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Ruderman-Kittel-Kasuya-Yosida interaction across a tunneling junction out of equilibrium
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The Ruderman-Kittel-Kasuya-YosidRKKY) interaction between two magneted spin impurities across
a tunneling junction is studied when the system is driven out of equilibrium through biasing the junction. The
nonequilibrium situation is handled with the Keldysh time-loop perturbation formalism in conjunction with
appropriate coupling methods for tunneling systems due to Caroli and Feuchtwang. We find that the presence
of a nonequilibrium bias across the junction leads to an interference of several fundamental oscillations, such
that in this tunneling geometry, it is possible to tune the interaction between ferromagnetic and antiferromag-
netic coupling at a fixed impurity configuration, simply by changing the bias across the junction. Furthermore,
it is shown that the range of the RKKY interaction is altered out of equilibrium, such that in particular the
interaction energy between two slabs of spins scales extensively with the thickness of the slabs in the presence
of an applied bias[S0163-182606)00242-1

. INTRODUCTION bation formalism! along with a coupling procedure for
structured systems developed by Caroli and co-wotkel?
The Ruderman-Kittel-Kasuya-YosidRKKY ) interaction ~and Feuchtwan{f '8 leading to a proper nonequilibrium
has been a very intensely studied phenomenon in solid stafeeld theoretic description. Since the treatments by Caroli and
physics since it was first proposed as an interaction betweeto-workers and Feuchtwang are proper many-body formal-
nuclear spins;? and later between localized electronic spinsisms, their application to the present problem simultaneously
in metals® More recently studies of the interaction have fo- provides the basis for the inclusion of further many-body
cused on its effects in various structured systems and in pagffects such as carrier-carrier or carrier-phonon interactions
ticular on the role it plays in the giant magnetoresistancdo the problem.
effects observed in some layered structures of magnetic and With this technique we manage to derive a general non-
nonmagnetic materiafs.’ equilibrium solution for the RKKY interaction for various
Furthermore it has been suggested that the RKKY interdimensionalities and arrangements of spins within a struc-
action is responsible for spin polarization effects observed ifured system. Particularly we show that the interaction of
tunneling system$such as layered structures with a poten-spins across a tunneling junction can be tuned between fer-
tial barrier formed by an insulating oxide layer or a vacuumromagnetic(FM) and antiferromagnetiCAFM) coupling by
gap. For arrangements involving movaltlecuum tunnel-  changing the bias across the junction alone. For the applica-
ing junctions, such as those occurring in scanning tunnelingion to exchange force microscopy, mentioned before, it is
microscopy(STM), it has been suggested that the exchangeshown that varying the bias across the vacuum junction in a
interaction between two magnetic materials on either side 05TM can lead to a force which switches between attractive
the tunneling junction can be used in a modified version ofand repulsive behavior and that this force should be experi-
atomic force microscopy, which may be called exchangementally measurable with a state of the art apparatus. Fur-
force microscopy, in order to resolve an atomic image of aéhermore, we show that the presence of a nonequilibrium
sample structuré® bias across the junction significantly alters the range of the
Particularly in tunneling systems, the measurement oRKKY interaction, such that in particular the interaction en-
electronic properties, such as, for example, the electroniergy between two slabs of spins scales extensively with the
density of states, intrinsically requires the structure to behickness of the slabs.
biased out of equilibrium. The presence of a nonequilibrium The remainder of the paper is structured as follows: In
bias may also occur in structures which exhibit giant magneSec. Il we establish a model of the tunneling system contain-
toresistance phenomena, when parts of the structure contaiing the spin impurities. Section Il contains a derivation of
a potential barrier. To date, however, descriptions of théhe RKKY interaction out of equilibrium in various dimen-
RKKY interaction are confined to systems in equilibrium, sions in terms of general Keldysh nonequilibrium Green’s
including approximate theoretical treatments of the interacfunctions. In Sec. Ill A we consider the interaction of two
tion across a potential wéland a tunneling barrief’ magnetics-d impurities across a one-dimensional tunneling
It is therefore the purpose of the present paper to establisfunction out of equilibrium and in Sec. Ill B we extend these
a theoretical description of the RKKY interaction across aresults to the more realistic situation of two magnetic layers
tunneling barrier out of equilibrium from first principles. For or slabs of spins on either side of a planar three-dimensional
this purpose we employ the Keldysh nonequilibrium pertur-tunneling junction, including the possibility of a nonmag-
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sidered to consist of the same material and the effective elec-
tron masses are assumed to be equal in all three parts of the
junction.

The Hamiltonian of the system, with a single-electron
band in each part of the junction, can be written as

W, (X)

2
H=>, fdx\IfL(x) 2p—m+V(x)

J
_Z . t _
FIG. 1. Schematic representation of the one-dimensional tunnel- 2p-{Fap OP Spf X o(X) S =)W 5(X)
ing system described in the text. Two magnetid impurities are
situated in the left and right lead at equal distartt@svay from the =Hp+Hgyg, ©)

electrode-barrier interfacés andR, respectively, and interact with

each other through the tunneling of electrons across the barrier. TH@h_ereHS-d is the IaS'F’ Spin-dependent, term in the Hamil-
points L and R at the same time serve as the partitioning ©onian and the coupling constadtis assumed to have the

points within the formalism of Caroli and co-workers and Feucht-Units J nf, whered is the dimensionality of the system con- -
wang, indicated by the two dashed vertical lines. sidered. Here a space representation has been chosen, which
proves to be advantageous due to the lack of translational

netic spacer material between the magnetic materials and thavariance caused by the presence of the barrier potential
barrier. Section IV describes how the Keldysh Green’s func(X). p?/2m is the kinetic energy of electrons with uniform
tions used in Sec. Il are obtained in a system containing &ffective massn, and we uséi=1 throughout.oz is the
potential barrier. In Sec. V we implement our results numeri-vector of Pauli matrices, used to represent the spin of the
cally and calculate equilibrium and nonequilibrium versionsconduction electrons which couple to the two local moments
of the RKKY interaction for various tunneling geometries. Sp- The indicese and B label the two spin components:
Section VI discusses the experimental observability of thex,8e{T,|}.
behavior of the interaction predicted by the numerical study.
In Sec. VII, in conclusion, the implications and possible fur-  |1l. EXPRESSION FOR THE RKKY INTERACTION
ther applications of this work are summarized. . ) _
A. Interaction in one dimension
The RKKY interaction energy between the two impurities
is calculated from the lowest-order exchange contributions to
The one-dimensional tunneling system we consider conthe perturbation of the energy of the localized spins in the
sists of a tunneling barrier which is connected to two leadgpresence of the conduction electrons. Either in or out of equi-
on the left and right at the points andR, respectively, as librium this energy is given by the expectation value
shown in Fig. 1. In equilibrium the barrier is assumed to be&(Hg. g)(1ex), Where the subscrilex) indicates that only the
flat on top with an abrupt potential change\§f at the in-  first-order exchange contributions to the average are consid-
terfaces. The corresponding single-particle potential can bered. Effectively, therefore, one has to calculate the first-
written as order perturbation to the conduction electron spin density
due to the first spin at the location of the second spin and
V(X)=VO(x—L)O(R—X). (1)  vice versa:'® The total interaction energy is a sum of these
two contributions,
Upon biasing the junction, the pote;gal of the barrier ac- 3
quires a slope and the chemical potentidlin the right lead _ Y
undergoes a shiféeV with respect to the chemical potential Erk= 2p§1,2 Spr AP(1en(Xp), @
u" in the left lead. Simultaneously, the conduction band bot-
tom VR in the right lead shifts byeV with respect to the Where
conduction band bottorW" in the left lead, such that the
electronic potential is changed to

Il. MODEL

Apiiex(Xp) = EB 05N ap(Xp)) (1e%
X—L
R—-L

V(X)=|Vo—eV O(x—L)O(R—x)—eVO(Xx—R).

o =;ﬁ (LX) (X)) 1en  (PE{1,2)

Here the bottom of the conduction band on the left side is ®

taken as the origin of energg,is the modulus of the elemen- is the first-order exchange contribution to the spin density at

tary charge of an electron, antthe voltage drop across the site p.

