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Extraction of antiferromagnetic~AF! exchange constantsJ andJ8 in two-leg spin-12 nearest-neighbor~NN!
Heisenberg ladders from experimental magnetic spin susceptibilityx(T) data is studied, whereJ8 is the NN
exchange constant in the rungs andJ is that in the legs. Two low-T (T!J/kB) approximations of Troyer,
Tsunetsugu, and Wu¨rtz @Phys. Rev. B50, 13 515~1994!# for x(T) of the isolated spin-12 two-leg ladder with
J8/J51 are shown to be accurate to;10% when extrapolated toT;J/kB . The variations in the magnetic
excitation dispersion relation parameters@which enter the low-T expression of Troyeret al. for x(T)# for
J8/J,1 are inferred from previous theoretical results. Next, the values of the maxima inx(T)[xmax from
many numerical calculations in the literature for various nonfrustrated spin-1

2 NN Heisenberg antiferromagnets
are considered. The values of the productxmaxzeff are found to depend systematically and almost uniqely on an
effective magnetic coordination numberzeff , defined in the text, but are nearly independent of the dimension-
ality of the spin lattice and of the magnitude of any gap in the magnetic excitation spectrum. This observation
allows accurate bounds on the exchange coupling constants in arbitrary quasi-low-dimensional spin-1

2 antifer-
romagnets to be inferred from experimentalxmax values. Finally, a mean-field-type expression forx(T) for
arbitrary quasi-low-dimensional spin-1

2 Heisenberg antiferromagnets is derived, using the abovexmax phenom-
enology as input, which allows the influence of intersystem coupling onx(T) to be evaluated. These results,
and thex(T) calculations of Barnes and Riera@Phys. Rev. B50, 6817 ~1994!# for isolated two-leg spin-12
Heisenberg ladders, are used to analyze the experimentalx(T) data of Azumaet al. @Phys. Rev. Lett.73, 3463
~1994!# for the spin-12 two-leg ladder compound SrCu2O3. The analyses together suggest thatJ8/J;0.5,
contrary to the expectation thatJ8/J'1, and thatJ is very large (;2000 K!, similar to the value ofJ in the
linear-chain cuprate Sr2CuO3. @S0163-1829~96!01442-7#

I. INTRODUCTION

Spin configurations formed by couplingn spin chains side
by side in a plane are termedn-leg spin ladders. The study of
spin-12 ladders with increasing numbers of legs is one way to
approach the physics of the square lattice of spins as in the
layered cuprate superconductor parent compounds, corre-
sponding ton→`. Such spin ladders have received increas-
ing attention over the last several years.1 For antiferromag-
netic ~AF! Heisenberg exchange interactions between
nearest-neighbor~NN! spins, the only case discussed here,
the spin Hamiltonian of then-leg spin ladder is

H5J(
^ i , j &

Si•Sj1J8(
^ i ,k&

Si•Sk , ~1!

whereJ,J8>0 for AF coupling. The first sum is over distinct
NN spin pairs in each chain~over legs of the ladder!, and the
second is over distinct NN spin pairs in adjacent chains~over
rungs of the ladder!. The spin exchange coupling constant is
J within a leg andJ8 within a rung.

Experimental research on spin ladders was stimulated by
theoretical predictions that the~unfrustrated! spin-12 two-leg
ladder should have a nonmagnetic quantum ‘‘spin-liquid’’
ground state, with a spin-gapD to the lowest magnetic triplet
excited states,2–4 in contrast to the isolated chain which has
no spin gap. This prediction was verified for the spin-1

2 two-
leg ladder compounds~VO! 2P2O7 ~Refs. 5 and 6! and
SrCu2O3.

