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Inelastic neutron scattering measurements were performed on the ferromagnetic chain system CsNiF3 in the
collinear antiferromagnetic ordered state belowTN52.67 K. The measured spin-wave dispersion was found to
be in good agreement with linear spin-wave theory including dipolar interactions. The additional dipole tensor
in the Hamiltonian was essential to explain some striking phenomena in the measured spin-wave spectrum: a
peculiar feature of the dispersion relation is a jump at the zone center, caused by strong dipolar interactions in
this system. The interchain exchange coupling constant and the planar anisotropy energy were determined
within the present model to beJ8/kB520.0247(12) K andA/kB53.3(1) K. This gives a ratioJ/J8'500,
using the previously determined intrachain coupling constantJ/kB511.8 K. The small exchange energyJ8 is
of the same order as the dipolar energy, which implies a strong competition between both the interactions.
@S0163-1829~96!00641-8#

I. INTRODUCTION

The compound CsNiF3 is the best known example of a
quasi-one-dimensional~1D! ferromagnet. It crystallizes in
the hexagonal ABX3-type structure (P63 /mmc, with
a5b56.21 Å andc55.2 Å!.1 The Ni21 ions (S51) are
located in the centers of NiF6-octahedra, which are linked by
common faces to form chains along thec axis. A series of
fundamental investigations on linear and nonlinear spin dy-
namics aboveTN and in an external magnetic field have been
performed.2,3,7 Below TN52.67 K three-dimensional order-
ing sets in due to an isotropic interchain interaction and the
dipolar interaction. The Hamiltonian describing the three-
dimensional magnetic properties of CsNiF3 is
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The index i indicates positions on single spin chains,
whereasl indicates all spin positions. In Eq.~1! the first two
terms are responsible for the one-dimensional behavior, i.e.,
J denotes the ferromagnetic intrachain interaction andA the
single-ion anisotropy. The last two terms lead to the three-
dimensional order, whereJll 8

8 denotes the nearest neighbor
interchain interaction andAll 8

ab the long-range dipolar inter-
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The coupling constant along the chainJ and the anisotropy
energyA were determined by inelastic neutron scattering in
the one-dimensional ordered state (T.TN) to be

J/kB511.8 K andA/kB54.5 K.2 These values are based on
linear spin-wave theory for classical spins,4 whereas a larger
anisotropy constantA59.0 K was determined, using a renor-
malized spin-wave theory forS51 spins5 considering the
continuous degeneracy of the ground state. In both analyses
the third and fourth terms of Eq.~1! had been neglected,
which are important for the three-dimensional ordering of
CsNiF3 especially the dipolar interaction as indicated by the
antiferromagnetic, collinear ordered ground state.6

In the three-dimensional ordered state a purely isotropic
antiferromagnetic exchange coupling leads to a frustrated
120° structure in hexagonalABX3 compounds.8–10 In the
limit of pure dipole interaction a ferromagnetic spin arrange-
ment is favored as in the case of a pure two-dimensional
triangular lattice.11,18 However, if dipolar and exchange en-
ergies are of the same order a collinear antiferromagnetic
structure occurs which will be shown later. Due to the col-
linear order of the spins, the ground state is no more continu-
ously degenerate but shows three different domains
(A,B,C), as shown in Fig. 1.6,12

FIG. 1. The three different magnetic domain types in CsNiF3.
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While the spin dynamics aboveTN are well known, the
spin-wave excitations in the ordered state (T,TN) have not
yet been studied in detail. The aim of the present investiga-
tion is to determine the interchain coupling constant and to
probe the effects of the dipolar interaction on the spin-wave
spectrum. The evaluation of the interchain magnon disper-
sion relation and the related neutron scattering cross sections
were performed, using quantum mechanical spin-wave
theory including long-range dipolar interactions.

II. THEORY

In this section we derive the excitation spectrum and the
scattering amplitudes within the linear spin-wave theory for
the Heisenberg Hamiltonian in Eq.~1!.

