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Zig-zag version of the Frenkel-Kontorova model

P. L. Christiansen, A. V. Savinand A. V. Zolotaryuk
Institute of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 2 May 1996

We study a generalization of the Frenkel-Kontorova model which describes a zig-zag chain of particles
coupled by both the first- and second-neighbor harmonic forces and subjected to a planar substrate with a
commensurate potential relief. The particles are supposed to have two degrees of freedom: longitudinal and
transverse displacements. Two types of two-component kink solutions corresponding to defects with topologi-
cal charge€Q==*1,+2 have been treated. The topological defects with positive ch@sgess of one or two
particles in the chajnare shown to bémmobilewhile the negative defectsacancies of one or two particles
have been proved at the same parameter values toobde objects. In our studies we apply a minimization
scheme which has been proved to be an effective numerical method for seeking solitary wave solutions in
molecular systems of large complexity. The dynamics of both these types of defects has also been investigated.
[S0163-182696)03041-X

[. INTRODUCTION potential and of the peculiar form of the intersite interaction,
namely pure repulsion. However, many realistic quasi-1D
The well-known Frenkel-KontorovéFK) model was  molecular crystals are formed by parallel zig-zag molecular
originally introduced in the theory of dislocations in sofids chains. In this case, the zig-zag ground state is formed, in the
to describe the simplest situation when a chain of atoms iffirst turn, by the presence of both the first- and second-
crystal is assumed to contain a dislocation, while its crystaheighbor interatomic(or intermolecular interactions and
environment is modeled by a periodic one-dimensidhal) only then by the interaction of the chain particles with the
substrate potential. Afterwards, this chain model has extenchain environment. The latter interaction may be modeled by
sively been used for modeling nonlinear dynamical processes 2D substrate potential with a zig-zag relief. Then no dimer-
in a variety of condensed mattef and biophysicdlsystems. ization effects take place and the topological solitriaks
However, in real physical systems, even in quasi-1D chainand antikink$ that describe only dislocations, can exist in
(e.g., in biomolecules besides the longitudinal direction such a system.
(along a chaiiy the particlegatoms or moleculgscan also The purpose of the present paper is to study a zig-zag
move in one or two perpendicular directions and thereforggeneralization of the 1D FK model. The chain particles
generalizations of the standafdD) FK model including oms or moleculesare supposed to be harmonically coupled
transversedegrees of freedom are of great interest. In parvia the first- and second-neighbor interactions forming a
ticular, the investigations on the two-dimensiongD) stable zig-zag structure on a surface even if the chain is
scalat®? and vectol*'* generalizations of the model, considered as an isolated objéttext, this chain is placed
which appear to be very complicated systems, should b the planar substrate potential with degenerate minima
mentioned. On the other hand, it is reasonable from thevhich exactly coincide with the vertices of a zig-zag back-
physical point of view to consider also simplified quasi-1D bone (only the commensurate situation is considered in the
chains where the particles are allowed to move in two direcpresent papér Then a certain 1D zig-zag-like “channel”
tions on a plane. Thus, the Braun-KivshBK) model® has  appears in this 2D potential relief, along which the global
been suggested to describe a chain of atoms interacting viamainima (situated at the zig-zag vertigeand the barriers of a
specific repulsion potential and subjected to the 2D substrateaddle form alternate along the longitudinal direction of the
potential which is periodic in the longitudinal direction and chain. The zig-zag relief with such properties gives rise to
parabolic in the transverse direction. This is the simplesthe existence of a variety of topological solitons and, at least,
generalization of the 1D FK model, nevertheless, some newwo types of them which have differing topological charges,
aspects of the nonlinear dynamics have been discovered. dan be treated exactly by using specific numerical tech-
was particularly proveld*®that the trivial(linearly arrangefl  niques.
ground state of the chain becomes unstable and it is trans- The paper is organized as follows. In Sec. I, we introduce
formed into a dimerized ground statihe chain takes a zig- the zig-zag chain model, describe the 2D relief of the sub-
zag form) when the repulsion between the atoms exceeds atrate potential, and derive the corresponding equations of
certain critical value. Such a dimerization of the ground statenotion. These equations of motion are studied in the next
gives rise to the appearance of new topological solikamk) section for small-amplitude oscillations and the linear disper-
states which describe a transition region between two differsion law is discussed there. In Sec. IV, we treat analytically
ing chain orientations, but not a vacancy or an excess atortwo-component kink solutions that describe two types of to-
in the chain. The existence of the dimerized ground statepological defects. The numerical method for seeking kink
and therefore the formation of these “orientational” kinks is profiles is described in Sec. V. In this section, the kink dy-
due to the linear arrangement of the minima of the substrateamics including different collisions of the defects is also
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FIG. 1. Schematic representation of the zig-zag chain with v 5 U
h=1/2. |

