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A model describing the diffusivity of a highly diluted and randomly distributed substitutional cationic
impurity via the open and almost empty^001& channels in the rutile structure has been developed recently. The
above model is based upon the assumption that the insignificant fraction of the impurities resides in the
channels. An extended model is developed that allows for a significant fraction of the impurities to stay within
channels, and it is used to evaluate emission Mo¨ssbauer spectra originating from the diffusing impuri-
ties embedded in single-crystalline samples. Final results are shown for the 14.4-keV Mo¨ssbauer line
in 57Co~Fe!. It is shown that spectral line positions depend upon the wave-vector transfer to the system,
and that the data are sensitive to the fraction of both parent and daughter impurities residing in the channels.
@S0163-1829~96!05442-2#

I. INTRODUCTION

Measurements of the diffusion coefficient tensor for
highly diluted and randomly distributed substitutional cat-
ionic impurities in the rutile structure~an almost stoichio-
metric TiO2 rutile is a well-known example! indicate for
many such impurities a very large anisotropy, with the dif-
fusivity being much larger along the tetragonal axis as com-
pared to the diffusivity in the tetragonal plane.1 The anisot-
ropy could be explained by invoking a rapid diffusive motion
of the impurities along the open and almost empty^001&
channels.1 A model of such a mechanism has recently been
developed from the ‘‘first principles,’’ and discussed exten-
sively in the literature.2 The basic feature of the above model
is the assumption that the insignificant fraction of the impu-
rities resides in the channel sites called further (C) sites and,
hence, no measurable signal comes from the (C) sites.2 Such
an assumption seems natural in the case of the host cations,
as otherwise no empty channels exist, and the lattice be-
comes susceptible to the collapse. However, very highly di-
luted cationic impurities do not need to follow the above
pattern as far as the lattice stability and the channel empti-
ness are concerned. Hence, the above-mentioned assumption
could be relaxed for diluted impurities leading to the ex-
tended model of the channel diffusivity, the latter exhibiting
a rich manifold of the possible eigensolutions.

The last model allows us to account for the possible af-
tereffects in a straightforward manner. That is, a distribution
of impurities between (C) sites and regular cationic sites
called further (R) sites does not need to be the same for
parent and daughter radioactive impurities, e.g., Mo¨ssbauer
parent and daughter atoms in the case of emission Mo¨ssbauer
spectroscopy, provided these impurities are different ele-
ments, e.g., Co parent and Fe daughter. The model is sensi-
tive to both of the above distributions provided a time scale
for the evolution from one to another is comparable with the
time window of the experimental method, i.e., with the
Mössbauer level lifetime in the case of the emission Mo¨ss-
bauer spectroscopy. Due to the fact that some diffusive
jumps occur between two different Bravais sublattices (R)
and (C) leading to a simultaneous relaxation of the hyperfine

interactions, spectral line positions of the Mo¨ssbauer emis-
sion profile depend upon the wave-vector transfer to the sys-
tem, i.e., upon the orientation of the single crystal sample
versus the emittedg-ray. Such behavior has not been pre-
dicted previously, to our best knowledge.

The paper is organized as follows: Sec. II deals with the
extension of the previous two-state model~2SM! ~Ref. 2! to
the extended three-state model~3SM!. Section III discusses
thermodynamics of the 3SM, while Sec. IV is devoted to
some examples of the possible Mo¨ssbauer spectra calculated
for the 14.4-keV Mo¨ssbauer line in57Co~Fe! in the case of
emission spectroscopy from single crystals. The summary of
results is given in Sec. V.

II. EXTENDED MODEL
OF THE DIFFUSIVITY/RELAXATION

In order to evaluate observable quantities, one has to start
with the evaluation of the appropriate diffusion/relaxation
matrix leading to the superoperator describing the problem.
Figure 1 shows details of the rutile structure and diffusive
jumps of the cationic impurity. One can assume that anions
fill almost completely their sublattice, and remain practically
immobile as far as the diffusivity is concerned. Host cations
almost fill a tetragonal body-centered Bravais sublattice hav-
ing a chemical unit cell with the lattice constanta in the
tetragonal plane, and the lattice constantc along the tetrag-
onal axis. A very small fraction of the host cations remains
in the (C) sites, moving rapidly along thê001& channels and
exchanging with the host atoms in the (R) sites via the pre-
dominantly interstitialcy mechanism. Hence a small fraction
of randomly distributed vacancies is left in the (R) sites to
account for the overall charge neutrality.

Diluted cationic impurities~both parent and daughter! are
distributed randomly between (R) and (C) sites, changing
slightly the concentration of the (R) vacancies and intersti-
tial host cations in the case when their charges are different
from charges of the host cations. (C) sites form an almost
empty~impurities are very diluted! simple tetragonal Bravais
sublattice having a chemical unit cell of the dimensionsa/&
andc/2, respectively. The latter sublattice is rotated byp/4
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around the tetragonal axis and shifted by@12 0
1
4# in the crys-

tallographic coordinates of the sublattice (R). Hence there
are two (C) sites per each (R) site. A sublattice (R) splits
into two simple tetragonal Bravais sublattices: white (RW)
and black (RB) as far as the orientation of the local tensors
is concerned. (RW) and (RB) sites transform one into an-
other by a right-angle rotation around the tetragonal axis.