7–12 The ground state of SrCu2O3 is evidently
very close to the critical point separating the antiferromag-

netically ordered state from the spin liquid, since slightly
perturbing the system by replacing only; 1% of the Cu by
Zn is sufficient to induce long-range AF order.13 The two-leg
ladder compound LaCuO2.5 ~high pressure form! was ini-
tially reported to have a spin-liquid ground state with a spin
gap,14 but was subsequently inferred to order magnetically at
;110 K.15 Calculations indicate that the ratio of the inter-
ladder to intraladder exchange coupling constants in this
compound is; 0.1 to 0.25.16,17

Barnes and Riera6 calculated the spin susceptibility versus
temperaturex(T) for two-leg spin-12 ladders and obtained an
excellent fit withJ'J8 to thex(T) data5 for ~VO! 2P2O7.
They also predicted thatD'J/2 ~at wave vectork5p/a
along the ladder wherea is the spin-spin distance! for this
compound, which was subsequently confirmed by neutron
scattering measurements.18 For wider ladders, the~unfrus-
trated! even-leg ladders are predicted to continue to show
spin gaps with a magnitude decreasing withn, whereas the
odd-leg ladders display behavior similar to that of the gap-
less isolated linear chain.1,8,19–22The latter prediction was
verified for the three-leg ladder compound Sr2Cu3O5, which
showed no spin gap7–10 and exhibited disordered static AF
ordering below;50 K.11 Also stimulating the experiments
on such materials were predictions that superconductivity
might occur by a purely electronic mechanism in weakly
coupled and weakly doped even-leg ladders.1,3,8,23,24To date,
the only spin-ladder compound reported to be doped into
the metallic state is the two-leg ladder compound
La12xSrxCuO2.5, and no superconductivity was observed.

14

As in ~VO! 2P2O7, an estimate ofD in the two-leg ladder
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compound SrCu2O3 ~Ref. 9! has been made fromx(T)
measurements. A few representativex(T) data for
SrCu2O3 ~Ref. 9! are plotted in Fig. 1. To obtain a value for
D, Azumaet al.9 fitted theirx(T) data by the prediction of
Troyeret al.25 for isolated spin-12 ladders,

x~T!5
A

AT
e2D/kBT, ~2!

wherekB is Boltzmann’s constant. A very good fit was ob-
tained~not shown in Fig. 1! with D/kB 5 420 K, and with
theA value in Table I. Assuming thatJ'J8, as usually done
up to now when considering spin-1

2 ladder compounds and
found as cited above for ~VO! 2P2O7, one has

D'J/2.3,4,19,20,25In this case one obtainsJ/kB'840 K for
SrCu2O3.

9 Surprisingly, this value is considerably less than
the rangeJ/kB 5 1700–3000 K estimated26–31for the linear-
CuO3-chain compound Sr2CuO3 and also much less than
values of;1500 K found32 in the layered cuprate supercon-
ductor parent compounds.

Herein, we first analyze in Sec. II the fits to and the mag-
nitudes ofx(T) as reflected in the value ofA, assuming that
the interladder exchange coupling is negligible. We show
that the experimentalA value for SrCu2O3 ~Ref. 9! in Table
I is not consistent with the assumption thatJ'J8 for isolated
ladders, but rather indicates thatJ8/J&0.5. From fits of the
x(T) data by the calculations of Barnes and Riera,6 we con-
firm this estimate. The assumption of isolated ladders also
leads to the conclusion that the AF coupling along the ladder
legs in this compound is very strong (J*2000 K!. The in-
fluence of interladder coupling onx(T) is discussed in Secs.
III and IV. In Sec. III, a general method is presented for
estimating exchange constants in unfrustrated AF quantum
Heisenberg spin-12 systems from the maximum spin suscep-
tibility xmax value when the effectivemagneticcoordination
numberzeff is unknown or unclear, such as can happen, for
example, in spin-ladder compounds if the strength of the
interladder coupling is not negligible. From this treatment
and the experimental data, bounds are placed on the inter-
and intraladder coupling constants in SrCu2O3. In Sec. IV,
using a mean-field approach and the results in Sec. III, an
expression forx(T) incorporating the influence of interlad-
der coupling onx(T) is derived and utilized to fit the data
for SrCu2O3. The inferred values ofJ8/J andJ are similar
to the above values obtained by assuming negligible inter-
ladder coupling. Concluding remarks are given in Sec. V.

II. MAGNETIC SUSCEPTIBILITY OF ISOLATED SPIN- 1
2

TWO-LEG LADDERS

The general form for the ‘‘magnon’’ dispersion relation of
an isolated spin-12 two-leg ladder near the minimum at wave
vectork5p/a is given by

«~ka!5D1g~dka!2, ~3!

