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1/f noise has been measured in detail in a composite system of carbon-wax mixtures using a range of bias
(V) that covered both linear and nonlinear regimes.SV-V characteristics have been obtained and exhibit
structures that can be correlated to those of conductance. It is found that the variation ofS either by the
conducting fraction orV is described by the same power law,Rv, but with different exponents 1.760.2 and
;3, respectively. HereS is the relative noise power andR is the chordal resistance. The noise data are
consistent with results obtained earlier withI -V or dI/dV measurements. It is shown that the data can be
explained by the addition of tunneling bonds as a result of applying voltage. Similar measurements have been
carried out for comparison in samples of conducting polymer and V2O4 which follow Mott’s variable-range
hopping conduction and, thus, are different from mixtures. Differences in noise behavior with respect to the
composites point to the usefulness of extending noise measurements to nonlinear regimes in other physical
systems.@S0163-1829~96!01142-3#

I. INTRODUCTION

Resistance fluctuations have been measured in diverse
physical systems, both homogeneous and inhomogeneous. A
common property of this type of noise, irrespective of the
nature of a given system, is that the power density varies as
1/f l in the frequency (f ) domain wherel is order of unity
~hence the name 1/f noise, also known as flicker noise!.
Apart from this 1/f l variation, the power spectrum is re-
markably featureless. Homogeneous systems~e.g., pure met-
als or semiconductors! are ideal for studying fundamental
properties of 1/f noise.1,2 On the other hand, inhomogeneous
samples provide oppurtunities for studying new features of
1/f noise in an enlarged space of additional variables like
microstructural parameters, applied bias or current, etc.,
other than the usual frequency. Differences between the two
kinds of systems with reference to noise have already been
recognized.3 Consider a generalized version of Hooge’s em-
pirical formula1 for the relative noise power,
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whereSX5^dX2& is the spectral density whenX5R,V,I is
the fluctuating variable.I is the current through sample when
V is the applied dc voltage.R is the resistance defined as
V/I . The value of the exponentgo is believed to be indica-
tive of whether the noise is a driven phenomenon (goÞ0) or
a result of equilibrium resistance fluctuations (go50).1 All
the above relations are assumed to hold at a particular fre-
quency. The form of the functionR depends upon the par-
ticular system under consideration. In homogeneous
samples,S is usually proportional to the resistanceR so that

S;R;R. ~2!

The noise amplitude in a inhomogeneous system is known
to exceed greatly that in a homogeneous system of compa-
rable resistance. This has been seen in artificially fabricated

films.4 This means that the functionR as given by Eq.~1!
must contain quantities that strongly depend upon the details
of microstructure of the system. For example, measurements5

of noise in discontinuous films show

S;R;Rv, ~3!

wherev is close to 2. The physical origin of such different
R dependence lies in the nature of the distribution of fields
which are random in inhomogeneous samples due to random
microgeometry, in contrast to being ordered in homogeneous
samples.

Examples of studies of the flicker noise in inhomogeneous
systems found in the literatures include composites of con-
ductors and insulators,6,7 solid-state devices,8 sliding charge
density wave~CDW! systems,9,11 granular matalerials such
as carbon resistors,12 cermet thick films,13 ZnO varistors,14

and conducting polymers.15 A strong motivation for all these
studies has been the possibility of using 1/f noise measure-
ments as a probe for further understanding of the underlying
complex conduction mechanisms in those systems. A com-
mon feature of the inhomogeneous systems is nonlinearity in
conduction at a sufficiently large bias where the resistance is
no longer independent of the applied bias or current. There-
fore, a study of electrical transport including noise, to be
complete and more useful, should cover both linear and non-
linear regimes in inhomogeneous or disordered systems.

In this paper we will be primarily interested in the prop-
erties of the 1/f noise in nonlinear systems. We present de-
tailed results obtained in carbon-wax composites.16,17 Lim-
ited data obtained in the conducting polymer18 ~CP! and
vanadium dioxide (V2O4) systems are also presented for
comparision. All these samples show nonlinear conduction at
room temperature as a function of the applied voltage. We
pay special attention particularly to those features which are
characteristics of noise in nonlinear regimes. Nonlinearities
may arise in either of two possible ways: existing conduction
mechanism being affected by the driving bias or new con-
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duction channels coming into play as a result of the applied
bias. Thus, it is expected that the behavior of the 1/f noise in
the nonlinear range will be strongly influenced by the par-
ticular mode of the conduction mechanism that comes into
play and, hence, its study should be useful to gain a better
understanding of transport properties in general. Apart from
nonlinear solid-state devices whose noise characteristics
have been measured primarily for practical reasons, there are
very few nonlinear physical systems whose noise properties
have been studied systematically. CDW systems9–11 provide
an interesting example of nonlinear transport that has been
studied by several groups. ZnO varistors have been also
studied in nonlinear regime.14 These studies point to several
questions that relate specifically to description of the noise in
nonlinear regimes:~1! In a nonlinear system the chordal re-
sistanceR5V/I is generally different from the differential
resistanceR5dV/dI. WhichR is relevant in the noise defi-
nition? ~2! Is there any relation betweenS(V) andR(V)? ~3!
Do the fluctuations retain their statistical properties in the
entire range of applied bias? We aim to address these issues
in the discussion of our results except the third one which
will be treated elsewhere.

Transport properties of composite systems have been the
subject of many theoretical19–22 and experimental
investigations23–27 for a variety of reasons~see Ref. 6 for
further references!. Apart from its practical values, a com-
posite system is usually modeled by an ideal random resistor
network ~RRN! that offers an excellent opportunity for
studying theoretically the current or voltage distribution
leading to multifractality6,19 in an inhomogeneous system. A
mixture of conductors and insulators is characterized by the
conductor fractionp. The length scale in such a percolative
system is set by the correlation length having an exponent
n. The latter, together with the percolation probability expo-
nentb, determines the geometrical properties of the conduct-
ing clusters.28 Transport properties require different expo-
nentst andk. The resistance of a composite system tends to
diverge asp approaches from above a critical valuepc ,
called the percolation threshold:R;Dp2t where
Dp5p2pc .

