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The magnetodielectric anisotropy effect in Fe3O4 particle magnetic fluid has been numerically calculated.
Our results, in agreement with previously reported results, show that the dielectric constant in the direction
parallel to the field increases with the applied field, while that normal to the field decreases. The results also,
in agreement with previous results, show that the dielectric constant in the field direction increases with
temperature above a given temperatureTs reaching a maximum atTm then decreases for higher temperatures;
while in the direction normal to the field it decreases with temperature for temperatures aboveTs reaching a
minimum atTm then increases for higher temperatures. Furthermore, our results show the important role that
dimensionality plays on the magnetodielectric anisotropy effect.@S0163-1829~96!03542-4#

I. INTRODUCTION

Magnetodielectric effect in magnetic fluids have been in-
vestigated by many workers1–12 both experimentally and
theoretically. The experimental investigations were based on
impedance measurement techniques where the magnetic
fluid is placed in a capacitor. Measurements of the imped-
ance parameters such as the modulus and phase are carried
out using a bridge or an RLC meter.1–8 It is known that
impedance measurement techniques suffer some serious dis-
advantages such as electrode effects, parasitic impedances,
skin depth, and accuracy related problems. Very recently
Yusuf et al.9 have determined the magnetodielectric effect
from magnetooptical measurements where the disadvantages
suffered by conventional impedance measurement tech-
niques are avoided.

On the theoretical side, Monte Carlo simulations were
used to calculate the magnetodielectric anisotropy
effect.10–12

In most of the previous works the magnetodielectric an-
isotropy factor which is defined as

g~H,v!5
« i~H,v!2«0~0,v!

«0~0,v!2«'~H,v!
,

was either 1~Refs. 3, 7, and 9! or 2.2,6,10,23In this work the
dielectric constant,«i parallel to the applied field and«' in a
direction perpendicular to the field are numerically calcu-
lated for two cases, one for a two-dimensional~2D! sample
and the other for a three-dimensional~3D! sample. In our
calculations it is assumed that the dielectric constant at a
given wavelength in a magnetic fluid is proportional to the
average projection length of the particles in the fluid. Our

results show thatg(H,v) is 1 for the 2D case and is two for
the 3D case. It is worth mentioning that calculations of the
optical anisotropy in magnetic fluids have been carried out
using similar procedure.24

II. THEORETICAL BACKGROUND

The dielectric constant of a magnetic fluid in the absence
of an external magnetic field exhibits no anisotropy due to
the random orientation of the particles. Therefore, the dielec-
tric constant seen by light with different states of polarization
is the same. However, when a magnetic field is applied, ori-
entation of particles and field-induced chain formation in the
field direction take place leading to two different average
lengthsl i in the field direction andl' perpendicular to the
field; consequently the dielectric constant will exhibit some
degree of anisotropy.

The magnetic moments of the colloidal particles in a mag-
netic fluid reach thermal equilibrium via two distinct mecha-
nisms. The first is the Ne´el mechanism with a relaxation time
given by12

tN5@MsB/2agK#@kBT/KV#1/2exp@KV/kBT#, ~1!

wherea is an attenuation factor,g is the gyromagnetic ratio,
K is the effective anisotropy constant,V is the magnetic
volume of the particle, andT is the absolute temperature.
The second mechanism is the Brownian mechanism with a
relaxation time given by12

tB53hV8s/kBT, ~2!

where h is the viscosity of the magnetic fluid,V8 is the
hydrodynamic volume of the particle, ands is a geometrical
factor ~s51 for spherical particles!.
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The dominant relaxation mechanism is the one with the
shorter relaxation time. The Ne´el relaxation time given by
Eq. ~1! grows exponentially with the magnetic volume,
therefore, only small particles may relax via the Ne´el relax-
ation mechanism. Due to the presence of a particle size dis-
tribution in the sample a volume at whichtN5tB exists.
This volume is known as the Shliomis volume,Vs .