barrier. In the present case we now have to calculate (Bgby
Two magnetics-d impurities are situated within the elec- means of Eq(5) out of equilibrium. In order to do so we

trodes, on either side of the barrier, at an equal distahce make use of the Keldysh formalism. In the Keldysh notation

from the interfaces. For simplicity, both electrodes are conthe spin-dependent particle density correlation function



54 RUDERMAN-KITTEL-KASUYA-YOSIDA INTERACTION . .. 12 955

<naﬁ(x)>=<\lfz(x)\lfﬁ(x)> can be written in terms of the whereT andT are the time-ordering and anti-time-ordering
Keldysh Green'’s functio@jﬁ(x,t;x’,O) which is defined as operators, respectivelz~ is the complementary correlation
function toG*<:
G X 0 =i (WE(X 0¥ ,(x,1)), (6)

, G (%, X" 1t)=—i(¥ (x,t)¥(x",0)). 14

where the operatord (x,t) and ¥ ,(x,t) are the field op- ap ) (Vo OV (X700 (149

erators of the system considered, which create and destroyygy¢ corresponding matrix perturbation expansion to first or-

particle with spina at pointx and timet, respectively. Given  4ar iy the coupling) yields

that the Hamiltonian of the stationary problem we consider

here is effectively time independent we will conveniently ey e

work with its Fourier transform in the frequency domain. C1)ap(Xp Xp t=1')=G(0)ap(Xp Xp 1=1") 8 g

From this we find

J
[ de ) :lesq- o'ﬁaf dt,G(0)aalXp Xqi 1~ 1)
(Nap(X)y=—i lim Ee'“’tGaﬁ(x,x’;w). (7) a=s
xt’:ox X G(0)pp(Xq:Xpit1—t'). (15
Using the definition ofG™, it can be shown in equilibrium From Eq.(15) the first-order exchange terms of the func-

that this expression is equivalent to the usual relation begon G< can be resolved as
tween the particle density and the retarded Green’s function

r
G Gflex)wﬂ(xp,xp;t—t’)

1 ® J
(Nap(x))=——lim f Ne(@)IM[G5(x,X";w)]dw,  (8) :_ESJ"TBaf dts[ G{o)(Xp Xq it —t1) Gfo)(Xp  Xq ita—t")
x' —x” %

r b < 4!
where ng(w)={exd B(o—u)]+1} ! is the usual Fermi G0 (Xp Xa it~ 1) G (Xp  Xg it~ ],

distribution function in equilibrium,u is the equilibrium (pe{l,2, q#p), (16)
chemical potential, an&' is the retarded Green’s function
of the system, which is defined as where we have now dropped the spin indices in the unper-

turbed Green’s functions since they are spin independent. To
G;B(x,x’;t)z —i@(t)<{\]f£(x',O),\Ifa(x,t)}>, (9) obtain Eq.(16), we have used appropriate relations between
d1he six Green’s function&~, G~, G, G!, G, andG? in

order to replace the dependence of the resulGbmndG!
by one onG" andG? (cf. Ref. 20.
a Y @ — Tyt One relation arising from this transformation that holds
Capx X H=10(=O{W 5,0, W30}, (10) generally for operators in the Keldysh formalism and which

will be used later. is particularly useful to us is

In order to obtain a proper nonequilibrium result for the
RKKY interaction we have to perform first-order nonequilib- (AB)“=A“B?+A'B~, (17)
rium perturbation theory on expressi¢n. The appropriate
formalism, introduced by Keldysh, reformulates the regularwhere AB is to be understood as a matrix product of two
diagrammatic perturbation theory in terms of &22 matrix  general operator8 andB, implying integrations over space
formalism, to properly handle the time development, sinceand time where applicable. By means of a Fourier transfor-
out of equilibrium the usuab-matrix expansion based on the mation of Eq.(16) into the frequency domain, E¢4) can
Gell-Mann-Low theorem breaks dowh?® The Green's therefore be expressed as
function matrix of the unperturbed system without spin im-
purities, but including the full barrier potential within this w
formalism, is written as ERK=3281-SZJ Im[G(<O)(x1,xz){G[O)(xz,xl)

where { , } denotes the anticommutator. The advance
Green’s functionG?,

Gioyep(X,X'it) Sl = Claeplx0 + G (e X} (18
ap XXt = . T : 2:X) 15—
(e Goyap(X.X'5t) _G(tomﬁ(X,X’;t)( ) © 2
11
The above equation is the general expression for the RKKY

Gt and G? denote the usual time-ordered and anti_time_interaction out of equi|ibl’ium in a purely one-dimensional

ordered Green'’s functions with the general definitions (1D) system without translational invariance. It is one of the
central results of the present work and the principal goal of
Gtaﬁ(x,x, ‘t)=—i <T\I'a(x,t)‘1’;(x’ 0), (12) tst;z;?iltljonv;nng treatment is to evaluate it explicitly for various

T ) o~ ., In an equilibrium situation it is easily established that Eq.
Gop(X,X"1t) = —I(TW o(X,0) ¥ 4(x",0)), (13)  (18) goes over to the well-known restilf?
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Erc=— %3231'52 f :nFm) by L R by
M

X IM[Glg) (X1, X2) Gl (X2, X)) 1dw.  (19) M S B §
ot .

At this point we would like to stress one important prop- -
erty that both expressiofi8) and its simplified equilibrium 1=t d =<R-Lx= d =<1

version (19) comprise: It has been known that when
scattering-wave perturbation techniques, which were used in FIG. 2. Cross-sectional drawing of a magnetic multilayer struc-

the past to obtain the RKKY interaction, are applied 0 0N+, obtained as a 3D planar extension of the 1D system shown in
dimensional models, e.g., for the purely 1D model presentegig 1. Two magnetic slablsl are separated by nonmagnetic spacer
here or in the case of interacting layers of spins which iSayerss and a planar tunneling barrié extending between points
discussed in the next subsection, they become very sensitiyeandR. The spins in the magnetic slabs are assumed to have the
to the handling of the poles occurring in the energy denomisame orientation within each slab due to a dominance of ferromag-
nator of the perturbation expansion, leading to a spuriousetic (FM) coupling at short distances.

term of infinite range in the interaction when integrations are
interchanged carelessty?*1t can be checked, however, that

d* gd' k.
the analyticity of the Green’s functions which occur in the ERKzJZSl-Szf %e*'qu'rlz
results of our method in Eq18) [and Eq.(19) in equilib- (2m)
rium] always provides an unambiguous prescription for han- 3
dling these singularities correctly. Xf IM[ G 5)(X1,%2: 0= Ky ; @){G{g) (X2, X1 K s )
Before we establish how the Keldysh Green’s functions o

G(<o) andG[{S are calculated in a nonequilibrium situation we . do
will generalize the results just obtained to higher dimensions. +G(o)(Xz X1 1K @)} 5 —

B. Generalization to two and three dimensions (de{2.3), (22)

For the extension to higher dimensions we assume thawherer ;, denotes the impurity displacement in the direction
the system is translationally invariant in the further one orparallel to the barrier.
two dimensions, corresponding to a perfectly planar barrier. The most immediate application of the present theory is in
Once we have found the solution for the purely 1D Green’sa 3D tunneling system where the interaction between either
function G(loD) we can simplify the solution of the planar two monolayers or two slabs of spins across a barrier is of
extension of the equivalent problem by exploiting the transintérest for the description of giant magnetoresistance
lational invariance of the system in the additional directionsPhenomend-" It will be assumed that all spins within one

parallel to the barrier by means of corresponding FouriemMonolayer or slab have the same orientation due to a pre-
transforms dominant ferromagnetic coupling over short distances. In

equilibrium and without a barrier it was pointed out by
Yafet?* how the interaction between two monolayers can be
2300yt de1 ikt 203D . obtained from the conventional 3D version. In our case the
Gio) (X,X ,k||,w)—f d® e Gy (X x";w), (200 corresponding expression is obtained through integrating
over allr, and subsequently ovey in Eq. (21):

where x is a d-dimensional coordinater =x—x| is the " 2D\2 2D deH
= . . : " Epc=(Jp22)21?Ps, .S,
(d—1)-dimensional relative position vector parallel to the =RK Ps-d (21)2
barrier, andk; denotes the d—1)-dimensional electron
wave vector parallel to the barrier, whede= {2,3}. In the
following we shall drop the superscripts again that were just
introduced to indicate the dimensionality of the system
which the corresponding Green’s functions describe, since it
will be always recognizable from the arguments of these
functions whether they pertain to a purely 1D system or to a
planar version in higher dimensions. where ERy is now the monolayer interaction energy across
The extension to 2/3D leaves the spatial dependence dhe junction, »*° is the surface area of the junction, and
the Hamiltonian unaffected in the direction perpendicular top2Y is the surface density of tred spins in each of the two
the barrier and, as will be shown in Sec. IV, only amounts toplanes parallel to the barrier.
a change in the energy arguments of the corresponding The situation where two finite slabs of spins interact
Green’s functiongsee also Ref. 18 The expression for the across a finite spacer layer which contains the barrier is
RKKY interaction between two arbitrarily placed impurities shown schematically in Fig. 2. The interaction between two
with respect to the barrier id dimensions can then be writ- slabs of spins across a planar tunneling barrier can be ob-
ten as an extension from E(L8), tained by summing the contributions coming from each pair