28 It has been found19,20 that the relative noise
amplitudeS in a percolating system also diverges as the
threshold is approached from the conducting side. Expressed
in terms of experimentally more accessible resistance, the
noise is given by

S;Dp2k;Rv, ~4!

wherev5k/t. Numerical simulations21 on discrete random
lattices obtainedv'0.87 and 0.75 ind52 and 3, respec-
tively. However, it was soon realized21,23,29 that to make
comparision with experimental results meaningful required
taking into account the continuum nature of real samples.
This is due to the fact that the bond resistances in continuum
models are given by a power-law distribution rather than a
flat one in the discrete lattice model and that the noise is
expected to be more sensitive to microstructure than macro-
scopic resistance.30 Two models—random void and inverted
random void—were considered. The random-void model
consists of a conducting matrix with insulating holes and the
inverted random-void model has an insulating matrix with
conducting holes. Tremblayet al.21 predicted thatv'3.2

and 2.1 in the random-void model, in two and three dimen-
sions, respectively, while in the inverted random-void model
v'0.87 and 2.4 in two and three dimensions. On the experi-
mental side, there seems to be substantial evidence~includ-
ing present work! that S;R1.722.1 holds inboth two ~gold
or silver films! ~Ref. 5! and three dimensions~carbon-wax!
~Ref. 25! in contradiction to the theoretical predictions. This
value of v is close to that in the random-void model in
d53 but is very different from the predicted values of two
continuum or the discrete lattice models ind52. Even in
those cases where the values ofv have been found to be
close to some predictions of the two models@v50.9 and
'3.4–6 in film,5,26v'3 in AgPt-TFE~Ref. 23!#, the physi-
cal basis for choosing one model over another is not clear.
Several authors5,25,27have mentioned tunneling as a probable
source for discrepencies between experimental and theoreti-
cal values ofv, although not always using convincing
arguments.2 Manteseet al.27 suggested a two-component
model that took into account explicitly an additional compo-
nent from tunneling conduction in explaining the measured
noise in metal-Al2 O3. Recently, there have been
suggestions31 that discrepencies between experiments and
theories may originate partly from the strong non-
Gaussianity in samples particularly close topc . However, no
quantitative results are available yet for estimation of effects
of the non-Gaussianity on the noise exponents.

The discussion in the last paragraph is actually valid for a
linear network only. The literature contains references to dis-
cussions of the noise in at least two networks consisting of
explicitly nonlinear elements.32–34Kenkel and Straley32 con-
sidered a class of resistors whoseI -V characteristics are
given by

V5r uI uasgn~ I !, ~5!

wherea.0. Rammal and Tremblay33 showed that the noise
in such a network is determined essentially in the same man-
ner as in the linear network except thatk ~and other multi-
fractal exponents! now become a function ofa. Notice that
in this case the chordal resistance is same as the differential
resistance except for a constant factor. The analysis, how-
ever, used a generalized resistance defined asV/I a which is
proportional to the chordal resistance at a constant current.
Another approach is to consider elements each one of which
possesses a linear component and a cubic nonlinearity:34

i5s1v1s3v
3, ~6!

wherei is the current flowing through a conducting bond and
v is the applied bias accross the bond.s1 ands3 are coef-
ficients of the linear and nonlinear terms, respectively. A
smallers3 corresponds to weak nonlinearity and a smaller
s1 to strong nonlinearity. It was shown that the noise power
in the linear regime in this model is related to the average
value of the cubic~i.e., nonlinear! coefficient,^s3&. But the
problem of the noise in the nonlinear regime was not consid-
ered. One example of this model is the small nonlinearity
caused by the joule heating in a disordered medium. An
experiment4 has been performed on an artficially generated
random resistor network using this principle. Except for the
heat-induced nonlinearity, we are not aware of any other
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experimental system which has been interpreted by either of
the two nonlinear models mentioned just above.

A systematic study of the flicker noise in composites cov-
ering both linear and nonlinear regimes is presented here.
For comparision, measurements were also carried out in two
other disordered systems like conducting polymer and
V2O4 which are known to have Mott’s variable-range hop-
ping conduction and offer examples having conduction
mechanisms different from those in composites. After the
present review of 1/f noise in inhomogeneous systems as
currently available in the literature, we present experimental
details in Sec. II and results in Sec. III. The results exhibit
several pecularities of inhomogeneity. The noise continues to
increase even though the resistance keeps on decreasing as a
function of the applied bias. The behavior of noise as a func-
tion of the applied bias is closely related to that of the resis-
tance. Section IV contains a discussion of the results. Com-
parisions with relevant previous works are made and existing
models are critically judged and adapted to explain the quali-
tative features of the results. Finally an overview of some
issues related to the noise in nonlinear regimes is made in
Sec. V, particularly highlighting the unresolved ones.