Due to the fact that~R! sites have inversion centers, the
lowest rank~order! of the relevant tensors equals two~it is
assumed that magnetic interactions are absent!. One has to
note that the (C) sublattice splits into four sublattices as far
as the accessibility of the adjacent (R) and (C) sites is con-
sidered. That is one can distinguish bottom sites (b) located
in the crystallographic plane@0 0 1

4# and top sites (t) located

FIG. 1. Details of the rutile structure:~a! View ‘‘down’’ the tetragonal axis.~b! ‘‘Side’’ view. ~c! ‘‘Panoramic’’ view of the chemical unit
cell. ~d! Adopted polaru and azimuthalf angles shown in respect to the crystal axes; ‘‘panoramic’’ view of the^001& channel and diagram
of the impurity jumps:u stands for the oxygen parameter~Ref. 2!, while the remaining symbols are explained within the text. Usually
u>0.3.
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in the plane@0 0 3
4# as far as the jump routes to the adjacent

(C) sites are concerned. A further splitting within each of the
above~and all equivalent! planes is caused by the accessibil-
ity of the (R) sites; i.e., sites@12 0

1
4# and @ 12 1

1
4# differ from

sites@0 1
2
1
4# and @1 1

2
1
4#, while sites@12 0

3
4# and @12 1

3
4# differ

from sites@0 1
2
3
4# and@1 1

2
3
4#. There is no inversion center on

the (C) sites. However, a symmetry breaking between vari-
ous (C) sites is of the very mild character as it solely affects
odd tensors having rank~order! higher than two.3 Hence one
can treat all (C) sites as equivalent, provided a recoilless
fraction is taken in the quadratic approximation and mag-
netic interactions are absent.

A common orthogonal coordinate frame [xyz], with thex
axis parallel tô 001&, the y axis parallel tô 11̄0&, and thez
axis parallel tô 110& assures that all second-rank~order! ten-
sors involved are diagonal@see Fig. 1~c! for the orientation
of the electric-field gradient tensor~EFG! principal compo-
nentsVxx , Vyy, andVzzon the (RW) site#. Figure 1~d! shows
related polaru and azimuthalf angles defining the direction
of the emittedg ray. Due to the fact that (R) sites have
inversion centers and all (C) sites forming a tetragonal sub-
lattice are equivalent in the present context, one can take a
wave-vector transfer to the lattice as the wave vector of the
emitted photon.

Daughter impurity jumps are described by the following
frequencies:vD stands for the jump frequency from the (R)
site into any adjacent (C) site. It is assumed that these jumps
occur mainly via the interstitialcy mechanism; i.e., a cation
~mainly a host cation! traveling along the channel moves into
the vicinity of the impurity and kicks it into any of the adja-
cent channel sites, filling its place. Due to the fact that each
(R) site is surrounded by eight (C) sites, a particular jump
occurs with the frequency18vD . There are no direct (R) to
(R) jumps. It has to be realized that the above jumps are
correlated events involving ‘‘simultaneous’’ jumps of two
atoms@a host atom jumps into an (R) site, and an impurity
jumps ‘‘simultaneously’’ into a (C) site#. A daughter impu-
rity within a channel could jump to the adjacent~empty! cell
with the frequencyv0. There are two such jumps possible, as
two channel cells are adjacent to each (C) site. Additionally,
an impurity can jump to the adjacent~empty! channel within
a tetragonal plane with the frequencyvc @there are four such
routes possible for each (C) site# and out of the tetragonal
plane with the frequencyvv @see Fig. 1~c! for details#. There
are four routes forvv jumps, as the remaining four are
blocked by the host cation-anion bond. Finally, an impurity
can jump into any adjacent (R) site via the interstitialcy
mechanism, kicking the (R) cation ~mainly a host cation!
into any surrounding channel. The evicted cation moves
away along the channel quite rapidly. The last event is again
a correlated event involving two atoms, and it occurs with
the frequencyv1. Hence a particular jump occurs with the
frequency1

4v1 as each (C) site is surrounded by four (R)
sites. All jumps within the (C) sublattice are single-atom
jumps, as the latter sublattice remains practically empty. Fig-
ure 1~d! shows a schematic diagram of jumps originating
from the (C) site. It is convenient to define the following
ratio: R5~2v0!/v1.

2

One has to note that (RW) and (RB) sites differ solely by
the orientation of the second rank~order! and higher tensors,
while the (C) site is characterized by its own recoilless frac-

tion, total shift and EFG~higher tensors are neglected!. All
second-rank~order! tensors on the (C) sites are axially sym-
metric, with the symmetry axis being parallel to the tetrago-
nal axis. 50% of thev1 jumps from the (C) sites lead an
impurity to the (RW) sites, and 50% to the (RB) sites.

Hence a diffusion/relaxation matrix has dimensions@3^3#
as the impurity can reside either in (RW) or (RB) or (C)
sites. A relaxation matrixŴR takes on the following
form:2,4–6

ŴR5S 2vD 0 vD

0 2vD vD

1
2v1

1
2v1 2v1

D , ~1!

where the first row represents an (RW) sublattice, the second
row an (RB) sublattice and the third row (C) sublattice. One
has to note, that theŴR matrix is a nonsymmetric matrix, in
general. A corresponding diffusivity matrixŴD takes on the
form2,6–9

ŴD5S 2vD 0 vDa1

0 2vD vDa1

1
2v1a1*

1
2v1a1* W33

~D !
D . ~2!