studied by numerical simulations. Some concluding remarks

are outlined in Sec. VI. FIG. 2. The 2D substrate potential relief given by the function
Eq. (3) with S=S; [see Egs(5)], h=1/2, andQy=4.47.
1. A ZIG-ZAG CHAIN MODEL AND A PLANAR ON-SITE
POTENTIAL f(u)=sirf(27u), g(u)=h sir?(mu). 2)

Let atoms(or groups of atomsbe linked together in a 2D Then, the zig-zag potentia(u,v), defined on the ,v)

zig-zag chain, as illustrated in Fig. 1, by the first- and lane and shown in Fia. 2. can be written as follows:
second-neighbor forces with the stiffness constétitsand P g-% '

K,, respectively. The chain backbone, with lattice spating
is directed along theX axis and it can be considered as
consisting of two coupled linear chains. Let the molecules o
this backbone be situated at the sikesnl, with the integers

Z(u,w)=f(u)+Q3fv—g(u)], 3)

(Nhere the functionS(v) is assumed to have a single-
minimum topology with the minimum at=0 and (), is a

n=0,+1,... for one ofthese chains and with the half- R . )
integersn==*1/2,+3/2, ... for theother chain, as shown in characteristiddimensionlessfrequency defined by

Fig. 1. The chain atoms are supposed to have two degrees of 5 e

freedom(on t.heXY plang: the Iongltudmal_ ((n) and trans- Qg:_z Z(u,v)|u-o, o—0=27 Z(U,0)|u—0, v—0- (4
verse f/,,) displacements from the equilibrium positions du dv

(vertices of the zig-zag chainAs shown in Fig. 1, the di- ) , 5
mensionless parametdr describes the geometry of the Therefore, according to Eqs4), we denotef”(n/2)=0;
chain, namely the thickness of the zig-zag backbieen where the prime means the differentiation V\_nth respect to the
in units of lattice spacind). Then the equilibrium distance argumentu. It follows from the representation E¢3) that
between each pair of the first neighbors is determined by th&(U) andg(u) may be referred to as “barrier” and “chan-
dimensionless parametbe= \VhZ+ 1/4. nel” funcnons, respectively. Several _typ|cal example_s of the
On the other hand, we suppose that the chain is subjectddction S(v) can be chosen. In particular, the functions
to a 2D on-site(substratg potentialZ(u,v) with a zig-zag
relief, as shown in Figs. 2 and 3. The degenerate global
minima of this potential are assumed to coincide exactly with
the vertices of the zig-zag chain if it would be isolated from
the substrate potential(u,v). In other words, when the = N

Tl
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chain atoms are situated at the vertices of the zig-zag struc- i CFEHIIR: Tt
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can be constructed by using a pair of two periodic functions A

f(u) andg(u), —»<<u<ow, that satisfy the conditions

g\%%@
i

)
\

=f(u), g(u+1)=g(u). D

¢ 1
U+§

Furthermore, both these functions are scaled by their ranges
0O=f=<1 and O=sg=<h and they are relatively shifted along
the X axis with respect to each other in such a way that FIG. 3. The 2D potential relief given by the function E)
f(n/2)=0, g(n)=0 and f(n=1/4)=1, g(n+1/2)=h, with T=T,, h=1/2/3 (corresponding to the zig-zag angle 120°
n=0,=1,... .Particularly, we choose 0,=3.16, andy=1.5.
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; ) 1 , - 1 ) h2 v dzun_ U+ N 1/2+un_un—1
1(0)=5 0% Syv)= 5 o’sint? —, A7 | e S T T T

1 1/2+u,41— U,
S3(v) =5 v¥[1=(v/0)’]" ", (5) T 14,/

+ KZ( Un+2~ 2UptUp_p

with any positive numbes and integem, are constructed in 1+u“_u“*2_ 1+u”+2_u”) _ i Z(U,,vp)
analogy with the harmonic, Morse, and Lennard-Jones po- 1+05-1 1+0n+1 Jup T
tentials, respectively. In the limiting case—~0, the function (11)
S,(v) is reduced td5;(v).

