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The Ruderman-Kittel-Kasuya-Yosida~RKKY ! interaction between two magnetics-d spin impurities across
a tunneling junction is studied when the system is driven out of equilibrium through biasing the junction. The
nonequilibrium situation is handled with the Keldysh time-loop perturbation formalism in conjunction with
appropriate coupling methods for tunneling systems due to Caroli and Feuchtwang. We find that the presence
of a nonequilibrium bias across the junction leads to an interference of several fundamental oscillations, such
that in this tunneling geometry, it is possible to tune the interaction between ferromagnetic and antiferromag-
netic coupling at a fixed impurity configuration, simply by changing the bias across the junction. Furthermore,
it is shown that the range of the RKKY interaction is altered out of equilibrium, such that in particular the
interaction energy between two slabs of spins scales extensively with the thickness of the slabs in the presence
of an applied bias.@S0163-1829~96!00242-1#

I. INTRODUCTION

The Ruderman-Kittel-Kasuya-Yosida~RKKY ! interaction
has been a very intensely studied phenomenon in solid state
physics since it was first proposed as an interaction between
nuclear spins,1,2 and later between localized electronic spins
in metals.3 More recently studies of the interaction have fo-
cused on its effects in various structured systems and in par-
ticular on the role it plays in the giant magnetoresistance
effects observed in some layered structures of magnetic and
nonmagnetic materials.4–7

Furthermore it has been suggested that the RKKY inter-
action is responsible for spin polarization effects observed in
tunneling systems,8 such as layered structures with a poten-
tial barrier formed by an insulating oxide layer or a vacuum
gap. For arrangements involving movable~vacuum! tunnel-
ing junctions, such as those occurring in scanning tunneling
microscopy~STM!, it has been suggested that the exchange
interaction between two magnetic materials on either side of
the tunneling junction can be used in a modified version of
atomic force microscopy, which may be called exchange
force microscopy, in order to resolve an atomic image of a
sample structure.9,10

Particularly in tunneling systems, the measurement of
electronic properties, such as, for example, the electronic
density of states, intrinsically requires the structure to be
biased out of equilibrium. The presence of a nonequilibrium
bias may also occur in structures which exhibit giant magne-
toresistance phenomena, when parts of the structure contain
a potential barrier. To date, however, descriptions of the
RKKY interaction are confined to systems in equilibrium,
including approximate theoretical treatments of the interac-
tion across a potential well4 and a tunneling barrier.10

It is therefore the purpose of the present paper to establish
a theoretical description of the RKKY interaction across a
tunneling barrier out of equilibrium from first principles. For
this purpose we employ the Keldysh nonequilibrium pertur-

bation formalism11 along with a coupling procedure for
structured systems developed by Caroli and co-workers12–15

and Feuchtwang,16–18 leading to a proper nonequilibrium
field theoretic description. Since the treatments by Caroli and
co-workers and Feuchtwang are proper many-body formal-
isms, their application to the present problem simultaneously
provides the basis for the inclusion of further many-body
effects such as carrier-carrier or carrier-phonon interactions
to the problem.

With this technique we manage to derive a general non-
equilibrium solution for the RKKY interaction for various
dimensionalities and arrangements of spins within a struc-
tured system. Particularly we show that the interaction of
spins across a tunneling junction can be tuned between fer-
romagnetic~FM! and antiferromagnetic~AFM! coupling by
changing the bias across the junction alone. For the applica-
tion to exchange force microscopy, mentioned before, it is
shown that varying the bias across the vacuum junction in a
STM can lead to a force which switches between attractive
and repulsive behavior and that this force should be experi-
mentally measurable with a state of the art apparatus. Fur-
thermore, we show that the presence of a nonequilibrium
bias across the junction significantly alters the range of the
RKKY interaction, such that in particular the interaction en-
ergy between two slabs of spins scales extensively with the
thickness of the slabs.

The remainder of the paper is structured as follows: In
Sec. II we establish a model of the tunneling system contain-
ing the spin impurities. Section III contains a derivation of
the RKKY interaction out of equilibrium in various dimen-
sions in terms of general Keldysh nonequilibrium Green’s
functions. In Sec. III A we consider the interaction of two
magnetics-d impurities across a one-dimensional tunneling
junction out of equilibrium and in Sec. III B we extend these
results to the more realistic situation of two magnetic layers
or slabs of spins on either side of a planar three-dimensional
tunneling junction, including the possibility of a nonmag-
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netic spacer material between the magnetic materials and the
barrier. Section IV describes how the Keldysh Green’s func-
tions used in Sec. III are obtained in a system containing a
potential barrier. In Sec. V we implement our results numeri-
cally and calculate equilibrium and nonequilibrium versions
of the RKKY interaction for various tunneling geometries.
Section VI discusses the experimental observability of the
behavior of the interaction predicted by the numerical study.
In Sec. VII, in conclusion, the implications and possible fur-
ther applications of this work are summarized.

II. MODEL

The one-dimensional tunneling system we consider con-
sists of a tunneling barrier which is connected to two leads
on the left and right at the pointsL andR, respectively, as
shown in Fig. 1. In equilibrium the barrier is assumed to be
flat on top with an abrupt potential change ofV0 at the in-
terfaces. The corresponding single-particle potential can be
written as

V~x!5V0Q~x2L !Q~R2x!. ~1!

Upon biasing the junction, the potential of the barrier ac-
quires a slope and the chemical potentialmR in the right lead
undergoes a shifteV with respect to the chemical potential
mL in the left lead. Simultaneously, the conduction band bot-
tom VR in the right lead shifts byeV with respect to the
conduction band bottomVL in the left lead, such that the
electronic potential is changed to

V~x!5FV02eV
x2L

R2LGQ~x2L !Q~R2x!2eVQ~x2R!.

~2!

Here the bottom of the conduction band on the left side is
taken as the origin of energy,e is the modulus of the elemen-
tary charge of an electron, andV the voltage drop across the
barrier.

Two magnetics-d impurities are situated within the elec-
trodes, on either side of the barrier, at an equal distanced
from the interfaces. For simplicity, both electrodes are con-

sidered to consist of the same material and the effective elec-
tron masses are assumed to be equal in all three parts of the
junction.

The Hamiltonian of the system, with a single-electron
band in each part of the junction, can be written as

H5(
a

E dxCa
†~x!F p22m1V~x!GCa~x!

2
J

2 (
p51,2;a,b

sab•SpE dxCa
†~x!d~x2xp!Cb~x!

5H01Hs-d , ~3!

whereHs-d is the last, spin-dependent, term in the Hamil-
tonian and the coupling constantJ is assumed to have the
units J md, whered is the dimensionality of the system con-
sidered. Here a space representation has been chosen, which
proves to be advantageous due to the lack of translational
invariance caused by the presence of the barrier potential
V(x). p2/2m is the kinetic energy of electrons with uniform
effective massm, and we use\[1 throughout.sab is the
vector of Pauli matrices, used to represent the spin of the
conduction electrons which couple to the two local moments
Sp . The indicesa and b label the two spin components:
a,bP$↑,↓%.

III. EXPRESSION FOR THE RKKY INTERACTION

A. Interaction in one dimension

The RKKY interaction energy between the two impurities
is calculated from the lowest-order exchange contributions to
the perturbation of the energy of the localized spins in the
presence of the conduction electrons. Either in or out of equi-
librium this energy is given by the expectation value
^Hs-d& (1ex) , where the subscript~1ex! indicates that only the
first-order exchange contributions to the average are consid-
ered. Effectively, therefore, one has to calculate the first-
order perturbation to the conduction electron spin density
due to the first spin at the location of the second spin and
vice versa.1,19 The total interaction energy is a sum of these
two contributions,

ERK52
J

2 (
p51,2

Sp•Dr~1ex!~xp!, ~4!

where

Dr~1ex!~xp!5(
a,b

sab^nab~xp!&~1ex!

5(
a,b

sab^Ca
†~xp!Cb~xp!&~1ex! ~pP$1,2%!

~5!

is the first-order exchange contribution to the spin density at
site p.

In the present case we now have to calculate Eq.~4! by
means of Eq.~5! out of equilibrium. In order to do so we
make use of the Keldysh formalism. In the Keldysh notation
the spin-dependent particle density correlation function

FIG. 1. Schematic representation of the one-dimensional tunnel-
ing system described in the text. Two magnetics-d impurities are
situated in the left and right lead at equal distancesd away from the
electrode-barrier interfacesL andR, respectively, and interact with
each other through the tunneling of electrons across the barrier. The
points L and R at the same time serve as the partitioning
points within the formalism of Caroli and co-workers and Feucht-
wang, indicated by the two dashed vertical lines.
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^nab(x)&5^Ca
†(x)Cb(x)& can be written in terms of the

Keldysh Green’s functionGab
, (x,t;x8,0) which is defined as

Gab
, ~x,t;x8,0!5 i ^Cb

†~x8,0!Ca~x,t !&, ~6!

where the operatorsCa
†(x,t) andCa(x,t) are the field op-

erators of the system considered, which create and destroy a
particle with spina at pointx and timet, respectively. Given
that the Hamiltonian of the stationary problem we consider
here is effectively time independent we will conveniently
work with its Fourier transform in the frequency domain.
From this we find

^nab~x!&52 i lim
t→0
x8→x

E
2`

` dv

2p
eivtGab

, ~x,x8;v!. ~7!

