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Exact-diagonalization method for correlated-electron models
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We present a method to compute eigenstates and eigenvalues of strongly correlated models on clusters. The
calculation is performed applying the 8) symmetry, which allows a considerable reduction of the dimension
of Hilbert space of the system. We illustrate the method classifying the states of the four-sites Hubbard model
on a chain. This classification has been made using also the translational symmetry?ﬁ(ﬂhpﬁddospin
symmetry.[S0163-182606)09241-1

[. INTRODUCTION tonians, the total momentuf of the system is conserved as
well. Upon the implementation of these symmetries, the lin-
The theoretical description of electronic correlations inear size of the blocks to be diagonalized is strongly reduced.
the intermediate and strong coupling regimes is a long stand=or instance, for a4 Hubbard model, at half fillings,=0
ing problem. Following the discovery of heavy-fermion and zero momentum the largest block is about 1.35
compounds, and more recently, of the high-temperature sux10°.

perconductors, these problems have attracted renewed It is then obvious that the use of symmetries is crucial in
attention® performing Lanczos calculations on large clusters. In many

Unfortunately, for models used to describe the abovecases the symmetries of the problem are not exhausted by the
mentioned systems, very few exact results are known, a n®nes cited above. Several Hamiltonians exhibit other sym-
ticeable exception being the one-dimensional situation whergnetries such as spin inversion, rotations about a given site,
in many cases the exact solution is availgbla.more than  reflections with respect to lattice axes, the(8Ypseudospin
one dimension many important physical questions remaisymmetry and so on. Among them, it is worth stressing that
unsolved, despite the great number of different theoreticalhe SU2) spin symmetry until now has not been applied in
approaches that have been applied. In absence of exact iiée diagonalization procedures.
sults, a reliable way to describe the properties of strongly Here we present a technique to calculate the eigenvectors
correlated models is to resort to numerical techniques. Thes#nd eigenvalues for strongly correlated models on moder-
techniques have proved to be the only practical tool to studtely large clusters based on the application of3UTo
finite size systems, also due to the rapid increase in computdiustrate our method, we consider as an example the one-

performances. dimensional Hubbard model with periodic boundary condi-
The two techniques by far most intensively used arefions with an even number of sités.
Lanczo$ and Monte CarlaMC) methods, but regretfully The paper is organized as follows: the method to compute

these methods have also limitations. The MC approach akigenstates and eigenvalues of the Hubbard model is given in
lows to handle sufficiently large systems so that the resultSec. I, while in Sec. lll is presented, as application of the
are physically of great interest in trying to predict the behav-mnethod previously introduced, the calculation of the full
ior of the system in the thermodynamic limit. However, be-spectrum of the Hubbard model on four-site ring together
cause of the so called sign problem, which enormously enwith a complete characterization of the ground state in the
hances the statistical uncertainties of simulations, thdalf filled case: finally Sec. IV is devoted to the conclusions.
maximum size of the lattice to be described is confined to a
few tens of sites. In this case the exact diagonalizations be-
come competitive being in general more precise. Il. THE METHOD

Lanczos calculat?ons .give essentially exact_ 'results for It is well known that on a bipartite lattice the Hubbard
ground-state, low lying eigenvectors and quantities such a8 amiltonian
single particle excitation spectfaln spite of these advan-
tages, memory limitations impose severe restrictions on the
size of clusters that can be studied within this method. Usu-
ally the basis set of vectors employed in the diagonalization H=2 (tj—ud))cl,ci,+ U nin;, (1)
procedure grows exponentially with the system size. This e '
problem can be considerably alleviated using the symmetries
of the Hamiltonian that reduce the matrix Hamiltonian to ahas two independent SB) symmetries in spin and pseu-
block form. The most obvious symmetry is thél))symme-  dospin space, which involve the spin and the charge degrees
try that is usually conserved at least for fermionic problemsof freedom, respectively. The first one, which reflects the
The third component of total spin operat®may also be a invariance ofH under spin rotation, is the ordinary &)
good guantum number and, for translational invariant Hamil-symmetry in spin space, characterized by the generators
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1 the total spin of the configuration, so that to determine the
SZ=§ > (cliei—clcy, (2)  eigenvectors ofs? for a given filling, we are left with the
! composition of one-half spins on singly occupied sites.
Therefore for a model defined dhsites, the only problem is
s*:Z CiTTCii , (3) the composition oN spins at most.
i Let us apply_thef?f@) symmetry. First of all, we notice
that|2);, and (—)'|0);, are eigenstates af,; with eigenvalues
s=> CiTiciT' (4) %_and -3 rgspectively, andl); is eigenstate of ,2 and J,; _
i with zero eigenvalue. Thus the states representing the singly
.y occupied sites do not affect the total pseudospin of a given
The second S(2) symmetry can be generated by a configuration and we have to add only the pseudospin of
particle-hole transformation involving only one kind of spin, states having double and zero occupancy. This means that
say cilﬂ(—l)'c?l , which maps at half filling the the same technique previously introduced for théBdym-
repulsived Hubbard model to an attractivg-one. The fact metry can be applied to th?$2) pseudospin symmetry.
that this latter model also has rotational symmetry in its spin  Finally we apply the translational symmetry making use
space implies that the Hamiltonid) is invariant under the of the notation presented here. Let us define the translation
action of a second group, that we denote by(ZUwhose operatorT through the relation

