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We study a generalization of the Frenkel-Kontorova model which describes a zig-zag chain of particles
coupled by both the first- and second-neighbor harmonic forces and subjected to a planar substrate with a
commensurate potential relief. The particles are supposed to have two degrees of freedom: longitudinal and
transverse displacements. Two types of two-component kink solutions corresponding to defects with topologi-
cal chargesQ561,62 have been treated. The topological defects with positive charge~excess of one or two
particles in the chain! are shown to beimmobilewhile the negative defects~vacancies of one or two particles!
have been proved at the same parameter values to bemobileobjects. In our studies we apply a minimization
scheme which has been proved to be an effective numerical method for seeking solitary wave solutions in
molecular systems of large complexity. The dynamics of both these types of defects has also been investigated.
@S0163-1829~96!03041-X#

I. INTRODUCTION

The well-known Frenkel-Kontorova~FK! model1–3 was
originally introduced in the theory of dislocations in solids4

to describe the simplest situation when a chain of atoms in
crystal is assumed to contain a dislocation, while its crystal
environment is modeled by a periodic one-dimensional~1D!
substrate potential. Afterwards, this chain model has exten-
sively been used for modeling nonlinear dynamical processes
in a variety of condensed matter5–8and biophysical9 systems.
However, in real physical systems, even in quasi-1D chains
~e.g., in biomolecules!, besides the longitudinal direction
~along a chain!, the particles~atoms or molecules! can also
move in one or two perpendicular directions and therefore
generalizations of the standard~1D! FK model including
transversedegrees of freedom are of great interest. In par-
ticular, the investigations on the two-dimensional~2D!
scalar10–12 and vector13,14 generalizations of the model,
which appear to be very complicated systems, should be
mentioned. On the other hand, it is reasonable from the
physical point of view to consider also simplified quasi-1D
chains where the particles are allowed to move in two direc-
tions on a plane. Thus, the Braun-Kivshar~BK! model15 has
been suggested to describe a chain of atoms interacting via a
specific repulsion potential and subjected to the 2D substrate
potential which is periodic in the longitudinal direction and
parabolic in the transverse direction. This is the simplest
generalization of the 1D FK model, nevertheless, some new
aspects of the nonlinear dynamics have been discovered. It
was particularly proved15,16that the trivial~linearly arranged!
ground state of the chain becomes unstable and it is trans-
formed into a dimerized ground state~the chain takes a zig-
zag form! when the repulsion between the atoms exceeds a
certain critical value. Such a dimerization of the ground state
gives rise to the appearance of new topological soliton~kink!
states which describe a transition region between two differ-
ing chain orientations, but not a vacancy or an excess atom
in the chain. The existence of the dimerized ground states
and therefore the formation of these ‘‘orientational’’ kinks is
due to the linear arrangement of the minima of the substrate

potential and of the peculiar form of the intersite interaction,
namely pure repulsion. However, many realistic quasi-1D
molecular crystals are formed by parallel zig-zag molecular
chains. In this case, the zig-zag ground state is formed, in the
first turn, by the presence of both the first- and second-
neighbor interatomic~or intermolecular! interactions and
only then by the interaction of the chain particles with the
chain environment. The latter interaction may be modeled by
a 2D substrate potential with a zig-zag relief. Then no dimer-
ization effects take place and the topological solitons~kinks
and antikinks! that describe only dislocations, can exist in
such a system.

The purpose of the present paper is to study a zig-zag
generalization of the 1D FK model. The chain particles~at-
oms or molecules! are supposed to be harmonically coupled
via the first- and second-neighbor interactions forming a
stable zig-zag structure on a surface even if the chain is
considered as an isolated object.17 Next, this chain is placed
in the planar substrate potential with degenerate minima
which exactly coincide with the vertices of a zig-zag back-
bone ~only the commensurate situation is considered in the
present paper!. Then a certain 1D zig-zag-like ‘‘channel’’
appears in this 2D potential relief, along which the global
minima ~situated at the zig-zag vertices! and the barriers of a
saddle form alternate along the longitudinal direction of the
chain. The zig-zag relief with such properties gives rise to
the existence of a variety of topological solitons and, at least,
two types of them which have differing topological charges,
can be treated exactly by using specific numerical tech-
niques.