Using the definition ofG,, it can be shown in equilibrium
that this expression is equivalent to the usual relation be-
tween the particle density and the retarded Green’s function
Gr ,

^nab~x!&52
1

p
lim
x8→x

E
2`

`

nF~v!Im@Gab
r ~x,x8;v!#dv, ~8!

where nF(v)5$exp@b(v2m)#11%21 is the usual Fermi
distribution function in equilibrium,m is the equilibrium
chemical potential, andGr is the retarded Green’s function
of the system, which is defined as

Gab
r ~x,x8;t !52 iQ~ t !^$Cb

†~x8,0!,Ca~x,t !%&, ~9!

where $ , % denotes the anticommutator. The advanced
Green’s functionGa,

Gab
a ~x,x8;t !5 iQ~2t !^$Cb

†~x8,0!,Ca~x,t !%&, ~10!

will be used later.
In order to obtain a proper nonequilibrium result for the

RKKY interaction we have to perform first-order nonequilib-
rium perturbation theory on expression~7!. The appropriate
formalism, introduced by Keldysh, reformulates the regular
diagrammatic perturbation theory in terms of a 23 2 matrix
formalism, to properly handle the time development, since
out of equilibrium the usualS-matrix expansion based on the
Gell-Mann-Low theorem breaks down.11,20 The Green’s
function matrix of the unperturbed system without spin im-
purities, but including the full barrier potential within this
formalism, is written as

G~0!ab~x,x8;t !5S G~0!ab
t ~x,x8;t ! 2G~0!ab

, ~x,x8;t !

G~0!ab
. ~x,x8;t ! 2G~0!ab

t̃ ~x,x8;t !
D .
~11!

Gt and G t̃ denote the usual time-ordered and anti-time-
ordered Green’s functions with the general definitions

Gab
t ~x,x8;t !52 i ^TCa~x,t !Cb

†~x8,0!&, ~12!

Gab
t̃ ~x,x8;t !52 i ^T̃Ca~x,t !Cb

†~x8,0!&, ~13!

whereT and T̃ are the time-ordering and anti-time-ordering
operators, respectively.G. is the complementary correlation
function toG,:

Gab
. ~x,x8;t !52 i ^Ca~x,t !Cb

†~x8,0!&. ~14!

The corresponding matrix perturbation expansion to first or-
der in the couplingJ yields

G~1!ab~xp ,xp ;t2t8!5G~0!ab~xp ,xp ;t2t8!da,b

2
J

2 (
q51,2

Sq•sbaE dt1G~0!aa~xp ,xq ;t2t1!

3G~0!bb~xq ,xp ;t12t8!. ~15!

From Eq.~15! the first-order exchange terms of the func-
tion G, can be resolved as

G~1ex!ab
, ~xp ,xp ;t2t8!

52
J

2
Sq•sbaE dt1@G~0!

, ~xp ,xq ;t2t1!G~0!
a ~xp ,xq ;t12t8!

1G~0!
r ~xp ,xq ;t2t1!G~0!

, ~xp ,xq ;t12t8!#,

~pP$1,2%, qÞp!, ~16!

where we have now dropped the spin indices in the unper-
turbed Green’s functions since they are spin independent. To
obtain Eq.~16!, we have used appropriate relations between

the six Green’s functionsG,, G., Gt, G t̃ , Gr , andGa in

order to replace the dependence of the result onGt andG t̃

by one onGr andGa ~cf. Ref. 20!.
One relation arising from this transformation that holds

generally for operators in the Keldysh formalism and which
is particularly useful to us is

~AB!,5A,Ba1ArB,, ~17!

whereAB is to be understood as a matrix product of two
general operatorsA andB, implying integrations over space
and time where applicable. By means of a Fourier transfor-
mation of Eq.~16! into the frequency domain, Eq.~4! can
therefore be expressed as

ERK5J2S1•S2E
2`

`

Im@G~0!
, ~x1 ,x2!$G~0!

r ~x2 ,x1!

1G~0!
a ~x2 ,x1!%#

dv

2p
. ~18!

The above equation is the general expression for the RKKY
interaction out of equilibrium in a purely one-dimensional
~1D! system without translational invariance. It is one of the
central results of the present work and the principal goal of
the following treatment is to evaluate it explicitly for various
situations.

In an equilibrium situation it is easily established that Eq.
~18! goes over to the well-known result21,22
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ERK52
1

p
J2S1•S2E

2`

`

nF~v!

3Im@G~0!
r ~x1 ,x2!G~0!

r ~x2 ,x1!#dv. ~19!

At this point we would like to stress one important prop-
erty that both expression~18! and its simplified equilibrium
version ~19! comprise: It has been known that when
scattering-wave perturbation techniques, which were used in
the past to obtain the RKKY interaction, are applied to one-
dimensional models, e.g., for the purely 1D model presented
here or in the case of interacting layers of spins which is
discussed in the next subsection, they become very sensitive
to the handling of the poles occurring in the energy denomi-
nator of the perturbation expansion, leading to a spurious
term of infinite range in the interaction when integrations are
interchanged carelessly.23,24 It can be checked, however, that
the analyticity of the Green’s functions which occur in the
results of our method in Eq.~18! @and Eq.~19! in equilib-
rium# always provides an unambiguous prescription for han-
dling these singularities correctly.

Before we establish how the Keldysh Green’s functions
G(0)

, andG(0)
r /a are calculated in a nonequilibrium situation we

will generalize the results just obtained to higher dimensions.

B. Generalization to two and three dimensions

For the extension to higher dimensions we assume that
the system is translationally invariant in the further one or
two dimensions, corresponding to a perfectly planar barrier.
Once we have found the solution for the purely 1D Green’s
function G(0)

1D we can simplify the solution of the planar
extension of the equivalent problem by exploiting the trans-
lational invariance of the system in the additional directions
parallel to the barrier by means of corresponding Fourier
transforms

G~0!
2/3D~x,x8;ki ;v!5E dd21reiki•rG~0!

2/3D~x,x8;v!, ~20!

where x is a d-dimensional coordinate,r5xi2xi8 is the
(d21)-dimensional relative position vector parallel to the
barrier, and ki denotes the (d21)-dimensional electron
wave vector parallel to the barrier, wheredP$2,3%. In the
following we shall drop the superscripts again that were just
introduced to indicate the dimensionality of the system
which the corresponding Green’s functions describe, since it
will be always recognizable from the arguments of these
functions whether they pertain to a purely 1D system or to a
planar version in higher dimensions.

The extension to 2/3D leaves the spatial dependence of
the Hamiltonian unaffected in the direction perpendicular to
the barrier and, as will be shown in Sec. IV, only amounts to
a change in the energy arguments of the corresponding
Green’s functions~see also Ref. 18!. The expression for the
RKKY interaction between two arbitrarily placed impurities
with respect to the barrier ind dimensions can then be writ-
ten as an extension from Eq.~18!,

ERK5J2S1•S2E dd21qid
d21ki

~2p!~2d22! e2 iqi•r12

3E
2`

`

Im@G~0!
, ~x1 ,x2 ;qi2ki ;v!$G~0!

r ~x2 ,x1 ;ki ;v!

1G~0!
a ~x2 ,x1 ;ki ;v!%#

dv

2p

~dP$2,3%!, ~21!

wherer12 denotes the impurity displacement in the direction
parallel to the barrier.

The most immediate application of the present theory is in
a 3D tunneling system where the interaction between either
two monolayers or two slabs of spins across a barrier is of
interest for the description of giant magnetoresistance
phenomena.4–7 It will be assumed that all spins within one
monolayer or slab have the same orientation due to a pre-
dominant ferromagnetic coupling over short distances. In
equilibrium and without a barrier it was pointed out by
Yafet24 how the interaction between two monolayers can be
obtained from the conventional 3D version. In our case the
corresponding expression is obtained through integrating
over all r12 and subsequently overqi in Eq. ~21!:

ERK
m 5~Jrs-d

2D !2n2DS1•S2E d2ki

~2p!2

3E
2`

`

Im@G~0!
, ~x1 ,x2 ;2ki ;v!$G~0!

r ~x2 ,x1 ;ki ;v!

1G~0!
a ~x2 ,x1 ;ki ;v!%#

dv

2p
, ~22!

whereERK
m is now the monolayer interaction energy across

the junction,n2D is the surface area of the junction, and
rs-d
2D is the surface density of thes-d spins in each of the two
planes parallel to the barrier.