generators are
TLal 2 IO =1)2l e )1 (8)

1
JZ=§ > (cheip+elic—1), ) This operator does not change the type of configuration in
' the sense that it does not affect the number of doubly-
occupied, singly-occupied, and empty sites. Besides, it is

=3 (_1)iCiTTCiTL! (6)  easy to see that holds the following relation:
i
THa)=*|a), 9
J = (_1)icilCiT- (7)  Wwhere|a) is a generic state ank is an integer such that
i

k=N or k=N/I with | integer & N). From this relation, we
see thafT*= =1, | being the identity operator, and thus we

The connection between the 8 symmetry and the charge : : . \
&sy Y g can writek eigenstates of in the following way:

degrees of freedom is evident from the fagts nothing but

the charge operator. The commutation relations k-1
. . = glitm+ I ) 10
[H,J7]=+(U-2u)3" | ha e JEJZO o0 (10
imply that away from half filling the global invariance under \yhere t. =2ma/k, t,=2ma/k+ w/kK, A
the’SU2) group is lost. However, beindgd,J]=[H,J,]=0  =exp(~it,.), andm=0.1,...k— 1. We notice that the ei-

for any value ofU—2u, the characterization of the eigen- genvalues of T are given by \,.=exp(—ity.) with
states oH in terms of the eigenvalues af andJ,is always m=0.1,...k—1. The statdar) which gives rise to the eigen-
possible. Moreover, the fact that are eigenoperators f  state ofT with eigenvaluex,,.. is defined as the generator of
allows us to obtain the eigenenergies within a multiplet withthat eigenstate.
givenJ from the relation It is worth noticing that the construction §fi)} states is
_ n _ not restricted to one-dimensional cases but it can be imme-

H[3,0=n)=H(I7)"J,3)=Ess+n(U~2u))[3,d—-n), diately extended to other spatial symmetries in more than
where 0O=<n=<2J, andE;; is the energy of the highest pseu- one dimension.
dospin state.

When cyclic boundary conditions are assumed, one can Ill. APPLICATION OF THE METHOD
further reduce the size of the Hamiltonian matrix blocks
specifying the eigenstates Hf in terms of the eigenvalues of
the translation operatdr. It is worth noting that, in the gen-
eration of aJ-multiplet from the highesg, state, the appli-
cation of J~ always changes the sign of the correspondingare

Let us now illustrate our method by considering the Hub-
bard model on a four-site ring. According to the technique
introduced in Sec. Il at half filling the possible configurations

eigenvalue off. Indeed, from the anticommutation relations 2Y.12%:10).|0 11
[T,J°],=0 one has that, if T|a)=\|a), then (@ [2)i[2);[0)d0). v
T3 [e)] = (=1)"\[(3)"e)]. b) 12)i|1);]1)/0 12

For each sité the four state$0); ,|1);,/1);, and|7]); form (B) 1252 [)dO). (12
a basis of the local Hilbert space. Alternatively, we can clas- (©) |1)1]1)]1)5]1)s (13

sify the states of the Hilbert space giving the occupation of

each site, so thaR), denotes a doubly-occupig¢t), a singly-  where the subscript denotes the lattice §it¢ k,1=1,2,3,4.
occupied, and0), an unoccupied site. The doubly occupied In case(a) we haveS?|2); 2); [0} |0)=0 for anyi,j k,I.

and the empty site states are eigenstateS’adnd S, with In case(b) adding two sping we trivially obtain a triplet and
zero eigenvalue. This amounts to say that they do not affec spin singlet state. Permutating the lattice indices we can
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TABLE I. Classification of the basis states of the four-site Hubbard model in terms of the eigenvalues of
the spin, the pseudospin, and the translation operator.