13,14

The magnetodielectric anisotropy effect in magnetic fluid
is a consequence of the orientation of single particles and
clusters in the fluid; and to the field-induced chain formation.
This requires that particles relax physically via the Brownian
relaxation mechanism.

Only particles withV.Vs will relax via the Brownian
mechanism, thus contributing to the magnetodielectric an-
isotropy effect. It is, therefore, necessary to determine the
Shliomis volumeVs . This is accomplished by equating the
two relaxation times and assumingV5V8 yielding the fol-
lowing transcendental relation:

q23/2exp~q!56hagMsb
21, ~3!

whereq5(KVs)/(kBT). The relation in Eq.~3! is numeri-
cally solved for the Shliomis volumeVs .

The orientation functionf(p,q) for a uniaxial single-
domain particle suspended in a nonmagnetic liquid carrier
under the application of an external magnetic field was
treated by Hartmann and Mende15,16and Scholten17,18and is
given by

f~p,q!5j~q! f ~p!, ~4!

where j(q) represents the coupling between the magnetic
moment of the particle and its easy axis and is usually ex-
pressed as

j~q!5
3

4q Fq1/2exp~q!2I ~q!

I ~q! G21/2, ~5!

where

I ~q!5E
0

q1/2

exp~x2!dx. ~6!

The functionf (p) is given by

f ~p!5@12~3/p!L~p!#, ~7!

where L(P) is the Langevin function, and p
5(m0MsBVH/kBT).

For an ellipsoidal particle with a major axisa and a minor
axis b, the average projection lengthsl i and l' for a two-
dimensional system are expressed as

l i5a@11f~p,q!#1b@12f~p,q!#, ~8!

and

l'5a@12f~p,q!#1b@11f~p,q!#. ~9!

These two equations ensure the boundary condition thatl i

and l' are the same and equal to (a1b) at zero field where
f(p,q)50; and thatl i52a and l'52b at very high fields
wheref(p,q)51.

For a three-dimensional system with a field applied in the
z direction the average projection lengths are expressed as

l z5a@11f~p,q!#1b@12f~p,q!#, ~10!

l x5a@12f~p,q!/2#1b@11f~p,q!/2#, ~11!

and

l y5a@12f~p,q!/2#1b@11f~p,q!/2#. ~12!

Therefore,l i and l' are given by

l i5a@11f~p,q!#1b@12f~p,q!#, ~13!

and

l'5a@12f~p,q!/2#1b@11f~p,q!/2#. ~14!

Taking into consideration the particle size distribution, the
total projection lengths, for a 2D system will be given by

l i t5E
Vmin

Vs
~a1b!F~v !dv1E

Vs

Vmax
$a@11f~p,q!#

1b@12f~p,q!#%F~v !dv ~15!

and

l't5E
Vmin

Vs
~a1b!F~v !dv1E

Vs

Vmax
$a@12f~p,q!#

1b@11f~p,q!#%F~v !dv, ~16!

and for a 3D system they are given by

l i t5E
Vmin

Vs
~a1b!F~v !dv1E

Vs

Vmax
$a@11f~p,q!#

1b@12f~p,q!#%F~v !dv ~17!

and

l't5E
Vmin

Vs
~a1b!F~v !dv1E

Vs

Vmax
$a@12f~p,q!/2#

1b@11f~p,q!/2#%F~v !dv, ~18!

whereVmin andVmax are the minimum and maximum vol-
umes in the distribution, respectively, andVs is the Shliomis
volume.

Since the viscosity plays an important role in determining
the Shliomis volumeVs , we review the basic relevant rela-
tions describing the variation of viscosity with temperature,
field, and concentration. For low concentration of spherically
shaped particles, the viscosity variation with concentration is
presented by the Einstein formula:11

h5h0@112.5«#, ~19!

whereh0 is the viscosity of the liquid carrier and« is the
volumic fraction of the magnetic particles in the fluid. The
variation of viscosity with the field is given by17

h5h0H 11
e

2 F513S p2tanhp

p1tanhpD sin2qG J , ~20!

whereq is the angle between the magnetic field and the local
angular velocity of the liquid.
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The variation of viscosity with temperature is expressed
as19–21

h5h0expF A

T2T0
G , ~21!

where A is a characteristic positive constant andT0 is a
temperature below the melting temperature of the fluid.
Shliomis and Stepanov22 have experimentally determined the
constants which appear in Eq.~21! for Fe3O4 particle mag-
netic fluid with kerosene as a liquid carrier,~i.e.,
h055.7731023, A5396 K, andT05162 K!.