A geometrical factora1 represents all jumps leading from
(R) to (C) sublattice. One has to note that the same factor
describes jumps originating at the (RW) and (RB) sites, as
both of them belong to the same Bravais sublattice and differ
one from another solely by color.2 Due to the fact that (R)
sites possess inversion centers, the factora1 is a real number.
Off-diagonal elements of the third row of the matrixŴD
represent all the jumps originating on any~C! site, and lead-
ing either to the (RW) site ~first element! or to the (RB) site
~second element!. Due to the fact that (C) sites constitute a
Bravais sublattice, while (R) sites constitute another Bravais
sublattice, both geometrical factors of the above-mentioned
off-diagonal elements equala1* ~in fact they equala1 for the
case considered, asa1 is a real number!. A geometrical fac-
tor a1 takes on the following form:

a15
1
8(
i51

8

cos~ q̄•R̄i !, ~3!

where q̄ stands for the wave-vector transfer to the system,
andR̄i denotes a jump vector. Jump vectors of thea1 factor
could be expressed as follows in the coordinates [xyz]

R̄15~XYZ!, R̄25~2XYZ!, R̄35~X2YZ!,

R̄45~2X2YZ!,
~4!

R̄55~XY2Z!, R̄65~2XY2Z!, R̄75~X2Y2Z!,

R̄85~2X2Y2Z!

with X5 1
4c andY5Z5a/~2&!.

A matrix elementW33
(D) describes all jumps within a (C)

Bravais sublattice and a decay of the (C) state due to the
jumps leading to the (R) state. Hence it takes on the follow-
ing form:
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W33
~D !52v1@11R~12a3!#24vc@12a3

~c!

24vv~12 1
2 ~a3

~b!1a3
~ t !!#. ~5!

A geometrical factora3 represents jumps within a channel,
the latter forming a subgroup having an inversion center.2

Hence this factor can be expressed in the following way:2

a35(
n

rncos~ q̄•R̄n!,

whereR̄n5„(n/2)c 0 0… in the [xyz] frame, and

rn5exp@2 1
2 ~n/s!#/(

n8
exp@2 1

2 ~n8/s!#, ~6!

with n50,1,2, . . . . Theparameters depends solely upon
the frequency ratioR, and it is described by expression~13!
of Ref. 2.

A factor a 3
(c) describes jumps from the (C) site into any

adjacent~C! site within the same tetragonal plane. These
jumps also form a subgroup which is symmetrical against
inversion. Hence, the factora 3

(c) takes on the form

a3
~c!5 1

4 (
i51

4

cos~ q̄•R̄i
~c!!,

with the following jump vectors in the [xyz] frame:

R̄1
~c!5~0Yc0!, R̄2

~c!5~02Yc0!,
~7!

R̄3
~c!5~00Zc!, R̄4

~c!5~002Zc!,

whereYc5Zc5a/&. The last two factorsa 3
(b) anda 3

(t) rep-
resentvv jumps originating at the (b) and (t) sites, respec-
tively. Neither the (b) nor (t) subgroup has an inversion
center, however the average of both of them is invariant
against inversion@there is the same probability of finding an
impurity at either the (b) or (t) site#. Hence the factora 3

(t)

can be obtained asa 3
(t)5[a 3

(b)] !, while the factora 3
(b) fol-

lows the expression

a3
~b!5 1

4(
i51

4

exp@ i q̄•R̄i
~b!#,

with the following jump vectors in the [xyz] frame:

R̄1
~b!5~XcYc0!, R̄2

~b!5~Xc2Yc0!,
~8!

R̄3
~b!5~2Xc0Zc!, R̄4

~b!5~2Xc02Zc!,

whereXc5c/2.
A total diffusivity/relaxation operator equals

Ŵ5 1
2 (ŴR1ŴD). One has to note that the presence of thevc

and/orvv jumps leads to ‘‘delocalized channels.’’ The op-
eratorsŴR andŴD are defined in the same ‘‘Hilbert space,’’
as all the relaxation processes are driven here by the diffu-
sive motions.

In order to proceed further one needs to define occupan-
cies of the respective sites, i.e., (RW), (RB), and (C) sites
by the daughter impurity. It is obvious that occupancies of
the (RW) and (RB) sites are equal each to other as those
sites belong to the same Bravais sublattice. The sum of the
occupancies is constant at any instant of non-negative time

as the daughter particles are conserved once they are born in
the radioactive decay occurring at the ‘‘zero’’ time~it is
practical to normalize occupancies to unity!. Hence occupan-
cies of the respective sites could be expressed as follows:

p15p2 and p11p21p351,

with p1.0, p2.0 and p3.0, ~9!

wherep1, p2, andp3 stand for the occupancies of the (RW),
(RB), and (C) sites, respectively. Due to the above condi-
tions only a single parameter remains free, e.g., 0,p3,1.
One has to note, that the probabilityp3 does not need to be
the same for the parent and daughter atoms. For impurities
remaining at equilibrium between (R) and (C) sublattices a
probability p3 obeys the relationship

p`
~3!5vD /~vD1v1!, ~10!

where the symbolp`
~3! denotes a probabilityp3 at equilib-

rium. Hence for a limiting casev1@vD one obtains the 2SM
model withp`

~3!⇒0.
A diffusion coefficient tensor of the 3SM model is diag-

onal in the crystallographic and [xyz] coordinates, and it has
an axial symmetry around the tetragonal axis. Its components
obey the following relationships:

D^100&5 1
2 @ 1

4vS1p`
~3!~vc1vv!#a

2, D^010&5D^100&,
~11!

D^001&5 1
2 S 1

8 vSF (
n50

`

$rn@2n~n11!11#%G1p`
~3!vvD c2,

with vS5(vDv1)/(vD1v1), whereD^100&, D^010&, and
D^001& stand for diffusion coefficients along the^100&, ^010&
and ^001& axes, respectively. An average diffusion coeffi-
cient equalŝ D&5 1

3 $D^001&12D^100&%, while a diffusion
coefficient in the arbitrary directionuf is expressed as
follows:2

D~uf!5D^001&sin2u cos2f1D^100&

3~sin2u sin2f1cos2u!. ~12!