The situation where two finite slabs of spins interact
across a finite spacer layer which contains the barrier is
shown schematically in Fig. 2. The interaction between two
slabs of spins across a planar tunneling barrier can be ob-
tained by summing the contributions coming from each pair

FIG. 2. Cross-sectional drawing of a magnetic multilayer struc-
ture, obtained as a 3D planar extension of the 1D system shown in
Fig. 1. Two magnetic slabsM are separated by nonmagnetic spacer
layersS and a planar tunneling barrierB extending between points
L andR. The spins in the magnetic slabs are assumed to have the
same orientation within each slab due to a dominance of ferromag-
netic ~FM! coupling at short distances.
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of interacting monolayers involved. In the present case
where a continuous system is considered this amounts to two
spatial integrations of the monolayer interaction in Eq.~22!
in the direction perpendicular to the barrier. If, for simplicity,
we consider two interacting slabs of the same thicknessl
which are symmetrically displaced from the barrier, these
two integrations assume the form

ERK
s 5~rs-d

3D !2E
L2~d1 l !

L2d

dx1E
R1d

R1~d1 l !
dx2FERK

m ~x1 ,x2!

~rs-d
2D !2 G ,

~23!

whereERK
s is the interaction energy of the two slabs and, in

ERK
m (x1 ,x2), is taken from Eq.~22! where x1 indicates a

position within the left electrode andx2 one within the right
one, respectively, andrs-d

3D is the 3D density ofs-d spins
within the slabs.

Now that formal expressions for the RKKY interaction
are in hand, the next step is the evaluation of the Keldysh
Green’s functionsG(0)

, (x,x8) andG(0)
r /a(x,x8) of the nonequi-

librium 1D system and their extensions to higher dimensions.

IV. EVALUATION OF THE RELEVANT GREEN’S
FUNCTIONS

It has been established by Caroli and co-workers12–15and
Feuchtwang16–18 that a tunneling system out of equilibrium
can be treated by partitioning the system into several un-
coupled parts which are considered to be in equilibrium at
t52`. These parts are subsequently coupled to each other
through appropriate transfer terms, in conjunction with an
adiabatic switching procedure, to finally yield a nonequilib-
rium steady state. Formally, this corresponds to a perturba-
tion expansion of these transfer terms to all orders,12,13but it
can also be shown to be equivalent to applying Green’s theo-
rem at the partitioning points.16,17 The number of partitions
to be made in the system is in principle arbitrary and will
largely depend on the geometry considered. In the present
case with a possibly sloping tunneling barrier of finite width,
a partitioning into three regions at the electrode-barrier inter-
facesL andR—shown by the vertical dashed lines in Fig.
1—is most convenient. In the present treatment we will fol-
low closely the approach of Ref. 17 for continuous systems.
The HamiltonianH0 in Eq. ~3! is consequently written as a
sum of three independent parts,

H0~x!5Q~L2x!HL~x!1Q~x2L !Q~R2x!HB~x!

1Q~x2R!HR~x!. ~24!

A. Green’s functions in one dimension

In one dimension the Green’s functionG(0) of the system
including the barrier has to satisfy the inhomogeneous
Schrödinger equation

@v2H0~x!#G~0!~x,x8;v!5d~x2x8!. ~25!

Similarly one can define Green’s functions for the several
uncoupled subparts of the systemhP$L,B,R% as

@v2Hh~x!#gh~x,x8;v!5d~x2x8!, ~26!

wherex andx8 lie within the appropriate region determined
by the choice ofh. Additionally, these functions have to
satisfy appropriate boundary conditions at the electrode-
barrier interfacesR andL. In principle these boundary con-
ditions can be an arbitrary mixture of the Dirichlet and Neu-
mann types. However, for simplicity it is best to use one or
the other exclusively, and we choose here the Dirichlet con-
ditions that the Green’s functions vanish if they are taken
with one of their arguments on the respective interfacesR or
L. Relations between these uncoupled Green’s functionsgh
and the Green’s functionG(0) of the full system, satisfying
Eq. ~25!, can be established, as noted before, by means of
Green’s theorem applied at the interfaces. If in addition the
discontinuity conditions for the derivatives of the full
Green’s functionG(0) are used,

]xG~0!~x,x8!ux5x82
x5x81

52m5]x8G~0!~x,x8!ux85x2
x85x1

~27!

~where we have left out the energy argument for brevity!,
together with appropriately chosen versions of further conti-
nuity conditions

G~0!~x,x8!ux5x82
x5x81

50, ~28!

]x]x8G~0!~x,x8!ux5x82
x5x81

50, ~29!

which this function has to satisfy, one can findG(0)(x,x8). In
the simple cases wherex,x8P$L,R%, the full Green’s func-
tion can be written as17

SG~0!~L,L ! G~0!~L,R!

G~0!~R,L ! G~0!~R,R!
D

52mS gL~L,L !1gB~L,L ! 2gB~L,R!

2gB~R,L ! gR~R,R!1gB~R,R!
D 21

5
2m

D S gR~R,R!1gB~R,R! gB~L,R!

gB~R,L ! gL~L,L !1gB~L,L !
D ,

~30!

where

D5@gR~R,R!1gB~R,R!#@gL~L,L !1gB~L,L !#

2gB~L,R!gB~R,L ! ~31!

and

gh~a,b!52
1

2m
]x]x8gh~x,x8;v!u

x5a

x85b

. ~32!

The above Green’s function is readily cast into a retarded or
advanced version by analytically continuing
v→ limd→01v6 id.

The calculation ofG(0)
, , however, is significantly compli-

cated through the matrix property~17! inherent to all its
defining equations in terms of continuity conditions. The ap-
propriate choice for these continuity conditions are similar to
the ones forG(0)

r /a with the only important difference that all
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first derivatives are continuous also now atx5x8. For a gen-
eral situation with two partitions we find that

S G~0!
, ~L,L ! G~0!

, ~L,R!

G~0!
, ~R,L ! G~0!

, ~R,R!D
52

2m

uDu2 S gR
r ~R,R!1gB

r ~R,R! gB
r ~L,R!

gB
r ~R,L ! gL

r ~L,L !1gB
r ~L,L !D

3S gL
,~L,L !1gB

,~L,L ! 2gB
,~L,R!

2gB
,~R,L ! gR

,~R,R!1gB
,~R,R!D

3S gR
a~R,R!1gB

a~R,R! gB
a~L,R!

gB
a~R,L ! gL

a~L,L !1gB
a~L,L !D ,

~33!

where it should be noted that despite the presence of the
terms withgB

, in the matrix in the middle, the full Green’s
functionG(0)

, does not depend on these terms. In a true tun-
neling situation, where one only considers energies lower
than the height of the barrier, this is immediately seen to be
true since for those energies no states exist in the barrier
region. Another case, however, is the one where there are
states inside the barrier region in the energy range consid-
ered, such as impurity levels or quasibound states in a
double-barrier tunneling structure, or when a scattering prob-
lem across a nonperiodic potential is considered rather than a
tunneling situation. For these cases one can show14 that
terms inG(0)

, which containgB
, occur in conjunction with

terms coming fromuDu22 and other terms from the matrix
product in Eq. ~33! such that they fulfill an identity
Dd(D)D[0, whereD is the denominator ofgB , which is
independent of the spatial arguments ofgB . Put another
way, the contributions of the poles ingB which constitute
gB

, are suppressed inG(0)
, , since wherever they occur they

are given zero weight.
One can understand this cancellation from a physical pic-

ture of how the nonequilibrium system is established. While
the left and right leads are modeled as semi-infinite grand
canonical ensembles with~possibly different! chemical po-
tentials on either side att52`, the barrier region is finite
and not coupled to any exterior reservoir. Once a steady state
is established, any quantity of the fully coupled system will
depend only on the initial occupations of the semi-infinite
leads. In particular, there can be no dependence ofG(0)

, on
gB

, , since the infinite, fully coupled system cannot remem-
ber the initial occupation of the finite barrier region. In the
same way it turns out that in terms containinggB

r /a only the
real part gB contributes toG(0)

, as contributions coming
from the imaginary parts cancel for the reasons outlined
above. Therefore we can setgB

,[0 and leave away the su-
perscripts ingB

r /a for further calculations.
For the evaluation of Eq.~33!, however, we still need to

know the appropriate expressions forgh
, , hP$R,L%. Since

the left and right decoupled regions are separately in equilib-

rium, they have well-defined electron occupationsnF
h(v),

and therefore we find thatgh
, can be expressed as

gh
,~x,x8;v!5nF

h~v!@gh
a~x,x8;v!2gh

r ~x,x8;v!#, ~34!

which immediately transfers to thegh
, as

gh
,~x,x8;v!5nF

h~v!@gh
a~x,x8;v!2gh

r ~x,x8;v!#. ~35!

