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We present a method to compute eigenstates and eigenvalues of strongly correlated models on clusters. The
calculation is performed applying the SU~2! symmetry, which allows a considerable reduction of the dimension
of Hilbert space of the system. We illustrate the method classifying the states of the four-sites Hubbard model
on a chain. This classification has been made using also the translational symmetry and the SU˜(2) pseudospin
symmetry.@S0163-1829~96!09241-7#

I. INTRODUCTION

The theoretical description of electronic correlations in
the intermediate and strong coupling regimes is a long stand-
ing problem. Following the discovery of heavy-fermion
compounds, and more recently, of the high-temperature su-
perconductors, these problems have attracted renewed
attention.1

Unfortunately, for models used to describe the above
mentioned systems, very few exact results are known, a no-
ticeable exception being the one-dimensional situation where
in many cases the exact solution is available.2 In more than
one dimension many important physical questions remain
unsolved, despite the great number of different theoretical
approaches that have been applied. In absence of exact re-
sults, a reliable way to describe the properties of strongly
correlated models is to resort to numerical techniques. These
techniques have proved to be the only practical tool to study
finite size systems, also due to the rapid increase in computer
performances.3

The two techniques by far most intensively used are
Lanczos4 and Monte Carlo~MC! methods,5 but regretfully
these methods have also limitations. The MC approach al-
lows to handle sufficiently large systems so that the results
are physically of great interest in trying to predict the behav-
ior of the system in the thermodynamic limit. However, be-
cause of the so called sign problem, which enormously en-
hances the statistical uncertainties of simulations, the
maximum size of the lattice to be described is confined to a
few tens of sites. In this case the exact diagonalizations be-
come competitive being in general more precise.

Lanczos calculations give essentially exact results for
ground-state, low lying eigenvectors and quantities such as
single particle excitation spectra.4 In spite of these advan-
tages, memory limitations impose severe restrictions on the
size of clusters that can be studied within this method. Usu-
ally the basis set of vectors employed in the diagonalization
procedure grows exponentially with the system size. This
problem can be considerably alleviated using the symmetries
of the Hamiltonian that reduce the matrix Hamiltonian to a
block form. The most obvious symmetry is the U~1! symme-
try that is usually conserved at least for fermionic problems.
The third component of total spin operatorSmay also be a
good quantum number and, for translational invariant Hamil-

tonians, the total momentumP of the system is conserved as
well. Upon the implementation of these symmetries, the lin-
ear size of the blocks to be diagonalized is strongly reduced.
For instance, for a 434 Hubbard model, at half filling,Sz50
and zero momentum the largest block is about 1.35
3106.6

It is then obvious that the use of symmetries is crucial in
performing Lanczos calculations on large clusters. In many
cases the symmetries of the problem are not exhausted by the
ones cited above. Several Hamiltonians exhibit other sym-
metries such as spin inversion, rotations about a given site,
reflections with respect to lattice axes, the SU˜(2) pseudospin
symmetry7 and so on. Among them, it is worth stressing that
the SU~2! spin symmetry until now has not been applied in
the diagonalization procedures.

Here we present a technique to calculate the eigenvectors
and eigenvalues for strongly correlated models on moder-
ately large clusters based on the application of SU~2!. To
illustrate our method, we consider as an example the one-
dimensional Hubbard model with periodic boundary condi-
tions with an even number of sites.7

The paper is organized as follows: the method to compute
eigenstates and eigenvalues of the Hubbard model is given in
Sec. II, while in Sec. III is presented, as application of the
method previously introduced, the calculation of the full
spectrum of the Hubbard model on four-site ring together
with a complete characterization of the ground state in the
half filled case: finally Sec. IV is devoted to the conclusions.

II. THE METHOD

It is well known that on a bipartite lattice the Hubbard
Hamiltonian

H5(
i j ,s

~ t i j2md i j !cis
† cjs1U(

i
ni↑ni↓ ~1!

has two independent SU~2! symmetries in spin and pseu-
dospin space, which involve the spin and the charge degrees
of freedom, respectively. The first one, which reflects the
invariance ofH under spin rotation, is the ordinary SU~2!
symmetry in spin space, characterized by the generators
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S15(
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ci↑
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S25(
i
ci↓
† ci↑ . ~4!

The second SU˜~2! symmetry can be generated by a
particle-hole transformation involving only one kind of spin,
say ci↓→(21)ici↓

† , which maps at half filling the
repulsive-U Hubbard model to an attractive-U one. The fact
that this latter model also has rotational symmetry in its spin
space implies that the Hamiltonian~1! is invariant under the
action of a second group, that we denote by SU˜~2!, whose
generators are

Jz5
1

2 (
i

~ci↑
† ci↑1ci↓

† ci↓21!, ~5!

J15(
i

~21! ici↑
† ci↓

† , ~6!