III. METHOD OF CALCULATION

The total average lengthl i and l' were calculated for
magnetic fluids with magnetic particles of different uniform
sizes, log-normal, and normal size distributions. The first
step in the calculation is determining the Shliomis volumeVs
at a given temperature and for a given applied field by nu-
merically solving Eq.~3!. For particles with a uniform sizeV
the Shliomis volume at a given temperature and for a given
applied fieldVs is compared to the size of the particles, and
if Vs.V, both l i and l' are set equal to (a1b). However if
Vs<V, the parameterq is calculated and the integralI (q)
given in Eq.~6! is numerically evaluated, and consequently
the functionj(q) is evaluated. Moreover, for a given mea-
suring fieldH and a given temperature, the parameterp is
calculated for the volumeV, and consequently the function
f (p) given in Eq.~7! is evaluated. Therefore the orientation
function f (p,q) is evaluated, and the average projection
lengthsl i t andl't are then obtained from Eqs.~8! and~9! for
the two-dimensional system, and from Eqs.~13! and~14! for
the three-dimensional system. By multiplying the average
projection lengths by a constant~for a given wavelength!,
which is proportional to the concentration, the relative di-
electric constant is obtained. Dividing these quantities by
their corresponding values at zero fields@«0 which is equal to
(a1b) multiplied by the same constant#, yields ~«i/«0! and
~«'/«0!. These calculations are repeated for different tem-
peratures and different applied magnetic fields for different
single volumes. The axial ratio (a/b) used in these calcula-
tions ranged from 1.0 to 2.0.

For a particle size distribution the Shliomis volume at a
given temperature and at a given applied fieldVs is com-
pared to the distribution and ifVs.Vmax then the average
lengths l i and l' are taken equal to that when the applied
field is zerol 0, wherel 0 is given by

l 05E
Vmin

Vmax
~a1b!F~v !dv. ~22!

However if Vs<Vmax, then particles with volumes
Vs<V<Vmax will orient with the field and the values ofl i

and l' are given by Eqs.~8! and ~9! for the 2D system, and
Eqs.~13! and~14! for the 3D system. The range of volumes
betweenVmin andVmax is divided into a number of narrow
slices, and for each volume in this range the valuesl i and l'
are evaluated with the same procedure used in the case of
particles with uniform sizes. The total average lengths at a
given temperature and a given applied field is then obtained
by numerically integrating over the volume range fromVmin

to Vmax using Eqs.~15! and~16! for the 2D system and Eqs.
~17! and ~18! for the 3D system. Changing the temperature
or the applied field will change the Shliomis volume and
consequently the range of volumes for which particles will
orient with the field will change. The relative dielectric con-
stants ~«i/«0! and ~«'/«0! are then calculated from
~«i/«05l i t/ l 0! and ~«'/«05l't/ l 0!.

The effect of the applied magnetic field on the anisotropy
energy, i.e., replacingKV by KV @11(H/HK)

2#, whereHK
is the anisotropy (MsB/2K) field has been introduced in the
Néel relaxation time given in Eq.~1!. Furthermore, the effect
of applied field on viscosity is taken into consideration by
using Eq.~20!. However, the average value~1/2! of sin2 q in
Eq. ~20! is used in the calculations of the average projection
lengths and in the relative dielectric constants.

The effect of concentration on the calculation is intro-
duced in the variation of viscosity with concentration, and in
the variation of viscosity with temperature, Eq.~21!, by
slightly changing the value ofT0. The values of the general
constants used in the calculations are listed in Table I.