If the impurities lie deeper within the electrodes on the
left- and right-hand sides of the barrier, the relevant Green’s
functionsG(0)

r /a(x1 ,x2) andG(0)
, (x1 ,x2) can be expressed in

terms of the full Green’s functions between the interfaces,
Eqs. ~30! and ~33!, and the Green’s functions of the un-
coupled leads,

G~0!
r /a~x1 ,x2!52~2m!22]x8gL

r /a~x1 ,x8!ux85L2

3G~0!
r /a~L,R!]x8gR

r /a~x8,x2!ux85R1, ~36!

G~0!
, ~x1 ,x2!52~2m!22$]x8gL

,~x1 ,x8!ux85L2

3G~0!
a ~L,R!]x8gR

a~x8,x2!ux85R1

1]x8gL
r ~x1 ,x8!ux85L2

3G~0!
, ~L,R!]x8gR

a~x8,x2!ux85R1

1]x8gL
r ~x1 ,x8!ux85L2

3G~0!
r ~L,R!]x8gR

,~x8,x2!ux85R1%,

~x1<L, x2>R!. ~37!

The corresponding expressions for the Green’s functions
with reversed arguments are obtained in an analogous way.

The RKKY interaction~18! can now be expressed entirely
in terms of the unperturbed Green’s functions of the separate
subsystems in equilibrium using Eqs.~30! and ~33!–~37!.
For the simple case where the impurities are situated imme-
diately on the left and right barrier-electrode interfaces Eq.
~18! can, for example, be expressed in terms of the quantities
gh as

ERK522~2m!2J2S1•S2E dv

2p
uDu22Re@D21#gB~L,R!

3gB~R,L !Im$@gR
r ~R,R!1gB~R,R!#gL

,~L,L !

1gR
,~R,R!@gB~L,L !1gL

a~L,L !#%. ~38!

Within the single effective mass approximation for a bar-
rier system as shown in Fig. 1 the functions of the decoupled
leads are found to be

12 958 54N. F. SCHWABE, R. J. ELLIOTT, AND NED S. WINGREEN



gL~R!
r /a ~x,x8!51~2 !

2m

qL~R!
r /a H sin$qL~R!

r /a @x2L~R!#%e7~6 !iqL~R!
r /a [x82L~R!] , x.~, !x8,

sin$qL~R!
r /a @x82L~R!#%e7~6 !iqL~R!

r /a [x2L~R!] , x8.~, !x,
~39!

whereqL(R)
r /a 5A2m(v2VL(R)6 id), the upper and lower signs are associated with the superscriptsr anda, respectively, and

VL(R) is the bottom of the conduction band in the corresponding side of the junction as before. Likewise the corresponding
Green’s functions for the sloping barrier region are obtained as

gB~x,x8!5
2mpk21

f ~R!h~L !2 f ~L !h~R! H @h~L ! f ~x!2h~x! f ~L !#@ f ~R!h~x8!2 f ~x8!h~R!#, x,x8,

@h~R! f ~x!2h~x! f ~R!#@ f ~L !h~x8!2 f ~x8!h~L !#, x.x8,
~40!

where

f ~x!5Ai ~kx1z/h2!,

h~x!5Bi~kx1z/h2! ~41!

are two independent solutions of the inhomogeneous Schro¨-
dinger equation

@]x
22k3x# f ~x!5z, ~42!

with the parametersk52A3 2meV/R-L and z52m$V0
2eV/22v%.

In equilibrium, where there is no slope to the barrier, one
can show thatgB(x,x8) simplifies to

gB~x,x8!52mH sinh@k~x2L !#sinh@k~x82R!#

ksinh@k~R2L !#
, x,x8,

sinh@k~x82L !#sinh@k~x2R!#

ksinh@k~R2L !#
, x8.x,

~43!

wherek5A2m@V02v#. Note that Eqs.~40! and ~43! hold
for all v, i.e., including the case whenV02v,0, for which
the sinh functions in Eq.~43! go over to the corresponding
sin functions.

When the results of the present and the previous section
are combined in equilibrium and for the limit of the barrier
height or the barrier width going to zero we can obtain ana-
lytic results for all versions of the interaction considered so
far. The purely 1D result from Eq.~18! for this case reduces
to the well-known expression for the RKKY interaction in
one dimension,24,25

ERK5
2m

2p
J2S1•S2FSi~x!2

p

2 G , ~44!

where Si(x) is the integral-sine function,

Si~x!5E
0

x sin~x!

x
dx, ~45!

andx[2kFx ~with x[ux22x1u) gives the phase of the char-
acteristic oscillation of the interaction at twice the Fermi
wave vectorkF .

B. Green’s functions in higher dimensions

Once we have found the solutions for the purely 1D
Green’s functionsgh , which satisfy Eq.~26!, we can find the

solution of the planar extension of the equivalent problem, as
demonstrated by Eq.~20!, by means of Fourier transforms in
the directions parallel to the barrier,

@~v2ki
2/2m!2Hh~x!#gh~x,x8;ki ;v!5d~x2x8!. ~46!

Here again retarded and advanced versions of
gh
2/3D(x,x8;ki ;v) can be found simply through continuing
analytically:

gh
r /a~x,x8;ki ;v!5gh~x,x8;ki ;v6 id!. ~47!

Correspondingly we find

gh
,~x,x8;ki ;v!5nF

h~v!@gh
a~x,x8;ki ;v!

2gh
r ~x,x8;ki ;v!#, hP$L,R%. ~48!

It is important to realize at this point that for the retarded and
advanced Green’s functionsgh

r /a the extension to higher di-
mensions only leads to a shift in the energy argument
v→v2ki

2/2m, as can be seen from the form of their defin-
ing equation~46!, i.e.,

gh
r /a~x,x8;ki ;v!5gh

r /a~x,x8;v2ki
2/2m!. ~49!

This property is seen to also translate in part to the functions
gh

, with the only important difference that the energy argu-
ments of the occupation functions remain unchanged.

By using the properties~48! and ~49! one can establish
that the Green’s functions of the full systemG(0)

r /a andG(0)
,

can be represented in the following way:

G~0!
r /a~x,x8;ki ;v!5G~0!

r /a~x,x8;v2ki
2/2m!, ~50!

G~0!
, ~x,x8;ki ;v!5nF

L~v!GL~x,x8;v2ki
2/2m!

1nF
R~v!GR~x,x8;v2ki

2/2m!, ~51!

where the functionsGh , hP$L,R% associated with the
Fermi functionsnF

h can be written in terms of sums and
products of spatial derivatives of thegh

r /a , hP$R,B,L%
when Eqs.~30!–~37! are used to divideG(0)

, (x,x8) into con-
tributions containing left or right occupation functions only.
For example one finds
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GL~R!~L,R!52
2m

uDu2
gB~L,R!$gR~L !

r ~a! @R~L !,R~L !#

1gB@R~L !,R~L !#%$gL~R!
a @L~R!,L~R!#

2gL~R!
r @L~R!,L~R!#%. ~52!

The properties~50! and ~51! prove to be useful for the

evaluation of the frequency and wave vector integrations in
the expression for the monolayer interaction~22!, which is
also needed for the calculation of the slab interaction in Eq.
~23!. If the interaction is considered at zero temperature and
the additional property is used that the density of states fac-
tor coming from the 2Dki integration in Eq.~22! is just a
constant, one can reduce the three integrations in Eq.~22! to
a sum of two single integrations as

E d2ki

~2p!2
E

2`

` dv

2p FQ~m2v!G̃LS v2
ki
2

2mD 1Q~m2v2eV!G̃RS v2
ki
2

2mD G
5

2m

8p2E
0

m

dz~m2z!G̃L~z!1E
2eV

m2eV

dz~m2z2eV!G̃R~z!, ~53!

where theQ functions derive from the sharp Fermi distribu-
tionsnF

h(v) at T50 and

G̃h~z!5Im$Gh~x1 ,x2 ;z!@Gr~x2 ,x1 ;z!1Ga~x2 ,x1 ;z!#%.
~54!

The lower limits at 0 and2eV in Eq. ~53! follow from the
fact that there are no states below the bottoms of the conduc-
tion bands in the left and right leads, respectively. As a result
of this simplification the interaction energy between mono-
layers of spins in 3D is not much harder to evaluate than the
interaction energy in the purely 1D case.

For a 3D planar junction in equilibrium without a barrier
we find from Eq.~22! that the interaction density for mono-
layers is

ERK
m 5

2mkF
2

2~2p!2
~Jrs-d

2D !2n2DS1•S2FSi~x!2
p

2

1
xcos~x!2sin~x!

x2 G , ~55!

which is evidently similar to the purely 1D result. The mono-
layer interaction is therefore often called
quasi-one-dimensional.24 The slab interaction from Eq.~23!
in this case assumes the form26

ERK
s 5

2m~Jrs-d
3D !2n2D

16~2p!2
S1•S2$F~s12l !