A. Excitation spectrum

In this section the dispersion relation for domainA will be
derived. In the following we choose the Cartesian coordinate
system shown in Fig. 1 and the Brillouin zone as in Fig. 2.
The Fourier transform of the Hamiltonian@Eq. ~1!# yields
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with the nearest-neighbor exchange energies~intrachain and
interchain!
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The Fourier transform of the dipole tensorAq
ab , is obtained

via Ewald summation technique.13 The Holstein-Primakoff
transformation, which introduces Bose operatorsal andal

† ,
is given up to bilinear order14,16 by
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where the upper~lower! sign corresponds to the first~sec-
ond! sublattice. After Fourier transformation of these equa-
tions and insertion into the Hamiltonian@Eq. ~3!#, regarding
only wave vectors perpendicular to the chain axis (qz50),
the bilinear term becomes

H ~2!(
q
Aqaq

†aq1
1

2
Bq~aqa2q1aq

†a2q
† !, ~7!

with the coefficients

Aq5SA1S~2Jq18 2Jq82Jq1q1
8 !1S~2Aq1

xx2Aq
yy2Aq1q1

zz !,

~8!

Bq52SA1S~Jq1q1
8 2Jq8!1S~Aq1q1

zz 2Aq
yy!. ~9!

Due to the large planar anisotropyA, for the experiments
explained below, it is sufficient to study only fluctuations
within the hexagonal plane. The full expression for arbitrary
wave vectors will be given in Ref. 18. The wave vector
q152p/A3(0,1,0) @corresponding to (12,0,0) in reciprocal
lattice units ~rlu!# describes the antiferromagnetic modula-
tion of the ground state. After diagonalizing this Hamiltonian
via a Bogoliubov transformation we obtain the dispersion
relation
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Equation~10! holds for the crystallographic Brillouin zone~hexagon!. In the smaller magnetic Brillouin zone~rectangular, see
Fig. 2! there are two modes which have the form
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The stability of the ground state requires that, for all wave vectors in the Brillouin zone,Aq.uBqu, i.e.,

Jq18 2Jq8.Aq
yy2Aq1

xx . ~12!

FIG. 2. The crystallographic~————! and magnetic
(22222) Brillouin zones of CsNiF3 in the (a* ,b* ) plane. The
solid circles (d) indicate positions of nuclear Bragg reflections
while the open circles (s) mark the positions of the magnetic
Bragg reflections.
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This condition gives an upper boundary for the exchange energy forq50 and a lower bound forq5q054p/3(1,0,0) @or
q5(2 1

3,
2
3,0) in rlu#

Aq0
yy2Aq1

xx,J8,~Aq1
xx2A0

yy!/8. ~13!

Note that the allowed range for the exchange energy depends~due to the restriction toqz50) explicitly neither on the
ferromagnetic exchangeJ nor on the anisotropy energyA. Using the in-plane lattice constanta56.21 Å and the experimen-
tally determined Lande´ factorg52.25~Ref. 3! of CsNiF3, the stability range for the exchange energy can be calculated to be

17

292 mK,
J8

kB
,23 mK. ~14!

B. Scattering amplitudes

The inelastic magnetic scattering cross section is proportional to15
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HereQ denotes momentum transfer~scattering vector!, F(Q) is the magnetic form factor, andq the wave vector to the nearest
reciprocal lattice vector or position in the Brillouin zonet (Q5t1q). In linear spin-wave theory the spin-spin correlation
functions can be evaluated with the Fourier transformed Eqs.~6a!–~6c! and the Bogoliubov transformation. The cross section
takes the form
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For neutrons, only spin fluctuations perpendicular to the mo-
mentum transferQ are detectable, meaning modes with mag-
netization vector parallel to the momentum transfer are in-
visible. Note that the first modeEq

(1) is only observable
through the in-plane fluctuationŝSySy& and the second
mode Eq

(2) through the out-of-plane fluctuationŝSzSz&.
Thus, the first mode (Eq

(1)) will be called the in-plane mode
and the second mode (Eq

(2)) the out-of-plane mode. Due to
the strong planar anisotropy (A) the in-plane fluctuations are
more pronounced than the out-of-plane fluctuations, which
can be seen by inserting Eqs.~8! and~9! for Aq andBq . The
ratio of the two prefactors is given by
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This leads to a very small neutron scattering cross section of
the out-of-plane mode.