II. EXPERIMENTAL

Low-frequency excess noise power was measured on
disk-shaped~10 mm in diameter, 2 mm in height! carbon-
wax samples under dc excitation by sending constant cur-
rents at room temperature. The samples used for noise mea-
surements are similar to the ones as in Ref. 16 where further
details can be found. This system has a low value ofpc of
0.76% by volume and an exponentt equal to 2.1. Resis-
tances of the samples chosen in the present study ranged
from a few tens of kV to MV ~see Table I!. The powdered
mixture of ferric chloride~0.1 mol! doped polypyrrole was
pelletized in disk-shaped samples under a pressure of 7 ton/
cm2. These conducting polymer samples exhibited variable-
range hopping conduction.18 Pellets of powdered vanadium
dioxide of the same shape have also been prepared using the
same technique. All measurements were made using pressed
circular brass electrode contacts in a two-probe configuration
to avoid capacitive coupling among different segments of the
sample. These contacts have resistances typically less than

0.1% of the sample resistances used for noise measurements.
To reduce extraneous noise sources due to thermal drift and
electrical pickup, the sample holder was kept inside a prop-
erly grounded enclosure made of copper. A constant current
from a programmable constant-current source~Keithley,
model 224! was passed through the sample. The correspond-
ing voltage fluctuations, measured using a digital multimeter
with an integral time of 16.66 msec, were stored in a per-
sonal computer at an interval of 250 msec. Data were taken
in sets of 1024 data points which facilitated performing of
fast Fourier transforms. The resulting power spectra~512
points! were typically averaged over 10–20 sets at each cur-
rent level. These steps were repeated for different currents
~typically 20! for a particular sample. The noise spectral den-
sity was obtained in the frequency range from 7 mHz to 2 Hz
and at dc voltages up to 25 V. To examine it as a function of
the applied bias, an average noise at 0.5 Hz was used
throughout this work. For this purpose, the noise power was
first averaged over all data sets at a fixed current and then
obtained as the average over a band of five frequencies~be-
tween 0.492 and 0.507 Hz, both inclusive! centered around
0.5 Hz. Samples were monitored to detect any possible~lin-
ear! resistance drift during an experiment by switching be-
tween the currently applied bias and a low bias. Such moni-
toring was, however, practicable only before a sample
reached the ‘‘saturated state.’’ Otherwise, currents were in-
creased in steps monotonically. After every change in cur-
rent, sufficient time was allowed to pass for the sample to
stabilize before data were acquired again. At a very high
sample current a drift was observed. Results reported here
were obtained with samples at voltages where there was no
or negligible drift in the linear resistances.

It should be mentioned that aliasing can occur in any dis-
crete sampling method such as the present one, thereby in-
troducing some error in the spectrum power. The error at 0.5
Hz due to the power at 3.5 Hz is estimated to be about 7%.
However, any antialiasing measure was considered to be un-
important in the context of the present work where the focus
is on the variation of noise power with the applied bias rather
than with frequency, and the effect of aliasing at a particular
frequency is expected to be independent of the applied bias.
The noise level of electronic devices used in these experi-
ments was compared to that of the sample and found to be
less by at least five orders of magnitude. The noise from the
contacts was expected to be insignificant compared to that of
the sample noise as the contact areas were large. The order of
magnitude of the noise levels in a sample was same when
measured by applying a constant voltage across the sample
and recording the corresponding current fluctuations. Volt-
age fluctuations were also recorded by sending a constant
current through the sample drawn from a battery and having
a wire-wound ballast resistor connected in series, and the
same level of noise power was observed.

III. RESULTS

Figure 1 shows typical noise power spectrumsSV( f ) in a
carbon-wax sample with linear resistanceR05880 kV as a
function of frequencyf at three different voltages. Each
curve has a basic 1/f feature in that the slope marked on the
curve is of the order of 1. The same is true for samples of

TABLE I. Parameters of carbon-wax samples.R0 is the linear
resistance. 21go is given bySV;V21go at low bias.vV is given by
S;RvV for a given sample.SV andS are noise power at a constant
current and relative noise, respectively.R is the chordal resistance.

R0(kV) 21go vV

40 1.7 5.9
65 2.0 3.2
92 1.7 1.7
200 1.8 2.8
450 1.5 2.1
600 1.7 3.9
700 1.3 4.5
900 2.0 4.6
1300 1.6 2.6
2000 1.8 2.0
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different resistances~i.e.,p). Slopes in various samples were
within the range of 0.9–1.3. No apparent correlation between
slopes and sample resistances or applied voltages in the
range studied could be detected.

Figure 2~a! shows the voltage dependence of the excess
noise power at 0.5 Hz~solid symbols! and the resistance
(R5V/I , open symbols! of a carbon-wax sample with
R0592 kV. The error inSV may arise from two sources:
The first one is statistical, the relative error being equal to
1/A5N, whereN is the number of data sets at a particular
current and is between 10 and 20; the second one is current-
to-current fluctuation in a given sample. The magnitude of
the statistical error is about the size of a symbol in Fig. 2~a!,
whereas the second error could be guessed only from the
data and is perhaps the dominant one in the present case. It is
evident that the noise curve is quite structured. Thus, the
determination of the structure will be limited by the finite
number of voltages at which noise has been measured. The
noise data seem to have three identifiable regimes indicated
roughly by two labeled arrows and characterized by different
slopes. In view of the nature of theSV-V curves in Figs. 2–4
let us define a quantityg given by

21g5
dlnSV
dlnV

. ~7!

The first regime at voltages less thanVo represents a power-
law relation, indicated by the solid line with a slope of 1.73
(go 5 20.27). Clearly,g is equal to the constantgo in the
first regime. The second regime betweenVo andVs is dis-
tinguised by the fact that the noise in this regime increases
less rapidly than in the first regime. The voltageVo at which
the departure from the power-law behavior occurs is seen to
be close to the onset of nonlinearity wherefromR starts de-
viating rapidly from its linear value. The third regime at

voltages greater thanVs is rather small in the figure but
corresponds to one where the noise curve assumes an overall
concave shape with the slope being larger than that in the
second regime. The value ofVs is of the order of voltages at
which dI/dV was found to approach saturation.17 This sug-
gests correlation of the noise powerSV with the nonlinear
conductance. Let us denoteg in the third regime bygs which
is clearly less thango . Similar data as in Fig. 2~a! of an
another sample withR052 MV are shown in Fig. 2~b!
where the first regime is less and the third regime is more
extensive than those in Fig. 2~a!. Here again the indication is
thatgs,go . The limited range of the third regime and fluc-
tuation in the data make it very unreliable to conclude from
the data alone whethergs is constant~i.e., power law! or is a
function ofV. Later it is shown thatgs is indeed a function
of V. 21go along with R0 of some samples used in the

FIG. 1. Log-log plot of three noise spectral powerSV( f ) vs f for
a sample of resistance 0.88 MV at three voltages (V). Each solid
line is a fit to a power law. The applied voltage and the correspond-
ing value of the power-law exponent are indicated on each curve.