X f, IM[Gg)(X1,%2; — K| ;0){G(g)(Xz, X1 : K| ; @)

a . . dw
+G(O)(X2!Xlrk\| ;w)}]ﬂn (22)
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of interacting monolayers involved. In the present case [o—H,(X)]9,(X,X" ;@)= 8(X—X"), (26)
where a continuous system is considered this amounts to two o ) _ _
spatial integrations of the monolayer interaction in E2p) ~ Wherex andx’ lie within the appropriate region determined
in the direction perpendicular to the barrier. If, for simplicity, by the choice of;. Additionally, these functions have to
we consider two interacting slabs of the same thickrless Satisfy appropriate boundary conditions at the electrode-

which are symmetrically displaced from the barrier, thesddarrier interfacesk andL. In principle these boundary con-
two integrations assume the form ditions can be an arbitrary mixture of the Dirichlet and Neu-

mann types. However, for simplicity it is best to use one or
. aps [L7° R+(d+1)
Erk= (Ps-a) f dxlf dx;

m the other exclusively, and we choose here the Dirichlet con-
Erk(X1,X2)
L-(@+)  JR+d (psa)’

ditions that the Green’s functions vanish if they are taken
with one of their arguments on the respective interfdRes
(23 L. Relations between these uncoupled Green’s functipns
_ _ . _and the Green’s functiof ) of the full system, satisfying
whereER is the interaction energy of the two slabs and, inggq. (25), can be established, as noted before, by means of
ERk(X1.,X2), is taken from Eq.(22) wherex; indicates a Green’s theorem applied at the interfaces. If in addition the
position within the left electrode and, one within the right  discontinuity conditions for the derivatives of the full
one, respectively, angdg‘_Dd is the 3D density ofs-d spins  Green’s functionGq are used,
within the slabs.
Now that formal expressions for the RKKY interaction 5xG(0)(X,X')|§3:—
are in hand, the next step is the evaluation of the Keldysh _
Green’s functiongfo)(x,x') andGEéa)‘(x,x’) of the nonequi- (where we have left out the energy argument for breyity

librium 1D system and their extensions to higher dimensionstogether with appropriately chosen versions of further conti-
nuity conditions

+

2m= 3, G (x, X)X (27)

X'=x"

y — !t
IV. EVALUATION OFFULIZ?_IEENLSEVANT GREEN'S G(O)(x,x’)|§:§,7=0, (28)
It has been established by Caroli and co-workerS and aXaX,G(O)(x,x’)sz:f:O, (29)

Feuchtwan{f~8that a tunneling system out of equilibrium
can be treated by partitioning the system into several unwhich this function has to satisfy, one can fiGgy)(x,x"). In
coupled parts which are considered to be in equilibrium athe simple cases whesex’  {L,R}, the full Green’s func-
t=—o0. These parts are subsequently coupled to each oth&ien can be written a$

through appropriate transfer terms, in conjunction with an

adiabatic switching procedure, to finally yield a nonequilib- Go(L,L) G(L,R)

rium steady state. Formally, this corresponds to a perturb ‘Go)(R.L) Gp(RR)

tion expansion of these transfer terms to all ordérSput it

can also be shown to be equivalent to applying Green’s theo- yu(L,L)+ys(L,L) —e(L,R) -
rem at the partitioning poinfé'.17 The number of partitions: - — ya(R,L) ya(R,R)+ 75(R,R)

to be made in the system is in principle arbitrary and will

largely depend on the geometry considered. In the present  2m/[ Yr(R,R)+yg(R,R) ys(L,R)

case with a possibly sloping tunneling barrier of finite width, D ye(R,L) v (L,L)+ye(L,L))’

a partitioning into three regions at the electrode-barrier inter-

facesL and R—shown by the vertical dashed lines in Fig. (30)

1—is most convenient. In the present treatment we will fol-\yhere

low closely the approach of Ref. 17 for continuous systems.

The HamiltonianH, in Eq. (3) is consequently written as a D=[vr(R,R) + yg(R,R) ][ yL(L,L)+ vg(L,L)]

sum of three independent parts,
—vs(L,R)ye(R,L) (39

Ho(X)=O(L=X)HL(X)+ O (x—L)O (R—X)Hg() and
+ O (x—R)HRg(X). (29 1
yn(a,b)=—ﬁﬁxax,gn(x,x’;wﬂxz . (32
A. Green’s functions in one dimension X' =b

In one dimension the Green’s functi@,, of the system  The above Green’s function is readily cast into a retarded or
including the barrier has to satisfy the inhomogeneousdvanced version by analytically continuing

Schralinger equation w—lims_ gro*id.
The calculation oG(<0), however, is significantly compli-
[0—Ho(X)]G0)(X,X"; @) = S(x—X"). (25 cated through the matrix properi}l7) inherent to all its

defining equations in terms of continuity conditions. The ap-
Similarly one can define Green’s functions for the severapropriate choice for these continuity conditions are similar to
uncoupled subparts of the systepe {L,B,R} as the ones forG[{f)‘ with the only important difference that all
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first derivatives are continuous also nowxatx’. For a gen-  rium, they have well-defined electron occupatian¥ w),
eral situation with two partitions we find that and therefore we find thg; can be expressed as

Gio(LL) G(LR) g5 (x.X';0) =N @)[gA(X.X";0) ~ g(x.X";0)], (34
Go(RL) G&G)(RR)

which immediately transfers to thg, as

~2m [ R(RR)+7%(RR) 78(L.R)
~ |D]? L(RL (L,L)+yh(L,L
! ve(RL) LD RLD]ox o) =nl R 0 - Yo (35)
yo(LL)+75(L,L) ~ s (L,R)
X —7s(RL) Yr(RR)+75(R,R) If the impurities lie deeper within the electrodes on the

left- and right-hand sides of the barrier, the relevant Green’s
rla

functionsG{a(X1,X,) and G g (X1,X,) can be expressed in
&(R,R)+ v&(R,R a(L,R (0L 72 (0)\ 1172 -
7Rl a) 78l ) a 7a( a) , terms of the full Green’s functions between the interfaces,
¥s(R,L) y(L,L)+yg(L,L) Egs. (30) and (33), and the Green’s functions of the un-

coupled leads,
(33

where it should be noted that despite the presence of the G[éﬁ(xl,xz)z—(2m)*2&x/g[’a(xl,x’)|X,:L7
terms withyg in the matrix in the middle, the full Green’s
function G(<0) does not depend on these terms. In a true tun-
neling situation, where one only considers energies lower
than the height of the barrier, this is immediately seen to be
true since for those energies no states exist in the barrier  G(o)(X1.X2) = —(2M) {3y g7 (X1, X" )|y -
region. Another case, however, is the one where there are
states inside the barrier region in the energy range consid-
ered, such as impurity levels or quasibound states in a
double-barrier tunneling structure, or when a scattering prob-
lem across a nonperiodic potential is considered rather than a
tunneling situation. For these cases one can $hahat

XG{H(L,R) G GRA(X Xo) s g+, (36)

X Gfo)(L,R)ax,gﬁ(x’ Xo)| g =R+
+ ax’grL(lex,”x':L‘

X G(<0)(L,R)(9Xrgg(x, !X2)|X’:R+

terms in G(<0) which containyg occur in conjunction with
terms coming from{D|~2 and other terms from the matrix
product in Eq. (33) such that they fulfill an identity
AS(A)A=0, whereA is the denominator ofyg, which is