The paper is organized as follows. In Sec. II, we introduce
the zig-zag chain model, describe the 2D relief of the sub-
strate potential, and derive the corresponding equations of
motion. These equations of motion are studied in the next
section for small-amplitude oscillations and the linear disper-
sion law is discussed there. In Sec. IV, we treat analytically
two-component kink solutions that describe two types of to-
pological defects. The numerical method for seeking kink
profiles is described in Sec. V. In this section, the kink dy-
namics including different collisions of the defects is also
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studied by numerical simulations. Some concluding remarks
are outlined in Sec. VI.

II. A ZIG-ZAG CHAIN MODEL AND A PLANAR ON-SITE
POTENTIAL

Let atoms~or groups of atoms! be linked together in a 2D
zig-zag chain, as illustrated in Fig. 1, by the first- and
second-neighbor forces with the stiffness constantsK1 and
K2, respectively. The chain backbone, with lattice spacingl ,
is directed along theX axis and it can be considered as
consisting of two coupled linear chains. Let the molecules of
this backbone be situated at the sitesX5nl, with the integers
n50,61, . . . for one of these chains and with the half-
integersn561/2,63/2, . . . for theother chain, as shown in
Fig. 1. The chain atoms are supposed to have two degrees of
freedom~on theXY plane!: the longitudinal (xn) and trans-
verse (yn) displacements from the equilibrium positions
~vertices of the zig-zag chain!. As shown in Fig. 1, the di-
mensionless parameterh describes the geometry of the
chain, namely the thickness of the zig-zag backbone~given
in units of lattice spacingl !. Then the equilibrium distance
between each pair of the first neighbors is determined by the
dimensionless parameterb5Ah211/4.

On the other hand, we suppose that the chain is subjected
to a 2D on-site~substrate! potentialZ(u,v) with a zig-zag
relief, as shown in Figs. 2 and 3. The degenerate global
minima of this potential are assumed to coincide exactly with
the vertices of the zig-zag chain if it would be isolated from
the substrate potentialZ(u,v). In other words, when the
chain atoms are situated at the vertices of the zig-zag struc-
ture, then the interatomic bonds are undistorted and such a
configuration forms one of the degenerate ground states of
the system~the commensurate situation!.

The 2D substrate potentialZ(u,v) with a zig-zag relief
can be constructed by using a pair of two periodic functions
f (u) andg(u), 2`,u,`, that satisfy the conditions

f S u1
1

2D5 f ~u!, g~u11!5g~u!. ~1!

Furthermore, both these functions are scaled by their ranges
0<f<1 and 0<g<h and they are relatively shifted along
the X axis with respect to each other in such a way that
f (n/2)50, g(n)50 and f (n61/4)51, g(n11/2)5h,
n50,61, . . . .Particularly, we choose

f ~u!5sin2~2pu!, g~u!5h sin2~pu!. ~2!

Then, the zig-zag potentialZ(u,v), defined on the (u,v)
plane and shown in Fig. 2, can be written as follows:

Z~u,v !5 f ~u!1V0
2S@v2g~u!#, ~3!

where the functionS(v) is assumed to have a single-
minimum topology with the minimum atv50 andV0 is a
characteristic~dimensionless! frequency defined by

V0
25

]2

]u2
Z~u,v !uu50, v505

]2

]v2
Z~u,v !uu50, v50 . ~4!

Therefore, according to Eqs.~4!, we denotef 9(n/2)5V0
2

where the prime means the differentiation with respect to the
argumentu. It follows from the representation Eq.~3! that
f (u) andg(u) may be referred to as ‘‘barrier’’ and ‘‘chan-
nel’’ functions, respectively. Several typical examples of the
functionS(v) can be chosen. In particular, the functions

FIG. 1. Schematic representation of the zig-zag chain with
h51/2.

FIG. 2. The 2D substrate potential relief given by the function
Eq. ~3! with S5S1 @see Eqs.~5!#, h51/2, andV054.47.

FIG. 3. The 2D potential relief given by the function Eq.~6!
with T5T1 , h51/2) ~corresponding to the zig-zag angle 120°!,
V053.16, andg51.5.
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S1~v !5
1

2
v2, S2~v !5

1

2
s2sinh2

v
s
,

S3~v !5
1

2
v2@12~v/s!2#2m, ~5!

with any positive numbers and integerm, are constructed in
analogy with the harmonic, Morse, and Lennard-Jones po-
tentials, respectively. In the limiting cases→0, the function
S2(v) is reduced toS1(v).