The reduced dielectric constant was calculated for uni-
form size Fe3O4 magnetic particles dispersed in kerosene,
with volumic fraction« equal to 0.05. Four different volumes
of the particles were used~V56, 8, 10, 12, 14310225 m3!.
The initial viscosityh055.7731023 Pa andT05165 K were
used in the calculations.

Furthermore, the reduced dielectric constant for Fe3O4
particle magnetic fluid with kerosene as a liquid carrier and
volumic fraction«50.05 was calculated for normal and log-
normal distributions with particle average volume of
8310225 m3 and a standard deviation of 1310225 m3 and
0.15, respectively. The effect of the liquid carrier on the
magnetodielectric effect is investigated by changing the ini-
tial viscosity and changing the parameterT0.

IV. RESULTS

The magnetodielectric anisotropy effect for uniform size
~V58310225 m3! Fe3O4 particle magnetic fluid~different
axial ratios! with kerosene as a liquid carrier at a temperature
T5300 K versus magnetic field is presented in Figs. 1~a! and
1~b! for the 2D and 3D systems, respectively. The results in
the figure show that both~«i/«0! and~«'/«0! starts practically
from 1.0 at very low fields and that~«i/«0! increases rapidly
for intermediate fields and tends to saturate at high fields;
while ~«'/«0! decreases rapidly for intermediate fields and
levels off at high fields. The rate of increase for~«i/«0! and
the rate of decrease for~«'/«0! are dependent on the axial
ratio (a/b) being the highest for the highest axial ratio. The
highest value of~«i/«0! and the lowest value of~«'/«0! occur
for the highest axial ratio. The results also show that for an

TABLE I. The values of the general constants used in the cal-
culations.

Effective anisotropy constant K553104 J/m3

Attenuation factor a 5131022

Gyromagnetic ratio g 51.73107 s21 G21

Saturation magnetization Ms54853103 A/m
ConstantA in Eq. ~13! 5396 K
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axial ratio of 1.0, i.e., spherical particles, the magnetodielec-
tric effect is absent. Furthermore, the results show that
g(H,v)51 for the 2D system and it is equal to 2 for the 3D
system.

The magnetodielectric anisotropy effect for a magnetic
fluid with ~«50.05! at temperatureT5300 K for single vol-
ume, normal distribution and log-normal distribution are pre-
sented in Figs. 2~a! and 2~b! For the 2D and 3D cases, re-
spectively. For both cases the average volume for the two
distributions is taken equal to the single volume
~V58310225 m3! but the standard deviation is taken
1310225 and 0.15, for the normal and log-normal distribu-
tions, respectively. For the three size distributions the axial
ratio is 1.2. The results show that the magnetodielectric an-
isotropy effect is the same for the two distributions and is
slightly different for the single volume case. However, al-
though increasing the axial ratio leaves the similarity be-
tween the two distributions unchanged, the difference be-
tween them and the single volume case is further reduced.
Furthermore the results in Fig. 2 show thatg(H,v)51 for

the 2D sample and is equal to 2 for the 3D sample.
The magnetodielectric anisotropy effect in a magnetic

fluid for normal size distribution with average volumes of 6,
8, 10, 12, and 14310225 m3, axial ratio (a/b)51.2 and a
standard deviations51310225 m3 are presented in Figs.
3~a! and 3~b! for the 2D and 3D cases, respectively. The
results in the figure show that the higher the average volume
is, the higher the magnetodielectric anisotropy effect is. Also
the results in the figure show that when the average volume
is small the magnetodielectric anisotropy effect does not ap-
pear until the field is appreciable. Furthermore increasing the
axial ratio increases the difference in the effect for the dif-
ferent volumes. Furthermore, again the results in Fig. 3 show
that g(H,v)51 for the 2D sample and is equal to 2 for the
3D sample.