The above diffusion coefficient tensor reduces to the tensor
of the 2SM model forv1@vD andvc5vv50. Due to the
fact that the diffusion coefficient is obtained by averaging
over many jumps, it is justified to use equilibrium occupan-
cies and a weighted average~effective! frequencyvS , the
latter being a scaling frequency for jumps between various
Bravais sublattices. One has to note thatvS approachesvD in
the 2SM model, as for the latter case a conditionv1@vD is
satisfied.

For relatively short observation times, i.e., for an emission
Mössbauer spectroscopy, where the observation time is de-
fined by the Mo¨ssbauer level lifetime, one can expect even at
the local scale an evolution of thep3 parameter from the
equilibrium value for the parent atom to the equilibrium
valuep`

~3! of the daughter atom, as the parent atom lives long
enough to reach a local equilibrium prior to decay. For such
an after effect to occur equilibrium conditions have to be
different for parent and daughter atoms, i.e., those atoms
have to be different elements. A Mo¨ssbauer emission experi-
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ment is being performed in reciprocal space-time and, hence,
one has to use the following weighted average for thep3
occupancy:

p35@G0 /~G01vD1v1!#~p0
~3!2p`

~3!!1p`
~3! , ~13!

whereG0 stands for the natural linewidth of the Mo¨ssbauer
excited level in the (C) site, andp0

~3! denotes the probability
to find a daughter Mo¨ssbauer atom in the (C) site at the
instant of the formation of the Mo¨ssbauer level. Remaining
occupanciesp1 and p2 follow from Eq. ~9!. One can see
immediately that in the ‘‘static’’ limit an experiment is sen-
sitive to the parent atoms distribution, while in the fast dif-
fusion limit the same experiment is sensitive to the daughter
atom distribution. It is assumed that other after effects decay
at a very short-time interval.

Due to the fact that magnetic hyperfine interactions are
absent and the crystal-field level splitting is much larger than
the hyperfine interactions, it is justified to take super-
Hamiltonians in the semiclassical approximation. It is justi-
fied as well to assume that all hyperfine levels are thermally
equalized at relevant temperatures. Super-Hamiltonians of
sites (RW) and (RB) are the same as in the 2SM model~see
Ref. 2!, while the matrix element of the super-Hamiltonian
of the (C) site takes on the form

H3
x~memgme8mg8!5d~meme8!Hg

~3!~mgmg8!2d~mgmg8!

3@He
~3!~meme8!1d~meme8!S~3!#,

~14!

where the indicese and g refer to the excited and ground
nuclear states, respectively;me andmg stand for the respec-
tive magnetic quantum numbers;Hg

(3)(mgmg8) and
He
(3)(meme8) stand for the matrix elements of the nonscalar

ground and excited hyperfine Hamiltonians; andS~3! denotes
a total shift at the site (C), which is generally different from
the shift at the site (R) as these sites belong to different
Bravais sublattices. A HamiltonianĤ ~3! takes on the follow-
ing form in the frame [xyz] upon having dropped indicese
andg for brevity:

Ĥ ~3!5Axx
~3!@3Î x

22 Î 2#, ~15!

where Î x stands for the nuclear-spin projection operator on
the x axis, Î stands for the total nuclear spin operator, and
A xx

(3) denotes a quadrupole coupling constant

Axx
~3!5S eQ

4I ~2I21! DVxx
~3! ,

wheree denotes an elementary positive charge,I stands for
the nuclear spin,Q stands for the nuclear quadrupole mo-
ment andV xx

(3) denotes an electric field gradient along the
tetragonal axis at the (C) site. A simple form of the Hamil-
tonian Ĥ ~3! is due to the fact that (C) sites exhibit an axial
symmetry around the tetragonal axis as long as the second-
order ~rank! tensors are concerned.

A recoilless fraction at the (C) site again has an axial
symmetry around the tetragonal axis as far as the quadratic
approximation holds.2 Recoilless fractions for the (RW) and
(RB) sites are the same as in the 2SM model~see Ref. 2!.

Hence a recoilless fraction at the (C) site obeys the follow-
ing expression in the [xyz] frame:

f 3~ q̄!5exp„2q0
2
†Bxx

~3!~sinu cosf!21Bzz
~3!

3@~cosu!21~sinu cosf!2#‡…, ~16!

whereq0 stands for the absolute value of the wave-vector
transfer, B xx

(3) stands for the mean squared displacement
along the tetragonal axis, andB zz

(3) stands for the mean-
squared displacement perpendicular to the tetragonal axis.

The average effective recoilless fraction~averaged over
sites! follows the expression2

f S~ q̄!5l21@p1f 1~ q̄!1p2f 2~ q̄!1p3f 3~ q̄!#, ~17!

wherel stands for the background correction factor defined
in Ref. 2.

A vibrational dynamical matrix elements2 take on the fol-
lowing form in the independent dynamics approximation:

f ss8~ q̄!5„f s~ q̄! f s8~ q̄!…1/2, ~18!

where the indicess and s8 enumerate respective sites, i.e.,
(RW), (RB), and (C) sites. One has to note, that the above
matrix is real and symmetrical.