The potential Eq.~3! defined via the functions Eq.~5! is
unbounded ifv→6`. Therefore the representation Eq.~3!
can be modified to provide somefinite asymptotic values as
v tends to infinity, corresponding to the realistic situation.
This type of the potentialsZ(u,v), shown in Fig. 3, can be
represented by

Z~u,v !5 f ~u!1@g2 f ~u!#T@v2g~u!# ~6!

with some functionT(v) satisfying the boundary condition
T~6`!51 and g5D/e0.1 where the constantD may be
considered as a dissociation energy. For instance, the func-
tions

T1~v !5tanh2S V0

A2g
v D , T2~v !5

v2

v212g/V0
2 ~7!

can be chosen as particular examples of the functionT(v)
normalized according to Eqs.~4!.

The total Hamiltonian of the planar zig-zag chain, with
the substrate potentialZ(u,v) described above, is given by

H5(
n

@ 1
2 M ~ ẋn

21 ẏn
2!1 1

2 K1l
2r n

21 1
2 K2l

2qn
21e0Z~un ,vn!#,

~8!

whereM is the mass of a chain atom~or molecule! and the
dot denotes the differentiation with respect to timet. Accord-
ing to Fig. 1, the dimensionless deviations from the equilib-
rium interatomic distancesr n andqn are defined by

r n5AS 121
xn112xn

l D 21S h2
yn1yn11

l D 22b,

~9!

qn5AS 11
xn112xn21

l D 21S yn112yn21

l D 221.

SinceZ(n61/4,h/2)51, the parametere0 may be referred to
as the height of periodic barriers appearing along the channel
v5g(u). It is related to the frequency of small-amplitude
oscillations of a particle at the minima of the substrate po-
tentialZ(u,v) according toe05Ml 2v0

2/V0
2.

For the dimensionless description it is convenient to in-
troduce the the dimensionless time and to rescale the spatial
variables as follows

t5Ae0 /M
t

l
, un~t!5

xn~ t !

l
, vn~t!5

yn~ t !

l
. ~10!

Using Eqs.~9!, the corresponding Euler-Lagrange equations
of motion take the form

d2un
dt2

5k1S un1122un1un211
1/21un2un21

11r n21 /b

2
1/21un112un

11r n /b
D1k2S un1222un1un22

1
11un2un22

11qn21
2
11un122un
11qn11

D2
]

]un
Z~un ,vn!,

~11!

d2vn
dt2

5k1S 2h2vn2122vn2vn112
h2vn212vn
11r n21 /b

2
h2vn2vn11

11r n /b
D1k2S vn1222vn1vn22

1
vn2vn22

11qn21
2
vn122vn
11qn11

D2
]

]vn
Z~un ,vn!,

~12!

where k i5Ki l
2/e0 , i51,2, are the dimensionless stiffness

constants of the first- and second-neighbor forces.

III. SMALL-AMPLITUDE COLLECTIVE EXCITATIONS

First we consider the linear limit of the equations of mo-
tion Eqs.~11! and~12! which describe the behavior of small-
amplitude waves in the zig-zag chain. In the harmonic ap-
proximation these equations are reduced to

FIG. 4. The frequency spectrum curvesV1,2 ~solid lines! VL,T
~dashed lines! for the zig-zag system with the parametersV0510,
k151000, andk25100: ~a! h51/4 ~the case of positive dispersion
of V2 at smallk! and~b! h53/4 ~the case of negative dispersion of
V2 at smallk!.
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d2un
dt2

5
k1

4b2
~un1122un1un21!1k2~un1222un1un22!

2
h

2b2
k1~vn112vn21!2V0

2un ,

d2vn
dt2

5
h

2b2
k1~un112un21!2

h2

b2
k1~vn2112vn1vn11!

2V0
2vn . ~13!

Substituting the plane waves

un5A1exp@ i ~kn/22Vt!#,

vn5A2exp@ i ~kn/22Vt!#, kP@22p,2p#, ~14!

with arbitrary amplitudesA1 andA2, the dimensionless wave
numberk, and the frequencyV, into Eqs.~13!, we get the
following linear dispersion equation:

S V22V0
22

k1

b2
sin2

k

4
24k2sin

2
k

2D
3S V22V0

22
4h2

b2
k1cos

2
k

4D2S hb2 k1sin
k

2D
2

50. ~15!