+ ﬁx’grL(leX,)|x’:L*
X G{g)(L,R)dy Or (X' X2) [y =R+ 1}
(xssL, x=R). (37

independent of the spatial arguments @f. Put another
way, the contributions of the poles ipg which constitute
vg are suppressed i@(<0), since wherever they occur they The corresponding expressions for the Green’s functions
are given zero weight. with reversed arguments are obtained in an analogous way.
One can understand this cancellation from a physical pic- The RKKY interaction(18) can now be expressed entirely
ture of how the nonequilibrium system is established. Whilein terms of the unperturbed Green’s functions of the separate
the left and right leads are modeled as semi-infinite grangubsystems in equilibrium using Eq&0) and (33)—(37).
canonical ensembles witfpossibly different chemical po-  For the simple case where the impurities are situated imme-
tentials on either side dt= — o, the barrier region is finite diately on the left and right barrier-electrode interfaces Eq.
and not coupled to any exterior reservoir. Once a steady statd8) can, for example, be expressed in terms of the quantities
is established, any quantity of the fully coupled system will ¥, &S
depend only on the initial occupations of the semi-infinite
leads. In particular, there can be no dependenc@(@j on
gg, sinpe_ Fhe infinite,_fully coupl_ed_ syster_n cann_ot remem- Epk= —2(2m)2J281'SZJ d—w|D|*2Re[D*1]yB(L,R)
er the initial occupation of the finite barrleréeglon. In the 2@
same way it turns out that in terms containipg® only the ; <
real partyg contributes toG, as contributions coming X ye(R,L)IM{[ yr(R,R) + ya(R,R) ]y (L,L)
from the imaginary parts cancel for the reasons outlined + s (R,R)[ yg(L,L)+¥3(L,L)]}. (39
above. Therefore we can sgf =0 and leave away the su-
perscripts inyg’a for further calculations.
For the evaluation of Eq:33), however, we still need to Within the single effective mass approximation for a bar-
know the appropriate expressions fpf; , ne{R,L}. Since rier system as shown in Fig. 1 the functions of the decoupled
the left and right decoupled regions are separately in equilibleads are found to be
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0L (XX) = +(=) - 39

_ Corl ,
2m [ sinfa[x—L(R)J}e™ =Rl LR x> (<),
dLr)

_ .orl
sin{q’L’(aR)[x’ - L(R)]}e“i”qruam["*“R)], X' > (<)X,

whereq['G = V2m(w—VE®=i4), the upper and lower signs are associated with the superscriptda, respectively, and

VL(R) is the bottom of the conduction band in the corresponding side of the junction as before. Likewise the corresponding
Green'’s functions for the sloping barrier region are obtained as

(x.x") 2mar ! [[h(L)f(X)—h(X)f(L)][f(R)h(X’)—f(X’)h(R)], X<X', (40)
X, X )= ’ ’ ’
9 f(R)h(L) = f(L)h(R) [ [h(R)f(x) —h()F(R)J[f(L)h(x") = f(x")h(L)], x>,
|
where solution of the planar extension of the equivalent problem, as
. 5 demonstrated by E¢20), by means of Fourier transforms in
f(x)=Ai(kx+l77), the directions parallel to the barrier,
h(x)=Bi(kx+ ¢/ 5?) (41 ) )
_ . K . i [(w—kfl2m)—H () ]1g,(x.X";k|;@) = 8(x—x').  (46)
are two independent solutions of the inhomogeneous Schro
dinger equation Here again retarded and advanced versions of
2/3D, [N H .
2 3 _ g5, (x,x";kj;w) can be found simply through continuing
[ *X]T) =4, (42) arZaIyticaIIy:
with the parametersk=—32meVR-L and {=2m{V,
—eVi2— o). 952X, X" ;K@) =g, (XX ;K| ;0 %0 8). (47
In equilibrium, where there is no slope to the barrier, one
can show thagB(X,Xl) Slmpllfles to Corresponding|y we find
sinf k(x—L)]sinffk(x'—R
OCDIIEORL e, gy ko) =n) 0300 ko)

ksinfk(R—L)] '

sinl k(x’ —L)Isinf k(x—R)] . —g,(xx"kj;0)], ne{lL,R}. (48
. X' >x
k k(R—L ' '
sintk( )] (43) It is important to realize at this point that for the retarded and
advanced Green's functiorg§,7’a the extension to higher di-
wherek= y2m[V,— w]. Note that Eqs(40) and (43) hold  mensions only leads to a shift in the energy argument

for all w, i.e., including the case wheth—w <0, for which , _, ,—kf/2m, as can be seen from the form of their defin-
the sinh functions in Eq43) go over to the corresponding jg equation(46), i.e.,

sin functions.

When the results of the present and the previous section
are combined in equilibrium and for the limit of the barrier
height or the barrier width going to zero we can obtain ana-_ . ) ,
lytic results for all versions of the interaction considered so! IS Property is seen to also translate in part to the functions
far. The purely 1D result from Eq18) for this case reduces 9, With the only important difference that the energy argu-

to the well-known expression for the RKKY interaction in ments of the occupation functions remain unchanged.
one dimensiod*% By using the propertie$48) and (49) one can establish

that the Green’s functions of the full systeﬁ?cﬂf)‘ and G(<O)
can be represented in the following way:

gg(X,X")=2m

952(x,x" 1K @) =g 3(x,x"; 0 — ki/2m). (49)

2
Er 958, S0 (@)

/ Iy - _rl ’. 2
where Sify) is the integral-sine function, Glo)(x.X" ;K ;@)= G{g)(x,x; 0= k/2m), (50

Si(X):JX sin(x) dy, (45) Go)(X.X" ;K| ;@) =nE(w)T L (X,X';0—kf/2m)

0 X

_ _ +NnR(w)TRr(X,X";0—k{/2m), (51)
and y=2kgx (with x=|x,—X;|) gives the phase of the char-

acteristic oscillation of the interaction at twice the Fermi

where the functionsl’,, 7e{L,R} associated with the
wave vectorkg .

Fermi functionsn? can be written in terms of sums and
products of spatial derivatives of thgrn’a, ne{R,B,L}
when Eqs(30)—(37) are used to divid@fo)(x,x’) into con-

Once we have found the solutions for the purely 1Dtributions containing left or right occupation functions only.
Green'’s functiong),,, which satisfy Eq(26), we can find the  For example one finds

B. Green’s functions in higher dimensions
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2m Ha)
' r(LR)=~ WzYB(L,R){VR(L)[R(L):R(L)]

+yg[R(L),RILTH Y R [L(R),L(R)]
— 7 ®I[L(R).L(RT-

The propertieg50) and (51) prove to be useful for the
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evaluation of the frequency and wave vector integrations in
the expression for the monolayer interacti@®), which is
also needed for the calculation of the slab interaction in Eg.
(23). If the interaction is considered at zero temperature and
the additional property is used that the density of states fac-
tor coming from the 2[]<” integration in Eq.(22) is just a
constant, one can reduce the three integrations i(Z&.to

a sum of two single integrations as

d2k|| * dw ~ ( kf _ kﬁ)
(ZT)ZI_WE O(pu—w)l', Chal e +0(u—w—eV)Ig 0= 5
2m (w ~ n—eV -
Wfo dz(,u—z)FL(z)+f_eV dz(u—z—eV)I'x(2), (53

where the® functions derive from the sharp Fermi distribu-
tionsnf(w) at T=0 and

T,(2)=Im{T (X1 ,X2;2)[ G'(X,%1:2) + G(Xz,X1:2) ]}
(54)

The lower limits at 0 and-eV in Eq. (53) follow from the

Another special case worth noting in this context is the in-
teraction between two magnetic half-spaces separated by a
nonmagnetic spacer. By lettilg-~ we find that Eq.(56)
simplifies to

m(Jpgy)®»*°
16(27)?

S© __
ERK

sl-sz{[xﬁw] Si(xs) - g}

fact that there are no states below the bottoms of the conduc-

tion bands in the left and right leads, respectively. As a result
of this simplification the interaction energy between mono-
layers of spins in 3D is not much harder to evaluate than the

interaction energy in the purely 1D case.