FIG. 1. Representative magnetic spin susceptibilityx vs tem-
perature data for SrCu2O3 ~Ref. 9, filled circles!. Also shown as
open symbols and connecting lines are fits to these data by the
calculations of Barnes and Riera for the isolated spin-1

2 two-leg
ladder~Ref. 6! for several ratios of the rung to leg exchange con-
stantsJ8/J and for the fitted values ofJ.

TABLE I. Parameters describing the lowest triplet excited state dispersion relation for two-leg spin-1
2 ladders~see text!. A number in

parentheses in the lower table is the estimated standard deviation in the last digit of the preceding quantity. The units ofA are 1023

cm3 K 1/2/mol Cu. Equation numbers refer to the text.

Compound D

kB
~K!

A Ref. g

kB
(104 K!

g/D Eq.

SrCu2O3 420 4 9 1.4 33 ~5!

Theory
J8J «(0)/J D/J co «(0)/D g/D Eq., Ref.

2.0 3.148~1! 1.280~3! 0.59~3! 2.46~1! 0.90~2! ~10!, 4
1.0 1.89~1! 0.51~3! 0.88~2! 3.7~2! 5.3~3! ~10!, 4

4.9 ~8!

« (1)(k) 0.496 6.39 25
« (2)(k) 0.517 5.07 25
0.5 1.09~4! 0.30~16! 1.02~3! 3.7~19! 16.~5! ~10!, 4

24. ~8!
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where dk[k2p/a in the extended zone scheme and the
parameterg is the curvature at the band minimum as defined
by Eq. ~3!. Using this form, Troyeret al.25 obtained an ex-
pression forx(T) in the low temperature limit,kBT!D and
kBT! magnon bandwidth, given by

x~T!5
Ng2mB

2

2kBAp~g/kB!T
exp~2D/kBT!, ~4!

whereN is the number of spins 1/2,g is the Lande´ factor,
andmB is the Bohr magneton. ForN 5 1 mole~Avogadro’s
number!, one obtains Eq.~2!, with

A5
g2~0.1058 cm3 K1/2/mol!

Ag/kB
. ~5!

Several issues are important regarding fits ofx(T) data by
Eq. ~2! for two-leg ladder compounds. The first is that Eq.
~2! is derived for the low-T limit, whereas for SrCu2O3,

9 for
example, the data and fit extended to a temperature of
1.55D/kB . It is thus not clear how the experimental param-
etersA andD are related to the calculated ones in Eqs.~2!
and ~5! when data are fitted over an extendedT range. At
present, calculations are not available to address this issue
for arbitraryJ8/J. However, as shown in the inset of Fig. 2,
if J50 (D5J8), corresponding to isolated rung dimers, the
low-T approximation xL(T)5@Ng2mB

2/kBT#e2D/kBT seri-
ously diverges from the exact result

x~T!5
Ng2mB

2

kBT

e2D/kBT

113e2D/kBT
~6!

for T*0.3J8/kB . In contrast, as shown in Fig. 2, the two
low-T approximations of Troyeret al.25 for J5J8 @for dis-
persion relations« (1)(ka) and « (2)(ka) with the D and g
parameters in Table I# are found using Eq.~4! to differ by

&10% from the accurate calculations6,25 for at least
kBT/J<1, corresponding3,4,20,25to kBT/D&2.

Second, as will be seen below, for comparison with
theory it is important to be able to determine the parameter
g, in addition toD, from the experimentalx(T) data. From
Eq. ~4!, this in turn requires that theg factor be known or at
least quantitatively estimated. To our knowledge, for Cu12

in square-planar oxygen coordination, with or without apical
oxygens, the~anisotropic! g factor is always>2,26 as is the
case in, e.g., La2CuO4 as determined fromx(T) data33 and
YBa2Cu3O61d from NMR data.34 This observation origi-
nates from the negative sign of the spin-orbit coupling pa-
rameter for Cu12 and from the crystalline electric field ef-
fects on thed-orbital energies. Thus, theg value is not an
arbitrarily adjustable parameter. An averageg value of about
2.1 is consistent with the maximum observed ordered mo-
ment (;0.7mB) in the Néel state of the AF insulator layered
cuprate parent compounds.32 We therefore question recent
analyses ofx(T) data yieldingg!2, in the absence of jus-
tification for theseg values, for Sr2CuO3 (g 5 1.6! ~Ref.
27! and SrCu2O3 (g 5 1.4–1.55!.35 Since theg factor
comes intox(T) calculations as the square, suchg values
reduce the calculatedx(T) ~andJ, see below! by roughly a
factor of 2 from those calculated usingg*2. In the remain-
der of this paper,g will be taken to be the fixed value 2.1.26