In the decoupling limit, whenk1→0, the dispersion equation
~15! is reduced to the standard linear dispersion law for the
chain subjected to a periodic substrate potential:

V25V0
214k2sin

2
k

2
. ~16!

In the other limit, whenk2→0 andh→0 ~b→1/2!, Eq.~15! is
reduced to

V25V0
214k1sin

2
k

4
, ~17!

i.e., to the same dispersion relation@compare with Eq.~16!#
if the lattice spacing is rescaled by the substitutionl→ l /2.
Note thatV[V0 is also a solution of Eq.~15! in each of
these particular cases.

In the general case, the dispersion equation~15! describes
the coupling of the two linear optical-like modes:~i! the
longitudinal displacementsun~t! with the dispersion law

VL
25V0

21
k1

b2
sin2

k

4
14k2sin

2
k

2
~18!

and ~ii ! the transverse displacementsvn~t! with the disper-
sion relation

VT
25V0

21
4h2

b2
k1cos

2
k

4
. ~19!

The last term in Eq.~15! appears due to the interaction be-
tween these modes. Since it is negative, a gap appears in the
frequency spectrum splitting it into two~low- and high-
frequency! branches which are given explicitly by the solu-
tion of Eq. ~15!:

V1,2
2 5V0

21k1F11S 12
1

2b2D cosk2G12k2sin
2
k

2
7AFk1S 1

2b2
212cos

k

2D12k2sin
2
k

2G21S hb2 k1sin
k

2D
2

. ~20!

The upper sign~2! in this solution corresponds to the low-
frequencyV1 branch, while the other sign~1! gives the
high-frequencyV2 branch of the frequency spectrum. All
four dispersion curves~VL,T andV1,2! in the first Brillouin
segment are shown in Figs. 4~a! and 4~b!.

In the long-wavelength limit~k→0!, theV1 branch takes
the form

V1
2.V0

21k2k
2. ~21!

The otherV2 branch atk→0 is given by the relation

V2
2.V0

21
4h2

b2
k11

1

4 S 1

2b2
21Dk1k

2. ~22!

As follows from the last relation, the long-length waves
propagate with positive dispersion ifh,1/2 and with nega-
tive dispersion ifh.1/2.

IV. TWO TYPES OF KINK SOLUTIONS

The system of the coupled equations of motion Eqs.~11!
and~12! can be treated both analytically and numerically. To
study its soliton solutions analytically, we use the continuum
limit which appears in the zig-zag case to be much more
crude approximation than in the 1D FK model. Nevertheless,
we are still able to get some conclusions about the existence
of kink ~soliton! solutions. Settingn5X/ l5x and substitut-
ing the discrete variablesun~t! andvn~t! by the continuous
fields u(x,t) and v(x,t), respectively, we transform Eqs.
~11! and ~12! to

utt2S k1

16b2
1k2Duxx1 h

2b2
k1vx1

d f

du
5V0

2@v2g~u!#
dg

du
,

~23!

2k1~h22v !F 12
b

A 1
4 ~11ux!

21~h22v !2
G

5V0
2@v2g~u!#. ~24!
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Here, Eq.~23! has been obtained by linearizing the intersite
coupling in Eq.~11!, whereas in Eq.~24!, both the time and
spatial derivatives have been omitted because of the optical-
like behavior of the displacement fieldvn~t!.

The form of Eqs.~23! and ~24! exhibits the existence of
two types of two-component kink solutions with differing
topological charges. The topological defects described by
these kink solutions are schematically shown in Fig. 5 where
the ground state@see the regular structure~a! in this figure#
of the zig-zag chain is also presented. The kinks~and anti-
kinks! of the first type have the topological chargeQ571
@see Figs. 5~b! and 5~c!# and we call them I-kinks~I-kink if
Q521 and I-antikink forQ51!. They are defined by the
following boundary conditions:

u~2`,t!5
n

2
, u~`,t!5

1

2
~n61!;

v~2`,t!5
1

2
@17~21!n#h, v~`,t!5

1

2
@16~21!n#h,

~25!

for any integern, where the upper~lower! sign corresponds
to a kink ~antikink! solution.18 The I-kink ~with the charge
Q521! describes a vacancy in the chain, as illustrated by
Fig. 5~b!, while the I-antikink ~with chargeQ51! corre-
sponds to an excess particle, as shown by Fig. 5~c!. The
propagation of the I-kinks is associated with motions of the
chain particles approximately in the vicinity of the channel
v5g(u). Therefore the right-hand sides of both Eqs.~23!
and ~24! can be omitted. Then Eq.~24! is easily solved re-
sulting in

v5
1

2 Fh6Ab22
1

4
~11ux!