22F~s1 l !1F~s!%, ~56!

wherers-d
3D5rs-d

1Drs-d
2D is the 3D density ofs-d spins within

the slabs,s52d1R2L is the spacing between the slabs,l is
the width of each slab~see Fig. 2!, andF(x) is the range
function,

F~x!5x2FSi~x!2
p

2 G1xcos~x!1sin~x!12Si~x!,

x52kFx. ~57!

Another special case worth noting in this context is the in-
teraction between two magnetic half-spaces separated by a
nonmagnetic spacer. By lettingl→` we find that Eq.~56!
simplifies to

ERK
s` 5

2m~Jrs-d
3D !2n2D

16~2p!2
S1•S2H @xs

212#FSi~xs!2
p

2 G
1xscos~xs!1sin~xs!J , ~58!

wherexs52kFs.
In order to obtain solutions for Eqs.~18!, ~22!, and ~23!

also for more general cases we have to perform the corre-
sponding energy integrals numerically.

V. NUMERICAL RESULTS

A. Comparative results in equilibrium

Numerical results for the RKKY interaction across a tun-
neling junction in equilibrium have been given by Mukasaet
al.10 These authors were particularly interested in providing
a theoretical model for possible applications in exchange
force microscopy, as mentioned in the Introduction, which is
based on the RKKY interaction as the dominant force be-
tween a tunneling tip and a sample. For this purpose Mukasa
et al. performed an approximate version of scattering wave
perturbation theory for free electrons in a 1D system by in-
cluding the transmission coefficient of an electron tunneling
through the barrier at an intermediate stage in their calcula-
tion. In contrast, our analytic expression for the RKKY in-
teraction is exact~to orderJ2) since the constituent Green’s
functions include scattering by the barrier exactly.

In order to compare our results in equilibrium with the
ones in Ref. 10, we have implemented our calculation with
the same model parameters using a Fermi energy of
m[mL5mR55.0 eV in equilibrium and a lattice constant
a052.50 Å, along with a Fermi wave vector
kF51.2631010 m21, implying a relative effective electron
mass ofm/me51.20, whereme is the bare electron mass.
Figure 3~a! shows plots representing the dimensionless inter-
action range functionF(x) with
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F~x!52pH 2m2p
J2S1•S2J 21

ERK~x!, ~59!

whereERK(x) was obtained from Eq.~18! as evaluated in
Eq. ~38!. In Fig. 3~a!, the impurities are considered to be
fixed at the electrode-barrier interfaces, while the width of
the barrier is continuously increased from 0.0 to 5.0 Å, to
represent, for example, the height of an STM tip above a
sample. Without the barrier (V0 /m50.0), the range function
reduces toF(x)5p@p/22Si(x)#, wherex52kFx.

We have also plotted in Fig. 3~a! the interaction for this
case and for a barrier height ofV0 /m50.5, where the system
is in a scattering state. We find that as the barrier height is
increased from zero, the interaction varies with a longer
wavelength, corresponding to a decreasing relative wave
vector between the top of the barrier and the Fermi level
KF5A2m(m2V0).

For V0 /m.1, the strength of the interaction decays ex-
ponentially with the width of the barrier, with an exponent
that increases withV0 /m, and the crossover into the antifer-
romagnetic~AFM! regime is lost onceV0 /m>1.3. In the
interval ofV0 /mP@1.0,1.3#, the interaction still experiences
one slight crossover to the AFM regime. This can be under-
stood to arise from the nature of the transmission and reflec-
tion coefficients of the barrier, which are not purely expo-
nential, but a mixture of hyperbolic functions.

However, our results explicitlydo notshow the large os-
cillation of the interaction far in the ferromagnetic~FM! re-
gime as was obtained in Ref. 10, markedly for their curve
V0 /m51.05. Such a behavior is unphysical in a genuine tun-
neling situation, and reflects the approximate treatment of the
transmission of scattered waves through the barrier in Ref.
10. Our Green’s function approach in comparison includes
the single-particle barrier potential fully from the beginning
and therefore allows an exact evaluation of the RKKY inter-
action.

Other interesting cases to investigate are the interaction of
two monolayers or of two semi-infinite slabs of magnetic
impurities in the presence of a tunneling barrier. Such sys-
tems could, for example, be realized by coating both sides of
a fixed or mobile tunneling junction with a magnetic mate-
rial. For these cases one can make use of Eq.~22! for mono-
layers and of Eqs.~22! and ~23! for slabs, both in conjunc-
tion with Eq.~53!. We shall consider Eq.~22! in equilibrium
and seteV50 in Eq.~53!. In Fig. 3~b! and Fig. 3~c! we show
results for the interaction range functions

Fm~x!52pH 2mkF
2

2~2p!2
~Jrs-d

2D !2n2DS1•S2J 21

ERK
m , ~60!

Fs
`~x!52

p

2 H 2m~Jrs-d
3D !2n2D

16~2p!2
S1•S2J 21

ERK
s` , ~61!

for monolayers and for slabs, respectively, which were ob-
tained for a planar version of the arrangement used for Fig.
3~a!. From Eq.~55!, for zero barrier height,Fm reduces to
Fm5p$p/22Si(x)2@xcos(x)2sin(x)#/x2% and Fs

` to
Fs

`52p/2$@x212#@Si(x)2p/2#1xcos(x)1sin(x)%. The
curves in Fig. 3~b! show that characteristically the monolayer
interactionFm decays much faster than the purely 1D inter-
action F, shown in Fig. 3~a!, when compared with equal

FIG. 3. Range functions:~a! F(x) for interacting magnetic im-
purities in 1D from Eq.~59!, ~b! Fm(x) for interacting magnetic
monolayers in 3D from Eq.~60!, and ~c! Fs

`(x) for semi-infinite
interacting magnetic slabs in 3D from Eq.~61! plotted against the
distancex5R2L between the spins in equilibrium, where the spins
are considered to be fixed on either interface of the barrier
(d50). The barrier width is increased from 0.0 to 5.0 Å and the
height of the barrier is increased throughout the plots as indicated.
For V0 /m50.0 ~a!, ~b!, and ~c! show the range functionsF(x),
Fm(x), andFs

`(x), respectively, for a free electron system.
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parameter values. Especially forV0 /m>1.0, Fm shows a
much stronger decay thanF. This can be understood as a
result of theki integration in Eq.~22! which effectively av-
erages the interaction of one spin on one side of the junction
with all other spins on the opposite side. This average which
extends over many oscillatory contributions leads to destruc-
tive interference effects which results in the observed damp-
ing of Fm relative toF.

When the RKKY interaction of infinite half-spaces repre-
sented byFs

` is compared toFm andF it is seen that the
double spatial integration from Eq.~23! increases the relative
oscillation strength ofFs

` when compared toFm , and at
V0 /m51.05 the relative crossoverFs into the AFM regime
becomes even stronger than the one forF.

B. Nonequilibrium behavior

1. Impurities on the electrode-barrier interfaces

In the following we establish how the results shown in
Fig. 3 for the interaction in equilibrium are modified when a
finite bias is applied to the junction. Figures 4~a! and 4~b!
show the 1D interaction between two magnetic impurities
placed on opposite electrode-barrier interfaces for various
strengths of the bias in conjunction with initial equilibrium
ratiosV0 /m51.05 in Fig. 4~a! andV0 /m51.5 in Fig. 4~b!,
and with otherwise the same model parameters as in Fig.
3~a!.

As the bias is increased in Fig. 4~a! the interaction starts
to exhibit oscillations when the right edge of the barrier po-
tentialV(R)5V02eV is pulled below the chemical potential
of the left-hand sidemL. This oscillation arises because the
wave functions of high-energy electrons tunneling from the
left exit the barrier through its sloping part, and become os-
cillatory over the distance where they are above the barrier.
In this regime we find that the wave vector of the oscillation
can be roughly approximated by the wave vector of electrons
tunneling from the left Fermi level at the position of the right
interface with the barrier, i.e.,

qF5A2m@m2V01eV#, ~62!

giving an oscillatory wavelengthDx52p/qF . The wave-
length of the interaction becomes smaller; i.e., the value of
qF in Eq. ~62! increases, as the bias is increased. In Fig. 4~a!,
one can see that as the bias is turned up, the antiferromag-
netic region initially vanishes and then almost reappears at a
smaller distance between the impurities.

In Fig. 4~b!, for eV/m51.50, a similar behavior to the one
in Fig. 4~a!, for eV/m51.05, is observed. The main differ-
ence to Fig. 4~a! is that foreV/m51.50 and in equilibrium
the interaction just decays exponentially with no AFM re-
gion, whereas out of equilibrium such an AFM region is
established as the bias is turned up. The fact that the oscil-
lations caused by high bias are not centered around the
F50 line in Fig. 4~a! and Fig. 4~b! can be understood to
arise from the asymmetric shape of the sloping barrier. From
these figures it is apparent that in an arrangement where the
impurities are attached to the electrode-barrier interfaces,
such as an STM tip and sample, both coated with magnetic
materials, the interaction becomes tunable between FM and
AFM by varying the bias alone.