The third issue to be addressed is the magnitude of
x(T), which is reflected in the value ofA in Eq. ~2!. From
Eq. ~5!, theA value for SrCu2O3 yields theg value in Table
I. The experimentalD value in Table I then gives
g/D'33. This ratio is about a factor of 5 larger than pre-
dicted for the caseJ5J8 for the « (1)(k) and« (2)(k) disper-
sion relations of Troyeret al.,25 as shown in Table I. With
decreasingJ8/J, D/J decreases.3,4 Also, asJ8/J decreases,
the curvatureg at the magnon band minimum increases.4,6,19

From these considerations, one expects the ratiog/D to in-
crease with decreasingJ8/J. The fact that the observed
g/D ratio for SrCu2O3 is much larger than those predicted
for J8/J51 thus suggests thatJ8/J is significantly less than
1 in this compound.

An estimate is now made ofg/D versus J8/J for
J8/J<1. The dispersion relation for a single isolated chain
is36 «0(ka)5(pJ/2)usin(ka)u. In the presence of a spin gap
D, the modified dispersion relation nearka5p is assumed to
be«(ka)'$D21@«0(ka)#2%1/2. Expanding«0(ka) for small
deviations dk of k from p/a then gives g/D'
(1/8)(pJ/D)2. TheD/J versusJ8/J results of Barneset al.4

for the bulk limit and forJ8/J<1 are well fitted by

D/J50.4~J8/J!10.1~J8/J!2, ~7!

as shown in Fig. 3. Combining the last two expressions gives

g

D
'

7.71~J/J8!2

@110.25~J8/J!#2
. ~8!

Using Eq. ~8!, the g/D ratio is predicted to be 4.9 for
J8/J51, which is close to the estimates forJ8/J51 by
Troyer et al.25 in Table I. For J8/J50.5, Eq. ~8! gives
g/D'24.

The«(ka) for the 23 12 spin-12 two-leg ladder has been
calculated using Lanczos techniques by Barnes and Riera6

FIG. 2. Magnetic spin susceptibilityx vs temperatureT com-
puted for the spin-12 two-leg ladder withJ5J8 ~Ref. 6!. Also shown
are extrapolations to highT of two low-T approximations of Troyer
et al. ~Ref. 25!. In the inset are shown the computedx(T) for a
spin-12 dimer in Eq.~6! and the extrapolated low-T approximation.
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for J8/J 5 2, 1 and 0.5. ForJ8/J 5 2 and 1, their values
D/J[«(p)/J51.28 and 0.52, respectively, are in good
agreement with respective bulk limit calculations.3,4,19,20,25

For J8/J50.5, their value of 0.29 is about 30% larger than
the bulk value in Fig. 3,4 as expected.3,4 Estimates ofg/D
versusJ8/J can be obtained from the«(ka) calculations.
Barnes and Riera found that their data could be fitted well by

«~ka!5@«2~0!cos2~ka/2!1«2~p!sin2~ka/2!

1co
2~pJ/2!2sin2~ka!#1/2, ~9!

where D[«(p). For J8/J→0, one must have«(0)→0,
«(p)→0, co→1. Our fitting parameters of the«(ka) calcu-
lations are listed in Table I. Forka close to the band mini-
mum atp, Eq. ~9! yields

g

D
5
1

8 F S «~0!

D D 2211S pcoJ

D D 2G . ~10!

The values ofg/D obtained from Eq.~10! and from the
«(0), D andco parameters in Table I are listed in Table I.
The g/D ratio is seen to increase strongly with decreasing
J8/J. ForJ8/J51, theg/D ratio is comparable with those of
Troyer et al. and our estimate using Eq.~8! in Table I. The
g/D value forJ8/J50.5 for the 23 12 ladder is somewhat
smaller than our estimate from Eq.~8! for the bulk limit.