2G , ~26!

where the sign1 ~2! corresponds to the right~left! half of
the kink or to the left~right! half of the antikink profile.
Expanding the solution~26!, we find in the linear approxi-
mation that v.ux/8h for the left ~right! tail and
v.h2ux/8h for the right ~left! tail of the kink ~antikink!
profile. In this case, Eq.~23! is approximately reduced to

utt2c1
2uxx1

d f

du
50, ~27!

where the characteristic velocityc1 is defined by

c15Ak1/16b
21k2. ~28!

Equation~27! has the standard form that obviously admits
kink ~antikink! solutions of the typical profile, particularly,
the sine-Gordon kinks, propagating with velocities in the
segment 0<s,c1 . Consequently, both the profiles of the
two-component I-kink and I-antikink have the form shown in
Figs. 6 and 7 which has been proved below numerically. The
above continuum approximation is very crude, but neverthe-
less, it appears to be sufficient to treat the first type of kinks.

The two-component kinks~II-kinks! of the second type
have the topological chargeQ572. They are schematically
presented in Figs. 5~d! and 5~e! and satisfy the boundary
conditions

u~2`,t!5
n

2
, u~`,t!5

n

2
61;

~29!

u~7`,t!5
1

2
@12~21!nh

FIG. 5. Schematic representation of the zig-zag chain in~a! the
ground state and the topological defects with~b! Q521 ~I-kink!,
~c! Q51 ~I-antikink!, ~d! Q522 ~II-kink !, ~e! Q52 ~II-antikink!.

FIG. 6. The standing two-component I-kink~Q521! profile
~E59.1 andD57.0!: ~a! longitudinal un displacements,~b! trans-
versevn displacements, and~c! the corresponding deformation of
the zig-zag chain.
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for any integern, where again the upper~lower! sign corre-
sponds to a kink~antikink! solution. Now the II-kink~with
the chargeQ522! describes, as shown by Fig. 5~d!, a va-
cancy consisting of two particles in the chain whereas the
II-antikink ~with the chargeQ52! corresponds to the defect
with two excess particles, as illustrated by Fig. 5~e!. In order
to treat this type of two-component kinks analytically, we
linearize the left-hand side of Eq.~24!, assuming the inequal-
ity uuxu!1, so that the fieldsu(x,t) andv(x,t) can be de-
coupled as follows:

v5S 4h2b2
k11V0

2D 21F h

2b2
k1ux1V0

2g~u!G . ~30!

Substituting the last relation into Eq.~23!, we find the fol-
lowing equation with respect to the fieldu(x,t):

utt2c2
2uxx1

d

du F f ~u!1
1

2

g2~u!

V0
221b2/4h2k1

G50, ~31!

where the characteristic velocityc2 ~for the II-kinks! is given
by

c25A k1/16

4h2k1 /V0
21b2

1k2. ~32!

Again, Eq.~31! is of the standard form admitting the solu-
tions of the kink type. However, in this case, according to the
periodic conditions~1!, the effective on-site potential@given
by the expression in the square brackets of Eq.~31!# has such
a double periodic form that the spatial derivative of the II-
kink profile appears to be atwo-humpedfunction, as shown

in Figs. 8 and 9 where again only numerical solutions are
presented. The velocity spectrum of the second-type kinks is
0<s,c2 .

V. A NUMERICAL METHOD

Both the two types of two-component kink solutions,
treated above analytically, can also be found exactly by us-

FIG. 7. The same for the standing I-antikink withQ51 ~E53.2
andD52.6!. The solid~dashed! lines give the displacements of the
chain particles with even~odd! integersn.

FIG. 8. The same for the standing II-kink withQ522 ~E519.8
andD511.3!.