The above-mentioned information constitutes a complete
3SM model. One can conclude that the extension from the
2SM model to the 3SM model could be achieved by intro-
ducing the following parameters absent in the 2SM model:
V xx

(3), an electric-field gradient at (C) site along thex axis;
S~3!, a total spectral shift at the (C) site; B xx

(3), a mean-
squared displacement along thex axis at (C); B zz

(3), a mean-
squared displacement perpendicular tox axis at (C); v1, a
jump frequency from a (C) site to any (R) site; p0

~3! , an
occupancy of the (C) site by a daughter atom at instant of its
birth; vc , a direct jump frequency from a (C) site to another
(C) site in the tetragonal plane; andvv , a direct jump fre-
quency from a (C) site to another (C) site in the adjacent
channel with the ‘‘vertical’’ component. All previous param-
eters of the 2SM model are retained.

There is virtually no new physics in the further evaluation
of the 3SM model. One has to evaluate a superoperator of
the problem, the latter having the matrix elements,2,4–6

R~ss8memgme8mg8!5d~meme8!d~mgmg8!Wss8~ q̄!

1 id~ss8!Hs
x~memgme8mg8!, ~19!

and to calculate eigenvalues and left and right eigenvectors
of the superoperatorR̂. HereWss8

(q̄) stands for the matrix
element of the total diffusivity/relaxation operatorŴ. Eigen-
values and eigenvectors follow the set of equations

v̂R̂û5l̂, v̂û51̂, R̂ūn5lnūn , and v̄nR̂5 v̄nln ,
~20!

where 1̂stands for the unit operator,v̂ for the matrix of the
left eigenvectors~an eigenvectorv̄n belonging to a particular
eigenvalueln constitutes a row of the above matrix!, û
stands the matrix of the right eigenvectors~an eigenvectorūn
belonging to a particular eigenvalueln constitutes a column
of the above matrix!, and l̂ for a diagonal matrix having
subsequent eigenvalues as the diagonal elements. Subsequent
complex eigenvaluesln5ln(q̄) are labeled by the index
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n51,2,...,3~2I e11!~2I g11!.

Hence a Mo¨ssbauer spectrum could be calculated in the
same way as outlined in Ref. 2, except for the unnormalized
line intensities@see Eq.~32! of Ref. 2#, which have to be
weighted by the unequal occupancies of various sites. Thus
the above-mentioned intensities~complex numbers for the
3SM model! take on the following form presently:2,10

Cn~ q̄!5 (
k561

(
meme8

(
mgmg8

(
LL8

dLdL8^L8mg8uT̂pk~uf!ume8&
!

3^LmguT̂pk~uf!ume&

3(
ss8

psf ss8~ q̄!vns8me8mg8
~ q̄!usmemgn~ q̄!, ~21!

where all the symbols have the same meaning as in Ref. 2
except for theps defined by expressions~9! and~13!; f ss8(q̄)
defined by expression~18!; and left eigenvector elements
vns8me8mg8

(q̄) and right eigenvectors elementsusmemgn(q̄), the

latter two defined by the set of equations~20!. It has to be
stressed that imaginary parts of the eigenvalues Im@ln(q̄)#
represent spectral line positions, while real parts are respon-
sible for the broadening, the latter taking on the value
2uRe@ln(q̄)#u in comparison to the unbroadened linewidth.

In order to illustrate a behavior of the 3SM model, an
example has been evaluated. Nuclear spins were chosen as
I e5

3
2 and I g5

1
2. All frequencies and hyperfine levels were

rescaled byq0
21, with q057.30254 Å21 ~14.4 keV!. vc and

vv were set to zero.p `
(3)5p 0

(3) was chosen. Bragg condi-
tions were chosen for the (R) sublattice, i.e., theq̄5Ḡ con-
dition was chosen withḠ being one of the reciprocal lattice
vectors of the (R) sublattice. Finally the following hyperfine
parameters have been set:Axx520.1281 mm/s@a quadru-
pole coupling constant along thex axis on the (RW) site#;
Azz520.2379 mm/s@a quadrupole coupling constant along
thez axis on the (RW) site#; S520.3 mm/s@shift on the (R)
site#; Axx

(3)50.2489 mm/s@a quadrupole coupling constant on
the (C) site#; andS~3!520.25 mm/s@shift on the (C) site#.
The above values of the hyperfine parameters are typical of
the Fe31 impurities in the insulators. Due to the fact that
occupancy of the (C) site has been chosen as time indepen-
dent, a frequencyv1 could be determined from relationship
~10! in terms of vD and p`

~3! . Eigenvalues of the above
model have been calculated versusvD for p`

~3!51025 ~almost
a 2SM model!, p`

~3!51
2, andp`

~3!⇒1 @almost pure diffusivity
along channels with practically no impurities on the (R)
sites#. Due to the fact that both nuclear spins are odd, all
eigenvalues are fourfold degenerate~Kramers degeneracy!,
and one can expect six distinctly different eigenvalues at
most. For the Bragg conditions chosen all broadenings are
caused solely by the relaxation processes.

Figure 2 shows broadenings and corresponding positions
for the model outlined above. One can see, that for a limiting
case of the 2SM model@Fig. 2~a!#, broadenings are doubly
degenerated~in fact, they are eightfold degenerate!, with all
the intensity concentrated at broadenings marked with the
dots ~two almost indistinguishable widths at low frequency
and a single broadening at a high frequency, the latter mo-
tionally narrowed!. Extremely broad lines do not carry any

intensity and, hence, they can be treated as ‘‘ghost’’ solu-
tions. All broadenings tend to zero, of course, in the static
limit. There are four line positions for this case~two doublets
in the static limit!, however, all the intensity is concentrated
in the lines marked at both ends with dots. The latter lines
evolve in such a way to produce in the high-frequency limit
a doublet corresponding to the average EFG of (RW) and
(RB) sites. An inset shows which broadenings contribute to
the particular position at each zone. A semicolon indicates
nonuniqueness of the solution~due to the degeneracy!; i.e.,
those elements of the table which contain a semicolon could
be interchanged one with another within a particular zone
without affecting the physics. Underlined numbers indicate
broadenings with the surviving intensity in the high-
frequency limit.

