'10r c

3(123V2)3/2 where
r c'3–5 correlation lengths is the minimum radius of the
vortex loop which can grow.11 This leads to the broadening
of the transition of the order to 1–2%. Thus both the nucle-
ation rate and the broadening of the transition are in reason-
able agreement with experiment.11,17

VI. CONCLUSIONS

The main results of our studies are the following:
~1! We showed that one can describe adequately the

spin-up problem in superfluid helium starting from vortex-
free superflow using the GL model corrected for the normal
component velocity field. The superfluid is brought into ro-
tation by the vortex nucleation process at the container wall
where an instability of the condensate takes place. This in-
stability is related to the translational symmetry breaking of
the complex order parameter describing the superfluid state.

~2! We found that the number of vortices that can be
nucleated at once scales with the radius of a container as
R3/4, since it is a maximum number of zeros in the wave
function. On the other hand, it scales withV i2Vc linearly.
It means that a derivativedn/dV i is a finite constant con-
trary to analogous quantity in type-II superconductors
dn/dH where it diverges atH→Hc . These differences mean
that in superfluid helium one can observe, in principle, nucle-
ation of vortices one by one contrary to superconductors
where already at the threshold a great number of vortices are
generated.25

~3! We present a complete analysis of the Eckhaus insta-
bility of the initial nonuniform state and have derived the
corresponding nonlinear phase diffusion equation. It differs
from the well-known result for the uniform initial state by
the appearance of additional gauge field which cannot be
renormalized out due to time translation symmetry breaking
by rotation. As a result, instead of the unsaturated Eckhaus
instability one finds in the spin-up problem a new situation
where the steady state includes vortices located at the center
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of the container and effectively renormalizes the velocity of
rotation.

~4! Scaling of the critical rotation velocity as a function of
closeness toTl and of the radius of a container are given.

~5!By analogy with a pattern-forming system we consider
also the finite-size effect on the instability. As a result,
one can find a size of a channel below which the instability
will not occur if in the mean-field approximation
Vc5(1/RA3)(112p2j0

2/eR2)1/2>1, i.e., atR<pj/e1/2 a
vortex cannot be created in a channel of radiusR. Of course,
the scaling should be corrected for deviation from the mean-
field approach, namely the scalinge2/3 instead ofe1/2.

~6! The same considerations lead to a simple
formula for Tl suppression due to rotation, namely
de5(VcRmj0A3/\)3/2.

~7! Thermal nucleation over the barrier give scaling for
the barrier and for the nucleation rate which are different
from those given by previous theories.
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APPENDIX A: OUTER EXPANSION

In this section we focus on the solution, valid in the inte-
rior of the container, which we will call the outer solution.
This solution can be obtained analytically in the limit of very
largeR with the framework of adiabatic approximation. In
order to apply the adiabatic approximation, we scale the co-
ordinates in Eqs.~21!, ~26!, and~27! as follows:

h5r /R. ~A1!

This scaling brings the equations into the form

1

R2 S ]h
2F1

]hF

h D1F2F32~VR!2h2F50, ~A2!

1

R2 S ]h
2An1

]hAn

h D2
~n/R!2An

h2 1~123F22~VR!2h2!An

12VniBn50, ~A3!

1

R2 S ]h
2Bn1

]hBn

h D2
~n/R!2Bn

h2 1~12F22~VR!2h2!Bn

22VniAn50. ~A4!

We assume that critical frequencyV is of the order 1/R,
i.e.VR;1. Also the critical number of the azimuthal mode
is n@1. Let us first focus on Eq.~39!. For R@1 the term
1/R2(]h

2F1]hF/h) is small and the solution in a zero order
in R22 is given simply by

F2512V2R2h21O~R22!. ~A5!

This solution ~which we call ‘‘adiabatic’’! is valid every-
where except the edge of container. From Eq.~A3! in the
limit R→` we obtain the relation betweenAn andBn

An5
V inBn

12V2R2h21n2/~2R2h2!
. ~A6!

Substituting Eqs.~A2! and~A3! in Eq. ~A4! we arrive at a
single equation forBn :

]h
2Bn1

]hBn

h
5
n2

h2 S 123V2R2h21n2/~2R2h2!