FIG. 2. Plots ofSV vsV for two samples of linear resistances as
shown in~a! and~b!. The arrows roughly delineate three regimes as
discussed in the text.Vo andVs denote onset and saturation volt-
ages for the nonlinear conductance. The solid lines are fits as dis-
cussed in the text. Dashed curves are only guides to eyes. Typical
statistical error inSV is as indicated.
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present work is presented in Table I. 21go has an average of
1.760.2.

In Fig. 2 it is seen that even while the resistance continues
to decrease as the applied bias is increased beyond the onset
voltage, the absolute noise power keeps on increasing, albeit
slowly. This behavior is contrary to that in homogeneous
systems. This gives rise to the possibility that the noise suit-
ably normalized by some function of the varying resistance
may be described by a single function. That it is indeed so is
shown in Fig. 3 where the sameSV of Fig. 2 is plotted after
being normalized byRvV. Values ofvV used for these two
samples as well as for others are given in Table I. The dis-
tinct structures in Fig. 2 are no longer there and the data of
each sample fall in a single line. This means that for com-
posites, the noise of a sample at af ixed p as a function of
the bias can be written as

SV;V21goRvV. ~8!

Equation~8! holds inboth linear and nonlinear regimes. In
practice, in cases wherego could be reliably determined as
in Fig. 2~a!, SV /V

21go was fitted toRvV by treating the
powervV as a fitting parameter. This ensured that the log-
log plot of SV /R

vV vs V has the same slope as 21go . In
other cases@e.g., the sample withR05 2 MV in Fig. 2~b!#
wherego cannot be reliably determined, the powervV was
found by trial and error. In such cases 21go was assumed to
be equal to the slope of a plot such as shown in Fig. 3. Fits
for most of the samples were good but values ofvV were
found to have some degree of scatter as evident in Table I.
vV has an average of;3 ~excluding the value of 5.9!. Gen-
erally,vV is larger than 21go .

Figure 4 shows similar data as in Fig. 2 but obtained in a
conducting polymer sample. The noise data are seen to have
only two distinct regimes characterized by two different
slopes. However, in this case the noise at large bias increases
more rapidly than at lower bias in contrast to the situation in
carbon-wax. However, as in the latter, the voltage at which

this change in slope occurs coincides with the onset of non-
linearity. The data after the onset of nonlinearity cover more
than four orders of noise power and are tentatively assumed
to be governed by a power law. We havego'20.9 and
gs'1. The data in vanadium dioxide are similar to those in
conducting polymer. In this casego andgs are about20.9
and 0.5, respectively. Significant deviation from the qua-
dratic dependence of the noise power on the applied voltage
is thus found even at low voltages~linear regimes!. The
dashed curve represents the best fit of the entireSV-V to a
function

SV;V21goexp@a~R0 /R!b#, ~9!

wherea;0.6 andb;1.8. The particular choice of the fitting
function in Eq.~9! was prompted by the fact that while the
resistance decreased by a factor of 5 only, the noise ampli-
tude increased by more than four orders of magnitude. It is
worthwhile to remember that with the fitting function involv-
ing an exponential, the fitting parametersa andb are very
susceptible to any noise in the data. Hence the values should
be treated with some caution. For the purpose of comparing
noise behavior of the three systems, we plot the generalized
relative noise powerS84S/Vgo at 0.5 Hz normalized by its
value in the linear range as a function ofV as shown in Fig.
5. Differences and similarities among the three systems in
the nonlinear range are clearly brought about in this particu-
lar plot.

Figure 6 shows plots ofSV vs V for several carbon-wax
samples of different resistances~i.e.,p). It is evident that the
variation of the noise withR in the nonlinear regime is much
less than that in the linear regime. The log-log plots of the
noise spectral densitySV vsR0 are shown in Fig. 7 for vari-
ous samples at 0.1 and 5 V asmarked. Over a wide range of
linear resistancesR0, the data at 0.1 V~open circles! are
fitted by a power law with the exponentv51.760.2~4!.
Sincev5k/t andt52.1,16 k'3.6. Corresponding values in

FIG. 3. Log-log plot of normalized noise powerSV~f!/RvV vs
V. Slopes are as indicated. Values ofvV are given in Table I.

FIG. 4. Log-log plot ofSV vs V for conducting polymer of
linear resistance as shown. The solid line is a fit as discussed in the
text. The dashed curve is only a guide to eyes. Typical statistical
error inSV is as indicated.
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the saturated state arevs'0.5 andks'1.1. It may be men-
tioned that no substantial difference was noticed using the
noise power at another frequency such as 1 Hz.

IV. DISCUSSION

A. General

Data presented so far indicate quite unambiguously that
while the noise spectral density in the frequency domain re-
mains insensitive to a change in the conduction behavior
~Fig. 1!, it as a function of the applied bias does show a

characteristic dependence~Figs. 2–5!. Dependence ofSV on
V, on the one hand, is different in linear and nonlinear re-
gimes of a given sample and, on the other, is also different
among various systems with different conduction mecha-
nisms. This supports the expectation that the noise in the
whole range of applied bias could be useful as a probe of
transport properties in disordered materials. Let us first con-
sider the conclusions that follow from general consider-
ations. Note that the identities in Eq.~1! still remain valid
providedR is the chordal resistance,V/I . As long as a sys-
tem is in linear regime~i.e., lowV), R and, hence, the gen-
eralized relative noiseS8 are constant, i.e., independent of
applied bias. In real samplesgo may have a nonzero value.
When go50, S84S. Both R and R are expected to be
smooth functions of their arguments, namely,R andV, re-
spectively. Then, it follows from Eq.~1! that initially at low
voltagesSV will be dominated by the strongly varying factor
of V21go ~provided 21go is not small!. As the applied bias
is sufficiently increased, nonlinearity in conduction will be
more pronounced. Naturally, the mechanisms that are re-
sponsible for the nonlinear effects will also cause noise to
deviate from the power-law behavior in the linear regime.
Hence, correlation of the noise with the onset of nonlinearity
as seen in Figs. 2 and 4 appears quite natural. Generally,
SV(V) will have characteristics closely related to those of
R(V). This has been amply demonstrated in systems like
CDW conductors such as TaS3 ~Ref. 10! and organic
conductors.35 From Eqs.~7! and~1! we can obtain a general
expression ofg:

g5go1
V

R
dR
dR

dR

dV
. ~10!