Figure 2~b! is much more complex as it shows all the
features of the 3SM model. It can be seen again that in the
high-frequency limit all the intensity is carried by the mo-
tionally narrowed broadenings~marking dots!, and concen-
trated in the ‘‘inner doublet’’~dots!. Six distinct line posi-
tions are produced for some region of thevD frequency and
up to five distinct broadenings appear.

Figure 2~c! is extremely simple. Lines remain unbroad-
ened ~dots!, positions do not depend uponvD and all the
intensity is carried by the ‘‘inner doublet’’ belonging here to
the (C) sites~dots!. Such a behavior is quite clear, as all the
impurities stay within the (C) sublattice, and there is no
relaxation as all (C) sites are equivalent. All these models
have the same eigenvalues in the static limit, of course.

Due to the fact that the relaxation operatorŴR is non-
Hermitian and it remains fully correlated to the non-
Hermitian diffusivity operatorŴD ,

8,9 the latter being depen-
dent upon the wave-vector transfer, spectral line positions
become dependent upon the wave-vector transfer; i.e., a
spectrum shape depends on the emittedg-ray direction in a
more complex way than a simple broadening of the compo-
nents.

III. THERMODYNAMICS OF THE 3SM MODEL

In order to obtain realistic results, one has to consider
thermodynamical properties of the parent and daughter im-
purities. Mössbauer atoms are quite heavy and hence, all the
diffusive motions are over the barrier jumps of the classical
particles. Figure 3 shows energy levels and energy barriers
relevant to the 3SM model. All the barriers are shown for the
daughter impurity and they have to be positive in the stable
system. An energy levelUC describes the energy difference
for the daughter atom in the (C) site as compared to the
energy of the daughter atom in the (R) site. A levelU C

0 does
the same for the parent atom. These two levels do not need to
be the same for different parent and daughter elements~they
are practically the same for different isomeric states of the
nucleus!, and they can be either positive or negative depend-
ing upon the combination of the host and impurity elements;
i.e.,UC andU C

0 can be either positive or negative, and what
is moreUC can be greater than, equal to, or less thanU C

0 .
Hence the following set of equations holds, provided par-

ent impurities are equilibrated with the system~for long liv-
ing parents and temperatures that are not too low, the last
assumption is obeyed quite well!:
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p`
~3!5„2 exp@2UC /~kBT!#…/„112 exp@2UC /~kBT!#…,

~22!

p0
~3!5„2 exp@2UC

0 /~kBT!#…/„112 exp@2UC
0 /~kBT!#…,

vD58v0 exp@2U/~kBT!# with

v05 1
8vD

0 of the 2SM ~Ref. 2!,

v154v0 exp@2~U2UC!/~kBT!#,

vc5vc
0 exp@2Uc /~kBT!#,

vv5vc
0 exp@2Uv /~kBT!#,

v05vv
0 exp@2U0 /~kBT!#,

R5 1
2 ~vv

0/v0!exp@2~U02U1UC!/~kBT!#,

wherekB stands for the Boltzmann constant andT for the
ambient temperature. HereU is a barrier for a jump from
(R) to (C), U0 is a barrier for a jump along the channel,Uc
is a barrier for a jump from a channel to another channel in
the tetragonal plane, andUv is a barrier for a jump from a
channel to another channel with a ‘‘vertical’’ component. A
preexponential factorv0 @or equivalentlyvD

0 of the 2SM
model ~Ref. 2!# has to be the same forvD andv1 frequen-
cies, as these frequencies are related one to another by ex-
pression~10!. Preexponential factors forvc and vv jumps

FIG. 2. Broadenings~upper diagrams! and line positions within the 3SM model. Broadenings are numbered from the largest to the
smallest. Dots indicate broadenings or positions with the nonvanishing intensities. If no dot is shown, it means that all broadenings or
positions contribute to the spectrum. Insets show which broadenings contribute to a particular position. Rows represent zones labeledA, B,
etc., while columns represent positions in increasing order. Underlined numbers indicate which broadenings survive forvD⇒`, while a
semicolon indicates the nonuniqueness of the solution; i.e., within a given zone table elements containing a semicolon could be interchanged.
For more details, see the text.~a! Broadenings and positions plotted vsvD for a 2SM limit. ~b! Broadenings and positions plotted vsvD for
equal populations of the (R) and (C) sublattices.~c! Broadenings and positions plotted vsvD for impurities occupying solely the (C)
sublattice. Positions are labeled by the broadenings contributing to a particular position.
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are equal to each other~factor v c
0!, as both these jumps

originate from the same site in the same direction@see Fig.
1~c!#. A preexponential factorv v

0 describingv0 jumps along
the channel is likely to be similar to thev c

0 factor, as both of
them describe jumps over the empty lattice. On the other
hand, a factorv0 has to be much smaller, as it describes

correlated jumps due to the predominantly interstitialcy
mechanism. Sasaki, Peterson, and Hoshino1 found, by the
tracer method, that theR factor is close to 100 and almost
temperature independent for Fe diluted in TiO2 rutile. Hence
one can conclude that for the latter caseU>U01UC and
~v v

0/v0!>200.
On the other hand, it is very likely that barriersUc andUv

are much higher than the remaining barriers due to the geo-
metrical conditions. A barrierUc has to be higher thanUv ,
as the jump associated with theUc barrier has a route much
closer to the host cation-anion bond.2,11 Usually an oxygen
parameteru ~Fig. 1!, i.e., a ratio of the host cation-anion
bond length to thea& distance, takes on a value of about
0.3. Hence thevc route goes over the bond at a14c distance
from the bond axis. Figure 4 shows two examples evaluated
in accordance with the above set of equations. All frequen-
cies have been rescaled byq0

21, with q057.30254 Å21 ~14.4
keV!, and the following values have been adopted for vari-
ous parameters:

FIG. 2. ~Continued!.