In Fig. 4 the Shliomis volumeVs is presented as a func-
tion of temperature for a magnetic fluid with volumic frac-
tion «50.05 and for an applied magnetic fieldH5500
Oe. The magnetodielectric anisotropy effect versus tem-
perature in a magnetic fluid with uniform, normal, and log-

FIG. 1. The magnetodielectric anisotropy effect for particles
with single volumeV58310225 m3 and different axial ratios;~a!
for a 2D sample,~b! for a 3D sample.

FIG. 2. The magnetodielectric anisotropy effect for single, nor-
mal, and log-normal size distribution with the same average vol-
umes;~a! for a 2D sample,~b! for a 3D sample.
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normal size distributions measured atH5500 Oe is pre-
sented in Figs. 5~a! and 5~b! for the 2D and 3D cases,
respectively. The average volume for both distributions is
equal to the single volumeV58310225 m3 and the axial
ratio for the three cases is 1.6. The standard deviation is
1310225 and 0.15 for the normal and log-normal distribu-
tions, respectively. Although the results in the figure show
that the magnetodielectric anisotropy effect is absent below a
given temperature, this temperature is different for the dif-
ferent size distributions, being the lowest for the normal dis-
tribution. Furthermore the results also show that the increase
to the maximum of~«i/«0! and the decrease to the minimum
of ~«'/«0! is gradual in the case of the size distributions,
while it is abrupt in the case of the single size. The results
also show that the magnetodielectric anisotropy effect for the
normal or a log-normal size distribution are practically im-
posed but still deviate from those for a single volume. Again
the results in the figure show thatg(H,v)51 for the 2D
sample and is equal to 2 for the 3D sample.

FIG. 3. The magnetodielectric anisotropy effect for normal size
distribution particles with the same axial ratio and standard devia-
tion but with different average volumes;~a! for a 2D sample,~b! for
a 3D sample.

FIG. 4. The Shliomis volumeVs versus temperature at a mea-
suring fieldH5500 Oe.

FIG. 5. The magnetodielectric anisotropy effect versus tempera-
ture for single, normal, and log-normal size distribution;~a! for a
2D sample,~b! for a 3D sample.

54 13 067NUMERICAL CALCULATION OF THE . . .



The magnetodielectric anisotropy effect for a magnetic
fluid, ~«50.05! with normal size distributions of an average
volume58310225 m3 and standard deviations51310225

m3 and an axial ratio of 1.2 at different applied magnetic
fields versus temperature is presented in Figs. 6~a! and 6~b!
for the 2D and 3D cases, respectively. The results in the
figure show that the magnetodielectric anisotropy effect is
absent below a given temperature then gradually increases to
a maximum atTm then decreases for higher temperatures.
Againg(H,v)51 for the 2D sample and is equal to 2 for the
3D sample.

Increasing the temperature to a high enough value re-
sulted in~«i/«0! and~«'/«0! converging towards each other as
is seen in Figs. 7~a! and 7~b!. The temperatures at which the
magnetodielectric anisotropy effect appears and at which it
reaches an optimum are field dependent being the lowest for
the highest field. Furthermore, changing the axial ratio,
changes the magnitude of the effect, but does not change the
temperature at which the effect appears, as can be seen in

Figs. 8~a! and 8~b!. The effect of the average volume on the
temperature variation of the magnetodielectric anisotropy ef-
fect is presented in Figs. 9~a! and 9~b!. The results in the
figure show that the higher the average volume is the higher
the effect is, and more importantly the lower the temperature
at which optimum conditions in the effect occurs.

The effect of viscosity on the magnetodielectric anisot-
ropy effect is presented in Figs. 10~a! and 10~b!. The results
show that the higher the viscosity is the lower the effect is
and the higher the temperature at which the maximum in
«i/«0 and the minimum in«'/«0 occurs is.

V. DISCUSSION

The magnetodielectric anisotropy effect presented in Fig.
1~a! which is calculated for a 2D sample is qualitatively
similar to the experimental results reported by Cotae,3 Yusuf
et al.,9 and those reported by Espurz, Alameda, and
Espurz-Nieto.7 The results for the 3D sample presented in

FIG. 6. The magnetodielectric anisotropy effect for normal dis-
tribution versus temperature for different applied measuring fields;
~a! for a 2D sample,~b! for a 3D sample.