FIG. 9. The same for the standing II-antikink withQ52 ~E56.1
andD53.8!.
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ing a numerical minimization scheme which we develop in
this section. This scheme seems to be an effective numerical
method for seeking soliton solutions in complex molecular
systems. Particularly, in the case of the zig-zag chain model,
this method allows us to find standing or even moving kink
profiles as exact solutions of the basic equations of motion
Eqs. ~11! and ~12!. Note that there is another effective
method for this purpose which was discovered by Eilbeck
and Flesch19 and further developed20 for variety of nonlinear
dynamical systems, including also the 1D FK model. When a
~two-component! kink profile has been found by the minimi-
zation method, then it can be chosen as aninitial condition
for numerical simulations of Eqs.~11! and~12!. Afterwards,
a final profile of the lattice fieldsun~t! and vn~t! obtained
under simulations at sufficiently large timest, allows us to
conclude whether or not the initial condition found by the
minimization procedure is a correct and stable solution of the
equations of motion. The criterion for the method accuracy
can be the comparison of a final two-component kink~anti-
kink! profile with the corresponding solution of the minimi-
zation procedure when the kink has passed a sufficiently
large number of chain sites. Note that we can use for this
purpose the cyclic boundary conditions for the lattice fields
un~t! and vn~t!. The main point in such a numerical ap-
proach is an appropriate choice of adiscretefunctional~i.e.,
a function of many variables! for minimization and, as a rule,
such a function can be constructed from the corresponding
Lagrangian of the system.

The ~dimensionless! Lagrangian that corresponds to the
Hamiltonian Eq.~8! has the form

L5LH dundt
,un ;

dvn
dt

,vnJ 5(
n

F12 S dundt D 21 1

2 S dvndt D 2

2
1

2
r n
22

1

2
qn
22Z~un ,vn!G , ~33!

where the lattice fieldsr n~t! andqn~t! are defined by Eqs.
~9! and ~10!. In order to proceed with obtaining a finite-
dimensional function for a minimization procedure, we re-
place the time derivativesdun/dt anddvn/dt by appropriate
spatial differences of the lattice fieldsu~t! andvn~t!. Such
an approximation can be applied to those lattice functions
which ~i! are sufficientlysmoothfrom site to site and~ii !
have astationaryprofile moving with velocitys. To do this,
we use the simplest approximation as follows:

dun
dt

52su8~n2st!.2s~un112un11!,

~34!

dvn
dt

52sv8~n2st!.2s~vn112vn11!.

Note that in our particular case when a commensurate sub-
strate potential exists, it is not necessary to take into account
higher spatial difference derivatives in the expansions~34!
which are responsible for the discreteness effects of the
chain. However, such an approximation is not valid in the
case when the zig-zag chain is considered as an isolated
object.17 Substituting the expressions~34! into the Lagrang-
ian Eq. ~33!, we obtain a 2N-dimensional function

FIG. 10. Elastic collision of the moving~with velocitys50.343!
kink ~Q521! with the standing defect of the same charge~I-kink!.

FIG. 11. Recombination of the moving~with velocity s50.343!
I-kink ~Q521! under its collision with the standing I-antikink~Q
51!.
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L̄5L̄(u1 ,...,uN ;v1 ,...,vN) whereN is the number of chain
particles. Therefore, the minimization problem can be formu-
lated as follows:

L̄5(
n

F12 s2~un112un21!
21

1

2
s2~vn112vn21!

22
1

2
k1r n

2

2
1

2
k2qn

22Z~un ,vn!G
→ min

u2,...,uN21 ; v2 ,...,vN21

or max
u2 ,...,uN21 ; v2 ,...,vN21

, ~35!

where the kink~antikink! boundary conditions at the chain
ends

u150, uN51/2, v150, vN5h ~ I-kink! Q521,

u151/2, uN50, v15h, vN50 ~ I-antikink! Q51,

u150, uN51, v15vN5h ~ II-kink ! Q522,

u151, uN50, v15vN50 ~ II-antikink! Q52,
~36!

are supposed to be fixed under the minimization process.
Note that in the continuum limit, the latter conditions corre-
spond to Eqs.~25! and ~29!. A solution to the problem Eq.
~35! is identified with a kink~antikink! profile and it can be
found, for instance, by using the steepest descent method.