J25(
i

~21! ici↓ci↑ . ~7!

The connection between the SU˜~2! symmetry and the charge
degrees of freedom is evident from the factJz is nothing but
the charge operator. The commutation relations

@H,J6#56~U22m!J6

imply that away from half filling the global invariance under
the SŨ(2) group is lost. However, being [H,J2]5[H,Jz]50
for any value ofU22m, the characterization of the eigen-
states ofH in terms of the eigenvalues ofJ2 andJz is always
possible. Moreover, the fact thatJ6 are eigenoperators ofH
allows us to obtain the eigenenergies within a multiplet with
given J from the relation

HuJ,J2n&5H~J2!nuJ,J&5„EJJ1n~U22m!…uJ,J2n&,

where 0<n<2J, andEJJ is the energy of the highest pseu-
dospin state.

When cyclic boundary conditions are assumed, one can
further reduce the size of the Hamiltonian matrix blocks
specifying the eigenstates ofH in terms of the eigenvalues of
the translation operatorT. It is worth noting that, in the gen-
eration of aJ-multiplet from the highestJz state, the appli-
cation of J2 always changes the sign of the corresponding
eigenvalue ofT. Indeed, from the anticommutation relations
@T,J6#150 one has that, if Tua&5lua&, then
T[(J2)nua&]5(21)nl[(J2)nua&].

For each sitei the four statesu0&i ,u↑&i ,u↓&i , andu↑↓&i form
a basis of the local Hilbert space. Alternatively, we can clas-
sify the states of the Hilbert space giving the occupation of
each site, so thatu2&i denotes a doubly-occupiedu1&, a singly-
occupied, andu0&, an unoccupiedi site. The doubly occupied
and the empty site states are eigenstates ofS2 andSz with
zero eigenvalue. This amounts to say that they do not affect

the total spin of the configuration, so that to determine the
eigenvectors ofS2 for a given filling, we are left with the
composition of one-half spins on singly occupied sites.
Therefore for a model defined onN sites, the only problem is
the composition ofN spins at most.

Let us apply the SU˜~2! symmetry. First of all, we notice
that u2&i and ~2!i u0&i are eigenstates ofJzi with eigenvalues
1
2 and2 1

2, respectively, andu1&i is eigenstate ofJ i
2 and Jzi

with zero eigenvalue. Thus the states representing the singly
occupied sites do not affect the total pseudospin of a given
configuration and we have to add only the pseudospin of
states having double and zero occupancy. This means that
the same technique previously introduced for the SU~2! sym-
metry can be applied to the SU˜~2! pseudospin symmetry.

Finally we apply the translational symmetry making use
of the notation presented here. Let us define the translation
operatorT through the relation

T@ u•&1u•&2•••u•&N]5u•&2u•&3•••u•&1 . ~8!

This operator does not change the type of configuration in
the sense that it does not affect the number of doubly-
occupied, singly-occupied, and empty sites. Besides, it is
easy to see that holds the following relation:

Tkua&56ua&, ~9!

where ua& is a generic state andk is an integer such that
k5N or k5N/ l with l integer (ÞN). From this relation, we
see thatTk56I , I being the identity operator, and thus we
can writek eigenstates ofT in the following way:

uflm6&5
1

Ak (
j50

k21

e~ i tm6 j !Tj ua&, ~10!

where tm152mp/k, tm252mp/k1p/k, lm6

5exp(2 i t m6), andm50.1,...,k21. We notice that the ei-
genvalues ofT are given by lm65exp(2 i t m6) with
m50.1,...,k21. The stateua& which gives rise to the eigen-
state ofT with eigenvaluelm6 is defined as the generator of
that eigenstate.

It is worth noticing that the construction of$uf&% states is
not restricted to one-dimensional cases but it can be imme-
diately extended to other spatial symmetries in more than
one dimension.

III. APPLICATION OF THE METHOD

Let us now illustrate our method by considering the Hub-
bard model on a four-site ring. According to the technique
introduced in Sec. II at half filling the possible configurations
are

~a! u2& i u2& j u0&ku0& l , ~11!

~b! u2& i u1& j u1&ku0& l , ~12!

~c! u1&1u1&2u1&3u1&4 , ~13!

where the subscript denotes the lattice site~i , j ,k,l51,2,3,4!.
In case~a! we haveS2u2& i u2&j u0&k u0&l50 for anyi , j ,k,l .

In case~b! adding two spins12 we trivially obtain a triplet and
a spin singlet state. Permutating the lattice indices we can
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write down all the eigenstates ofS2 andSz for these configu-
rations. Finally in case~c! we have to sum up four spins
which gives one spinS52 state, three triplets and two sin-
glets.