FIG. 7. The magnetodielectric anisotropy effect versus tempera-
ture for normal size distribution;~a! for a 2D sample,~b! for a 3D
sample.
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Fig. 1~b! are in good agreement with those reported by Mail-
fert and Nahounou,6 Fannin, Scaife, and Charles,8 and
Chantrell.10 Furthermore the increase of this effect for both
the two- and three-dimensional systems with the axial ratio is
in good agreement with the calculated results reported by
Kopcanskyet al.4 It is important to note that the theoretical
results reported by Chantrell10 and Mailfert et al.6 were
based on a three-dimensional system. Since the applied mag-
netic field plays the role of an orienting agent of the particles
and is the cause of the chain formation, in the absence of the
field the average projection length of a particle in all direc-
tions is the same due to the random orientation of the par-
ticles in the fluid, consequently the magnetodielectric anisot-
ropy effect is not expected to appear. However, when a
magnetic field is applied the average projection length in the
field direction becomes larger than that in directions normal
to the field and mechanical anisotropy arises in the sample
leading to the magnetodielectric anisotropy effect. It is worth
mentioning that the average length in the field direction in-

creases with the field, while the average length normal to the
field direction decreases with the applied field. Therefore, the
dielectric constant«i in the field direction increases, while«'

that is normal to the field direction decreases. Our calculated
results in Figs. 1~a! and 1~b! show a behavior consistent with
the above picture. Increasing the axial ratio leads to an in-
crease in the mechanical anisotropy which in turns increases
the magnetodielectric anisotropy effect. Again our results in
Fig. 1 show a behavior consistent with this picture. Increas-
ing the volume of the particles for a given axial ratio results
in increasing the absolute difference between the major and
minor axes. Consequently the mechanical anisotropy of the
sample increases and hence the magnetodielectric anisotropy
effect increases. This behavior is what is seen in our results
presented in Fig. 3. The similarity of our calculated results of
the magnetodielectric effect for the single, normal, and log-
normal size distributions, versus field, presented in Fig. 3
may be attributed to the fact that the Shliomis volume at that

FIG. 8. The magnetodielectric anisotropy effect versus tempera-
ture for normal size distribution with different axial ratios;~a! for a
2D sample,~b! for a 3D sample.

FIG. 9. The magnetodielectric anisotropy effect versus tempera-
ture for normal size distribution with different average volumes;~a!
for a 2D sample,~b! for a 3D sample.
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temperature~T5300 K! is smaller than the average volume
of the particles and therefore the majority of the particles
orient themselves with the field.

The behavior of the magnetodielectric anisotropy effect
with temperature presented in Figs. 5, 6, 7, 8, 9, and 10 are
also explained in a similar way. Since the magnetodielectric
anisotropy effect is a consequence of the field-induced me-
chanical anisotropy, only the unblocked~from physical rota-
tion! particles with volumesV.Vs that relax via the Brown-
ian mechanism will contribute to the effect, while the
blocked particles withV,Vs that relax via the Ne´el mecha-
nism will not contribute. Due to the presence of a particle
size distribution, at any temperature there will be a portion of
blocked particles and another portion of unblocked particles.
Lowering the viscosity leads to a smaller Shliomis volume
and consequently to a larger portion of unblocked particles
and hence to a larger magnetodielectric anisotropy effect is.
Increasing the temperature has two basic effects, firstly it
decreases the viscosity and hence it increases the portion of
unblocked particles; secondly it increases the thermal agita-