FIG. 3. Energy levels and jump barriers of the 3SM model. See
text for details.

FIG. 4. Frequencies,R, and probabilities plotted vs temperature.
See text for details.~a! Case I.~b! Case II.
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v052.3393104 mm/s, vc
05vv

054.6603106 mm/s,

U513 456 K,
UC54000 K,
UC5500 K,

Uc522 000 K,
UC
052000 K,
UC
05200 K,

Uv521 500 K,
U059450 K ~case I!,
U0512 950 K ~case II!.

The above values have been adopted in such a way to obtain
an almost temperature-independentR>100, and to reproduce
results of the 2SM model at 1200 K forR5100 ~see Ref. 2!.
Figure 4~a! shows resulting frequenciesR and probabilities
for case I, while Fig. 4~b! shows the same results for case II.
It has to be noted that case I is much closer to the 2SM
model than case II@see e.g., closeness ofvD andvS in Fig.
4~a!#.

Hence one can conclude this Section by saying that the
3SM model is able to explain the constancy of theR ratio
versus temperature, and that for such cases the actual value
of the ratioR could be used to evaluate properties of the
correlated dynamics of the interstitialcy jumps.

IV. EXAMPLES OF SPECTRA

In order to illustrate the influence of the diffusive jumps
and correlated relaxation of the EFG and shifts, some emis-
sion Mössbauer spectra have been calculated for a 14.4-keV

line of 57Fe having a parent isotope57Co and embedded in a
single crystal of TiO2 rutile. A detailed procedure was al-
ready described in Ref. 2. All ‘‘instrumental’’ parameters
and parameters describing the ‘‘internal’’ behavior of the
~RW! and ~RB! sites have been taken from Ref. 2. All fre-
quencies and probabilities have been taken either for the
above-outlined case I or for case II. The following param-
eters have been adopted for the (C) site ~frequency param-
eters rescaled byq0

21 with q057.30254 Å21!:

Axx
~3!50.2489 mm/s and taken as temperature independent,

S~3!520.25 mm/s atT50 K,

Bxx
~3!51.30031022 Å2 at T50 K,

Bzz
~3!51.92731023 Å2 at T50 K,

G050.097 mm/s as a natural linewidth~constant!.

A quadrupole coupling constantA xx
(3) for the excited

nuclear state~the ground state is a Kramers doublet! has been
estimated by a charge cluster method applying the best avail-
able value for the oxygen parameteru50.3049,11,12the latter
further corrected for the charge in the Ti-O bond.13 A quad-

FIG. 5. Mössbauer spectra plotted vs linear velocity scale for various temperatures. See text for details.~a! Case I.~b! Case II.

12 888 54RUEBENBAUER, WDOWIK, KWATER, AND KOWALIK



rupole coupling constant is likely to be very weakly tempera-
ture dependent as the oxidation state is unlikely to change
upon transfer from the (R) to the (C) site. On the other
hand, quadrupole interactions are almost temperature inde-
pendent on the (R) sites.2 Hence, an isomer shift should be
almost the same on the (R) and (C) sites and the difference
is mainly due to the second-order Doppler shift.2 Thus a
rough estimate gives the above-mentioned value forS~3! at
T50 K. A shift has been corrected solely for the second
order Doppler shift versus increasing temperature by using a
Debye density of the phonon states with the Debye tempera-
ture uD5600 K ~Refs. 2, 11, and 14! and a mean-squared
velocity:

^v2&351.79331010 ~mm/s!2 at T50 K.

The above value has been roughly estimated comparing vol-
umes accessible to the impurity in the (R) and (C) sites,
respectively. The value for the (R) site has been already
estimated previously.2

The same density of the phonon states has been used to
correct mean-squared displacementsB xx

(3) andB zz
(3). There is

no simple way to estimate the above displacements atT50
K. Hence a displacement in the tetragonal plane, i.e.,B zz

(3),
has been taken as the average of the displacements in the
tetragonal plane for the (R) site,2 while the value along the
tetragonal axis has been roughly estimated taking into ac-
count a local freedom of motion along the channel~in the
vicinity of the potential minimum!. Hence the latter value is
much larger, leading to a significant anisotropy of the recoil-
less fraction at elevated temperatures at the (C) sites.

Spectra have been calculated for the direction of the emis-
sion of theg ray, chosen in such a way to obtain almost
minimal diffusional broadening, i.e., for the polar angle
u535.6° and for the azimuthal anglef50°.

Figure 5~a! shows spectra calculated for case I, while Fig.
5~b! spectra calculated for case II. Spectra atT5300 K have
been calculated, takingp0

~3! from T5500 K, as below 500 K
diffusivity is so slow that no equilibrium could be reached in
a reasonable time period. The above spectra have been cal-
culated for a perfect experimental geometry, i.e., for an ac-
ceptance angle of the detector tending to zero.