The potential Eq(3) defined via the functions Ed5) is d%v, h—vn_1—vp
unbounded ifv —*+«. Therefore the representation ES) ?:Kl(Zh_vn—l_zvn_vm—l_ 1+r_ /b

- . i X T +r,_1/b

can be modified to provide sonfimite asymptotic values as
v tends to infinity, corresponding to the realistic situation. h—vp—vne1
This type of the potentialZ(u,v), shown in Fig. 3, can be TN T Ko| Uns2— 200t Up—2

represented by

i 4
ﬁvn (unvvn)v

Un=Un-2 Unt+27Up
Z(uo)= 1) +[y— fWITo—gw)] (6 LR 1+ZM)

with some functionT (v) satisfying the boundary condition (12)

T(xxo)=1 and y=D/e;>1 where the constarid may be : . . .
(+2) ye o y vhere k;=K;l?/e,, i=1,2, are the dimensionless stiffness

considered as a dissociation energy. For instance, the funt’ \ .
constants of the first- and second-neighbor forces.

tions
O, 02 IIl. SMALL-AMPLITUDE COLLECTIVE EXCITATIONS
Tl(v)=tanr? v, Tv)=—FF—— @ . . . L .
V2y vo+2v/05 First we consider the linear limit of the equations of mo-

_ tion Egs.(11) and(12) which describe the behavior of small-
can be chosen as particular examples of the funcliw)  amplitude waves in the zig-zag chain. In the harmonic ap-

normalized according to Eq#4). proximation these equations are reduced to
The total Hamiltonian of the planar zig-zag chain, with
the substrate potentidl(u,v) described above, is given by

H=; [3M(C+Y2)+3 Kyl 2r2+ 3 Kol 22+ €0Z(un v )],
®

whereM is the mass of a chain atofor molecule and the
dot denotes the differentiation with respect to timéccord-

ing to Fig. 1, the dimensionless deviations from the equilib-
rium interatomic distances, andq,, are defined by

1 Xop1—X,|2 + 2
rn:\/_+u +(h_m b,

2 | |
qn:\/(l_'_XnJrlTan

SinceZ(n=*1/4,h/2)=1, the parametet, may be referred to
as the height of periodic barriers appearing along the channel 301
v=g(u). It is related to the frequency of small-amplitude
oscillations of a particle at the minima of the substrate po-
tential Z(u,v) according toe,=M 1w Q3.

For the dimensionless description it is convenient to in-

9

2+(yn+l|_ynl>2_l.

troduce the the dimensionless time and to rescale the spatial 0 n m
variables as follows K
t Xn(t) (t) FIG. 4. The frequency spectrum cur solid lineg Q
r=\e/M 7, Up(1)= ", Un(T):an—. (10 quency spectrum curvs , (solid lines €

| (dashed linesfor the zig-zag system with the parametélg=10,
_ ' ~ k1=1000, andk,=100: (a) h=1/4 (the case of positive dispersion
Using Eqgs.(9), the corresponding Euler-Lagrange equationsof ), at smallk) and(b) h=3/4 (the case of negative dispersion of

of motion take the form Q, at smallk).
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dzun K1
W:m(un+1_2un+unfl)+K2(“n+2_2un+un—2)
h 2
_%Zkl(vn+l_vn—l)_00una
dzvn h h?
92 " 2p2 K1(Upy1=Up-1)— b2 k1(Vn-1+2vp+vn11)

Qovn (13
Substituting the plane waves
u,=A.exdi(kn/2—Q7)],
vo=Aexdi(kni2—Q7)], ke[—-27m27], (14

with arbitrary amplitude#\; andA,, the dimensionless wave
numberk, and the frequencyl, into Egs.(13), we get the
following linear dispersion equation:

K1 . k ) k
( 02— Qg— FSII’IZZ— 4K25II’]2§)

, o, 4’ K\ [h  k\2
x| Q —QO—VK100§Z —| gz xasing | =0. (15

In the decoupling limit, whem,—0, the dispersion equation
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In the other limit, when«,—0 andh—0 (b—1/2), Eq.(15) is
reduced to

k
0%=0 +4K15inzz, (17

i.e., to the same dispersion relatiptompare with Eq(16)]
if the lattice spacing is rescaled by the substitutienl/2.
Note thatQ)=(), is also a solution of Eq(15) in each of
these particular cases.