The above estimates ofg/D and comparison with the ex-
perimental value in Table I suggest thatJ8/J&0.5 in
SrCu2O3. Equation~8! and the observedg/D ratio in Table
I suggest that 0.4,J8/J,0.5 in this compound.

Numerical calculations ofx(T) exist for J8/J values
down to 0.5.6,25,35 The theoreticalx(T) predictions for
J8/J,1 by Barnes and Riera6 were therefore scaled onto the
experimental data9 for SrCu2O3 in Fig. 1. For each value of
J8/J, J was varied until agreement with at least the highest
T experimental data was obtained, as shown in Fig. 1. As
anticipated above, values ofJ8/J>0.9 are clearly ruled out,
with the lowest available valueJ8/J50.5 providing the best

~but still not optimum! fit. The evolution of the fits with
decreasingJ8/J indicates thatJ8/J is somewhat less than
0.5, and thatJ*2000 K.

TheJ8/J ratio derived for SrCu2O3 from consideration of
theg/D ratios in Table I (&0.5) is consistent with the inde-
pendent theoretical fits to thex(T) data in Fig. 1. In addition,
usingJ8/J50.5 andJ52000 K from above, Eq.~7! yields
D/kB5450 K, similar to the experimentally inferred value of
420 K in Table I. We note that the calculations of Gopalan,
Rice, and Sigrist19 for the ‘‘trellis’’ spin lattice in SrCu2O3
indicated forJ8/J51 that D for each individual ladder is
unaffected by the frustrated intralayer interladder interac-
tions. However, the strength of interlayer interladder interac-
tions was not investigated, but may be significant and impor-
tant to the interpretation of thex(T) data,37 an issue which
we now address.

III. ANALYSIS OF THE MAXIMUM SPIN
SUSCEPTIBILITY FOR SPIN- 1

2 HEISENBERG
ANTIFERROMAGNETS

In this section, we consider the information that can be
gained about the AF exchange coupling constants between
the spins of a material from the measured maximum value
xmax of x(T), assuming nearest-neighbor Heisenberg ex-
change interactions only. The spin Hamiltonian for a general
system is written

H5(
^ i , j &

Ji jSi•Sj , ~11!

where the sum is over unique nearest-neighbor pairs and
Ji j.0 denotes an AF interaction. Here the discussion is lim-
ited to bipartite~two-sublattice! magnetic lattices in which
an ordered collinear AF~Néel! state can be imagined where
all the nearest neighbors of a member of one sublattice be-
long to the second sublattice~other cases will be briefly dis-
cussed at the end of this section!. If all Ji j are the same
([J) and each spin has the same numberz of nearest neigh-
bors, molecular field theory~MFT! predicts38 that

xmaxJz

Ng2mB
2 5

1

2
, ~12!

independent of spinS. One can generalize Eq.~12! to sys-
tems in which the magnetic environment of each spin is the
same but where theJi j are not equal. Since in Eq.~12!
Jz5( j Ji j , where j runs over all nearest neighbors of a
given spin i , we define an effective magnetic coordination
numberzeff by

zeff5
1

Jmax(j Ji j , ~13!

whereJmax 5 max(Ji j ). Then, Eq.~12! becomes

xmaxJmaxzeff
Ng2mB

2 5
1

2
. ~14!

FIG. 3. Computed spin gapD vs J8/J for the spin-12 two-leg
ladder, in the regionJ8/J<1 ~Ref. 4!. The solid curve is a polyno-
mial fit of order 2, forced to pass through~0,0!, to the data.
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Of course, MFT neglects strong fluctuation~dynamic short-
range AF order! effects which increase with decreasingS
and with decreasingz or zeff . Accurate calculations and mea-
surements are expected, and found, to give axmax smaller
than predicted in Eqs.~12! and ~14!. One might expect a
systematic variation ofxmaxJmaxzeff /Ng

2mB
2 with zeff for a

givenS, with the deviation from the MFT prediction of 1/2
decreasing with increasingzeff .