III. EXPERIMENT

The measurements were carried out using the cold source
triple-axis spectrometer V2 at BENSC~Hahn-Meitner Insti-
tut!. Pyrolytic graphite~PG! crystals were used as monochro-
mator and analyzer. The higher-order wavelength contribu-
tions were suppressed by using a liquid-N2 cooled Be filter.
The crystal had a volume of about 1.5 cm3, and was
mounted with the (a* ,c* ) plane in the scattering plane. A

series of constant-Q scans at positions (Qa,0,0) and
(Qa,0,2) were performed atT51.5 K. The final energy at
the Qc50 positions @(Qa,0,0) scans# was fixed to be
Ef52.98 meV @collimation, neutron guide ~NG!
-408-408-408#. The collimation of the neutron guide for the
used values ofki is approximately 60’. At theQc52 posi-
tions @(Qa,0,2) scans# the final energy was increased to
Ef54.66 meV ~collimation, NG-208-208-208!. The capital
lettersQa,b,c denote absoluteQ values, whileqa,b,c repre-
sents the relative distance to the center of the Brillouin zone.
At all Qc50 positions only one excitation peak was observ-
able. The data atQ5(0.8,0,0) @q5~0.2,0,0!# is shown as a
representative example in Fig. 3. The profile of the incoher-
ent background~centered atE50) and the excitation signal
were fitted by Gauss-peaks. The linewidths are consistent
with the expected instrument resolution. As discussed in the
previous section, the in-plane mode has a much larger scat-
tering amplitude (;6 times! than the out-of-plane mode.
Nevertheless, the in-plane mode from domainA cannot be
detected, becauseQ is parallel toy ~see Fig. 1!. Thus, only
the in-plane modes from domainsB andC should be visible.

This was probed by a separate measurement in a horizon-
tal magnetic field. In zero field all three magnetic domains of
the crystal have approximately the same size. The relative
volume parts of the different domains can be varied by ap-
plying an external magnetic field perpendicular to thec
axis.6 A horizontal field parallel toa* stabilizes domainA
by the possibility of a slight spin canting. This is shown by
the increasing intensity of the~0.5,0,0! Bragg reflection,
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when increasing the magnetic field~inset of Fig. 4!. At a
field of about 700 G only domainA remains. Higher fields
give rise to an increased spin canting, leading to a paramag-
netic phase above 3000 G. Figure 4 shows the spin-wave
excitation atQ5~0.7,0,0! @q5~0.3,0,0!# for three different
small magnetic fields. The narrow windows of the used cryo-
magnet limited the final energy to the valueEf54.06 meV
(kf51.4 Å21) ~collimation, NG-408-408-408!. Thus, the
resolution was lower in this experiment compared to the
zero-field measurements performed withEf52.98 meV
(kf51.2 Å21). Obviously, the increase in the magnetic field
reduces the intensity of the excitation, which confirms that
the excitations atQ5(Qa,0,0) arise from the magnetic do-
mainsB andC.

For measuring the in-plane mode in domainA, one has to
use a momentum transferQ not parallel to thea* axis (y
direction!. This was done by choosingQ5(Qa,0,2). ~The
size of the magnetic Brillouin zone inc* direction is twice
the size of the crystalline Brillouin zone.! Unfortunately, the
highQ values restrictedEf to large values (Ef54.66 meV,
kf51.5 Å21). This caused a coarse resolution compared to
the measurement atQ5(Qa,0,0) even with a better collima-
tion ~NG-208208208!. The measurement atQ5(0.8,0,2)
@q5~0.2,0,0!# is shown in Fig. 5. At first glance, there seems
to be just one excitation at about 0.15 meV. However, know-
ing the existence of an excitation at 0.118 meV from the
measurement atQ5(0.8,0,0) it is possible to fit a second

excitation at 0.175~5! meV. The fit includes two Gaussian
peaks with fixed energy (60.118 meV!, one Gaussian peak
for the incoherent background (E50 meV!, and one Gauss-
ian peak for the second excitation. The widths of the differ-
ent Gaussians were fitted independently. As for the measure-
ments at (Qa,0,0), the linewidths are caused by instrument
resolution. All other measurements at (Qa ,0,2! were treated
in the same way, except the measurement at~0.6,0,2! where
the widths of all Gaussians were set equal.