One can clearly see, in the static limit~T5300 K!, two
doublets@see Fig. 5~b!#, the inner one originating from the
site (C), and the outer one from site (R). The inner doublet
is barely visible in Fig. 5~a!, as case I is close to the 2SM
model, the latter exhibiting no measurable signal from the
(C) sites. Lines cannot be assigned to particular sites at el-
evated temperatures, as the superoperator mixes all sites.

A ’’strange’’ shape between 950 K and 1100 K for case II
is caused partly by the dependence of the line positions on
the wave-vector transfer as the Bragg conditions are not sat-
isfied exactly for the direction chosen. One has to note, that
for a given lattice and a fixedg-ray energy, Bragg conditions
usually cannot be satisfied exactly at all.15 The chance for the
Bragg conditions to be satisfied exactly diminishes with the
increasing number of the Bravais sublattices involved in the
diffusivity.6 Due to the fact that an almost minimal diffu-
sional broadening direction has been chosen, one can see a
motional narrowing at the highest temperatures shown. All

the above mentioned effects are more distinct for case II, as
for the latter case more eigenvalues exhibit significant inten-
sities.

Finally, Fig. 6 shows effects of the imperfect geometry
for a case II spectrum at 1200 K, i.e., at a temperature high
enough to have a very large broadening slightly off the di-
rection exhibiting narrow spectra. The effect would be much
lesser in other directions and at lower temperatures. Calcu-
lations have been performed for almost the same conditions
as those of Ref. 2.

Roughly speaking, a typical setup consists of a rectangu-
lar source having dimensions 7312 mm2 and a thickness 0.1
mm. A direction^111& is perpendicular to the source surface,
and the source is located 120 mm beneath a circular collima-
tor having 15-mm diameter. The source is rotated around the
axis parallel to the collimator plane in such a way that a
photon propagating along the collimator axis is emitted at the
anglesu535.6° andf50°. The longer source dimension is
parallel to the source rotation axis, while the rotation axis is
located about 4 mm ‘‘beneath’’ the source, and has a com-
mon point with the collimator axis. It is assumed as well that
impurities are evenly distributed within the source volume.
Hence, for such sensitive directions, at elevated temperatures
two-dimensional Soller collimators might be essential17 to
obtain reliable results or even to observe any signal at a
reasonable statistics. A broadening due to imperfect geom-
etry is particularly dramatic for the case shown, because line
positions depend upon the wave-vector transfer~direction!,

FIG. 6. A comparison of the case II spectrum at 1200 K for a
perfect~narrow! geometry and for a typical setup. See text for de-
tails.
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and the imperfect geometry causes some averaging over dif-
ferent wave-vector transfers~directions! within the accep-
tance angle of the detector. On the other hand, many eigen-
values have non-negligible intensities as the signal comes
from (R) and (C) sites.

V. CONCLUSIONS

It has been shown that a previously developed 2SM
model2 could be extended into a 3SM model, the latter ac-
counting for a signal coming from impurities in the channels.
A 3SM model merges smoothly with the 2SM model in the
case when a fraction of impurities in the channel becomes
negligible, and direct jumps between various channels can be
neglected; i.e., channels remain ‘‘localized’’ in the direction
perpendicular to the tetragonal axis. Hence, a ‘‘direct jump’’
3SM model has as a limiting case an event~encounter! 2SM
model. This is the first known example, to our best knowl-
edge, where such a ‘‘transition’’ has been shown to exist. Its
presence, in our opinion, is a strong argument justifying the
appropriateness of the encounter approximation under suit-
able conditions to evaluate data.

A superoperator of the 3SM model contains off-diagonal
elements depending upon the wave-vector transfer, as some
jumps occur between various Bravais sublattices. The same
jumps are responsible for the relaxation of the EFG and the
total spectral shift between sublattices involved. Hence, line
positions become dependent upon the wave-vector transfer,
i.e., upon a direction in the case of the Mo¨ssbauer spectros-
copy. Superoperators having the above-mentioned properties
have never been previously developed to our best knowl-
edge. They are able to explain quite complex spectral pat-
terns.

A 3SM model is basically a nonequilibrium model able to
trace a redistribution of impurities upon decay from a parent
to a daughter element provided a time window of the experi-
mental method is comparable to the time interval needed to
complete the above redistribution. A redistribution takes

place when the parent energy on the (C) site as compared to
the energy on the (R) site is significantly different from the
same energy difference for the daughter element. For the
14.4-keV transition in57Fe ~being a daughter of the57Co! a
time window defined by 1/G0 equals 141.2 ns,18 whereG0
denotes a natural linewidth of the Mo¨ssbauer level involved.
Hence one sees a parent distribution in the case of the slow
diffusivity limit, and a daughter distribution in the very fast
diffusivity limit, provided an emission Mo¨ssbauer spectros-
copy method is used. A model reproduces all intermediate
situations as well. The highest sensitivity to redistribution
occurs approximately forvS>G0. The sensitivity to redistri-
bution is lost, of course, in the case of absorption spectros-
copy, as for the latter case parent and daughter nuclei are
simply different isomeric states of the same nucleus and the
above-mentioned difference of the energy levels is negligible
for various isomeric states.

Finally, it has to be stressed that for some directions on
the Ewald sphere~at highly elevated temperatures!, where
the diffusional broadening is minimal and the motional nar-
rowing of the relaxation processes takes place, a very careful
design of the experimental geometry is required to obtain
reliable data or even to observe any effect at all. This dra-
matic sensitivity of the spectral shape to the direction of
observation is partly caused by the fact that line positions are
wave-vector transfer~direction! sensitive. The effect is par-
ticularly strong for a significant fraction of impurities staying
within a channel. It seems that the simplest remedy is the
application of the two-dimensional Soller collimators for
such cases.17
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