For a 3D planar junction in equilibrium without a barrier
we find from Eq.(22) that the interaction density for mono-
layers is

n _ 2Mke

RK—mu@%F#D&SZ[Si(x)—g

|

which is evidently similar to the purely 1D result. The mono-
layer interaction is therefore often called
quasi-one-dimensionaf. The slab interaction from Eq23)

in this case assumes the fdfin

—sin(x)

CcO
WX S(X)2

X

(59

2m(Jp§_Dd)2V2D
Wsl’sz{}—(s"_ 21)

S

RK™

—2F(s+1)+FAs)}, (56)

where p32=pI%,20 is the 3D density of-d spins within
the slabss=2d+ R~ L is the spacing between the slabs

the width of each slalfsee Fig. 2, and F(x) is the range
function,

+xcog x) +sin(x) +2Si(x),

] T
]:(X):XZ[SKX)_ >

X:2k|:X. (57)

+XSCOSX5)+Sin(Xs)]v (59)

where ys= 2Kkgs.

In order to obtain solutions for Eq$18), (22), and (23
also for more general cases we have to perform the corre-
sponding energy integrals numerically.

V. NUMERICAL RESULTS
A. Comparative results in equilibrium

Numerical results for the RKKY interaction across a tun-
neling junction in equilibrium have been given by Mukaga
al.1° These authors were particularly interested in providing
a theoretical model for possible applications in exchange
force microscopy, as mentioned in the Introduction, which is
based on the RKKY interaction as the dominant force be-
tween a tunneling tip and a sample. For this purpose Mukasa
et al. performed an approximate version of scattering wave
perturbation theory for free electrons in a 1D system by in-
cluding the transmission coefficient of an electron tunneling
through the barrier at an intermediate stage in their calcula-
tion. In contrast, our analytic expression for the RKKY in-
teraction is exactto orderJ?) since the constituent Green’s
functions include scattering by the barrier exactly.

In order to compare our results in equilibrium with the
ones in Ref. 10, we have implemented our calculation with
the same model parameters using a Fermi energy of
w=put=uR=5.0 eV in equilibrium and a lattice constant
a,=2.50 A, along with a Fermi wave vector
ke=1.26x10"° m~1, implying a relative effective electron
mass ofm/m,=1.20, wherem, is the bare electron mass.
Figure 3a) shows plots representing the dimensionless inter-
action range functio (x) with



54 RUDERMAN-KITTEL-KASUYA-YOSIDA INTERACTION . .. 12 961

......... (NS e B A U B L

2m
eV/u=0.0, vo/,u_ 0.00 — P(x)=- 77[ szSr Sz] Erk(X), (59

where Egrk(X) was obtained from Eq18) as evaluated in
Eqg. (38). In Fig. Ya), the impurities are considered to be
fixed at the electrode-barrier interfaces, while the width of
the barrier is continuously increased from 0.0 to 5.0 A, to
represent, for example, the height of an STM tip above a
sample. Without the barrieM,/u=0.0), the range function
reduces tab (x) = 7| w/2— Si(x) ], where x = 2kgx.

We have also plotted in Fig.(8 the interaction for this
case and for a barrier height @f,/ «= 0.5, where the system
is in a scattering state. We find that as the barrier height is
increased from zero, the interaction varies with a longer
wavelength, corresponding to a decreasing relative wave
vector between the top of the barrier and the Fermi level
Ke=v2m(u—Vo).

For Vo/u>1, the strength of the interaction decays ex-
ponentially with the width of the barrier, with an exponent
that increases witNq/u«, and the crossover into the antifer-
romagnetic(AFM) regime is lost once/y/w=1.3. In the
interval of Vo/u e[1.0,1.3, the interaction still experiences
one slight crossover to the AFM regime. This can be under-
stood to arise from the nature of the transmission and reflec-
tion coefficients of the barrier, which are not purely expo-
nential, but a mixture of hyperbolic functions.

However, our results explicitido notshow the large os-
cillation of the interaction far in the ferromagnetieM) re-
gime as was obtained in Ref. 10, markedly for their curve
Vo/u=1.05. Such a behavior is unphysical in a genuine tun-
neling situation, and reflects the approximate treatment of the
transmission of scattered waves through the barrier in Ref.
10. Our Green’s function approach in comparison includes
the single-particle barrier potential fully from the beginning
and therefore allows an exact evaluation of the RKKY inter-
action.

Other interesting cases to investigate are the interaction of
two monolayers or of two semi-infinite slabs of magnetic
impurities in the presence of a tunneling barrier. Such sys-
tems could, for example, be realized by coating both sides of
a fixed or mobile tunneling junction with a magnetic mate-
rial. For these cases one can make use of(E2).for mono-
layers and of Eqs(22) and (23) for slabs, both in conjunc-
tion with Eq.(53). We shall consider Eq22) in equilibrium
and seeV=0 in Eq.(53). In Fig. 3b) and Fig. 3c) we show
results for the interaction range functions

2m .
D y(x)=— [2( lé) (Ip3R)2v?Ps; - Sz} Rc, (60
D=(xX) = ( 2mJpsa) " }_1ES°° (61
FIG. 3. Range functionga) ®(x) for interacting magnetic im- s (0= 2 16(2m)* =S RIC )

purities in 1D from Eq.(59), (b) ®(x) for interacting magnetic

for monolayers and for slabs, respectively, which were ob-
monolayers in 3D from Eq(60), and (c) ®Z(x) for semi-infinite Y P y

interacting magnetic slabs in 3D from E@1) plotted against the tained for a planar version of thg arrangement used for Fig.
. T P . 3(a). From Eq.(55), for zero barrier heightp ,, reduces to
distancex=R—L between the spins in equilibrium, where the splns o y / d CD
are considered to be fixed on either interface of the barriem=7{7/2— Sz'(X) [xcos)—sin()/x*} an to
(d=0). The barrier width is increased from 0.0 to 5.0 A and theq) = —ml2{[ x*+2][Si(x) — m/2] + xcosf) +sin(x)}. The
height of the barrier is increased throughout the plots as indicatedzUrves in Fig. 80) show that characteristically the monolayer
For Vo/u=0.0 (a), (b), and (c) show the range function®(x), interactiond,, decays much faster than the purely 1D inter-
®,(x), anddZ(x), respectively, for a free electron system. action ®, shown in Fig. 8a), when compared with equal
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parameter values. Especially f&fy/u=1.0, &, shows a Since, as mentioned before, an interesting application of
much stronger decay thah. This can be understood as a the present system would be in exchange force microscopy
result of thek; integration in Eq.(22) which effectively av- — where the force caused by the exchange interaction on a

erages the interaction of one spin on one side of the junctiotunneling tip in an STM is measured — we have plotted in
with all other spins on the opposite side. This average whiclirig. 4(c) and Fig. 4d) the spatial derivative- d®(x)/dx of
extends over many oscillatory contributions leads to destructhe range functiod (x) from Fig. 4a) and Fig. 4b), respec-
tive interference effects which results in the observed damptively. Both Fig. 4c) and Fig. 4d) show explicitly that the
ing of &, relative tod. onset of oscillations in the interaction for an appropriate bias
When the RKKY interaction of infinite half-spaces repre- will lead to a force which is alternating in sign. An estimate
sented byd is compared tob,, and® it is seen that the of the absolute strength of the exchange force and predic-
double spatial integration from E(R3) increases the relative tions that it should be measurable with a state of the art STM
oscillation strength ofP2 when compared tab,,,, and at are postponed to a discussion in Sec. VI.

Vo/u=1.05 the relative crossovep, into the AFM regime We next consider the effect of a finite bias on a system of
becomes even stronger than the onedor two magnetic monolayers interacting across a 3D planar bar-

rier. In Fig. 4e) and Fig. 4f) we plot the range function
®,,, using Egs(22), (53), and(60), for a planar version of

the arrangement used in Figat and Fig. 4b). As in Fig.