Since, as mentioned before, an interesting application of
the present system would be in exchange force microscopy
— where the force caused by the exchange interaction on a
tunneling tip in an STM is measured — we have plotted in
Fig. 4~c! and Fig. 4~d! the spatial derivative2dF(x)/dx of
the range functionF(x) from Fig. 4~a! and Fig. 4~b!, respec-
tively. Both Fig. 4~c! and Fig. 4~d! show explicitly that the
onset of oscillations in the interaction for an appropriate bias
will lead to a force which is alternating in sign. An estimate
of the absolute strength of the exchange force and predic-
tions that it should be measurable with a state of the art STM
are postponed to a discussion in Sec. VI.

We next consider the effect of a finite bias on a system of
two magnetic monolayers interacting across a 3D planar bar-
rier. In Fig. 4~e! and Fig. 4~f! we plot the range function
Fm , using Eqs.~22!, ~53!, and~60!, for a planar version of
the arrangement used in Fig. 4~a! and Fig. 4~b!. As in Fig.
4~a! and Fig. 4~b! the interaction starts to exhibit an oscilla-
tory behavior once the slope of the barrier gets steep enough.
In both Fig. 4~e! and Fig. 4~f! it is evident that the oscilla-
tions can reach into the AFM region, although, as in Fig. 4~a!
and Fig. 4~b!, the oscillations are again not centered about
theFm50 line, but are shifted into the FM region.

One more remark is in order when nonequilibrium results
for monolayers are compared to results in equilibrium. In
equilibrium the total interaction energyERK

m in Eq. ~22! is
proportional tom, and we have normalized the range func-
tion Fm in Fig. 4~e! and Fig. 4~f! with respect to the equi-
librium Fermi energym. However, the total nonequilibrium
interaction from Eq.~22! depends in magnitude on a non-
separable mixture ofm, eV, m1eV, andm2eV. This would
be evident if we had plotted the interaction back tox50
where the results for various strengths ofeVwould no longer
converge in a single point, as they do in equilibrium for
differentV0 /m.

Altogether, our results in Fig. 4~a! and Fig. 4~b! as well as
in Fig. 4~e! and Fig. 4~f! show that when the impurities are
attached to the electrode-barrier interfaces a switching of the
interaction can be achieved in many situations by changing
the bias alone, but in general this switching behavior de-
pends quite strongly on the particular properties of the bar-
rier. In the following we will show that such a switching is
much more reliably achieved by placing the single spins or
layers of spins within the electrodes a finite distance away
from the interfaces with the barrier.

2. Impurities within the electrodes

We now consider the nonequilibrium behavior of the in-
teraction when the impurities are placed inside the electrodes
a distanced away from the electrode-barrier interfaces. In
Fig. 5~a! we show a surface plot of a 1D arrangement with
the relative barrier heightV0 /m51.5, where the barrier
width is kept constant at 1.0 Å@cf. corresponding point in
Fig. 4~b!#. The impurities are now moved away from their
initial positions on the electrode-barrier interfaces to a maxi-
mum distance ofd55.0 Å from either interface~plotted
across the figure!. At the same time the bias is increased
from eV/m50.0 toeV/m51.5 ~plotted into the depth!. We
have overlaid a contour plot to make it easier to identify
which regions of the surface lie in the FM or AFM regime.
The solid zero contour line indicates the boundaries of these
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FIG. 4. ~a!,~b! range functionF(x) from Eq.~59!, ~c!,~d! force function2dF(x)/dx, and~e!,~f! range functionFm(x) from Eq.~60! for
finite biaseV. The initial relative barrier height in equilibrium is fixed at~a!,~c!,~e! V0 /m51.05 and~b!,~d!,~f! V0 /m51.50 with otherwise
the same system parameters as in Fig. 3 (m is the Fermi energy of the leads in equilibrium!. In four steps a biaseV of up toeV/m52.0 is
applied to the junction.
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regions. In the same way, we show in Fig. 5~b! the interac-
tion density between two monolayers and in Fig. 5~c! the
interaction density between two slabs of finite thickness
which are placed a finite distance inside two 3D electrodes.
The range function in Fig. 5~b! is again normalized with
respect to the equilibrium Fermi energym. The case of in-
teracting slabs turns out to have quite special features which
will be discussed later in this section.

One can see that in both Fig. 5~a! and Fig. 5~b! the inter-
action is already oscillatory in equilibrium asd is varied,
even thoughV0 /m>1.0, since now the electrons have to
travel over a finite region on either side of the junction where
their wave functions are oscillatory. The presence of the bar-
rier in this case leads to an overall exponential damping
which reduces the strength of the oscillations everywhere. As
the bias is turned up these oscillations evolve into an inter-
ference between up to five contributing components which
can be explained as follows: To the order of perturbation
theory considered, the spins on the left side of the junction
interact with the ones on the right through electrons tunnel-
ing between the locations of the spins. Electrons in the vi-
cinity of the left spins which are able to perform this process
are available up to the Fermi level on the left. The wave
vector kLL of the spin polarization of the conduction elec-
trons in the left lead is determined by the cutoffs of the
frequency integration in Eqs.~18! and ~22! at the Fermi en-
ergy and at the band bottom on the left sideVL, so that
kLL5A2m(mL2VL). This wave vector is, however, a differ-
ent one, namely,kLR5A2m(mL2VR), once the tunneling
electrons have penetrated the barrier and interact with the
spin on the right side. The same process applies to the spins
on the left in reaction to the presence of the ones on the right.
The corresponding wave vectors involved therefore comprise
ki j5A2m(m i2Vj ), (i , jP$L,R%), i.e., four different ones in
principle. In addition to this, one also observes a quite strong
oscillation which contains the wave vectorkeV5A2meV.
This oscillation can be understood to arise from the interval
in the frequency integration in the expression for the inter-
action~18! which extends from the band bottom of the right
lead to the band bottom of the left lead, i.e., over
VL2VR5eV. Since all cases of the interaction studied here
have a one-dimensional or quasi-one-dimensional behavior,
both the densities of states of the electrons in the left lead
and in the right lead exhibit a singular behavior at the respec-
tive band bottoms. The existence of the singular parts of
these densities of states at the integration limits gives rise to
the A2meV oscillation, which in some situations becomes
the principal oscillation in the nonequilibrium system.

Assuming thatmR moves by the same amounteV as
VR, and withVL normalized to zero as shown in Fig. 1, this
set of wave vectors reduces to a total of 4, namely,
kP$A2mmL,A2m(mL1eV),A2m(mL2eV)% due to the
sharp Fermi distributionsnL andnR, and thekeV5A2meV
oscillation as discussed before. In both Fig. 5~a! and Fig.
5~b!, a superposition of these principal wave vectors can be
found. Once the biaseVmoves the Fermi energy on the right
below the band bottom on the left,mR<0, the corresponding
components of the oscillations turn into an exponential de-
cay, leaving only three contributions to the oscillations. This
transition can be seen as a kink in the contour plots in Fig.

FIG. 5. Surface plot of the range function~a! F, ~b! Fm , and
~c! Fs85@1140eV/m#21Fs

l510 when the impurities are moved
within the electrodes. In the present arrangement the barrier height
is fixed toV0 /m51.50 and the barrier width toR2L51.0 Å. The
distanced of the impurities on either side of the barrier is increased
from d5(0.0–5.0! Å ~plotted across!, while at the same time the
bias is varied fromeV5(0.0–1.5! eV ~plotted into depth!. The
thickness of the slabs in~c! was taken to bel510 Å. In ~a!, ~b!, and
~c! the front faces of the surfaces show the equilibrium range func-
tions, which are oscillatory as the spins are moved through the
leads. In order to be able to better identify the boundaries between
FM and AFM regions, we have overlayed a contour plot showing
the zero coupling (F50) contour.
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5~a! and Fig. 5~b! at a bias ofeV51.0. At higher biases, for
arrangements where the impurities lie very close to the bar-
rier, i.e., whend/(R2L)!1.0, barrier effects such as those
displayed in the plots of Fig. 4~b! and Fig. 4~f! become more
important. However, for ratiosd/(R2L).1.0 we expect
these effects to be minimal when the width of the barrier is
held constant. Both Fig. 5~a! and Fig. 5~b! show explicitly
how the interaction between two single spins in 1D and be-
tween two layers of spins, respectively, is tunable between
ferromagnetic and antiferromagnetic coupling at a fixed im-
purity configuration by varying the bias alone. Furthermore,
it is clear in Fig. 5~a! and especially in Fig. 5~b! that the
interaction falls off significantly less rapidly in the nonequi-
librium regime. This circumstance has particularly strong
consequences for the interaction between slabs of spins.