To test these ideas, calculations ofxmax from the literature
for various spin-12 systems are presented in Fig. 4 as a plot of
xmaxJmaxzeff /Ng

2mB
2 versuszeff . A systematic variation is

indeed observed versuszeff , with the deviation from the
MFT prediction decreasing with increasingzeff , as expected.
Included in Fig. 4 arexmax data for lattices with isotropicJ
~i.e., Ji j5J, filled symbols! including the dimer (z 5 1!
from Eq. ~6!, the linear chain (z52),28 the planar honey-
comb lattice (z53),39 the ordered defect square lattice
(z53) of CaV4O9,

40 the two-leg ladder (z53),6,25 the
square lattice (z54),32,39,41 the two-layer square lattice
(z55), the simple-cubic lattice (z56), and the body-
centered-cubic lattice (z58).39 For the isotropic nonfrus-
tratedn-leg ladders withn 5 3, 4, 5, and 6,42 z eff is defined
to be the average coordination number of a spin in a ladder:
zeff[42(2/n). In addition, lattices with anisotropicJi j ~open
symbols! are included in Fig. 4: the alternating-exchange lin-
ear chain in which two differentJi j alternate along the chain
(zeff 5 1.2–1.8!,6 the anisotropic two-leg ladder (zeff 5
1.2–2.9!,6,25 and the anisotropic ordered defect square lattice
of CaV4O9 (zeff 5 2–2.75!.40 The solid curve in Fig. 4~‘‘Fit
1’’ ! is a fit of all of the data by the empirical expression

xmaxJmaxzeff
Ng2mB

2 5
1

2
tanh~0.477zeff

0.521!. ~15!

Equation~15! becomes identical with the MFT result~14! in
the limit of largezeff . Remarkably, it is seen from Fig. 4 that

xmax depends primarily onzeff , and is not sensitive~to
within ; 10%! to the space dimensionality of the spin lattice
or to the magnitude of any spin-gap relative toJmax.

To illustrate the utility of the theoretical calculations in
Fig. 4 @and/or of the fit to those data in Eq.~15!#, consider
thex(T) data for SrCu2O3 in Fig. 1. It appears thatx

max is
given to within a few percent byxmax51.031024

cm3/mol Cu ~this is confirmed below in Sec. IV!. Then Fig.
4 and/or Eq.~15! yields the following quantitative insights.
First suppose that interladder spin exchange coupling is neg-
ligible. If the exchange coupling within the ladder is isotro-
pic, thenz53 (5zeff) and J/kB51900 K; this estimate of
J/kB is more than a factor of 2 larger than the estimate of
'840 K cited in the Introduction assuming isotropic ladders.
If the intrachain interactionJ50, thenz51 and the rung
exchange constantJ8/kB5 3300 K. On the other hand, if
J850, corresponding to isolated chains withz52, then the
intrachain J/kB52460 K. If J8/J51/2, then Jmax5J,
zeff52.5,J/kB52140 K andJ8/kB51070 K; these values are
consistent with those found above in Sec. II for SrCu2O3.

Now suppose that interladder spin exchange coupling is
not negligible. For example, suppose thatzeff54 ~implying a
strong interladder spin exchange coupling! in SrCu2O3,
which would correspond to an isotropic square lattice, or,
e.g., to an isotropic two-leg ladder with intraladder exchange
constantJ and where each Cu spin in a ladder is coupled to
a Cu spin in each of two adjacent ladders with exchange
constantJ/2. Then one obtainsJ51560 K, again still much
larger than the estimate of 840 K in the Introduction but
similar to the known exchange coupling constants in other
similar cuprates. To proceed further and determine which of
the above or other possibilities actually applies requires fits
to thex(T) data by specific models. This was done assuming
no interladder exchange coupling in Sec. II. Fits assuming
non-negligible interladder coupling will be presented in Sec.
IV.