IV. DISCUSSION AND CONCLUSION

The calculation of the dispersion relation was performed
for the spin configuration of domainA. For comparison of
the measured data with the theory, it is convenient to trans-
form the signals from domainsB andC to equivalent points
in domainA. This can be done simply by rotations of the
reciprocal lattice through660°, which change the measured
Q positions from (qa,0,0) to (0,qb,0). The data obtained
from the measurements at (Qa,0,2) belong already to domain
A.

All measured data points of the dispersion relation are
plotted in Fig. 6. The theoretical dispersion relation derived
in Sec. II @Eq. ~10!# was fitted to these experimental data.
The fit included just two free parameters: the value of the
interchain exchange interactionJ8 and the easy-plane anisot-
ropyA. Good agreement between theory and experiment can
be obtained with the values

J8/kB520.0247~12! K,

A/kB53.3~1! K.

The determined value ofJ8 is consistent with the condi-
tion for the stability of the ground state@Eq. ~14!#. It turns
out that CsNiF3 is far away from the transitions mentioned
in Sec. I, and thus neglecting higher-order terms in the
Holstein-Primakoff transformation is expected to be a reli-
able low-temperature approximation. The value for the easy-
plane anisotropyA of 3.3 K is lower than an earlier value
(A1D /kB54.5 K!, determined from neutron scattering ex-
periments using a linear spin-wave theory aboveTN . The
actual difference is even larger, because the new value rep-

FIG. 3. Measured data and fit atQ5~0.8,0,0!; (22222)
magnetic excitation and incoherent background;~————! sum
signal plus background.

FIG. 4. Field dependence of signal atQ5~0.7,0,0!. The solid
lines are guides to the eye. The inset shows the field dependent
intensity of the magnetic reflection at~0.5,0,0!.

FIG. 5. Measured data and fit atQ5~0.8,0,2!; (22222)
magnetic excitation of domainsB andC with fixed energy deter-
mined by the measurements at~0.8,0,0!; (••••••) magnetic excita-
tion of domainA and incoherent background;~————! sum sig-
nal plus background.
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resents the pure crystal field anisotropy, while in the old
measurements the effect of the intrachain dipolar interaction
was not separated from the single site anisotropy.A1D is an
effective anisotropy. To compare these two values one has to
calculate the dipolar anisotropyD in isolated spin chains,
which leads toD'20.64 K. The calculation ofD is pos-
sible by assuming a strictly ferromagnetic ordering of the
spins along the magnetic chain. The good convergence of
dipolar sums in one dimension causes this value to be
reached even for short-range ordered chains. The easy-axis-
type dipolar anisotropyD has to be added to the easy-plane
pure crystal field anisotropyA to give the old value of
A1D5D1A54.5 K.19,20Thus, the value forA from the mea-
surements atT.TN is A/kB55.1 K. A possible source of
this difference is the neglect of the dipolar interchain inter-
action in the model used in the temperature range
aboveTN. Maybe an independent determination ofA by
measuring the dispersion relation along thec direction in the
long-range-ordered antiferromagnetic state (T,TN) is nec-
essary to solve this problem.

The influence of each parameter of the Heisenberg-
Hamiltonian~1! on the dispersion relation is directly visible
at characteristic points of the Brillouin zone. Inserting Eq.
~5! into Eq. ~10! gives the following expressions for the ex-
citation energies at theQ positions ofG, P, X, andS:
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xx2AG
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xx2AP
zz!, ~18!
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yy!~A24J81AP
xx2AS

zz!, ~20!
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yy!~A1AP
xx2AX

zz!. ~21!