tion which tends to randomize the orientation of the particles
and to breakup the already existing chains. It is the balance
between these two competing effects, i.e., the increase of the
portion of unblocked particles and the thermal agitation, that
determines the behavior of the magnetodielectric anisotropy
effect in the magnetic fluids. At low temperatures,T,Ts ,
the Shliomis volumeVs is larger than the maximum volume
and hence no particles will contribute to the magnetodielec-
tric anisotropy effect. For temperaturesT.Ts the Shliomis
volumeVs becomes smaller thanVmax and a portion of the
particles will contribute to the magnetodielectric anisotropy
effect. At any temperature aboveTs a portion of the particles
with volumes smaller thanVs will be blocked from the
physical rotation while those withV.Vs will rotate physi-
cally and contribute to the magnetodielectric anisotropy ef-
fect. Further increase of temperature lowersVs and thus in-
creases the portion of unblocked particles leading to an
increase in the magnetodielectric anisotropy effect. Although
increasing the temperature increases the role of thermal agi-
tation, which randomizes the orientation of the particles and
tends to reduce the magnetodielectric anisotropy effect, it
also results in a decrease in the viscosity and thus increases
the number of unblocked particles. This increase in the num-
ber of unblocked particles overcomes the effect of thermal
agitation leading to an increase of the magnetodielectric an-
isotropy. This process of converting blocked particles to un-
blocked particles continues and the magnetodielectric anisot-
ropy continues to increase until a certain temperatureTm at
which optimum conditions of orientation and chain forma-
tion occur. At this temperature the average projection length
of the particles in the field direction is a maximum, while
that in directions normal to the field is a minimum. Therefore
one expects to have a maximum in~«i/«0! and a minimum in
~«'/«0!.

For temperaturesT.Tm , more particles are unblocked
but at a low rate, and the role of thermal agitation still in-
creases. In this range of temperature the role of thermal agi-
tation as a randomizing effect dominates the low rate of con-
verting blocked particles to unblocked ones. Therefore, the
average projection length in the field direction decreases,
while that in directions normal to to the field increases. Con-
sequently~«i/«0! decreases while~«'/«0! increases with in-
creasing temperature in this range. At high enough tempera-
tures, the majority of the particles are unblocked and the rate
of conversion becomes very small, while thermal agitation
still increases leading to further decrease in the magnetodi-
electric anisotropy effect until it becomes absent. The in-
crease of the magnetodielectric effect from zero to a maxi-
mum in an abrupt way for the single volume is due to the
fact that all the particles are converted from the blocked to
the unblocked state in unison, while for the case of size
distribution this conversion is gradual and therefore the rise
to the maximum is gradual. A look at the results presented in
Figs. 5, 6, and 7 shows a behavior consistent with this pic-
ture. It is worth mentioning that our results on the variation
of «i and «' with temperature are qualitatively similar to
those reported by Derricheet al.,1 and by Yusufet al.9 The
role of viscosity on the magnetodielectric anisotropy effect is
understood in terms of its effect on the Shliomis volume. The
higher the viscosity, the larger the Shliomis volume, and
consequently the lower the effect is and the higher the tem-

FIG. 10. The magnetodielectric anisotropy effect versus tem-
perature for normal distribution and different carrier liquids;~a! for
a 2D sample,~b! for a 3D sample.
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perature at which the maximum in«i/«0 and the minimum in
«'/«0 occurs is.

In all the calculations presented in this work, the magne-
todielectric anisotropy factorg(H,v)51 for the 2D sample
and it is equal to 2 for the 3D sample. It is therefore sug-
gested that dimensionality plays an important role in the
magnetodielectric anisotropy effect in magnetic fluids; and it
is crucial to consider the dimensionality of the samples when
comparing results obtained by different workers in the field.

VI. CONCLUSION

The magnetodielectric anisotropy effect in magnetic fluids
have been numerically calculated for monodispersed nonin-
teracting particles for a 2D and 3D magnetic fluid. The cal-
culations are based on the assumption that the dielectric con-
stant at a given wavelength is proportional to the average
projection length of the particles. In the calculation of the

average projection length of the particles, the variation of
viscosity with temperature, concentration, and applied mag-
netic field has been taken into consideration. Although inter-
particle interactions and field-induced chain formation have
not been accounted for in the calculations, our results on the
field dependence and the temperature variation of the mag-
netodielectric anisotropy effect are qualitatively in good
agreement with previously reported theoretical and experi-
mental results.
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