In Fig. 5~c! we have plotted the interaction between two
finite magnetic slabs of spins with a width of the slabs of
l510 Å using otherwise the same conditions as were taken
for the monolayer case shown in Fig. 5~b!. While it can be
seen in Fig. 3~c! that in equilibrium the interaction for slabs
converges to a finite value in the limit when the thickness of
the slabs goes to infinity,l→`, this is no longer the case out
of equilibrium. Rather the interaction is seen to become
roughly proportional to the thickness of the slabs for thick-
nessesl@p/kF . This can be attributed to the longer range of
the monolayer interaction as mentioned before, which de-
stroys the quite sensitive convergence of the double integral
in Eq. ~23! for l→`.

When the slab interaction~23! is calculated one is al-
lowed to exchange the spatial integrations with the frequency
and wave vector integrations. This has the advantage that the
spatial integration can be performed analytically first. Since
the explicit representation of the integrand is quite involved,
we have postponed it to the Appendix. From Eq.~A10! it can
be seen that the integrand contains several terms which are
proportional tol . In equilibrium, as shown in Eq.~A8!, these
terms cancel one another, but out of equilibrium, when the
frequency integration for these terms is cut off at different
points through different Fermi occupation functions, this
cancellation ceases to be complete. Therefore, when the bias
is switched on, a residuall dependence remains, which in-
creases as the bias is increased. The total interaction energy
for slabs therefore scales extensively with the width of the
slabs. It should be noted that this extensive dependence of
the slab interaction energy out of equilibrium is not caused
by the offset of the band bottoms in our model. If an equi-
librium system is considered in which materials with differ-
ent band structures form a junction, the slab interaction con-
tinues to converge always@cf. Eq. ~A8!#.

For this reason we have compressed the scale of the plot
in Fig. 5~c! in the direction of the bias by a factor of
@1140eV/m#21, so that, as shown, the height of the oscil-
lations stays approximately the same. Moreover, one can see
that thekFd oscillations observed in equilibrium vanish com-
pletely at a very small bias and turn into oscillations with
phase (d/2)A2meV. That this is the case can be seen from
the overlayed contour lines, which, particularly in the upper
right corner, show a dependence}1/A2meVwhen taken as
a function ofeV. Mathematically, the dominance of these
oscillations can be understood to arise from the spatial inte-
grations in formula~23!. When the spatial integrations are

interchanged with the frequency integration in Eq.~23!, as it
is done in Eq.~A1! in the Appendix, the space integrations
are effectively taken over products of the oscillatory, i.e.,
trigonometric, wave-function-like expressionshL(R)

r /a from
Eq. ~A2! which relate to electrons in the left and right leads
@cf. Eqs. ~A4!–~A7!#. This yields an extra factor of
(qL(R)

r /a )21 in jL(R)
r /a from Eq.~A5!. A factor of jL(R)

r /a occurs at
least once in every term in the integrand of the subsequent
frequency integration in Eq.~A10!, which enhances the peak
in the quasi-1D density of states of the monolayer system
occurring on the bottom of the band in the corresponding
lead. The frequency integration itself very much acts as a
Fourier transform into real space, which gives the peaks the
effect of frequency components of the real-space oscillations
of the interaction. These peaks are just an energy interval
eV apart, which explains the occurrence of the
keV5A2meVwave vector as a difference wave vector be-
tween these components. The strength ofkeV is then deter-
mined by the strength of the peaks, i.e., the amplitude of the
Fourier components.

Since, as is shown in Fig. 5~c!, the interaction between
magnetic slabs oscillates with almost only thekeV contribu-
tion present, it should be controllable in a simple fashion by
tuning the bias.

VI. DISCUSSION

In this section, the possibilities for the experimental study
of the RKKY interaction in tunneling systems out of equilib-
rium are discussed. As mentioned in the Introduction, one
possible way to probe the behavior of the interaction that we
predict is to use a STM to measure the exchange force, such
as shown in Fig. 4~c! and Fig. 4~d!.

In order to estimate the absolute value of the exchange
force, we must estimateJ in the prefactor of the force func-
tion between two magnetic impurities, adsorbed to the STM
tip and the sample, respectively. One method to estimateJ,
which is also used in Ref. 10, is to use the equation for the
Kondo temperatureTK ,

TK5
m

kB
expF2

1

Jgs-d
1D ~m!G , ~63!

where kB is the Boltzmann constant and
gs-d
1D (m)5(2p)21A2m/m is the 1D density ofs-d spin states
at the equilibrium Fermi energym. For measuredTK’s of
aboutTK;100 K one obtainsJgs-d

1D (m);0.2. From this the
function F(x) representing the total measured exchange
force is determined as

F5
2m

2p2 J
2S1•S2

dF~x!

dx
. ~64!

From the parameters introduced above, we find

F;S1•S2
dF~x!

dx
3O~10220 N m!, ~65!

which for the range functions plotted in Fig. 4~c! and Fig.
4~d! leads to forces of aboutF;O(10211 N!. As noted in the
literature10,27 the resolution of current atomic force micros-
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copy is about 10211–10213 N, which means that the ex-
change force should be experimentally observable.

For the observation of the RKKY interaction in layered
tunneling systems which exhibit giant magnetoresistance
phenomena the results shown in Fig. 5 should give an appro-
priate prediction. Especially for the case of 3D systems the
results for the interaction between interacting slabs of impu-
rities shown in Fig. 5~c! would be most applicable. The most
surprising result in this situation is that we find that the in-
teraction scales extensively with the thickness of the slabs. In
principle the expression for the interaction we study would
diverge in the limit of semi-infinite slabs, but of course this
would not be observable in real systems, since processes like
spin relaxation or the scattering of electrons on nonmagnetic
impurities would eventually impose a maximum range on the
interaction. However, for slabs of reasonable thickness the
switching of the bias should produce an observable change in
the decay behavior of the interaction; i.e., in a system with
fixed spin positions an anomalous increase of the interaction
strength should be measurable.

Furthermore, the tunability of the RKKY interaction in a
tunneling system out of equilibrium is particularly interesting
in view of the fact that the impurity configuration is normally
preset in a solid system, which means it is usually not pos-
sible to directly observe the oscillatory dependence of the
interaction on the impurity spacing. With the present ar-
rangements it becomes possible to observe oscillations of the
RKKY coupling via the variation of wave vectors on either
side of the junction as the bias is varied. If one follows for
example the direction of the bias at a given distance of the
spins in any of the contour plots shown in Fig. 5, one can
almost always observe at least one crossing from FM to
AFM coupling or vice versa.

Since, out of equilibrium, as indicated before, the interac-
tion depends on several contributing wave vectors, the rela-
tive dependence on these could for example be investigated
experimentally by using different materials for the connect-
ing leads and by placing the spins asymmetrically around the
barrier, e.g., on the electrode-barrier interface on one side of
the junction and further within the electrode on the other
side. As the arrangements in Fig. 5~b! and Fig. 5~c! describe
routinely achievable physical systems, this suggests that the
phenomena found theoretically for such systems should also
be accessible to experiment.

VII. CONCLUSION

This paper presents a theoretical treatment of the RKKY
interaction in systems out of equilibrium. Except for pro-
cesses involving ultrashort time-dependent excitations, a
proper nonequilibrium situation seems only routinely attain-
able in structured systems which include a potential barrier.
The main achievement of this work is that we have obtained
a proper field theoretic description of such a system which is

much more systematic than conventional scattering wave
perturbation approaches to the problem~cf. Ref. 10!. Diffi-
culties such as taking proper account of the different occu-
pation functions in different parts of the system are over-
come as well as the problem of how to normalize the wave
functions involved, since the Green’s functions used in the
present description are always properly normalized. Our
treatment is adaptable to the inclusion of further many-body
effects in the problem, such as carrier-carrier interactions in
the electrodes and the interaction with phonon modes.

One effect of biasing the system out of equilibrium is that
the oscillatory exchange interaction in various dimensions
exhibits strong interference effects, leading to one or more
changes of the type of coupling~between FM and AFM! at a
given impurity configuration as the bias is varied. This be-
havior arises as a result of an interference between several
fundamental oscillations due to a mixing of different wave
vectors. The possibility of tuning the interaction through
changing the bias alone could become an important effect in
applications of nonlinear switching devices using layered
magnetic structures with a potential barrier. Another impor-
tant effect is that out of equilibrium the range of the interac-
tion increases, leading to an interaction energy that scales
extensively with the system size in the direction perpendicu-
lar to the barrier for interacting slabs of spins. A closer study
of this phenomenon for the 3D case presented here, as well
as for the 1D case of interacting lines of spins, where the
interaction in equilibrium is known to lead to a helical order-
ing within each line, is being undertaken.