At low bias g'go . In all our samples,dR/dV,0; i.e., the
resistance decreases with bias. Thus, forV.Vo , depending
on the sign ofdR/dR, gs will be less or greater thango .

FIG. 5. Plots of normalizedS8(5S/Vg0) vs V of three types of
disordered systems.

FIG. 6. Plots ofSV vs V of three carbon-wax composites of
linear resistances as shown against each curve. The solid lines in-
dicate the power-law fits up to the onset voltage. Typical statistical
error inSV is as indicated.

FIG. 7. Log-log plot of noise powerSV~f! at 0.5 Hz vs initial
sample resistanceR0 for V50.1 and 5 V. The straight lines indicate
power laws with exponents as indicated. Typical statistical error in
SV is as indicated. However, sample-to-sample fluctuation is much
larger than the statistical error in a single sample.
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gs will be, in general, a function ofV. Figure 8 shows sche-
matically a situation whereg decreases after the onset of
nonlinearity (V;Vo) and then keeps increasing, giving the
SV-V curve a concave appearance forV.Vo . Obviously, it
is the nature of the conduction mechanism that will deter-
mine the exact nature of the curve after the onset of nonlin-
earity. Differences between composites and other two sys-
tems as seen in Figs. 2, 4, and 5 are indeed due to different
conduction mechanisms in these systems. Composites are
prototypes of a percolation phenomenon.28 It is generally
believed that nonlinear conduction in composites results
from tunneling between dangling clusters.36,16,37In contrast,
conduction mechanisms in the other two systems are de-
scribed by variable-range hopping,18,38 but the mechanism
for nonlinearity remains ambiguous.

From Eq.~1! we haveSV;V21go in the linear regime. On
the average,go is found to be;20.3 in carbon-wax and
;20.9 in the CP and V2O4 samples. The value ofgo in
carbon-wax is small and agrees with those obtained in sev-
eral composites earlier,23,24 signifying that noise can be as-
cribed to equilibrium resistance fluctuations. But it is evident
from Table I thatgo tends to be definitely less than 0. Values
of go in the other two systems show that equilibrium resis-
tance fluctuation alone cannot account for the noise even in
the linear regime.go was earlier found to lie between
20.5 and20.3 in polypyrrole thin-film resistors.15 It was
suggested that a shot noise component which varies linearly
with the current or voltage may be responsible for negative
values ofgo . It may be noted that most of the inhomoge-
neous systems found in the literatures have had noise mea-
surements performed only in the linear region of the applied
bias although not always stated so explicitly. Next we con-
sider the results of the carbon-wax system in detail and a
model to explain qualitatively those results. The other two
systems will be considered later.

B. Carbon-wax: SV-V curves

Studies of nonlinearity in gold films36 and carbon-wax
mixtures16,17,37in the last several years led to increased un-

derstanding of its behavior. Initially, the conduction is
Ohmic at small~dc! bias. When the bias is increased beyond
a certain valueVo called the onset bias, the conductance
starts increasing from its linear value. As the bias is further
increased, the differential conductance tends to saturate at a
higher level. Thus, the nonlinear behavior of a composite
system is governed by two voltage scales: the onset voltage
Vo and the saturation voltageVs , which characterize the
approach to saturation. BothVo andVs scale with the linear
conductanceSo asVo;So

xo andVs;So
xs wherexo'0.4 and

xs'0.06. The saturated state at high voltages (.Vs) has the
transport exponentts different from the corresponding value
in the linear regime, t. In fact, ts5ct where
c50.7660.07.17 Such a state has been called an ‘‘altered
percolation system.’’

Gefen et al.36 proposed a model that, in spite of some
limitations particularly at high bias,16,17 gives a reasonable
description of nonlinear conduction at low bias in a compos-
ite and correctly predicts the scaling of the onset bias. This
model, called a ‘‘dynamic random resistor network’’
~DRRN! model, considers a network consisting of conduct-
ing and insulating bonds with the conducting fraction
p.pc . An insulating bond has the property that if the volt-
age across it is larger than a certain critical voltage it be-
comes conducting. For sufficiently low applied voltage
across the network the current flows only through the back-
bone of the percolating system so that the conduction is lin-
ear. As the applied bias is increased, some insulating bonds
will have voltages accross them exceeding the critical volt-
age and, hence, will start conducting, thereby causing mac-
roscopic conduction to be nonlinear. In real samples, there
will be conducting clusters branching off the backbone~dan-
gling clusters!, separated by insulating regions of very small
widths. It is expected that tunneling or hopping conduction
will take place through such regions, thus providing extra
paths for electrons. It must be clearly understood that the
tunneling in thenonlinear regime just described is different
from the one~i.e., two-component fluctuation! considered by
several authors27,6,39in the l inear regime. The latter is of no
relevance here.