12V2R2h21n2/~2R2h2! DBn50.

~A7!

We assume that forR@1 alson@1. Therefore, the right-
hand side~rhs! of Eq. ~A7! is in general very large. In order
to obey the boundary condition ath51 the rhs has to be-
come small ash→1. This can be achieved by setting
n/R→0, (VR)251/3. Thus, we obtain the familiar expres-
sion for the critical frequencyVc ,

Vc→
1

A3R
for R→`. ~A8!

In order to obtain the correction to the critical frequency
for finite R and the relation betweenn andR we have to
focus on the behavior of the solution in the vicinity of
h51, i.e., near the wall. We assume now that forR@1
(VR)251/31d, whered!1 is the correction to the critical
frequency due to finiteR. Changing the variablesh512j
~not to be confused with the correlation length in this con-
text! and keeping only the terms linear inj, we arrive at the
following equation:

]j
2Bn1~11j!]jBn5

3n2

2 S 23d12j1
n2

2R2DBn ~A9!

with the boundary conditionBn(j→`)→0. We cannot for-
mally apply the boundary condition forj50 because outer
expansion loses its validity near the wall at the distance of
order 1. At this point we have to match outer solution with
inner expansion, which has to be obtained in a different ap-
proximation.

Equation~A9! is reduced to the Airy equation in the limit
of largen. To see that, we apply the following scaling of the
variables,j̃5j(3n2)1/3, and arrive at the equation

]
j̃

2
Bn5~ j̃1a!Bn1~2n2!21/3@11~2n2!21/3j̃ #] j̃Bn ,

~A10!

where

a53/4~26dn21n4/R2!/~3n2!2/3 ~A11!

is the constant of order one. Forn@1 the last two terms in
Eq. ~A10! can be dropped and we obtain the Airy equation
]

j̃

2
Bn5( j̃1a)Bn . The solution, obeying the boundary con-

dition at j→` is

Bn5CAi~ j̃1a!5CAiS ~3n2!1/3
r̄

R
1a D , ~A12!
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whereC is the arbitrary constant~due to linearity of the
equation! and r̄5jR5R2r . The constanta involves as yet
unknown valuesn,d which have to be fixed by matching
with the solution which is valid near the boundary of the
container~inner solution!.

APPENDIX B: DERIVATION OF INNER SOLUTION

Let us now consider the solution of Eqs.~26! and ~27!
valid also at the wall,r;R. The key simplification in the
inner region is that we ignore the explicit dependence of Eqs.
~26! and~27! on the radial coordinater and replace it by its
value at the boundaryR. As above, we introduce new coor-
dinater5R2 r̄ . The inner region of the solution is defined
by the condition 0< r̄!R. In this region in the leading order
in 1/R, Eq. ~21! for stationary solutionF and Eqs.~26! and
~27! for the perturbations assume the following form:

] r̄
2F01F02F0

32V2R2F050, ~B1!

] r̄
2An2

n2An

R2 1~123F0
22V2R2!An12VniBn50,

~B2!

] r̄
2Bn2

n2Bn

R2 1~12F0
22V2R2!Bn22VniAn50.

~B3!

These equations are subjected to the boundary condition Eq.
~22! at r̄50. The boundary condition atr̄→` is defined by
matching with the outer solution.

The solution of Eq.~B1! is of the form

F05A12n2tanhFA12n2
r̄

A2
1uG , ~B4!

wheren5VR and the constantu is given by the boundary
condition Eq.~22!:

sinh2u5
A2~12n2!

g
. ~B5!

For the solution to the set of linear equations~B2! and
~B3! we search in the form of series

SAn

Bn
D5SA0

B0
D1

n

R SA1

B1
D1

n2

R2 SA2

B2
D1 ••• . ~B6!

In zero order we find immediately

A050 , B05F05A12n2tanhFA12n2
r̄

A2
1uG

~B7!

~taking into account that the critical frequency obeys the re-
lationV;1/R.! The first order is also trivial, and we readily
obtain

A152 i ]nF0 , B150. ~B8!