Number
Generators T representation S J N of states
T* 2 0 -1 5
T30 o T, 1 0 1 3
T* 0 0 -1 1
T130S T 1 0 *i 6
S138Sy4 T, 0 0 1 1
T, 0 2 1 5
t13®ty, T* 0 1 -1 3
T 0 0 1 1
t139 Sy, T3 0 1 +i 6
S13P Sos T; 0 0 -1 1
T1o®tay T, 1 1 +1,*i 36
T13Ptos TS 1 1 +i 18
T12®S3, T, 1 0 1+ 12
T13®Sy, T, 1 0 +1 6
S1p®tay T, 0 1 1% 12
Sis®toy T, 0 1 +1 6
S1o®S34 Ty 0 0 +1,%i 4
S13®Sos T3 0 0 *i 2
T1,®Dy®d, T, 3 : £1,%i 32
T, 1 : +1,%i 16
S1,®D3®d, T, 2 : +1,%i 16
t1,0d3® D, T, i 2 +1,%i 32
T, : : +1,*i 16
S;,®dz® D, T, : : +1,%i 16
write down all the eigenstates 8f andS, for these configu- I, the states2); |2), |0); [0y, and|2); |0), |2); |0}, are the

rations. Finally in caséc) we have to sum up four spins generators of vector basis states having two doubly occupied
which gives one spirls=2 state, three triplets and two sin- sites.
glets. .y The diagonalization of the four-site Hamiltonian in terms
In order to apply the S(2) pseudospin symmetry, we of S? andS, leads to matrix blocks whose maximum dimen-
notice that the role of singly-occupied sitd$ with respect  sion is 20<20 (reached at half filling forS=S,=0). The
to the SU2) symmetry, for SW2) symmetry, is played by application of the S(2) symmetry reduces to 2010 the
states having double and zero occupancy. size of the largest block, which is further split into two
_Let us finally apply the translation symmetry. To be spe-piocks of dimension 83 and 2 blocks of dimension>2
cific we discuss the application Gf on states having tWo after the application of the translational invarianceHofThe
double occupancy(a) configurationg Applying T" t0 [2);  \yhole set of the Hamiltonian matrix blocks, labeled by the
12)20)3 |0)4 We obtain(2); [2)50)4 [0)1, [2)3 124 10011002, (24 gigenvalues o, 3, 3,, andT, is reported for the half-filied
12)1 [0)2 [0)3, and|[2); 2); |0); |0)s, for n=1,2,3,4, respec- case in the Appendzix having assumgg=—t(t>0) on
tively. This means that*=1 and consequently its eigenval- nearest-neighbor sites, ang=0 otherwise. It is worth no-
ues\; are =1, *i. Besides, in this subspadehas the fol- g . ! . L .
lowing matrix representation: ticing that a different scheme for diagonalizing the f_our-S|te
Hubbard model has also been developed by Villet and
Steel? taking into account the spin reversal and Ge,
symmetry of the Hamiltonian. With this kind of choice, how-
ever, the reduction of the matrix block size is not as effective
as itisin our case. In half filling, for instance, one is left with
7X7 matrix blocks, while in our approach the highest matrix
size is 3X 3. This is, of course, a significant difference, which
Not all the states ofa) type are connected by: indeed the  becomes more and more relevant as larger clusters are con-
state|2>12|0>2 |2)5 |0), is related tg2), [0)5 |2), |0),. For these sidered.
statesT°=1 and \;==*1. The same consideration can be All the eigenstates can be deduced from the Table I,
made for(b) and (c) configurations and for states having whereT, D, S (t, d, s) denote the triplet, doublet, and singlet
SU©2) symmetry, so that we can group the states in blocks ofor S* (J?), respectively: the lower indices refer to the lat-
dimension 4 or 2. According to the definition given in Sec.tice sites and indicates the composition of spins or pseu-

O Or O
O OO
= O O O
O OO
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dospin states. We notice that the configurations in the first
column of the table are the simultaneous eigenstateS? of
and J? and they are also the generators of basis vectors of 4.0 -
irreducible representations df, T; is associated with the
transformation T)'=1 on the corresponding generator states
and (T*)'=—1.