In order to be certain that the kink solution corresponds to
a minimum ~or maximum! of the Lagrangian Eq.~33!, we
substitute the second-order time derivativesd2un/dt2 and

d2vn/dt2 by the second-order spatial difference derivatives
s2(un1222un1un22) and s2(vn1222vn1vn22), respec-
tively. In other words, we accomplish the similar approxima-
tion procedure as was done by using Eqs.~34!. The resulting
difference equations are nothing more than the extrenum
conditions]L̄/]un50 and]L̄/]vn50. Of course, solving the
minimization problem Eq.~35!, we may loose some soliton
solutions which correspond to saddle points of the Lagrang-
ian L̄. Therefore we have examined this possibility by ‘‘de-
forming’’ the Lagrangian surfaceL̄ in such a way that the
saddle points are transformed into minima, similarly to the
procedure performed for an isolated zig-zag chain,17 and
then by minimization of the deformed function. This proce-
dure did not exhibit new soliton profiles differing from those
found by solving the problem Eq.~35!.

The results of the solution of the minimization problem
Eq. ~35! are presented in Figs. 6–9 where the kink~and
antikink! profiles of both types are plotted. The accuracy of
the ~moving! kink profiles, found by the minimization pro-
cedure and taken as initial conditions for solving the equa-
tions of motion Eqs.~11! and~12!, was examined from their
comparison with the final profiles obtained at those times
when the kinks have passed 100 000 chain sites. A perfect
coincidence of the initial and final profiles was observed. As
follows from the comparison between Figs. 6 and 7~Q571!
and between Figs. 8 and 9~Q572!, at the same parameter
values, both the I- and II-kinks~vacancies of one or two
atoms! have broad profiles while the corresponding antikinks
~excess one or two atoms in the chain! are quite narrow
objects. Therefore the positive topological defects~Q51,2!
appear to beimmobile ~pinned! objects while the negative
defects can propagate along the zig-zag backbone retaining

FIG. 12. Collision of the defect of the chargeQ522 ~II-kink !
with the standing defect of the same charge~II-kink !.

FIG. 13. Elastic collision of the moving~with velocitys50.343!
defect of the chargeQ521 ~I-kink! with the standing defect of the
chargeQ522 ~II-kink !.
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their velocity and profile. Such breaking the kink-antikink
symmetry is absent in the 1D FK model. In a zig-zag chain,
it appears due to the effective~‘‘geometric’’! anharmonicity
of the intersite coupling caused by the zig-zag structure.

In order to describe and compare more precisely the prop-
erties of the kink solutions obtained numerically, it is conve-
nient to calculate the dimensionless kink energy

E5E~s!5 (
n51

N F12 s2~un112un21!
21

1

2
s2~vn112vn21!

2

1
1

2
k1r n

21
1

2
k2qn

21Z~un ,vn!G , ~37!

the position of the kink center

Nc5
1

2
1(

n

un112un
uN2u1

, ~38!

and the kink width

D5D~s!52A(
n

~n2Nc!
2~un112un!/~uN2u1!.

~39!

Then, for instance, the standing kink with the chargeQ521
has the width of seven chain sites, i.e.,D~0!57.0. This kink
can propagate with velocities in the segment 0<s<0.343. At
higher velocities, its motion is accompanied by emission of
small-amplitude waves and gradual decreasing velocity to
this value. Afterwards, the kink propagation becomes stable.

The same is true for the kinks with the chargeQ522. This
kink has the widthD~0!511.3 and its velocity spectrum is
0<s<2.352.

It should be noticed that the energy of a II-kink exceeds
the energy of two I-kinks. Therefore a pair of I-kinks should
be a more favorable state than the II-kink state. However,
simulations of their evolution have shown that the II-kink is
dynamically stable and it does not decay into two separate
I-kinks.

Both the positive defects~antikinks withQ51,2! are nar-
row objects, forming the pinned states. Thus, forQ51 we
haveE~0!53.2 andD~0!52.6, while for the second type~Q
52! the corresponding values areE~0!56.1 andD~0!52.8.
Note that in this case,E12,2E11 and therefore the defect
with Q52 is more energetically favorable than two separate
defects withQ51. As for the dependence of the kink energy
and width on the velocitys, we have proved the similar
behavior as in the 1D FK model, i.e., the kink energyE(s) is
a monotonically increasing function, while the kink width
D(s) decreases with increasing the velocitys.