Upon comparison of Fig. 8 with the data of carbon-wax
composites in Fig. 2, one observes considerable similarity
between the two in that the noise curves indeed appear to be
a power law at small voltages and are generally concave after
the onset of nonlinearity. However, the noise curves in real
samples have plateaus in the second regimes just after the
onset. In view of the behavior of the conductance described
above, this is not surprising. There are two characteristic
voltagesVo andVs . The smaller oneVo has been already
identified with the onset voltage. The voltage@;0.3 V in
Fig. 2~a!# at which a noise curve changes its slope has been
plotted as a function of the initial conductance~1/R0) of
different samples. The slope of the log-log plot is found to be
'0.4 which is in very good agreement with the value of the
onset voltage exponent determined earlier fromI -V ~Ref. 16!
anddI/dV ~Ref. 37! measurements at the room temperature.
The value ofVs is of the order of voltages at whichdI/dV
were found to approach saturation.17 This confirms the cor-
relation of the noise power,SV with the nonlinear conduc-
tance. Interestingly, Manteseet al.24 observed in Ni-Al2O3

FIG. 8. Schematic plot of a type ofSV-V curve whose slope
decreases at the onset voltageVo . See text for further discussion.
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composites that initially the noise amplitude increased qua-
dratically with the applied voltageV. As the latter exceeded
a certain value, the noise amplitude increased only linearly.
Both these variations were reported to have taken place in
the Ohmic regime, somewhat contrary to the observations in
the present work. However, no explanation was given. The
fact that the variation at higher voltages was less than that at
low voltages is consistent withgs,go found in this work
~see Fig. 2!. Kusy and Kleinpenning14 measured noise in
ZnO varistors mostly in the linear range. But some measure-
ments extended to the nonlinear range as well. It was found
thatS in this case also decreased in the nonlinear regime as
in composites. Since a varistor sample can be thought of a
network of ZnO grains and thin insulating layers separating
the grains, a model involving tunneling channels as in com-
posites may explain the data.

SV-V curves are structurally similar toI -V curves. But the
question of an exact relationship still remains open. An em-
pirical answer is provided by Eq.~8! which, as recast below,
may be considered a generalized version of Eq.~3!:

SV5AV21goR0
v~R/R0!

vV, ~11!

whereA is a constant. To emphasize, we restate again that
vV(;3) is different fromv(;1.7). Equation~11! gives the
noise amplitude in a closed form as a function ofV at a fixed
p and, thus, is useful in describing the noise in the whole
range ofV. An explanation of~11! should provide an addi-
tional challenge for modeling the nonlinear state, in general,
and the saturated~altered! state, in particular. The result may
be compared with the bias dependence of the noise found in
CDW systems where the latter was given byIdR/dV.10 Us-
ing the knowledge of conduction in large bias17 it is possible
to derive from Eq.~11! some relations among various quan-
tities. For largeV.Vs in the saturated state, thedV/dI ap-
proaches the asymptotic valueR`(p) so that

R'R`V/~V2l!, ~12!

wherel is a quantity depending onp only. Thus, using Eq.
~12! in Eq. ~11!, SV at largeV could be rewritten as

SV;V21goR0
v2~12c!vVS V

V2l D vV

. ~13!

In the above we have used the fact thatR`;R0
c, wherec is

same as defined earlier.17 Using Eq.~13! in Eq. ~7! one ob-
tains an expression forgs in composites forV.Vs :

gs5go2
vV

~V/l21!
. ~14!

Equation~14! confirms thatgs,go . The relation also shows
that gs increases withV and asymptotically approaches
go . Consequently,SV should be a concave function ofV for
V>Vs as shown schematically in Fig. 8 and Fig. 2. The solid
lines in Fig. 2 are fits of resistance and noise power for
V.Vs to Eqs.~12! and ~13!, respectively. The values ofl
used were 1.3 and 1.4 forR0592 kV and 2 MV respec-
tively. Excellence of the fits indicates how well two indepen-
dent transport measurements~i.e.,dI/dV and noise! corrobo-
rate each other.

C. Modeling of noise in nonlinear composites

In conductor-insulator mixtures such as the carbon-wax
system the relative noise decreases withV after the onset of
nonlinearity~Fig. 5!. This is essentially due to the increase in
the number of fluctuators, which generally results in the de-
crease in the noise amplitude. It is recalled that the nonlin-
earity in the DRRN model arises from the appearance of
extra parallel conduction channels with the increase in bias.
In the context of noise this means that the nonlinearity is
accompanied by an increase in the total number of fluctua-
tors or, equivalently, the system size. We now show that
addition of parallel resistors to an existing network, under
certain conditions, does lead to a decrease in the total noise
of the network. For this purpose, it is sufficient to consider
the result of the addition of a single resistor in parallel to a
given network. Consider a single~ohmic! resistor of resis-
tancer and relative noiseSr ~inset of Fig. 9!. Let us connect
an another~ohmic! resistor of resistancer t and relative noise
Sr t to it in parallel and denote the noise of the parallel com-
bination bySpar. Using composition rules based on Cohn’s
theorem20 the change in noise,DS5Spar2Sr , can be written
as

DS52SrxFx~12y!12

~11x!2 G , ~15!

wherex5r /r t and y5Sr t /Sr . DS is plotted in Fig. 9 as a

function of x for different values ofy. It is seen that for
small x or large r t the noise decreases irrespective of the
noise level of the parallel resistor. However, if the latter is
too noisy ~i.e., y.1), the noise may increase (DS.0) for
largex. Figure 10 shows two more examples of a modified
star triangle~upper! and a simple fractal~lower! in the form

FIG. 9. Plot to indicate the effect of adding a parallel resistor of
resistancer t ~inset, dotted line! to a single resistor of resistancer
~inset, solid line! on relative noise.DS is the change in the relative
noise.Sr andSr t are relative noise powers of the resistorsr and
r t , respectively.
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of a one-dimensional Koch curve of stage 1 where the added
resistors are shown with dotted lines. The change in noise for
the modified star triangle is

DS52
Srx
4 F8x2113x22xy16

~4x217x13!2 G ~16!

and that for the Koch curve of stage 1 is

DS52
Srx

2 F2x312x21~4y21!x21

~2x213x11!2 G . ~17!