1. Impurities on the electrode-barrier interfaces 4(a) and Fig. 4b) the interaction starts to exhibit an oscilla-
tory behavior once the slope of the barrier gets steep enough.
In both Fig. 4e) and Fig. 4f) it is evident that the oscilla-

Fig. 3 for the interaction in equilibrium are modified when a _. . ! .
finite bias is applied to the junction. Figuregaftand 4b) tions can reach into th_e AFM region, a!though, as in Fig) 4
show the 1D interaction between two magnetic impuritie:sand Fig. 4b), the oscillations are again not centered about

placed on opposite electrode-barrier interfaces for variougqeg)mzo line, but ffe .sh|ft§d 'mﬁ the FM re%]_gnr). it
strengths of the bias in conjunction with initial equilibrium NEe More remark 1S in order when nonequiiiorium resufts

ratios Vo / u=1.05 in Fig. 42) andVo/u=1.5 in Fig. 4b), for monolayers are compared to results in equilibrium. In

and with otherwise the same model parameters as in Figauiliorium the total interaction energygy in Eq. (22) is
3(a). propornqnal tou, and we _have no_rmahzed the range fu_nc-
As the bias is increased in Fig(a} the interaction starts 10N ®m in Fig. 4(e) and Fig. 4f) with respect to the equi-
to exhibit oscillations when the right edge of the barrier po-!'b”um Fermi energyu. However, the total nonequilibrium
tential V(R) = V,— eV s pulled below the chemical potential interaction from Eq.(22) depends in magnitude on a non-
of the left-hand sidex". This oscillation arises because the SeParable mixture gk, eV, u+eV, andu—eV. This would
wave functions of high-energy electrons tunneling from theP® evident if we had plotted the interaction backxte 0
left exit the barrier through its sloping part, and become osWhere the results for various strengthseafwould no longer
cillatory over the distance where they are above the barrie€Onverge in a single point, as they do in equilibrium for
In this regime we find that the wave vector of the oscillationdifferentVo/u. o _
can be roughly approximated by the wave vector of electrons Altogether, our results in Fig.(4) and Fig. 4b) as well as

tunneling from the left Fermi level at the position of the right In Fig. 4€) and Fig. 4f) show that when the impurities are
interface with the barrier, i.e., attached to the electrode-barrier interfaces a switching of the

interaction can be achieved in many situations by changing
QF:\/W- (62) the bias alone, but in general t_his switching_ behavior de-

pends quite strongly on the particular properties of the bar-
giving an oscillatory wavelengthx=2x/q:. The wave- rier. In the following we will show that such a switching is
length of the interaction becomes smaller; i.e., the value ofnuch more reliably achieved by placing the single spins or
ge in Eq. (62) increases, as the bias is increased. In Fig),4 layers of spins within the electrodes a finite distance away
one can see that as the bias is turned up, the antiferromaffom the interfaces with the barrier.
netic region initially vanishes and then almost reappears at a
smaller distance between the impurities.

In Fig. 4(b), for eV/ = 1.50, a similar behavior to the one  We now consider the nonequilibrium behavior of the in-
in Fig. 4(a), for eV/u=1.05, is observed. The main differ- teraction when the impurities are placed inside the electrodes
ence to Fig. &) is that foreV/u=1.50 and in equilibrium a distanced away from the electrode-barrier interfaces. In
the interaction just decays exponentially with no AFM re-Fig. 5a) we show a surface plot of a 1D arrangement with
gion, whereas out of equilibrium such an AFM region isthe relative barrier heigh/y/u=1.5, where the barrier
established as the bias is turned up. The fact that the osciwidth is kept constant at 1.0 £cf. corresponding point in
lations caused by high bias are not centered around thEig. 4(b)]. The impurities are now moved away from their
®=0 line in Fig. 4a) and Fig. 4b) can be understood to initial positions on the electrode-barrier interfaces to a maxi-
arise from the asymmetric shape of the sloping barrier. Fronomum distance ofd=5.0 A from either interface(plotted
these figures it is apparent that in an arrangement where treeross the figuge At the same time the bias is increased
impurities are attached to the electrode-barrier interfacefrom eV/u=0.0 toeV/u=1.5 (plotted into the depth We
such as an STM tip and sample, both coated with magnetihave overlaid a contour plot to make it easier to identify
materials, the interaction becomes tunable between FM anghich regions of the surface lie in the FM or AFM regime.
AFM by varying the bias alone. The solid zero contour line indicates the boundaries of these

B. Nonequilibrium behavior

In the following we establish how the results shown in

2. Impurities within the electrodes
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FIG. 4. (a),(b) range function®(x) from Eq.(59), (c),(d) force function—d®d (x)/dx, and(e),(f) range functiond ,(x) from Eq.(60) for
finite biaseV. The initial relative barrier height in equilibrium is fixed @,(c),(e) Vo/ux=1.05 and(b),(d),(f) Vo /xw=1.50 with otherwise
the same system parameters as in Figu3q the Fermi energy of the leads in equilibriunm four steps a biasV of up toeV/u=2.0 is

applied to the junction.
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regions. In the same way, we show in Figbhthe interac-
tion density between two monolayers and in Figc)She
interaction density between two slabs of finite thickness
which are placed a finite distance inside two 3D electrodes.
The range function in Fig. (6) is again normalized with
respect to the equilibrium Fermi energy. The case of in-
teracting slabs turns out to have quite special features which
will be discussed later in this section.

One can see that in both Fig@ and Fig. 5b) the inter-
action is already oscillatory in equilibrium ab is varied,
even thoughV,/u=1.0, since now the electrons have to
travel over a finite region on either side of the junction where
their wave functions are oscillatory. The presence of the bar-
rier in this case leads to an overall exponential damping
which reduces the strength of the oscillations everywhere. As
the bias is turned up these oscillations evolve into an inter-
ference between up to five contributing components which
can be explained as follows: To the order of perturbation
theory considered, the spins on the left side of the junction
interact with the ones on the right through electrons tunnel-
ing between the locations of the spins. Electrons in the vi-
cinity of the left spins which are able to perform this process
are available up to the Fermi level on the left. The wave
vector k| of the spin polarization of the conduction elec-
trons in the left lead is determined by the cutoffs of the
frequency integration in Eq$18) and (22) at the Fermi en-
ergy and at the band bottom on the left side, so that
k.= v2m(ut— VD). This wave vector is, however, a differ-
ent one, namelyk g=+2m(ut—VF), once the tunneling
electrons have penetrated the barrier and interact with the
spin on the right side. The same process applies to the spins
on the left in reaction to the presence of the ones on the right.
The corresponding wave vectors involved therefore comprise
kij=v2m(u'—V’), (i,j e{L,R}), i.e., four different ones in
principle. In addition to this, one also observes a quite strong
oscillation which contains the wave vect&g,=+2meV.
This oscillation can be understood to arise from the interval
in the frequency integration in the expression for the inter-
action (18) which extends from the band bottom of the right
lead to the band bottom of the left lead, i.e., over
Vt—VR=eV. Since all cases of the interaction studied here
have a one-dimensional or quasi-one-dimensional behavior,
both the densities of states of the electrons in the left lead
and in the right lead exhibit a singular behavior at the respec-
tive band bottoms. The existence of the singular parts of
these densities of states at the integration limits gives rise to
the y2meV oscillation, which in some situations becomes
the principal oscillation in the nonequilibrium system.

FIG. 5. Surface plot of}he range functi¢a) ®, (b) ¢,,, and Assuming thatu® moves by the same amouetV as
() ®{=[1+40eV/u] *®s"* when the impurities are moved \R and withV normalized to zero as shown in Fig. 1, this
Witfhin;he \?Ie/ctrociess(.) In tdhehpriser_lt arrfadnﬁeger:_t thleobzrri%z heiglet of wave vectors reduces to a total of 4, namely,
Is fixed to =1. and the barrier width tR—L=1. . e
distanced ofottﬁe impurities on either side of the barrier is increasedke{\/2mML’.\/2.m(.“L—.i_ev),_’ \/2m(’lRLL_eV)} due to_the

sharp Fermi distributiong™ andn™, and thek.y=y2meV

from d=(0.0-5.0 A (plotted across while at the same time the i . ) .
bias is varied fromeV=(0.0-1.5 eV (plotted into depth The oscillation as discussed before. In both Figa)s5and Fig.