In the general case, the dispersion equati®) describes
the coupling of the two linear optical-like mode§) the
longitudinal displacements, (7) with the dispersion law

K k k
Q= Qb+ (7sirPy +4isinty (18)

and (i) the transverse displacements(7) with the disper-
sion relation

4h? k

02=03+ w7 k1C0S 7 (19)

(15) is reduced to the standard linear dispersion law for thelhe last term in Eq(15) appears due to the interaction be-

chain subjected to a periodic substrate potential:

tween these modes. Since it is negative, a gap appears in the
frequency spectrum splitting it into twdow- and high-

k f i i ici -
2_ oKk requency branches which are given explicitly by the solu
a7=0 +4K2$m22' (16) tion of Eq. (15):
) ) k ok 1 k k]2 [h k)2
OF = Q%+ k| 1+ 1-Spz|cosy +2K23|n2§+ k1| pz— 1 Cos; +2;<25|r12§ +| gz *asing | - (20)

The upper sigr(—) in this solution corresponds to the low-
frequency(); branch, while the other sig(+) gives the
high-frequency(), branch of the frequency spectrum. All
four dispersion curve§(), + and(}, ,) in the first Brillouin
segment are shown in Figs(a} and 4b).

In the long-wavelength limitk—0), the (), branch takes
the form

Q2=02+ k,k2. (22)

The other(), branch atk—0 is given by the relation

4h? 1

Q3=02+ oKty KkqK2. (22)

L
2b%

As follows from the last relation, the long-length waves

propagate with positive dispersionhf<1/2 and with nega-
tive dispersion ith>1/2.

IV. TWO TYPES OF KINK SOLUTIONS

The system of the coupled equations of motion E§4)
and(12) can be treated both analytically and numerically. To
study its soliton solutions analytically, we use the continuum
limit which appears in the zig-zag case to be much more
crude approximation than in the 1D FK model. Nevertheless,
we are still able to get some conclusions about the existence
of kink (soliton) solutions. Settingi=X/l=x and substitut-
ing the discrete variables,(7) andv,(7) by the continuous
fields u(x,7) andv(x,7), respectively, we transform Egs.
(11) and(12) to

h df
uTT 16b24_K2 uXX 2b2 K1Ux +-d [U g(u)] dU
(23
2k(h—2v)| 1 b
ky(h—2v)| 1—-
' VE(1+u)?+ (h—20)2
=Q5v—g(u)]. (24
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(b)

FIG. 6. The standing two-component I-kirQ=—1) profile
(£=9.1 andD=7.0): (a) longitudinal u, displacements(b) trans-
versev,, displacements, an(t) the corresponding deformation of
the zig-zag chain.

FIG. 5. Schematic representation of the zig-zag chai@)rthe
ground state and the topological defects with Q=—1 (I-kink),
(c) Q=1 (I-antikink), (d) Q=-2 (ll-kink), () Q=2 (ll-antikink).

Here, Eq.(23) has been obtained by linearizing the intersite 1 1

coupling in Eq.(11), whereas in Eq(24), both the time and v=75 [hi \/ b?— 7 (1 Uo?|, (26)
spatial derivatives have been omitted because of the optical- ) .

like behavior of the displacement field,(7). where the signt (—) corresponds to the righteft) half of

The form of Egs.(23) and (24) exhibits the existence of the kink or to the left(right) half of the antikink profile.
two types of two-component kink solutions with differing ;ﬁ%’:}d'qﬂgpe SOJU}E'B%'QZ?())} Wtehgndlelll: t?r?gugea{aﬁpp;%"
topological charges. The topological defects described b v= ol . . o
these kink solutions are schematically shown in Fig. 5 wher& =h— /8 for the right (left) tail of the kink (antikink)
the ground statésee the regular structufe) in this figurd profile. In this case, Eq23) is approximately reduced to
of the zig-zag chain is also presented. The kifdsd anti- df
kinks) of the first type have the topological char@e=+1 U= CUt TR (27)
[see Figs. ) and 5c)] and we call them I-kinkgI-kink if
Q=-1 and l-antikink forQ=1). They are defined by the Where the characteristic velocity is defined by
following boundary conditions:

C1= \/K1/16b2+ Ko. (28)
n 1
u(==,n=5, u(®7n=5(n=xl) Equation(27) has the standard form that obviously admits

kink (antikink) solutions of the typical profile, particularly,
the sine-Gordon kinks, propagating with velocities in the
1 1 segment &s<c,. Consequently, both the profiles of the
v(=%,7)=5[1%(= D"h,  v(e,7)= 5 [1x(= 1)"]h, two-component I-kink and I-antikink have the form shown in
(25) Figs. 6 and.7 which has t.)een- prqved below numerically. The
above continuum approximation is very crude, but neverthe-
for any integem, where the uppeflower sign corresponds less, it appears to be suffjcient to treat the first type of kinks.
to a kink (antikink) solution® The I-kink (with the charge The two-component kinkéll-kinks) of the second type
have the topological charg@=+2. They are schematically

Q=-1) describes a vacancy in the chain, as illustrated b%resented in Figs. (8) and e) and satisfy the boundary
Fig. Sb), while the l-antikink (with chargeQ=1) corre-  ~gnditions

sponds to an excess patrticle, as shown by Fig).5The

propagation of the I-kinks is associated with motions of the n

chain particles approximately in the vicinity of the channel u(—oe,7)= > u(ee,7)=
v=g(u). Therefore the right-hand sides of both E¢83)

and (24) can be omitted. Then Ed24) is easily solved re- 1 (29)
sulting in u(=e,m)=5[1-(=1h

+1;

N S
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§ 0.25
0 ‘I
80 100 120
g
]
n n
FIG. 7. The same for the standing I-antikink wifh=1 (£=3.2 FIG. 8. The same for the standing lI-kink wi=—2 (£=19.8

andD=2.6). The solid(dashegllines give the displacements of the angp=11.3.
chain particles with everfodd) integersn.

in Figs. 8 and 9 where again only numerical solutions are

for any integem, where again the uppélower) sign corre-  presented. The velocity spectrum of the second-type kinks is
sponds to a kinKantikink) solution. Now the Il-kink(with 0=s<c,.

the chargeQ=—2) describes, as shown by Fig(d, a va-
cancy consisting of two particles in the chain whereas the
[I-antikink (with the chargegQd =2) corresponds to the defect
with two excess particles, as illustrated by Fige)5In order Both the two types of two-component kink solutions,
to treat this type of two-component kinks analytically, we treated above analytically, can also be found exactly by us-
linearize the left-hand side of E(R4), assuming the inequal-
ity |u,|<1, so that the fieldsi(x,7) andv(x,7) can be de-
coupled as follows:

4h? )
v= b7 K1+ Qg

V. A NUMERICAL METHOD

-1
. (30

Un,

h
2b2 K1U,+Q5g(u)

Substituting the last relation into ER3), we find the fol-
lowing equation with respect to the fieldx, 7):

80 100 120

TS A R
W+ 3 0,71 pZanze, ~ 0 GV

) d
U= CZUXX+ E

Un

where the characteristic velocity (for the 1l-kinks) is given
by

C=\/¢+K (32
2 Nah?k, /Q5+b% " 7%

Again, Eq.(31) is of the standard form admitting the solu- /\/\/V\/\/\N\/I[\/\/\/WVV\/\
tions of the kink type. However, in this case, according to the

periodic conditiong1), the effective on-site potentifdjiven n

by the expression in the square brackets of(Bd)] has such

a double periodic form that the spatial derivative of the II-  FIG. 9. The same for the standing ll-antikink with=2 (£=6.1
kink profile appears to be @vo-humpedunction, as shown andD=3.9).
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(&) ()

FIG. 11. Recombination of the moviriwvith velocity s=0.343
I-kink (Q=—1) under its collision with the standing I-antikinlk)

FIG. 10. Elastic collision of the movingvith velocity s=0.343 =1)

kink (Q=—1) with the standing defect of the same chatgkink).