Using the results of the minimization procedure as initial
conditions for simulations of the equations of motion Eqs.
~11! and ~12!, we have studied the whole variety of the col-
lision processes between both the types of topological de-
fects. These results are presented in Figs. 10–15. Thus, Fig.
10 demonstrates the elastic interaction of the I-kinks~vacan-
cies! of the same topological chargeQ521, while Fig. 11
shows the recombination of the vacancy~Q521! and the
defect with an excess particle~Q51!. Figure 12 illustrates
the interaction between the II-kinks of the same chargeQ52

FIG. 14. Creation of the defect of the chargeQ521 ~I-kink!
under the collision of the moving~with velocity s50.352! defect of
the chargeQ522 ~II-kink ! with the standing defect of the charge
Q51 ~I-antikink!.

FIG. 15. Creation of the defect of the chargeQ51 ~I-antikink!
under the collision of the moving~with velocity s50.343! defect of
the chargeQ521 ~I-kink! with the standing defect of the charge
Q52 ~II-antikink!.
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which appear to be sufficiently extended objects. The elastic
collision process of the negative I- and II-defects is shown in
Fig. 13. The dynamical processes of ‘‘recharging’’ the de-
fects with differing topological charges have also been stud-
ied. Thus, the processes of the creation of the defects with
the chargesQ571 ~I-kink and I-antikink! are illustrated by
Figs. 14 and 15.

VI. DISCUSSION

We have suggested and studied both analytically and nu-
merically a zig-zag version of the standard~1D! FK chain
model which may be considered as one of its reasonable
generalizations including both~i! transversedegrees of free-
dom and~ii ! second-neighborinteratomic interactions. This
model may also be considered as a modified version of the
Braun-Kivshar model.15 Compared to the BK model, which
seems to be more specific with possible applications to the
dynamics of adsorbed atoms on crystal surfaces~due to the
presence of a repulsive interparticle interaction!,8 our gener-
alization is more straightforward. Indeed, similarly to the 1D
FK model, our zig-zag chain can also be found in the stable
ground state if it is isolated from the planar substrate because
both attractive and repulsive~harmonic! forces are involved
into the interatomic~intermolecular! interactions. However,
such an equilibrium configuration can exist only in the case
when the secondary structure of a chain is taken into ac-
count. In the simplest case, the secondary structure can be
realized by means of second-neighbor interactions and, as a
result, a stable ground state of an isolated zig-zag chain is
formed.17 Note, in order to have a stable ground state for an
isolated 1D chain, it is sufficient to consider only nearest-
neighbor couplings. Next, the zig-zag chain backbone~with
both the primary and secondary structures!, as a stable object
~e.g., a macromolecule!, was subjected to a 2D on-site peri-
odic potential of the zig-zag-like relief. In the present paper,
we have restricted ourselves to the commensurate situation
when the vertices of the zig-zag chain exactly coincide with

the global degenerate minima of the on-site potential.
As should be expected, the existence of transverse de-

grees of freedom drastically changes the dynamics of 1D
lattices ~both isolated and subjected to a substrate!. As for
the case with the presence of a periodic substrate, the whole
variety of soliton solutions depends on the type of a substrate
potential. Thus, while in the case of the BK model, two types
of kinks ~‘‘massive’’ and ‘‘nonmassive’’! exist, in our model
only ‘‘massive’’ kinks are possible, but they themselves ap-
pear to be of two types describing a vacancy which consists
of one or two particles~I- or II-kink !, or an excess of one or
two particles~I- and II-antikink!.18 The further comparison
of the BK model with our zig-zag model shows such a com-
mon property as breaking symmetry between the kink and
antikink solutions. Similarly to the studies,15,16 in our case,
vacancies of both types~I- and II-kinks! appear to bemobile
defects, while excess particles~I-, II-antikinks! are immobile
and become pinned defects. This kind of kink-antikink asym-
metry is due to the presence of the geometric anharmonicity
in the intersite coupling that exists even if both the first and
second neighbor are of the harmonic type. The experimental
situations when the mobility of defects crucially depends on
their polarity are known, for instance, in ice physics,21 and
therefore the zig-zag modeling, particularly, for the proton
transport in hydrogen-bonded crystals and biomolecules,22,23

is of great interest.
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