Finally, the influence of possible magnetic frustration on
the phenomenology in Fig. 4 is briefly discussed. All of the
xmax data in that figure are for nonfrustrated bipartite AF
spin lattices. An example of a frustrated lattice is the~close-
packed! planar triangular lattice withz56. For an isotropic
S51/2 Heisenberg antiferromagnet on this lattice, Elstner
et al. find thatxmaxzJ/Ng2mB

250.536,43 significantly larger
than the value in Fig. 4 forz56, indicating that the geomet-
ric frustration suppresses the development of dynamic short-
range AF order. Other frustrated lattices include isolated
clusters ofN spins (N.2) in which each spin interacts with
every other spin in the cluster with the same exchange con-
stant J, where z5N21. The energy of such a cluster is
given exactly in terms of the total spinS of the cluster by
ES5(J/2)S(S11), apart from an additive constant, where
for N even and constituent spins-1

2, one hasS50, 1, . . . ,
N/2. The energy level degeneracies andx(T) to arbitrary
accuracy are easily evaluated.44,45 We find
xmaxzJ/Ng2mB

250.4024 forz53, 0.5065 forz55, 0.5715
for z57, . . . . .These values are again larger than those for
the respectivezeff values in Fig. 4. Therefore, for given val-
ues ofxmax andzeff , the value ofJmax obtained from Fig. 4
or Eq. ~15! is evidently a lower limit.

FIG. 4. Computed maximum spin susceptibilityxmax[
max@x(T)# times the effective magnetic coordination numberzeff
vs zeff from the literature for various spin-12 Heisenberg antiferro-
magnets~see text!. Fits 1~solid curve! and 2~dashed curve! are fits
to the data by Eqs.~15! and ~17! in the text, respectively.

54 13 013ANTIFERROMAGNETIC EXCHANGE IN TWO-LEG SPIN- . . .



IV. TEMPERATURE DEPENDENCE
OF THE SPIN SUSCEPTIBILITY
OF QUASI-LOW-DIMENSIONAL
HEISENBERG SPIN SYSTEMS

A. General considerations

We now consider the relevance of the theoretical data in
Fig. 4 in determining the influence of intersystem spin cou-
plings on the temperature-dependentspin susceptibility
x(T) of the total coupled system. In particular, suppose one
has an isolated spin system withzeff[z0 and an accurately
known spin susceptibilityx0(T). In the absence of an ex-
plicit accurate calculation ofx(T) for coupled systems, one
must resort to some sort of mean-field theory to calculate it.
Such theories often give the general form
x(T)5x0(T)/@11lx0(T)#, wherel is independent ofT.
Since this expression is presumed to hold at eachT, it must
hold in particular for the temperatureTmax at whichx is a
maximum, which allows us to make contact with the theo-
retical results in Fig. 4. This expression is consistent with
Fig. 4 if, as will be shown in the next paragraph, it is written
as

x~T!5
x0~T!

112~zeff2z0!@x0~T!Jmax/Ng2mB
2 #
. ~16!

The strength of intersystem exchange coupling is contained
in the parameterz*[zeff2z0. Equation ~16! will be used
below to fit the experimentalx(T) data for SrCu2O3, where
in this casex0(T) is the susceptibility of an isolated spin-1

2

two-leg ladder.
After multiplying both sides of Eq. ~16! by

Jmaxzeff /Ng
2mB

2 and settingT5Tmax, one obtains

xmaxJmaxzeff
Ng2mB

2 5
x0
maxJmaxzeff /Ng

2mB
2

112~zeff2z0!~x0
maxJmax/Ng2mB

2 !
. ~17!

The dashed curve in Fig. 4~‘‘Fit 2’’ ! is a fit of all the theo-
retical data points in Fig. 4 by Eq.~17! for z051; the fit is
seen to be accurate to about 10% for all of the data points
and much better than this for most of them. Essentially the
same fit was obtained for 1<z0<5. In the limit of large
zeff , Eq. ~17! yields the MFT result, Eq.~14!; this is in fact
the criterion by which the factor of 2~rather than, e.g., a
more precise value for a given fitting range ofzeff) was in-
serted in the denominators on the right-hand-sides of Eqs.
~16! and ~17!.