) ] S ) ] du, dv, 1 /du, 2 1 duv, 2
ing a numerical minimization scheme which we develop in L£=Lj ——,U,; ar'Un =E >\ ar +
n

this section. This scheme seems to be an effective numerical dr dr 2\ dr
method for seeking soliton solutions in complex molecular 1, 1,
systems. Particularly, in the case of the zig-zag chain model, — 55 G Z(uy ,vn)}, (33

this method allows us to find standing or even moving kink

profiles as exact solutions of the basic equations of motiof hare the lattice fields, (7) andq,(7) are defined by Egs.

Egs. (11) and (12). Note that there is another effective (g) and (10). In order to proceed with obtaining a finite-

method for this purpose which was discovered by Eilbeckjimensional function for a minimization procedure, we re-

and Fleschg and further deVeIOpéafor Vanety of nonlinear p|ace the t|me derivativ@un/d,r anddvn/dT by appropriate

dynamical systems, including also the 1D FK model. When &patial differences of the lattice field§7) andv (7). Such

(two-componentkink profile has been found by the minimi- an approximation can be applied to those lattice functions

zation method, then it can be chosen adrdtial condition  which (i) are sufficientlysmoothfrom site to site andii)

for numerical simulations of Eq$11) and(12). Afterwards, have astationaryprofile moving with velocitys. To do this,

a final profile of the lattice fieldsu,(7) andv,(7) obtained we use the simplest approximation as follows:

under simulations at sufficiently large timesallows us to

conclude whether or not the initial condition found by the du,

minimization procedure is a correct and stable solution of the dr = SU(n=sm)==s(Ups1 = Un+a),

equations of motion. The criterion for the method accuracy

can be the comparison of a final two-component Kiakti-

kink) profile with the corresponding solution of the minimi- %

zation procedure when the kink has passed a sufficiently dr

large number of chain sites. Note that we can use for this

purpose the cyclic boundary conditions for the lattice fieldsNote that in our particular case when a commensurate sub-

u,(7) andv,(7). The main point in such a numerical ap- strate potential exists, it is not necessary to take into account

proach is an appropriate choice oflscretefunctional(i.e.,  higher spatial difference derivatives in the expansi(3¥

a function of many variablegor minimization and, as a rule, which are responsible for the discreteness effects of the

such a function can be constructed from the correspondinghain. However, such an approximation is not valid in the

Lagrangian of the system. case when the zig-zag chain is considered as an isolated
The (dimensionless Lagrangian that corresponds to the object!’ Substituting the expressioti34) into the Lagrang-

Hamiltonian Eq.(8) has the form ian Eqg. (33, we obtain a A-dimensional function

(34)

=—s0'(N=87)=—S(Vn+1~VUn+1)-
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()

FIG. 13. Elastic collision of the movingvith velocity s=0.343
FIG. 12. Collision of the defect of the char@e=—2 (Il-kink) ~ defect of the charg®=—1 (I-kink) with the standing defect of the
with the standing defect of the same chaftjeink ). chargeQ=—2 (ll-kink).

£_=£_(u1,...,uN ‘01,...0x) WhereN is the number of chain dzzvnldq-2 by the second-ordzer spatial difference derivatives

particles. Therefore, the minimization problem can be formuS (Un+2—2Un T Uy _5) and s*(vy o~ 2v,+v,5), respec-

lated as follows: tively. In other words, we accomplish the similar approxima-

tion procedure as was done by using E®¢l). The resulting

— 1 1 1 difference equations are_nothing more than the extrenum

L= > $%(Uns1—Up-1)?+ > S*(Uns1~Vn-1)°— > Kkifa  conditionsal/au,=0 anddLl/dv,,=0. Of course, solving the

" minimization problem Eq(35), we may loose some soliton
solutions which correspond to saddle points of the Lagrang-
ian L. Therefore we have examined this possibility by “de-

1 2
5 K2Qn_z(un WUn)

2 . ; .
forming” the Lagrangian surfac€ in such a way that the
— min or max , (35)  saddle points are transformed into minima, similarly to the
Uz, iy i vpeony  UzeeUNZ1i D20 WN-1 procedure performed for an isolated zig-zag cHaimnd

then by minimization of the deformed function. This proce-
dure did not exhibit new soliton profiles differing from those
found by solving the problem E@35).