This expression is obtained taking the derivative with respect
to n from Eq. ~B4!. However, the solution Eq.~B8! in gen-
eral does not satisfy the boundary condition atr̄50. This

problem can be solved by modifying the solution Eq.~B8! by
a linear combination with fundamental solution of the homo-
geneous Eq.~B2!, bounded atr̄→`. This solution is simply
Ah5] r̄ F0. The corrected solution is of the form

A152 i ~]nF01ã] r̄ F0!, B150, ~B9!

where constant ã, defined from the condition
] r̄ A12gA150, is of the form~for n51/A3):

ã5
3A3gcosh2u

416g2cosh2u
. ~B10!

Nontrivial behavior arises in the second order inn/R for
Eq. ~B3!. Using Eqs.~B7! and~B9! we obtain the following:

] r̄
2B21~12F0

22V2R2!B2

5S F01
2V2R2

n
~]nF01ã] r̄ F0! D . ~B11!

For the frequency, close to the critical one we have
VR5n'1%A3. As a result, Eq.~B11! is reduced to

] r̄
2B21

2

3cosh2@ r̄ /A31u#
B2

5S 2
2r̄

3A2cosh2@ r̄ /A31u#
1

2

A3
ã] r̄ F0D .

~B12!

The solution to Eq.~B12! is simply linear inr̄ function

B252
r̄

A2
1ãA2/3. ~B13!

However, forgÞ0 this solution does not satisfy the bound-
ary condition forr̄50. The solution requires modification by
some amount of second fundamental solution to homoge-
neous Eq.~B12! which is of the form

B~2!5
3

A2
$tanh@ r̄ /A31u#~ r̄ /A31u!21%. ~B14!

This fundamental solution does not obey the boundary con-
dition, and grows linearly for larger̄ . The solution, obeying
the boundary condition is of the form

B25S 2
r̄

A2
1ãA2/31zB~2!D , ~B15!

wherez is given in terms ofg,u as follows:

z5
2gcosh2u

213g2cosh2u
. ~B16!

The constantz vanishes forg→` asz52/3g andz51/A3
for g50.

54 13 081SPIN-UP AND NUCLEATION OF VORTICES IN . . .



APPENDIX C: MATCHING OF THE INNER
AND OUTER EXPANSIONS

The outer solution Eq.~A12! must be matched with the
inner solution Eq.~B15! in their overlap region. The outer
solution is valid throughr̄5R2r@1 and breaks atr̄50.
The inner limit of the outer solution is defined by
(3n2)1/3r̄ /R!1 which givesr̄!R/(3n2)1/3, which gives rise
to the following bilateral condition:

1! r̄!R/~3n2!1/3.

The inner solution is valid in the interval

0, r̄;R2/n2.

We see that the expansions overlap atr̄'AR if we set
n;R3/4. The exact relation is fixed by matching inner limit
( r̄→0) of the outer solution with the outer limit (r̄→`) of
the inner solution.

Expansion of the outer solution for (3n2)1/3( r̄ /R)!1
gives rise to

Bn5CSAi~a!1~3n2!1/3
r̄

R
Ai8~a! D . ~C1!

Outer expansion of the inner solution in the regionr̄@1 but
n2/R2r̄!1 gives@using Eq.~B14! andn'1/A3#

Bn5A2

3
2

n2

A2R2
~12A3z! r̄ . ~C2!

The matching of the above expansions is possible if the
following relation holds:

Ai8~a!1
A3n2~12A3z!

2R~3n2!1/3
Ai~a!50. ~C3!

Equation~C3! can be written in terms of scaled variables

Q5n/R3/4, D5dR1/2. ~C4!

In this scaling the dependence onR in Eq. ~C3! disappears.
Then Eq.~C3! assumes the form

Ai8S 3Q4218DQ2

4~3Q2!2/3 D1
A3Q4/3~12A3z!

2~31/3!
AiS 3Q4218DQ2

4~3Q2!2/3 D
50. ~C5!

Equation~C5! is solved numerically. The instability thresh-
old corresponds to the minimal value ofD as a function of
Q. The minimal value ofD and correspondingQ as a func-
tion of the suppression rateg are shown in Fig. 2. Note that
for the zero boundary condition~which corresponds to
g→`) the parameterD vanishes.