thickness of the slabs ift) was taken to bé=10 A. In (a), (b), and 5(b), a superposm.on of these pnnupal_wave vectors can be
(c) the front faces of the surfaces show the equilibrium range funcfound. Once the biasV moves the Fermi energy on the right
tions, which are oscillatory as the spins are moved through th&elow the band bottom on the lefi*<0, the corresponding
leads. In order to be able to better identify the boundaries betweegOmponents of the oscillations turn into an exponential de-
FM and AFM regions, we have overlayed a contour plot showingcay, leaving only three contributions to the oscillations. This
the zero coupling®=0) contour. transition can be seen as a kink in the contour plots in Fig.
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5(a) and Fig. %b) at a bias ofeV=1.0. At higher biases, for interchanged with the frequency integration in E2p), as it
arrangements where the impurities lie very close to the baris done in Eq.(Al) in the Appendix, the space integrations
rier, i.e., whend/(R—L)<1.0, barrier effects such as those are effectively taken over products of the oscillatory, i.e.,
displayed in the plots of Fig.(#) and Fig. 4f) become more trigonometric, wave-function-like expressior‘vﬁ’_/(f"R from
important. However, for ratiosl/(R—L)>1.0 we expect Eg.(A2) which relate to electrons in the left and right leads
these effects to be minimal when the width of the barrier igcf. Egs. (A4)—(A7)]. This yields an extra factor of
held constant. Both Fig.(8) and Fig. %b) show explicitly (qr,_/(""R))’l in f',_/("’,‘q) from Eq.(A5). A factor ofg[’(aR) occurs at
how the interaction between two single spins in 1D and beteast once in every term in the integrand of the subsequent
tween two layers of spins, respectively, is tunable betweefrequency integration in EqA10), which enhances the peak
ferromagnetic and antiferromagnetic coupling at a fixed im-n the quasi-1D density of states of the monolayer system
purity configuration by varying the bias alone. Furthermore,occurring on the bottom of the band in the corresponding
it is clear in Fig. %a) and especially in Fig. ®) that the lead. The frequency integration itself very much acts as a
interaction falls off significantly less rapidly in the nonequi- Fourier transform into real space, which gives the peaks the
librium regime. This circumstance has particularly strongeffect of frequency components of the real-space oscillations
consequences for the interaction between slabs of spins. of the interaction. These peaks are just an energy interval
In Fig. 5(c) we have plotted the interaction between twoeV apart, which explains the occurrence of the
finite magnetic slabs of spins with a width of the slabs ofk_, = J2meV wave vector as a difference wave vector be-
=10 A using otherwise the same conditions as were takefyeen these components. The strengttkgf is then deter-

for the monolayer case shown in Figbh While it can be  mined by the strength of the peaks, i.e., the amplitude of the
seen in Fig. &) that in equilibrium the interaction for slabs Fourier components.

converges to a finite value in the limit when the thickness of = Since, as is shown in Fig.(§, the interaction between

the slabs goes to infinity;— o, this is no longer the case out magnetic slabs oscillates with almost only tg, contribu-

of equilibrium. Rather the interaction is seen to becomejon present, it should be controllable in a simple fashion by
roughly proportional to the thickness of the slabs for thick-tuning the bias.

nesses$> 7r/kg . This can be attributed to the longer range of
the monolayer interaction as mentioned before, which de-
stroys the quite sensitive convergence of the double integral
in Eq. (23) for | —oo, In this section, the possibilities for the experimental study
When the slab interactiof23) is calculated one is al- of the RKKY interaction in tunneling systems out of equilib-
lowed to exchange the spatial integrations with the frequencyium are discussed. As mentioned in the Introduction, one
and wave vector integrations. This has the advantage that thmssible way to probe the behavior of the interaction that we
spatial integration can be performed analytically first. Sincepredict is to use a STM to measure the exchange force, such
the explicit representation of the integrand is quite involvedas shown in Fig. &) and Fig. 4d).
we have postponed it to the Appendix. From E410) it can In order to estimate the absolute value of the exchange
be seen that the integrand contains several terms which aferce, we must estimat# in the prefactor of the force func-
proportional td. In equilibrium, as shown in EGA8), these tion between two magnetic impurities, adsorbed to the STM
terms cancel one another, but out of equilibrium, when theip and the sample, respectively. One method to estidate
frequency integration for these terms is cut off at differentwhich is also used in Ref. 10, is to use the equation for the
points through different Fermi occupation functions, thisKondo temperaturd,
cancellation ceases to be complete. Therefore, when the bias
is switched on, a residual dependence remains, which in- 1
creases as the bias is increased. The total interaction energy TK:k_BeX - W
for slabs therefore scales extensively with the width of the sd
slabs. It should be noted that this extensive dependence @afhere kg is the Boltzmann constant and
the slab interaction energy out of equilibrium is not causedy:?(u)=(2) *y2m/u is the 1D density 0§-d spin states
by the offset of the band bottoms in our model. If an equi-at the equilibrium Fermi energy. For measuredy’s of
librium system is considered in which materials with differ- aboutT,~100 K one obtains]gi_'f,(u)~0.2. From this the

ent band structures form a junction, the slab interaction confynction F(x) representing the total measured exchange

VI. DISCUSSION

: (63

tinues to converge alwaysf. Eq. (A8)]. force is determined as
For this reason we have compressed the scale of the plot
in Fig. 5c) in the direction of the bias by a factor of 2m dd(x)
[1+40eV/x] %, so that, as shown, the height of the oscil- F= ngerSz ax (64)

lations stays approximately the same. Moreover, one can see
that thekgd oscillations observed in equilibrium vanish com- From the parameters introduced above, we find
pletely at a very small bias and turn into oscillations with

phase @/2)y2meV. That this is the case can be seen from dd(x) 0
the overlayed contour lines, which, particularly in the upper F~S, S5 — > 010" Nm), (65)

right corner, show a dependengd/\2meV when taken as

a function ofeV. Mathematically, the dominance of these which for the range functions plotted in Fig(c} and Fig.
oscillations can be understood to arise from the spatial inte4(d) leads to forces of aboit~ (10”1 N). As noted in the
grations in formula(23). When the spatial integrations are literaturé®?’ the resolution of current atomic force micros-
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copy is about 101-10 1 N, which means that the ex- much more systematic than conventional scattering wave
change force should be experimentally observable. perturbation approaches to the probléch Ref. 10. Diffi-

For the observation of the RKKY interaction in layered culties such as taking proper account of the different occu-
tunneling systems which exhibit giant magnetoresistanc@ation functions in different parts of the system are over-
phenomena the results shown in Fig. 5 should give an appra@ome as well as the problem of how to normalize the wave
priate prediction. Especially for the case of 3D systems thdunctions involved, since the Green’s functions used in the
results for the interaction between interacting slabs of impupresent description are always properly normalized. Our
rities shown in Fig. &) would be most applicable. The most treatment is adaptable to the inclusion of further many-body
surprising result in this situation is that we find that the in-effects in the problem, such as carrier-carrier interactions in
teraction scales extensively with the thickness of the slabs. Ithe electrodes and the interaction with phonon modes.
principle the expression for the interaction we study would One effect of biasing the system out of equilibrium is that
diverge in the limit of semi-infinite slabs, but of course this the oscillatory exchange interaction in various dimensions
would not be observable in real systems, since processes likexhibits strong interference effects, leading to one or more
spin relaxation or the scattering of electrons on nonmagnetichanges of the type of couplibetween FM and AFMat a
impurities would eventually impose a maximum range on thegiven impurity configuration as the bias is varied. This be-
interaction. However, for slabs of reasonable thickness thbavior arises as a result of an interference between several
switching of the bias should produce an observable change iiundamental oscillations due to a mixing of different wave
the decay behavior of the interaction; i.e., in a system withvectors. The possibility of tuning the interaction through
fixed spin positions an anomalous increase of the interactionhanging the bias alone could become an important effect in
strength should be measurable. applications of nonlinear switching devices using layered

Furthermore, the tunability of the RKKY interaction in a magnetic structures with a potential barrier. Another impor-
tunneling system out of equilibrium is particularly interesting tant effect is that out of equilibrium the range of the interac-
in view of the fact that the impurity configuration is normally tion increases, leading to an interaction energy that scales
preset in a solid system, which means it is usually not posextensively with the system size in the direction perpendicu-
sible to directly observe the oscillatory dependence of thdar to the barrier for interacting slabs of spins. A closer study
interaction on the impurity spacing. With the present ar-of this phenomenon for the 3D case presented here, as well
rangements it becomes possible to observe oscillations of thes for the 1D case of interacting lines of spins, where the
RKKY coupling via the variation of wave vectors on either interaction in equilibrium is known to lead to a helical order-
side of the junction as the bias is varied. If one follows foring within each line, is being undertaken.
example the direction of the bias at a given distance of the Our results should be applicable to a very broad variety of
spins in any of the contour plots shown in Fig. 5, one carconceivable structures and the formalism we have presented
almost always observe at least one crossing from FM tdiere is particularly suitable to be adapted to such situations.
AFM coupling or vice versa. Extensions to include varying effective masses and other ma-