The results of the solution of the minimization problem
Eqg. (35 are presented in Figs. 6—9 where the kidnd
antikink) profiles of both types are plotted. The accuracy of
the (moving kink profiles, found by the minimization pro-
cedure and taken as initial conditions for solving the equa-
tions of motion Eqs(11) and(12), was examined from their
U=1, Uy=0, v,=vy=0 (ll-antikink) Q=2 comparison with the final profiles obtained at those times

7o ANTE PLITEN ,(36) when the kinks have passed 100 000 chain sites. A perfect
coincidence of the initial and final profiles was observed. As
are supposed to be fixed under the minimization processollows from the comparison between Figs. 6 an@?#= 1)
Note that in the continuum limit, the latter conditions corre-and between Figs. 8 and(®=*2), at the same parameter
spond to Eqgs(25) and(29). A solution to the problem Eq. values, both the I- and ll-kink$vacancies of one or two
(35) is identified with a kink(antikink) profile and it can be atoms have broad profiles while the corresponding antikinks
found, for instance, by using the steepest descent method.(excess one or two atoms in the chamre quite narrow

In order to be certain that the kink solution corresponds tambjects. Therefore the positive topological defe@s=1,2
a minimum (or maximum of the Lagrangian Eq(33), we appear to bémmobile (pinned objects while the negative
substitute the second-order time derivatisi,/d7> and  defects can propagate along the zig-zag backbone retaining

where the kink(antikink) boundary conditions at the chain
ends

u1=0, UN:l/Z, U1=0, UN:h (l'k|nk) Q:_l,
u;=1/2, uy=0, vy=h, vy=0 (l-antikink Q=1,

Ul=0, UN::I., U]_:UN:h (”'k'”k) Q=—2,
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FIG. 14. Creation of the defect of the char@e=—1 (I-kink) FIG. 15. Creation of the defect of the char@e=1 (I-antikink)
under the collision of the movingith velocity s=0.352 defect of  under the collision of the movingwith velocity s=0.343 defect of
the chargeQ=—2 (ll-kink) with the standing defect of the charge the chargeQ=—1 (I-kink) with the standing defect of the charge
Q=1 (I-antikink). Q=2 (ll-antikink).

their velocity and profile. Such breaking the kink-antikink The same is true for the kinks with the chai@e=—2. This

symmetry is absent in the 1D FK model. In a zig-zag chainkink has the widthD(0)=11.3 and its velocity spectrum is

it appears due to the effectiyegeometric”) anharmonicity 0<s<2.352.

of the intersite coupling caused by the zig-zag structure. It should be noticed that the energy of a II-kink exceeds
In order to describe and compare more precisely the propthe energy of two I-kinks. Therefore a pair of I-kinks should

erties of the kink solutions obtained numerically, it is conve-be a more favorable state than the ll-kink state. However,

nient to calculate the dimensionless kink energy simulations of their evolution have shown that the II-kink is
N g L dynamically stable and it does not decay into two separate
I-kinks.
£=¢&s) =n§1 2 $*(Uns 1= Un-1)°F 2 S (0ns1=Un-1)° Both the positive defect@ntikinks withQ=1,2) are nar-
row objects, forming the pinned states. Thus, @+1 we
1 , 1 ) have&(0)=3.2 andD(0)=2.6, while for the second typ&
+ 5 Kalt 5 kol T Z(Up,vn) |, (37 =2) the corresponding values afié0)=6.1 andD(0)=2.8.
» ] Note that in this casef,,<2&,, and therefore the defect
the position of the kink center with Q=2 is more energetically favorable than two separate
1 U —u defects withQ=1. As for the dependence of the kink energy
Nc:_+2 M, (38) and width on the velocitys, we have proved the similar
2 W ouvTug behavior as in the 1D FK model, i.e., the kink eneffy) is
and the kink width a monotonically increasing function, while the kink width

D(s) decreases with increasing the velocity
Using the results of the minimization procedure as initial

D=D(s)=2 \/E (N—Ng)?(Upt1—Up)/(Uy—Uy). conditions for simulations of the equations of motion Egs.