The values of the gap at the pointG are determined by the
single ion anisotropy and the dipolar interaction. The in-

plane modeEG
(1) exhibits a gap even without dipolar terms,

but the gap of the out-of-plane modeEG
(2) vanishes in the

case of no dipolar interaction.
Two features of the dispersion relation are very unusual,

and demonstrate the strong influence of the dipolar interac-
tion in CsNiF3: the position of the minimum of the disper-
sion relation and the jump of the dispersion relation at the
Brillouin zone center. Contrary to common spin-wave dis-
persion relations the energy minimum is not found at the
magnetic zone center, but near the magnetic Brillouin zone
boundary. This is due to the strong anisotropy of the dipolar
interaction and the competition of the dipolar and exchange
interaction.

The jump in the dispersion relation at the zone centerG as
shown in Fig. 6 can be viewed at in a similar way as the
well-known splitting of the longitudinal and transverse opti-
cal phonon modes in polar crystals. The LO-TO splitting is
caused by electric long-range dipolar interactions. This is
used, for instance, for the derivation of the Lyddane-Sachs-
Teller relation in solid state physics textbooks~e.g., Ref. 21!.
The splitting is a result of the semiconvergence of dipole
sums in homogeneously polarized systems. This gives rise to
a depolarization field for longitudinal phonons with long
wavelength, but not for transverse modes.

Similar arguments are valid for spin waves in CsNiF3 .
Here, not only the large influence of the dipolar interaction is
important, but also the planar anisotropy, leading to a linear
polarized dynamic magnetization in the out-of-plane and in-
plane modes. This allows one to describe the in-plane mode
in analogy to phonons as ‘‘longitudinal’’ or ‘‘transverse’’
spin wave, depending on the angle between dynamic magne-
tization (qa direction! and propagation direction of the wave
~Fig. 7!. In common notation both are transverse spin fluc-
tuations in respect to the spin orientation. As in the case of
phonons, the ‘‘longitudinal’’ spin waves have the highest
energy~wave propagation alongqa). In the observed plane
of the Q space (qc50) the out-of-plane mode is ‘‘trans-
verse’’ for all spin-wave propagation directions. Thus, the
dispersion relation of this mode exhibits no jump atG.

In summary it is shown that the description of the spin
system of CsNiF3 including long-range dipolar interactions
gives a convincing explanation for the unusual antiferromag-
netic structure and spin dynamics. Especially, peculiar fea-
tures of the spin-wave dispersion relation can only be ex-
plained by a strong influence of long-range dipolar

FIG. 6. The dispersion relation fitted to the measured data. The
numbers at the lower abscissa denotes theq position along thea*
and b* axes in the first Brillouin zone. The letters at the upper
abscissa correspond to special points in the Brillouin zone~Fig. 2!.
The in-plane modeEq

(1) and out-of-plane modeEq
(2) are shown by

the solid and dashed lines, respectively. A striking feature is the
jump of the in-plane mode atG.

FIG. 7. Schematical representation of the spin-wave induced
dynamical in-plane magnetization (⇒) for long wavelengths. Two
cases are shown: wave vectork parallel~a! and perpendicular~b! to
the ordered moments. The dipole energy differs between both cases,
leading to the jump of the dispersion relation atG.
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interactions in CsNiF3. The jump of the spin-wave disper-
sion relation at the zone center has been so far observed only
in very few ferromagnets.22 CsNiF3 is the first antiferromag-
net exhibiting this feature. This is caused by special proper-
ties of the one-dimensional spin system CsNiF3. First, the
strong 1D ferromagnetic order leads to a dipolar interchain
interaction in the same order as the weak exchange interac-
tion J8. Second, the planar anisotropy enforces a special spin
dynamic, which gives rise to a dynamical magnetization pat-
tern in long-wavelength spin waves. This demonstrated once

again that low dimensional magnets are very suitable model
systems to study a wide range of fundamental magnetic
properties.
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