Our results should be applicable to a very broad variety of
conceivable structures and the formalism we have presented
here is particularly suitable to be adapted to such situations.
Extensions to include varying effective masses and other ma-
terial properties such as band structure and different band
filling in the various subparts of the system are obvious. A
particular example for a possible extension would be to study
the interaction in double- or multiple-barrier systems out of
equilibrium. Furthermore, in order to facilitate a direct com-
parison to experimental results a next step could include the
calculation of the RKKY-perturbed spin-polarized tunneling
current across systems of this kind. We also hope our work
will encourage the experimental study of giant magnetoresis-
tance phenomena out of equilibrium where one can equally
expect interesting interference phenomena to occur as a re-
sult of the different relative distances of the Fermi surfaces to
the bottoms of the conduction bands involved.
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APPENDIX: NONEQUILIBRIUM BEHAVIOR OF THE INTERACTION BETWEEN SLABS

In the expression for the RKKY interaction between 3D slabs of spins from Eq.~23!, we exchange the spatial integrations
with the frequency integral, to obtain
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ERK
s 5

~Jrs-d
3D !2n2D

~2m!4
S1•S2E

2`

` dv

2pE dki
2

~2p!2
E
L2~d1 l !

L2d

dx1E
R1d

R1~d1 l !
dx2

3Im$@hL~x1!G~0!~L,R!hR~x2!#
,@hR

r ~x2!G~0!
r ~R,L !hL

r ~x1!1hR
a~x2!G~0!

a ~R,L !hL
a~x1!#%. ~A1!

In Eq. ~A1! we have used Eqs.~34! and ~35! to rewrite the expressionG(0)
, (x1 ,x2) @G(0)

r (x2 ,x1)1G(0)
a (x2 ,x1)# in the

integrand. In addition, we have introduced

hL~R!
r /a ~x1~2!!5]x0gL~R!

r /a ~x1~2! ,x0!ux05L~R!5]x0gL~R!
r /a ~x0 ,x1~2!!ux05L~R!51~2 !2mexp$7~6 !iqL~R!

r /a @x1~2!2L~R!#%, ~A2!

wheregL(R)
r /a (x,x8) is taken from Eq.~39!. Furthermore, the explicit frequency and wave vector dependence of the integrand in

Eq. ~A1! was omitted for brevity. The expression forG(0)
, (x1 ,x2)@G(0)

r (x2 ,x1)1G(0)
a (x2 ,x1)# in the integrand can now be

further grouped as follows:

G~0!
, ~x1 ,x2!@G~0!

r ~x2 ,x1!1G~0!
a ~x2 ,x1!#5~2m!24$G~0!

, ~L,R!G~0!
r ~R,L !@hL

r ~x1!#
2hR

r ~x2!hR
a~x2!

1G~0!
, ~L,R!G~0!

a ~R,L !hL
r ~x1!hL

a~x1!@hR
a~x2!#

21G~0!
r ~L,R!G~0!

r ~R,L !

3@hL
r ~x1!#

2hR
r ~x2!hR

,~x2!1G~0!
a ~L,R!G~0!

a ~R,L !hL
,~x1!hL

a~x1!@hR
a~x2!#

2

1G~0!
r ~L,R!G~0!

a ~R,L !hL
r ~x1!hL

a~x1!hR
a~x2!hR

,~x2!

1G~0!
a ~L,R!G~0!

r ~R,L !hL
,~x1!hL

r ~x1!hR
r ~x2!hR

a~x2!%. ~A3!

When now the functionsh, are replaced by their definitions in terms of retarded and advanced functions,hL(R)
,

5nF
L(R)@hL(R)

a 2hL(R)
r #, one can see that all occurringdx1 and dx2 integrations can be accounted for by introducing the

following terms:

jL~R!
0 5E

L2d2 l

L2d S E
R1d

R1d1 l D dx1~2!hL~R!
r ~x1~2!!hL~R!

a ~x1~2!!

5
~2m!2i

qL~R!
a 2qL~R!

r $exp@ i ~qL~R!
r 2qL~R!

a !~d1 l !#2exp@ i ~qL~R!
r 2qL~R!

a !d#%

5H ~2m!2l , v2VL~R!>0,

2
~2m!2

2A2m~VL~R!2v!
$exp@22A2m~VL~R!2v!~d1 l !#, v2VL~R!,0,

2exp@22A2m~VL~R!2v!d#, v2VL~R!,0, ~A4!

jL~R!
r /a 5E

L2d2 l

L2d S E
R1d

R1d1 l D dx1~2!@hL~R!
r /a ~x1~2!!#

257
~2m!2i

2qL~R!
r /a $exp@62iqL~R!

r /a ~d1 l !#2exp@62iqL~R!
r /a d#%. ~A5!

While jL(R)
0 from Eq. ~A4! produces a term proportional tol for energies above the band bottom in the respective lead, it is

seen from Eqs.~A4! and ~A5! that

jL~R!
0 5jL~R!

r /a , v2VL~R!,0. ~A6!

From here we find

E
L2~d1 l !

L2d

dx1E
R1d

R1~d1 l !
dx2G~0!

, ~x1 ,x2!@G~0!
r ~x2 ,x1!1G~0!

a ~x2 ,x1!#

5~2m!24$G~0!
, ~L,R!G~0!

r ~R,L !jL
r jR

01G~0!
, ~L,R!G~0!

a ~R,L !jR
ajL

01G~0!
r ~L,R!G~0!

r ~R,L !nF
R~v!jL

r @jR
02jR

r #

1G~0!
a ~L,R!G~0!

a ~R,L !nF
L~v!jR

a@jL
a2jL

0#1G~0!
r ~L,R!G~0!

a ~R,L !nF
R~v!jL

0@jR
a2jR

0 #

1G~0!
a ~L,R!G~0!

r ~R,L !nF
L~v!jR

0@jL
02jL

r #%. ~A7!

Since the problem we consider has time-reversal symmetry,G(0)
r /a(L,R)5G(0)

r /a(R,L) always holds. When Eq.~A7! is consid-
ered in equilibrium, we know that alsoG(0)

, (L,R)5nF(v)@G(0)
a (L,R)2G(0)

r (L,R)# holds. In such a situation it is seen that
Eq. ~A7! simplifies to
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E
L2~d1 l !

L2d

dx1E
R1d

R1~d1 l !
dx2G~0!

, ~x1 ,x2!@G~0!
r ~x2 ,x1!1G~0!

a ~x2 ,x1!#5nF~v!$@G~0!
a ~L,R!#2jL

ajR
a2@G~0!

r ~L,R!#2jL
r jR

r %, ~A8!

where it was assumed thatjL andjRmay also be different in
equilibrium, e.g., if the materials on the left and right of the
junction have different work functions. Clearly in Eq.~A8!
all factors proportional tol have vanished as expected. When
l is taken tol→` the functionsjL(R)

r /a oscillate withl , as seen
from Eq. ~A5!, and eventually reduce to

lim
l→`

jL~R!
r /a 56

~2m!2i

2qL~R!
r /a exp@62iqL~R!

r /a d#, ~A9!

due to the retarded or advanced property of theqL(R)
r /a which

causes an exponential decay in the relevant functions at large
distances.

Out of equilibrium, however, the cancellation of thel
proportionality ceases to be complete and the expression for
the slab interaction~23! can be rewritten by means of Eqs.
~52! and ~53! for zero temperature as

ERK
s 5

~Jrs-d
3D !2n2D

8p2~2m!3
S1•S2H E

0

m

dz~m2z!Im$@GL~z!

2G~0!
a ~z!#J~z!1@G~0!

a ~z!#2jL
a~z!jR

a~z!%

1E
2eV

m2eV

dz~m2z2eV!Im$@GR~z!1G~0!
r ~z!#J~z!

2@G~0!
r ~z!#2jL

r ~z!jR
r ~z!%J , ~A10!

where we have introduced

J~z!5G~0!
r ~z!jL

r ~z!jR
0~z!1G~0!

a ~z!jR
a~z!jL

0~z!,
~A11!

with the abbreviation G(0)(L,R;z)5G(0)(z) and
GL(R)(L,R;z)5GL(R)(z). Note that in Eq.~A10! terms con-
taining jL

0jR
0G(0)

r (z)G(0)
a (z) have vanished, since they are

entirely real. From the definition of thejL(R)
0 in Eq. ~A4! it is

seen that the termJ(z) from Eq. ~A11! is proportional tol
for z>0. When2eV,z,0,J(z) always has onel propor-
tional and one exponentially decaying component, where the
latter describes the penetration of low-lying electron states in
the right lead to the position of the spins in the left one. The
l proportional component, however, vanishes for energies
below zero, since in this case the term
@GR(z)1G(0)

r (z)#G(0)
r (z)jL

r (z)jR
0(z) turns out to be entirely

real. The remainingl dependence ofJ(z) subsequently
translates to the slab interaction from Eq.~A10! for energies
z>0, where it is seen to produce terms proportional tol , i.e.,
which scale extensively with the thickness of the slabs, as
well as the equilibrium terms from Eq.~A8! before, which
show nol proportionality.
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