Since, out of equilibrium, as indicated before, the interac+terial properties such as band structure and different band
tion depends on several contributing wave vectors, the reldilling in the various subparts of the system are obvious. A
tive dependence on these could for example be investigatguhrticular example for a possible extension would be to study
experimentally by using different materials for the connect-the interaction in double- or multiple-barrier systems out of
ing leads and by placing the spins asymmetrically around thequilibrium. Furthermore, in order to facilitate a direct com-
barrier, e.g., on the electrode-barrier interface on one side gfarison to experimental results a next step could include the
the junction and further within the electrode on the othercalculation of the RKKY-perturbed spin-polarized tunneling
side. As the arrangements in Fighband Fig. %c) describe current across systems of this kind. We also hope our work
routinely achievable physical systems, this suggests that th&ill encourage the experimental study of giant magnetoresis-
phenomena found theoretically for such systems should alseance phenomena out of equilibrium where one can equally
be accessible to experiment. expect interesting interference phenomena to occur as a re-

sult of the different relative distances of the Fermi surfaces to
the bottoms of the conduction bands involved.

VIl. CONCLUSION

_ This paper presents a theoretlcf';\_l treatment of the RKKY ACKNOWLEDGMENTS
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APPENDIX: NONEQUILIBRIUM BEHAVIOR OF THE INTERACTION BETWEEN SLABS

In the expression for the RKKY interaction between 3D slabs of spins froniZ3)}. we exchange the spatial integrations
with the frequency integral, to obtain
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s Qp 3)2v2P dk“ R+(d+1)
BR=  2my J fzwz d+|dx1fa+d dx,

XIM{[ 70(X1) G(0)(L,R) 7r(X2) 1= 7R(X2) G{g)(R, L) 1L (X1) + 7&(X2) Gy (R,L) i (x1) 1} (A1)

In Eg. (A1) we have used Eq934) and (35) to rewrite the expressmn‘;(o)(xl,xz) [G(O)(xz,xl)+G(O)(x2,x1)] in the
integrand. In addition, we have introduced

/ / /
77[&)()(1(2)):5x09[&)(x1(2),Xo)|x0:L(R):axogrL(a:?)(Xo,X1(2))|x0:L(R): (—)2mexp{+(* 'qL RlX12~ LR}, (A2)

whereg[’&)(x x') is taken from Eq(39). Furthermore, the explicit frequency and wave vector dependence of the integrand in

Eq. (A1) was omitted for brevity. The expression f@r(o)(xl,xz)[G(o)(xz x1)+G(O)(x2 X1)] in the integrand can now be
further grouped as follows:

Gio) (X1, %) [ Gloy (Xa,X1) + Gl (X, %) 1= (2m) ~4{G 5 (L,R)G o) (R,L)[ 7L (x1) I m(X2) (%)
+G{o)(LR)G) (R,L) 7. (%) 72(x0)[ 7(X2) 12+ Gl (L,R)Gg (R,L)
X[ 71 (1) 12 (o) 75 (o) + Gl (L RGP, (R,L) 7 (x0) m (o) m(X2) 12
+Gloy (L R)GE (R,L) 7. (x4) 72(x1) 73(X2) 7 (%)

+G{o)(L,R)G{g)(R,L) 77 (X1) 71 (X1) 7R(X2) 7R(X2)} - (A3)

When now the functionsp™ are replaced by their definitions in terms of retarded and advanced functmjﬁ

—nF )[77L(R) 77|_(R)] one can see that all occurrirdx,; and dx, integrations can be accounted for by introducing the
following terms:

0 L-d R+d+| ) .

fLw= de|< fmd )dxl(Z)ﬂL(R)(Xl(z)) 7 (R(X1(2))

(2m)?i )

= m{eXF['(QL(R) qL(R))(d+|)] exdi(q, —qL(R))d]}
(Zm)zl, (l)_VL(R)ZO,

2
- —N%{exp[—zm(dﬂ)], w—V-R<Q
m —w

—exgd —2V2m(VtR - w)d], w-V-R<0, (A4)

rla L-d Rid+l rla 2 —(Zm)zi iafla ifla
ELR= dxyo)[ 7 (r)(X1(2))1°= F 5 ra—{exH £ 2iq (k) (d+1)] —exd = 2iq|(k,d]}. (AS)
L—d-I R+d ZQL(R)

While §E(R) from Eq. (A4) produces a term proportional tdfor energies above the band bottom in the respective lead, it is
seen from Eqs(A4) and (A5) that

fL(R) er/aR)’ w—V-R<o. (A6)
From here we find

L—d R+(d+1)
fL_(dH)dxlfmd dsz(<o)(xl,xz)[GEO)(xz,x1)+Gf‘o)(xz,xl)]
=(2m) 4G 5)(L,R) G (R,L) & &3+ G5 (LRI (R,L)ERE +Glo)(L,R)G{o (R, L)NF(w) & [ £3— £
+G%)(L,R)G, (RLINE(w) E3 £ — €01+ G (L,RIGY (R,.L)INE () & £ — £7]
+G)(L,R)G{o)(RLINE(w) EX[ £)— £] 1} (A7)

Since the problem we consider has time-reversal symm@l{l‘dz(L R) = G”a(R L) always holds. When EqA7) is consid-

ered in equilibrium, we know that aIsIB(O)(L R)= np(w)[G(O)(L R)— G(O)(L R)] holds. In such a situation it is seen that
Eq. (A7) simplifies to
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L-d

j d
L—(d+1)

R+(d+1)

x|
R+d

where it was assumed th&t andég may also be different in

equilibrium, e.g., if the materials on the left and right of the

junction have different work functions. Clearly in EGA8)

all factors proportional tb have vanished as expected. When

| is taken tol — o the functionst{' &, oscillate withl, as seen

from Eq. (A5), and eventually reduce to

(2m)?i .
=*—m—exd £2iq
ZqL(R)

lim &', U&dl, (A9)

| oo

due to the retarded or advanced property ofqﬁg) which

N. F. SCHWABE, R. J. ELLIOTT, AND NED S. WINGREEN

dXZG(<o)(X1 aXZ)[GEo)(XZ Xp)+ G?o)(xz X1)]= nF(w){[G?o)(L:R)]szfg_ [G[o)(L-R)]zergk}.

5_4
(A8)
T
where we have introduced
E(2)=G{y)(2)£(2)Ex(2) + Gl (D) Ex(2) E)(2),
(A11)
with  the abbreviation G (L,R;2)=G)(z) and

I' (r)(L,R;2) =T (g)(2). Note that in Eq(A10) terms con-

causes an exponential decay in the relevant functions at largeining gEggG[o)(z)G?O)(z) have vanished, since they are

distances.
Out of equilibrium, however, the cancellation of the

entirely real. From the definition of tiﬁ(R) in Eq. (A4) itis
seen that the terr& (z) from Eg. (All) is proportional tol

proportionality ceases to be complete and the expression f@gr z=0. When—eV<z<0, Z(z) always has oné propor-

the slab interactior§23) can be rewritten by means of Egs.
(52) and (53) for zero temperature as
(39252

8m2(2m)°

~Gl(DIE(D)+[G (D P& (D ER(D)}

un—eVv
+J7ev dz(u—z—eV)Im{[T'r(2) +G{,(2)]E(2)

s
RK™

N
slsz{ fo dz(u—2)Im{[T ()

—[G{o/(2T%¢L(2) SE(Z)}} ) (A10)

tional and one exponentially decaying component, where the
latter describes the penetration of low-lying electron states in
the right lead to the position of the spins in the left one. The
| proportional component, however, vanishes for energies
below zero, since in this case the term
[Tr(2) +G0)(2)1G(0)(2 €L(2) £%(2) turns out to be entirely
real. The remaining dependence ofZ(z) subsequently
translates to the slab interaction from E410) for energies
z=0, where it is seen to produce terms proportiondl, fice.,
which scale extensively with the thickness of the slabs, as
well as the equilibrium terms from E@A8) before, which
show nol proportionality.
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