In order to apply the SU˜~2! pseudospin symmetry, we
notice that the role of singly-occupied sitesu1& with respect
to the SU~2! symmetry, for SŨ~2! symmetry, is played by
states having double and zero occupancy.

Let us finally apply the translation symmetry. To be spe-
cific we discuss the application ofT on states having two
double occupancy@~a! configurations#. Applying Tn to u2&1
u2&2 u0&3 u0&4 we obtainu2&2 u2&3 u0&4 u0&1, u2&3 u2&4 u0&1 u0&2, u2&4
u2&1 u0&2 u0&3, and u2&1 u2&2 u0&3 u0&4, for n51,2,3,4, respec-
tively. This means thatT45I and consequently its eigenval-
uesli are61, 6i . Besides, in this subspaceT has the fol-
lowing matrix representation:

S 0
1
0
0

0
0
1
0

0
0
0
1

1
0
0
0
D .

Not all the states of~a! type are connected byT: indeed the
stateu2&1 u0&2 u2&3 u0&4 is related tou2&2 u0&3 u2&4 u0&1. For these
statesT25I and li561. The same consideration can be
made for ~b! and ~c! configurations and for states having
SŨ~2! symmetry, so that we can group the states in blocks of
dimension 4 or 2. According to the definition given in Sec.

II, the statesu2&1 u2&2 u0&3 u0&4 and u2&1 u0&2 u2&3 u0&4 are the
generators of vector basis states having two doubly occupied
sites.

The diagonalization of the four-site Hamiltonian in terms
of S2 andSz leads to matrix blocks whose maximum dimen-
sion is 20320 ~reached at half filling forS5Sz50!. The
application of the SU˜~2! symmetry reduces to 10310 the
size of the largest block, which is further split into two
blocks of dimension 333 and 2 blocks of dimension 232
after the application of the translational invariance ofH. The
whole set of the Hamiltonian matrix blocks, labeled by the
eigenvalues ofS, J, Jz , andT, is reported for the half-filled
case in the Appendix, having assumedt i j52t(t.0) on
nearest-neighbor sites, andt i j50 otherwise. It is worth no-
ticing that a different scheme for diagonalizing the four-site
Hubbard model has also been developed by Villet and
Steeb,8 taking into account the spin reversal and theC4v
symmetry of the Hamiltonian. With this kind of choice, how-
ever, the reduction of the matrix block size is not as effective
as it is in our case. In half filling, for instance, one is left with
737 matrix blocks, while in our approach the highest matrix
size is 333. This is, of course, a significant difference, which
becomes more and more relevant as larger clusters are con-
sidered.

All the eigenstates can be deduced from the Table I,
whereT, D, S ~t, d, s! denote the triplet, doublet, and singlet
for S2 (J2), respectively: the lower indices refer to the lat-
tice sites and indicates the composition of spins or pseu-

TABLE I. Classification of the basis states of the four-site Hubbard model in terms of the eigenvalues of
the spin, the pseudospin, and the translation operator.

Generators T representation S J l
Number
of states

T1* 2 0 21 5
T13%T24 T1 1 0 1 3

T1* 0 0 21 1
T13%S24 T2* 1 0 6i 6
S13%S24 T1 0 0 1 1

T1 0 2 1 5
t13% t24 T1* 0 1 21 3

T1 0 0 1 1
t13%s24 T2* 0 1 6i 6
s13%s24 T1* 0 0 21 1
T12% t34 T4 1 1 61,6i 36
T13% t24 T2* 1 1 6i 18
T12%s34 T4 1 0 61,6i 12
T13%s24 T2 1 0 61 6
s12% t34 T4 0 1 61,6i 12
S13% t24 T2 0 1 61 6
S12%s34 T4 0 0 61,6i 4
S13%s24 T2* 0 0 6i 2
T12%D3%d4 T4

3
2

1
2 61,6i 32

T4
1
2

1
2 61,6i 16

S12%D3%d4 T4
1
2

1
2 61,6i 16

t12%d3%D4 T4
1
2

3
2 61,6i 32

T4
1
2

1
2 61,6i 16

s12%d3%D4 T4
1
2

1
2 61,6i 16
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dospin states. We notice that the configurations in the first
column of the table are the simultaneous eigenstates ofS2

and J2 and they are also the generators of basis vectors of
irreducible representations ofT; Ti is associated with the
transformation (T) i5I on the corresponding generator states
and (T* ) i52I .

For example to the generatorT13%s24 corresponds the
~highest spin! state

ua&5u↑&1u↑&3
1

&
~ u↑↓&2u0&41u0&2u↑↓&4),

where u↑&1u↑&3 is the highest spin state of the tripletT13 and
~1/&!~u↑↓&2 u0&41u0&2u↑↓&4! is thes24 pseudospin singlet.