DS in both cases shows same qualitative behavior as in Fig.
9.

The decrease in the noise of a network due to the addition
of resistors in parallel as examplified by the above results
appears quite plausible when we consider the general expres-
sion of the noise in a network:22

S5Se(
a

S ga

G D 2SVa

V D 4, ~18!

whereSe is the relative noise of a conducting bond.ga is
conductance of the bonda andVa is the voltage accross the
bond. The addition of a resistor in parallel is equivalent to
changing the conductance of that particular bond from 0 to a
small valuegb . This leads to an increase in the network
conductanceG by dG5gbVb /V

2 whereVb is the voltage
accoss the bondb when the network is held at a fixed volt-
ageV.22 For a change of conductance of the bondb, the
change in the total noise,DS, can be determined using Eq.
~18! to first order ingb as in the following:

DS/Se5(
a

4S ga

G D 2SVa

V D 3S dVa

V D2(
a

2S ga

G D 2SVa

V D 4 dG

G
.

~19!

The second term on right-hand side is negative since
dG.0 and is of the order ofgb . The first term may be
written as

(
a

4S gaVa
2

GV2 D S gaVadVa

V2 D .
For bonds far from the bondb, dVa'0. Furthermore,
(agaVadVa50 as a consequence of Kirchoff’s law.22 Even
if the weight factor of fractional power dissipation makes
this sum nonzero, the first term is expected to be less than the
second term so that noise should decrease. The condition that
gb be small should be easily met in real samples as tunneling
bonds are expected to be of much higher resistances than
those of regular bonds.

D. Disordered materials

Now we discuss noise in two other disordered systems,
namely, conducting polymer and V2O4, which are essentially
a one-component system and, hence, different from mix-
tures. Data from another such system~ZnO! were obtained
before14 in both linear and nonlinear regimes but were pre-
sented without highlightingSV-V characteristics as done in
Figs. 4 and 5. A comparision of the two systems with Fig. 8
shows that the noise curves change very rapidly from a
power-law behavior atV,Vo to another apparent power-law
behavior~constantgs) for V.Vo . There is also no indica-
tion of any second voltage scale as in composites. In this
case we can derive an empirical expression for theI -V curve
at high voltages using Eq.~9!. Assuming thatSV;V21gs for
V.Vo , we haveV21gs;V21goexp@a(R0 /R)

b# so that

I;
V

R0
S gs2go

a
lnVD 1/b ~20!

for V.Vo and I5V/R0 for V,Vo .
The most important difference between composites~Fig.

2! and conducting polymer~Fig. 4! is thatgs is negative in
the former but positive in the latter. In other words, the noise
increases at a faster rate withV in the nonlinear regime than
in the linear regime in the two disordered systems. The
analysis of noise data in disordered materials is hindered by
a credible theory to explain the experimental data on nonlin-
earity in such systems.38 Thus, in the absence of a guiding
theory, it may be instructive to consider different situations
that will cause the relative noise to increase with the bias.
One possibility is the addition of parallel conduction chan-
nels as in the DRRN model for composites. It is seen in Fig.
9 that in a certain parameter range~e.g., r /r t;1 and
Sr t /Sr;1), DS can become positive; i.e., the relative noise

increaseswith the addition of a parallel resistor. To see
whether such a possibility may exist in the case of systems
exhibiting variable-range hopping conduction, we note that
the electronic transport in such systems may be mapped into
an equivalent random resistor network.40 Conduction in the
hopping mechanism, which is a phonon-assisted quantum-
mechanical tunneling of an electron from one localized state
to another, is influenced by an external field. The probability
of an electron transfer between the sites randomly distributed
in space and energy depends exponentially on the external
field. With the increase in field, the hopping probability of

FIG. 10. Two examples of simple networks. The upper one is a
star triangle and the lower one is a one-dimensional Koch curve of
stage 1. Dotted bonds represent additional parallel bonds.
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the electrons increases and the electrons can hop to more and
larger distant sites. This will lead to a rearrangement of the
equivalent network and, hence, the equivalent resistance of
the network changes. This fact can be pictured as follows:
After some critical field extra paths are generated in the sys-
tem which are similar to the original paths and the resistance
of the system decreases as a result of these extra parallel
paths.

Another possibility is to consider a network consisting of
elements which are assumed to possess the following simple
nonlinearI -V characteristics:

V5r 1I1r 2I
a, ~21!

wherer 1 ,r 2 are two constants anda.1. For r 2,0 the net-
work resistance will decrease with the applied bias. Such
elementalI -V characteristics have been considered earlier36

for composites but their prediction regarding the onset cur-
rent exponentxo was found to be at variance with the experi-
mental observations. In fact, the same is true also in case of
the conducting polymer.38 Nevertheless, the calculation of
S for such I -V as in Eq.~21! serves to bring out several
features of noise in nonlinear regimes. Obviously it is not
possible to calculate analyticallyS for an arbitrary network.
Instead we focus on the noise of a single element and attempt
to draw conclusions for a general network. Let us define
S15^dr 1

2/r 1
2&,S25^dr 2

2/r 2
2&, and S125^dr 1dr 2/r 1r 2&. Here

the notation is as usual. In terms of these definitions we have
the relative noise given by

S5~S1r 12I 21S2r 22I 2a12S12r 1r 2I a11!/V2. ~22!

This equation illustrates the complexity when the noise is
characterized by more than a parameter. From Eq.~22! it
follows that if either of r 1 andr 2 is zero, the noise is inde-
pendent of bias. In particular, we obtain an unexpected but
interesting result that a network of nonlinear elements de-
scribed by such a strong nonlinear relation as Eq.~5! fails to
exhibit the voltage-dependent noise. It may be recalled that
the noise data in ZnO-based varistors which are thought to
be described by a relation like Eq.~5! were explained by
invoking contribution from tunneling. To examine the varia-
tion of S with bias, we calculate the derivative of Eq.~22!
with respect to current:

dS
dI

52~a21!r 1r 2I
aF r 2~S22S12!I a212r 1~S12S12!