n (11) and(12), we have studied the whole variety of the col-
(39 lision processes between both the types of topological de-
Then, for instance, the standing kink with the cha@e—1  fects. These results are presented in Figs. 10-15. Thus, Fig.
has the width of seven chain sites, i 2(0)=7.0. This kink 10 demonstrates the elastic interaction of the I-kitlecan-
can propagate with velocities in the segmesis8<0.343. At cie9 of the same topological charg@=—1, while Fig. 11
higher velocities, its motion is accompanied by emission ofshows the recombination of the vacan@=—1) and the
small-amplitude waves and gradual decreasing velocity talefect with an excess particl®@=1). Figure 12 illustrates
this value. Afterwards, the kink propagation becomes stablethe interaction between the ll-kinks of the same ch#pge2
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which appear to be sufficiently extended objects. The elastithe global degenerate minima of the on-site potential.
collision process of the negative I- and ll-defects is shown in As should be expected, the existence of transverse de-
Fig. 13. The dynamical processes of “recharging” the de-grees of freedom drastically changes the dynamics of 1D
fects with differing topological charges have also been studlattices (both isolated and subjected to a subsjrafe for
ied. Thus, the processes of the creation of the defects witthe case with the presence of a periodic substrate, the whole
the charge®Q==1 (I-kink and I-antikink are illustrated by variety of soliton solutions depends on the type of a substrate
Figs. 14 and 15. potential. Thus, while in the case of the BK model, two types
of kinks (“massive” and “nonmassive} exist, in our model
V1. DISCUSSION only “massive” kinks are possible, but they themselves ap-

) i pear to be of two types describing a vacancy which consists
We have suggested and studied both analytically and nust one or two particlegl- or 11-kink), or an excess of one or

merically a zig-zag version of the standatD) FK chain  tyo particles(l- and Il-antikinK.*® The further comparison
model which may be considered as one of its reasonablgf the BK model with our zig-zag model shows such a com-
generalizations including botti) transversedegrees of free- ,0n property as breaking symmetry between the kink and
dom and(ii) second-neighbointeratomic interactions. This gntikink solutions. Similarly to the studié&2®in our case,
model may also be cgnsidered as a modified version _of thg@acancies of both typeié- and I1-kinks) appear to benobile
Braun-Kivshar modet> Compared to the BK model, which defects, while excess particlés, Il-antikinks) areimmobile
seems to be more specific with possible applications to thgng pecome pinned defects. This kind of kink-antikink asym-
dynamics of adsorbed atoms on crystal surfacee to the  metry is due to the presence of the geometric anharmonicity
presence of a repulsive interparticle interactjbour gener- i the intersite coupling that exists even if both the first and
alization is more stra|ghtfor.ward. Indeed, S|m|IarI_y to the 1D gecond neighbor are of the harmonic type. The experimental
FK model, our zig-zag chain can also be found in the stablejjtations when the mobility of defects crucially depends on
ground state if it is isolated from the planar substrate becausgeijr polarity are known, for instance, in ice phystésand
both attractive and repulsivéarmonig forces are involved nerefore the zig-zag modeling, particularly, for the proton

such an equilibrium configuration can exist only in the casqg of great interest.

when the secondary structure of a chain is taken into ac-
count. In the simplest case, the secondary structure can be
realized by means of second-neighbor interactions and, as a
result, a stable ground state of an isolated zig-zag chain is
formed!’ Note, in order to have a stable ground state for an This work was partially carried out with the financial sup-
isolated 1D chain, it is sufficient to consider only nearest-port from the European Economic Commun{&EC) under
neighbor couplings. Next, the zig-zag chain backbomigh  the INTAS Grant No. 94-3754. A.\V.Z. would also like to
both the primary and secondary structyiyes a stable object express his gratitude to The MIDIT Center and The Institute
(e.g., a macromoleculewas subjected to a 2D on-site peri- of Mathematical Modelling of The Technical University of
odic potential of the zig-zag-like relief. In the present paper,Denmark for the Guest Professorship and hospitality. Stimu-
we have restricted ourselves to the commensurate situatidating and useful discussions with T. C. Bountis are grate-
when the vertices of the zig-zag chain exactly coincide withfully acknowledged.
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