Applying the translation operatorT to ua& we obtain

T2ua&5ua&.

that impliesli561. Keeping in mind thatT13 denotes a spin
triplet we have, for anyli , three different states correspond-
ing to Sz561,0, so thatT13%s24 generates six states.

As previously mentioned, even though the exact solution
of the Hubbard model has only been given in the one-
dimensional case, some exact results in arbitrary dimension,
concerning in particular the ground-state properties, are
nonetheless available. In the following, we are going to give
a complete characterization of the ground state of the four-
site Hubbard model in terms of the above mentioned con-
served quantities, with a special attention to the predictions
of Lieb theorem.9

Lieb positive-U theorem states that if the repulsive Hub-
bard model at half filling is defined on a connected and bi-
partite lattice with an even number of sites, the ground state
is unique@except for the~2S11! degeneracy# and has spin
S5uNA2NBu/2, whereNA andNB are the numbers of sites
in the two sublatticesA and B. We have verified in the
four-site problem that for any positiveU the theorem is sat-
isfied. In agreement with the above theorem, it is found that
for any value of the on-site repulsion the system is always in
a ground state withS50. Moreover, we have found that the
eigenvalue of the pseudospin operator for the ground state is
J50 confirming the lemma by Shen and Qiu10 that states that
the ground state must be a pseudospin singlet, if the same
assumptions of Lieb positive-U theorem are made. The set of
all the eigenstates withS50 andJ50 can be further split in
subsets associated with the four possible eigenvaluesl51,
21, i , 2i of the translation operator. The states belonging to
the two subspaces associated withl56i are of course de-
generate in energy. The curves in Fig. 1 report the depen-
dence onU of the ground-state energies in each of the above
mentioned subspaces withS5J50. Being associated with
the eigenvaluel521 of T, the ground state is found to be
nondegenerate for any finite value ofU, again in agreement
with Lieb theorem.

IV. CONCLUSIONS

The technique introduced here can be easily applied to
other one-band models such as the extended Hubbard,t-J,
Heisenberg as well as to two-band models likep-d, Ander-
son, and so on. In these latter cases we define the possible
configurations dividing the occupation of each site between

the two type of electrons. In this way we have to double the
number of configurations with respect to the number of sites.
This implies that the Hilbert space for two-bandN-sites
models has the same dimension of 2N-sites one-band mod-
els.

To conclude, in this paper we have presented a method to
compute the eigenvalues and the eigenvectors for strongly
correlated models on clusters. We have demonstrated the ef-
ficiency of the method classifying all the eigenstates of the
four-sites Hubbard model. We believe that such an approach
is quite general and might be useful in problems where the
huge dimensions of the Hilbert space do not allow a straight-
forward implementation of standard algorithms. The knowl-
edge of all the vectors of the Hilbert space overcomes the
disadvantage of Lanczos method giving the opportunity to
study also thermodynamical properties; on the other hand
with respect to MC, where some restrictions are imposed to
the range of parameters in order to avoid the sign problems,
our technique does not depend on the parameters of the
model and on the temperature. In future papers we will apply
this method to some models for strongly correlated-electron
systems, discussing thermodynamical as well as dynamical
properties of the model.
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APPENDIX

We list here the whole set of blocks in which the Hamil-
tonian matrix is split in half filling, when the symmetries

FIG. 1. Dependence onU of the ground-state energy in the
subspaces withS50, J50, and l521 ~solid line!, l51 ~long-
dashed line!, andl5i ~short-dashed line!.
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under spin rotation, pseudospin rotation, and lattice transla-
tion are implemented. We use the notationHS,J,l to denote
the matrix representation of the Hamiltonian in the subspace
with eigenvaluesS,J,l and with Jz50 ~which enforces the
half-filling condition! and with the highest possible values of
the spin component~Sz5S!. It is easily verified that
HS,J,2 i5(HS,J,i)* , which implies that in these subspaces the
corresponding eigenergies are doubly degenerate. The matrix
blocks are

H0,0,15S 2U
0

A12t

0
0

22t

A12t
22t
U

D ,
H0,0,215S 0

0

2A12t

0
2U
2t

2A12t
2t
U

D ,
H0,0,i5S U

&~12 i !t
&~11 i !t

U D ,
H0,1,15S 2U

0

2A8t

0
U

A8t

2A8t
A8t
U

D ,

H0,1,215SU0 0
U D ,

H0,1,i5S 2U
&~12 i !t

&~11 i !t
U D ,

H0,2,15~2U !,

H1,0,15S 0

2A8t
0

2A8t
U

2A8t

0

2A8t
U

D ,
H1,0,215SU0 0

U D ,
H1,0,i5S U

2&~11 i !t
2&~12 i !t

0 D ,
H1,1,15H1,1,215~U !,

H1,1,i5S U
2&~11 i !t

2&~12 i !t
U D ,

H2,0,215~0!.
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