V3 G .
~23!

Assuming thatS1.S12 andS2.S12 it follows from Eq.~23!
thatdS/dI is always positive forr 2,0 and smallI . In other
words, a random resistor network consisting of nonlinear el-
ements such as given by Eq.~21! allows an increase in the
relative noise with the bias as shown in Figs. 4 and 5. How-
ever, whether an arbitrary network will exhibit~an apparent!
power law for S-V in the nonlinear range remains to be
verified.

E. Noise exponents in composites

Let us now discuss variation of the noise amplitude due to
microstructural factors in composites. The later are charac-
terized by the conducting fractionp which determines the

~linear! resistance. In two other systems,p is not a relevant
parameter to change the resistance which is usually changed
by varying the temperature.14 In the linear range~i.e., low
V) the value of the exponentv is 1.7~Fig. 7! which is same
as that found by Chen and Chou25 also in carbon wax. How-
ever, it has been already noted2 that the explanation in terms
of number fluctuation of the charge carriers in tunneling put
forward by the authors is untenable. As discussed in the In-
troduction the value of the exponent cannot be explained at
present satisfactorily by any existing theory.

At high voltage, this system enters into a saturated state
characterized by a different conductivity exponentts which
is less than the usual conductivity exponentt. In this state at
V55 V, the noise exponentvs is found to be 0.5~Fig. 7!
which is less thanv in the linear range, i.e., 1.7, and even
less than unity@Eq. ~2!# in a homogeneous sample. Thatvs
is less thanv may be rationalized by the fact that a sample
tends to be more homogeneous in terms of the conducting
bond distribution as the bias is increased. Following this
logic, one would then expect that as a sample approaches the
saturated state the noise exponent would monotonically de-
crease~from 1.7! towards unity. Thus, the fact that the value
of vs is less than 1 cannot be reconciled by this argument.
Almost same results are obtained atV510 and 20 V. The
two exponentsvs and v are, however, related. From Eq.
~13! it follows easily that

vs5v2~12c!vV . ~24!

The above relation is interesting in the sense that two quan-
titiesv andvs by definitions must involve different samples
with differentp’s whereasvV is obtained basically with only
one sample at a time. Large uncertainities in the quantities in
Eq. ~24!, however, make the relation rather less useful. Put-
ting v51.7 andvV;3 in Eq.~24! givesvs;(160.6) com-
pared to 0.560.1 determined directly.

V. CONCLUSIONS

It is quite evident from the previous discussion thatSV-
V characteristics of inhomogeneous or disordered systems
can be quite structured and are somewhat analogous toI -V
characteristics in carrying information on transport proper-
ties of these systems. Not only should measurements of these
two characteristics be useful in understanding especially the
nonlinear conduction, but it could be also used for verifying
the consistency of a transport model as has been done in the
case of composites. We described how results obtained from
independent measurements ofdI/dV in composites were
useful in interpreting the noise data in a consistent manner.
In the same way, it is hoped that the noise data would prove
useful in building a suitable model of nonlinearity in the
disordered systems. It is well known that the noise involves
the fourth moment of the current distribution whereas the
resistance involves the second moment. Hence the noise is
expected to be more sensitive to any change in the current
distribution as a result of the onset of nonlinearity than the
resistance. For example, not only is the sign of change in the
relative noise power after the onset of nonlinearity different
from that of the resistance in Mott systems, but also the noise
increased by more than four orders of magnitude while the
resistance decreased by a factor of 5 only.
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It is significant that the functional dependence ofS on the
resistance varied by eitherp at a f ixed V or V at a
f ixed p is given by the same power law although the expo-
nentvV at a f ixed V is different and larger than the expo-
nentv at a f ixed p. This once again highlights the differ-
ence between the usual random and the correlated
percolation problems. The nonlinear states of the composites
are examples of a correlated dynamical percolation system.17

The linear states correspond to the usual random percolation
problem. The saturated states at high voltage are where
dI/dV becomes constant andS8 also tends to a constant
value @Eq. ~13!#. These states have both transport exponents
ts and vs different from their values in the linear regime. A
proper model of this state is still lacking. This is also empha-
sized by the fact thatvs is less than unity. The reasons for
the relatively large sample to sample scatter in the values of
vV are also not clear.

Through the introduction of the functionR we have tried
to suggest a framework to analyze the noise data in the entire
range of applied bias. Generally speaking, the form of the
functionR should be a characteristic of the particular nature
of inhomogeneity or disorder in a given physical system. We
see that whetherR of a composite system is varied by either
p or V,R remained a power law. In a conducting polymer or
V2O4, R is, tentatively, of the form exp@a(R0 /R)

b# when

R is varied by changing the bias. It will be interesting to find
out what happens to these functional forms asR0 is varied by
changing the temperature which is expected to alter bond
resistances in a system differently than the bias. Tempera-
ture, unlike in homogeneous systems, plays a strong role in
the systems under investigation. In ZnO-based varistors,R0
was varied using temperature.14 It was observed that
R;R0 but has a functional dependence onV qualititatively
similar to that of a composite.

An unresolved issue concerns the value ofg0. It has a
small negative value in composites but is significantly differ-
ent from zero in disordered materials.

Note added in proof.We came to know of the following
references which are relevant to the present work. A. A.
Snarskii, A. E. Morozovsky, A. Kolek, and A. Kusy, Phys.
Rev. B53, 5596~1996!; A. E. Morozovsky and A. A. Snar-
skii, Int. J. Electron.73, 925 ~1992!; Sov. Phys. JETP68~5!,
1066 ~1989!.
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