Using Eq. ~C4! we obtain finally the value of the most
unstable azimuthal numbern and the shift of critical fre-
quency due to finite radius of the containerd :

n5Q~g!R3/4, ~C6!

V5
1

R
A1

3
1

D~g!

R1/2 . ~C7!

Since (3n2)1/3/R;AR we obtain that the eigenfunctions
Bn;Ai@(3n2)1/3( r̄ /R)1a#, corresponding to the most un-
stable modes are localized in the layer of the widthr b;AR
near the container wall.

1A. Reisenegger, J. Low Temp. Phys.92, 77 ~1993! and references
therein.

2P. Adams, M. Cieplak, and W. Glaberson, Phys. Rev. B32, 171
~1985!.

3Z. Peradzynski, S. Filipkovski, and W. Fiszdon, Eur. J. Mech. B
9, 259 ~1990!.

4R. J. Donnelly,Quantized Vortices in Helium II~Cambridge Uni-
versity Press, Cambridge, 1991!.

5V. L. Ginzburg and L. Pitaevskii, Sov. Phys. JETP34, 858
~1958!.

6L. Pitaevskii, Sov. Phys. JETP35, 282 ~1959!.
7P. Soininen and N. Kopnin, Phys. Rev. B49, 12 087~1994!.
8S. K. Ma, Modern Theory of Critical Phenomena~Benjamin,
London, 1976!.

9V. Dohm and R. Hausmann, Physica B197, 215 ~1994!.
10V.L. Ginzburg and A.A. Sobaynin, Sov. Phys. Usp.19, 773

~1976!; J. Low. Temp. Phys.49, 507 ~1982!.
11E. Varoquaux, W. Zimmermann, Jr., and O. Avenel, inExcita-

tions in Two-Dimensional and Three-Dimensional Quantum
Fluids, edited by A. Wyatt and H. Lauter~Plenum, New York,
1991!.

12R. P. Feynman, inProgress in Low Temperature Physics, edited
by C. J. Gorter~North-Holland, Amsterdam, 1955!, Vol. 1, p.
17.

13L. D. Landau and E. M. Lifshitz,Hydrodynamics~Pergamon,
New York, 1987!.

14S. V. Iordanskii, Sov. Phys. JETP21, 467 ~1967!.
15J. S. Langer and M. E. Fisher, Phys. Rev. Lett.19, 560 ~1967!.
16G. Shifflett and G. Hess, J. Low Temp. Phys.98, 591 ~1995!.
17J. Steinhaueret al., Phys. Rev. Lett.74, 5056~1995!.
18L. Kramer, Phys. Rev.179, 149 ~1969!.
19H. Mikeska, Phys. Rev.179, 166 ~1969!.
20Y. Mamaladze, Sov. Phys. JETP25, 479 ~1967!.
21J. Hulin et al., Phys. Rev. A9, 885 ~1974!.
22U. Partset al., Europhys. Lett.31, 449 ~1995!.
23I. M. Khalatnikov, Introduction to the Theory of Superfluidity

~Benjamin, New York, 1965!.
24A. Onuki, J. Low Temp. Phys.51, 601 ~1983!.
25P. G. de Gennes,Superconductivity of Metals and Alloys

~Addison-Wesley, Redwood City, CA, 1989!.
26M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys.65, 851

~1993!.
27I. Aranson, M. Gitterman, and B. Shapiro, Phys. Rev. B51, 3092

~1995!.
28L. Kramer and W. Zimmermann, Physica D16, 221 ~1985!.
29I. Aranson and V. Steinberg, Phys. Rev. B53, 75 ~1996!.
30J. S. Langer and J. D. Reppy, inProgress in Low Temperature

Physics, edited by C. J. Gorter~North-Holland, Amsterdam,
1970!, Vol. 6, Chap. 1.

31D. McCumber and B. I. Halperin, Phys. Rev. B1, 1054~1970!.
32E. Hernandez-Garciaet al., Phys. Rev. Lett.70, 3576~1993!.

13 082 54IGOR ARANSON AND VICTOR STEINBERG