For example to the generatdr,;®s,, corresponds the
(highest spip state

1
la)=1)1l1)s v (111)210)4+10)2[71)4),

where|1),|1)5 is the highest spin state of the tripl€}; and
(AV2)(|T1), |0)4+]0),|T1)s) is thes,, pseudospin singlet.
Applying the translation operatdr to |@) we obtain

ground-state energy (units of t)

T2 a)=|a).

that implies\;=*1. Keeping in mind thal ;53 denotes a spin
triplet we have, for any,;, three different states correspond- L ! : L
ing to S,=*1,0, so thafl ;39s,, generates six states. 0 5 10 .15 20
As previously mentioned, even though the exact solution Unt

of the Hubbard model has only been given in the one-
dimensional case, some exact results in arbitrary dimension, FIG. 1. Dependence ol of the around-state enerav in the
concerning in particular the ground-state properties, are b C 'tfs:o J-0 andx:—lg (solid lin® )\:lggllon X
nonetheless available. In the following, we are going to giveSu spaces wi ! ’ ' 9

a complete characterization of the ground state of the fourC-IIaShecI linf; and=i (short-dashed lirje

site Hubbard model in terms of the above mentioned congg g type of electrons. In this way we have to double the
served quantities, with a special attention to the predictionsymper of configurations with respect to the number of sites.

of Lieb thec_)r_em". ) ) This implies that the Hilbert space for two-bamdtsites
Lieb positivet theorem states that if the repulsive Hub- ., J4a1s has the same dimension &-Rites one-band mod-

bard model at half filling is defined on a connected and bi-g|g

partite lattice with an even number of sites, the ground state 14 <onclude. in this paper we have presented a method to

is unique[except for the(2S+1) degeneracyand has spin  comnyte the eigenvalues and the eigenvectors for strongly

S=|Na—Ng|/2, whereN, andNg are the numbers of sites ¢, rajated models on clusters. We have demonstrated the ef-
in the two sublatticesA and B. We have verified in the  fisiancy of the method classifying all the eigenstates of the
four-site problem that for any positivé the theorem is sat- ¢, sjtes Hubbard model. We believe that such an approach
isfied. In agreement Wlth_ the ab0\_/e theorem, it is found thg;s quite general and might be useful in problems where the
for any value of the on-site repulsion the system is always ir,,ge dimensions of the Hilbert space do not allow a straight-

a ground state witl5=0. Moreover, we have found that the ¢,\yarq implementation of standard algorithms. The knowl-
eigenvalue of the pseudospin operator for the ground state [§yge of all the vectors of the Hilbert space overcomes the

J=0 confirming the lemma by Shen and ithat states that disadvantage of Lanczos method giving the opportunity to

the ground state must be a pseudospin singlet, if the samg 4y also thermodynamical properties: on the other hand
assumptions of Lieb positive-theorem are made. The set of | i respect to MC, where some restrictions are imposed to

all the eigenstates wit§=0 andJ=0 can be further splitin  yhe range of parameters in order to avoid the sign problems,
subsets associated with the four possible eigenvalues, o technique does not depend on the parameters of the
—1,i, —i of the translation operator. The states belonging tGyqqe| and on the temperature. In future papers we will apply
the two subspaces associated with +i are of course de- i method to some models for strongly correlated-electron

generate in energy. The curves in Fig. 1 report the depernsysiems; discussing thermodynamical as well as dynamical
dence orlJ of the ground-state energies in each of the abov‘?)roperties of the model.

mentioned subspaces withb=J=0. Being associated with
the eigenvaluean=—1 of T, the ground state is found to be
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The technique introduced here can be easily applied to

other one-band models such as the extended Hubbald,
Heisenberg as well as to two-band models likel, Ander-
son, and so on. In these latter cases we define the possible We list here the whole set of blocks in which the Hamil-
configurations dividing the occupation of each site betweerionian matrix is split in half filling, when the symmetries

APPENDIX
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under spin rotation, pseudospin rotation, and lattice transla-

tion are implemented. We use the notatidg ; , to denote

the matrix representation of the Hamiltonian in the subspace

with eigenvaluesS,J,\ and with J,=0 (which enforces the

half-filling condition and with the highest possible values of

the spin componentS,=S). It is easily verified that

Hsj—i=(Hs_j;)*, which implies that in these subspaces the
corresponding eigenergies are doubly degenerate. The matrix

blocks are
20 0 1
HO,O,lz 0 O _2t y
Jiz -2t U
0 0 -1z
Hoo-1= 0 2U 2t ,
-J1iz 2t U
B U V2(1+i)t
Hooi=lvaa-it v |
2U 0 —.8t
Hopi=| O U 8t |,
—J8t 8t U

13051
Uu o0
Ho,1,—1: 0 U/’

_( 2U  Va(l+ilt
Hoti=lyvz1-it U )

Ho2,1=(2U),

0 -8t ©
— 8t -8t |,

Hio1= U
0 —J8t U

u o
H1,o,—1: 0 U/

_( U —fz(l—i)t)
Hioi=| —ya(1+iyt o

Hip,=H;1-1=(U),

(U —Va(1-i)t
Hl'l"_(—\/i(lﬂ)t u )

H2,0,—1:(0)-
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