B. SrCu2O3

In this section, fits by Eq.~16! to the experimentalx(T)
data in Fig. 1 for SrCu2O3 will be presented. Forx0(T), the
calculations of Barnes and Riera6 for J8/J 5 1, 0.7 and 0.5
are utilized. Before giving the results, we point out that Eq.
~16! is expected to be accurate when fittingx(T) data for
which x&xmax since Eq.~16! was derived for this regime.
However, the accuracy of Eq.~16! is unclear for the range
x!xmax. For example, the spin gap decreases when nonfrus-
trated interladder coupling exists,17 which is expected to
cause the lowest-temperature behavior ofx(T) to be signifi-
cantly different than predicted by the mean-field expression
~16!. Therefore, Eq.~16! was fitted to the higher-temperature

(*300 K! experimental data; agreement of the extrapolated
fit with the lower-temperature data, when it occurs, is tenta-
tively considered to be fortuitous.

The fits by Eq.~16! to the experimentalx(T) data9 in Fig.
1 for SrCu2O3 are shown in Fig. 5. An essentially perfect fit
to the high-T data was obtained for each of the three ratios of
J8/J. For J8/J51 (z053), the best fit gave
z*[zeff2z053.0(3) andJ/kB51120(30) K. The value of
z* ~and consequentlyJ8/J andJ) is not acceptable, since it
corresponds to each Cu spin in the sample having the same
unfrustrated coupling to each ofzeff 5 6 nearest neighbors,
equivalent to a simple-cubic spin lattice in three space di-
mensions. Such a system would not exhibit the strong short-
range AF ordering over such a large temperature range as
observed, but rather would exhibit long-range AF order at
TN;J/kB .

39 For J8/J 5 0.7 (z052.7), the valuesz* 5 1.65
andJ/kB 5 1430 K were obtained. Finally, forJ8/J 5 0.5
(z052.5), the parameters arez* 5 1.0~2! and J/kB 5
1900~200! K. Unfortunately, x0(T) calculations are not
available forJ8/J,0.5, so our fits could not be extended into
this parameter regime. Since SrCu2O3 exhibits a spin-liquid
ground state as discussed in the Introduction, thez* value
for J8/J50.7 seems too large to be realistic. Thus, we ten-
tatively come to similar conclusions reached in Sec. II, that
J8/J;0.5 andJ/kB;2000 K in SrCu2O3.

V. CONCLUDING REMARKS

The analysis in Sec. II ofx(T) for SrCu2O3,
9 in terms of

isolated ladders, suggests thatJ8/J&0.5 in this two-leg spin-
ladder compound. The AF coupling along the legs of the
two-leg ladders is found to be very strong,J*2000 K, simi-
lar to previous estimates for the linear chain compound
Sr2CuO3.

26–30The inferredJ8/J andJ values are consistent
with the observed spin-gap and with the general discussion

FIG. 5. Measured spin susceptibilityx vs temperature for
SrCu2O3 ~Ref. 9!, as in Fig. 1. Theoretical fits to the data assuming
the existence of interladder coupling, by Eq.~16! in the text and
using the calculated spin susceptibilities of isolated two-leg spin-
1
2 ladders of Barnes and Riera forJ8/J50.5, 0.7, and 1,~Ref. 6! are
shown by open symbols and connecting lines.
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of xmax in Sec. III; the results of this section and Sec. IV A
may be generally useful in analyzingx(T) data for other
quasi-low-dimensional spin systems. From Sec. IV, the
above parameters appear to be supported even after inclusion
of interladder coupling in the mean-field-type fits to the ex-
perimentalx(T) data.

The inferred suppression ofJ8 with respect toJ in
SrCu2O3 is unexpected and needs to be further tested and
investigated by microscopic calculations and additional ex-
periments. If confirmed, this anisotropy may have a signifi-
cant influence on the predicted physical properties of the
metallic doped spin-ladder compounds. For example, this
suppression may reduce the possibility of superconductivity
due to an electronic mechanism~although this reduction may
be ameliorated by the large value ofJ),1,3,24and may help to
explain why no superconductivity was observed in the me-
tallic spin-12 two-leg ladder La12xSrxCuO2.5 system.

14 Fur-
ther accurate numerical calculations ofx(T) for isolated lad-
ders are needed forJ8/J,0.5 to extend the available range

of predictions for comparison with the data. Most impor-
tantly, the accuracy of the parameters obtained from our
mean-field-type fits in Sec. IV to the experimental data needs
to be determined by accurate numerical calculations of the
influence of interladder exchange coupling onx(T) for
J8/J&1.
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